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Abstract
Microgrid control and operation depend on fault detection and classification because it allows quick fault separation and
recovery. Due to their reliance on sizable fault currents, classic fault detection techniques are no longer suitable for microgrids
that employ inverter-interfaced distributed generation. Nowadays, deep learning algorithms are essential for ensuring the
reliable, safe, and efficient operation of these complex energy systems. They enable quick responses to faults, reduce downtime,
enhance energy efficiency, and contribute to the overall sustainability and resilience of microgrids. With this intent, this
work proposes a “Discrete Wavelet Transform with Deep Neural Network (DWT-DNN)” for detecting and classifying the
various faults that occurred in hybrid energy-based multi-area grid-connected microgrid clusters. The proposed DWT-DNN
first extracts the input features from the point of common coupling of the cluster system using DWT, and then, these
decomposed features are applied as input variables to train the DNN for the detection and classification of various faults.
All the investigations are performed in the “MATLAB/Simulink 2022a” environment. To validate the effectiveness of the
proposed DWT-DNN, the results are compared with wavelet packet transforms (WPT) in terms of accuracy in detecting and
classifying the faults. From the simulation findings and observations, it is evident that the proposed DNN produced fruitful
results.
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Abbreviations

ANN Artificial neural network
AC Alternating current
DC Direct current
DNN Deep neural network
DWT Discrete wavelet transform
MPPT Maximum power point tracking
PCC Point of common coupling
PEMFC Proton exchange membrane fuel cell
PV Photovoltaic
PWM Pulse width modulation
Îout PV output current
Îphoto PV photocurrent
Îs PV saturation current
Îsc Short-circuit current of solar PV
G Irradiance of solar PV (W/m2)
Gstd Standard irradiance of solar PV (1000 W/m2)
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T Nominal temperature (K)
Tstd Standard temperature (K)
voc Open-circuit voltage of solar PV
q Charge in Coulombs
A Identity factor
k Boltzmann’s constant
LPF Low-pass filter
HPF High-pass filter

1 Introduction

A localized power system consisting of hybrid renewable
power sources is known as a microgrid (MG) and can func-
tion both independently and in combination with the main
grid. Faults or abnormalities in the microgrid can lead to dis-
ruptions in power supply, affecting the stability and reliability
of the system [1]. Timely detection and classification of faults
allow for rapid response and corrective actions to maintain
grid stability. Similarly, faults within a microgrid can cause
damage to electrical equipment such as generators, inverters,
transformers, or batteries [2]. By detecting and classifying
faults promptly, appropriate actions can be taken to protect
the equipment from further damage, minimize downtime,
and avoid costly repairs or replacements [3]. However, faults
in a microgrid can result in inefficient energy utilization.
For example, voltage sags or imbalances can lead to sub-
optimal performance of electrical devices, reducing energy
efficiency [4]. Some types of faults in a microgrid can pose
safety hazards. For instance, equipment failures or electrical
faults may lead to electrical shocks or fires. By detecting and
classifying faults, safety protocols, and emergency response
mechanisms can be activated promptly to mitigate potential
risks and ensure the well-being of individuals in the vicinity.
Fault detection and classification provide valuable insights
into the health and performance of the microgrid system. By
monitoring and analyzing fault occurrences, patterns, and
trends, maintenance activities can be scheduled proactively,
allowing for efficient resource allocation, minimizing down-
time, and reducing maintenance costs. A well-functioning
microgrid requires effective control and management [5].

Fault detection and classification can contribute to the
optimization of system operation by identifying deviations
from normal behavior, enabling timely actions to restore the
system to its desired state, and facilitating efficient load bal-
ancing and fault isolation. An in-depth analysis of fault data
can help identify the root causes of faults and aid in improv-
ing system design, component selection, and overall system
performance. By understanding the types and frequencies
of faults, system designers and operators can implement pre-
ventivemeasures and enhance the resilience of themicrogrid.

Overall, fault detection and classification play a crucial role
in maintaining the stability, reliability, safety, and efficiency
of microgrid systems [6]. By leveraging machine learning
algorithms, it becomes possible to automate the process
and enable real-time monitoring and response, leading to
improved performance and optimized operation [7].

In recent years, machine learning algorithms such as deep
learning and reinforcement learning algorithms have played a
key role in enhancing the reliability, safety, and performance
of the microgrid system [8, 9]. In [10], authors analyzed the
fault profile and created training sets for artificial neural net-
works (ANN), a DC microgrid is developed to model the
DC system under both normal and transient situations. In the
considered test system, several fault types with various fault
resistances and fault locations are explored. Later in [11],
authors used deep artificial neural networks to tackle one of
the most significant issues in process systems engineering:
defect detection and classification. However, a class of data-
driven machine learning algorithms known as deep neural
networks (DNN) and discrete wavelet transforms (DWT) are
used to create an intelligent fault detection scheme proposed
in [12]. Later authors in [13], a trained fault identification
model use themodifiedK-means algorithm, FP-growth algo-
rithm, and mini-batch gradient descent (MBGD) algorithm,
all of which are based onmachine learning theory.Moreover,
the authors in [14] used an artificial intelligence-based radial
basis fault classifier for detecting faults in a microgrid.

Authors in [15] suggested a method that combines a con-
volutional neural network and wavelet transform to create an
intelligent defect categorization mechanism. Wavelet trans-
forms are used for preprocessing and picture conversion after
first identifying the voltage and current results for each and
every potential defect in the MG network. Authors in [16]
provide a bearing fault detection approach (GNNBFD) based
on graph neural networks. Using the similarity between sam-
ples, the method first creates a graph; then, this is applied
as input to a network (GNN) for mapping of features, and
the GNN network produces output samples. Moreover, refer-
ence [17] presented protection ofMGusingmachine learning
techniques such as NB (Naive Bayes) classifier, SVM (sup-
port vector machine), and ELM (extreme learning machine).
The extracted three-phase current signals are used as input
signals to the above-said machine learning methods to clas-
sify the various fault events. Reference [18] provides a fault
diagnostic approach for microgrids based on the whale algo-
rithm optimization-extreme learning machine (WOA-ELM)
to address the issue of fault identification. The ELM, also
known as theWOA-ELMmodel, uses the whale algorithm to
optimize the input weight and hidden layer neuron threshold.
Moreover, the artificial neural network (ANN), a technology
based on artificial intelligence for fault detection, classifica-
tion, and localization in anACmicrogrid, is themain focus of
the authors [19]. Later reference [20] presented blockchain
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technology and artificial intelligence techniques for fault
detection and relay protection for wind power supply in
AC/DC hybrid microgrids. In this, the regional layering form
of the power supply fault diagnosismodel could be created by
combining machine intelligence-based identification mod-
els. In [21], authors presented a new idea by combining three
computational tools, i.e., maximum overlap discrete wavelet
packet transform (MODWPT) signal processing, augmented
lagrangian particle swarm optimization (ALPSO) parameter
optimization, and support vector machine (SVM) machine
learning for detecting the microgrid faults. This research in
[22] proposes a fault detection technique based on wavelet
transform and chaotic neural networks. The flaw of becom-
ing trapped in the local optimum can be overcome using
the chaotic neural network. Furthermore, it performs well
in terms of fault tolerance and associative memory abilities.
Later in [23], the authors introduce a new defect detection
technique for microgrid applications, by combining the dq0
and wavelet processing with local measurements, and this
approach is employed in real-time. Reference [24] presented
a method for detecting motor faults suggested which is based
on the wavelet transform, an upgraded particle swarm opti-
mization, and a backpropagation (BP) neural network with
linearly increasing inertia weight. To provide a workable
strategy, the research in [25] presents a new fault identifica-
tion approach for low-voltage DC microgrids incorporating
renewable energy sources. The proposed new fault detec-
tion method makes use of the absolute detailed energy, the
DWTdetail coefficient, and the instantaneous current change
rate. To detect islanding and fault disturbances in a micro-
grid made up of resources such as wind turbine generators,
fuel cells, and microturbines, the research in [26] suggested
wavelet transform-based approaches.

From the above-discussed literature survey, many
researchers developed different artificial intelligence tech-
niques to detect the faults in microgrids. On this basis, the
following are the gaps identified in the literature.

Most of the studies discuss the fault detection/classification
of a single microgrid with limited resources.
Limited studies have addressed the feature extraction in the
machine learningmodels for fault detection and classification
for microgrid applications.

So, to bridge the above research gaps identified from the
literature, in this work, we provide a DWT-DNN-based fault
detection scheme for hybrid energy-based multi-area grid-
connected microgrid clusters. Due to DNN’s exceptional
capacity to handle data with noise, DWT is made more
resilient by introducing DNN, despite its susceptibility to
noise and power disturbances. Hence, the following are the
key contributions established in this paper.

Ahybrid energy-basedmulti-area grid-connectedMGcluster
is modeled with the available resources with different load
profiles.
Fuzzy-basedMPPTalgorithm is proposed to extract themax-
imum power from the solar PV system modeled in the MG.
Discrete wavelet transform-based feature extraction is
adopted to train the machine learning model considered for
study.
The “Deep Neural Network (DNN)” technique is proposed
for fault detection and classification occurring at the PCC of
the system considered for study.

The other portions of the paper are structured as follows.
The description of the system considered for the study is
explained in Sect. 2; Sect. 3 introduces the concept of the
proposed DWT-DNN methodology; Sect. 4 summarizes the
results of the simulation; and Sect. 5 provides the paper’s
conclusion.

2 Description of system under study

The architecture of the hybrid energy-based grid-connected
microgrid cluster that is to be implemented is shown in Fig. 1.
The system under study consists of two areas, namely, area-1
and area-2, each area is associated with available renewable
sources and is considered as a single MG.

In area-1, MG is modeled with a solar PV system [27]
along with fuzzy-based perturb and observation (P&O)
MPPT algorithm, and in area-2, MG is associated with a fuel
cell along with controlled PWM technique. Each MG con-
sists of variable building loads [1] and circuit breakers (CBs)
for disconnecting the system from the grid if any abnormal-
ities occur in the system. In the system, DC bus is modeled
to provide a constant DC output voltage of 500 V from the
DC to DC converter which is supplied with variable voltage
from the renewable energy sources used in each MG, corre-
spondingly, the voltage from the inverter is obtained as 415V
[3].

3 Modeling of solar PV system

The system shown in Fig. 1 consists of two single areas’
out of which area-1 is considered as a single MG which is
associated with solar PV as an energy source. In this, the
maximum power from the solar PV system can be extracted
using a fuzzy logic-based MPPT algorithm. Figure 2 shows
the equivalent circuit and characteristics of the solar PV
system modeled in Simulink software. The mathematical
equations used for implementing the same model in MAT-
LAB/Simulink are given from Eqs. (1–4) [28]. Equation (1)
demonstrates how a solar cell’s output characteristic is
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Fig. 1 Layout of the two-area MG cluster to be implemented

Fig. 2 PV cell a Equivalent circuit and b I–V and P–V characteristics

nonlinear and significantly influencedby solar radiation, tem-
perature, and load conditions. As we know, photocurrent is
directly proportional to solar irradiance which is represented
as given in Eq. (2). Similarly, photocurrent and saturation
currents depend on solar temperature and irradiance as given
in Eqs. (3) and (4).

Îout � Îphoto − Îs
(
exp

∥∥∥ q

AkT

(
v + ÎoutRs

)∥∥∥ − 1
)

(1)

Îphoto � Îsc
G

Gstd
(2)

Îphoto(G, T ) � Îscs
G

Gstd

(
1 + � Îsc(T − Tstd)

)
(3)

Îsat � Îphoto(G, T )

e(voc/ vt ) − 1
(4)

3.1 Fuzzy rule-basedMPPT algorithm

When themaximumpower point is achieved in the traditional
P&O MPPT technique, the output power oscillates around
the maximum power point, resulting in power loss in the
PV system. As a result, for each MPPT cycle in P&O, the
array terminal voltage is disturbed. Both stable and unsta-
ble atmospheric conditions fall under this category. Fuzzy
logic application is thus anticipated to lessen operating volt-
age oscillation, which, in turn, minimizes power loss on the
PV system. In comparison with conventional nonlinear con-
trollers, fuzzy logic is more reliable, because of this, we have
designed a fuzzy logic-based MPPT technique to track max-
imum power from the solar PV system which is given below.
In this design, the fuzzy controller has two inputs, input 1 is
the change in solar PV power (�Psol), input 2 is the change
in solar PV voltage (�Vsol) at any sampling instant “r,” and
output is the change in reference solar PV voltage (�V ∗

sol).
This output is now used to generate an error signal e(r ) and
its change �e(r ) which are expressed as given by Eqs. (5)
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and (6).

e(r ) � Psol(r ) − Psol(r − 1)

Isol(r ) − Isol(r − 1)
(5)

�e(r ) � e(r ) − e(r − 1) (6)

The fuzzy logic-based MPPT controller of solar PV sys-
temFIS editorwindow and the surface plot is shown in Fig. 3.
Proposed fuzzy logic-based MPPT control is characterized
by the following assumptions.

1. Consists of five fuzzy sets, namely, Negative Big (-B),
Negative Small (-S), Extreme Zero (Z), Positive Small
(+ S), and Positive Big (+ B).

2. Mechanism of Mamdani inference is used.
3. Defuzzification is done by the centroid method.
4. The fuzzy controller is designed by considering 25 rules

as shown in Table 1

Based on the mathematical modeling, a fuzzy-based
MPPT controller for solar PV system is developed and imple-
mented in MATLAB/Simulink which is shown in Fig. 4.

4 Modeling of fuel cell

Apolarization curve, which depicts the nonlinear connection
between the voltage and current density, is used to evaluate
the PEMFC steady-state feature of a PEMFC source. The
mathematical modeling of the fuel cell is obtained as given
from Eqs. (7)–(10). Figure 5 shows the implementation of
a fuel cell with specifications of 6-kW and 45-V DC power
[28].

VFC � Ener − Va − Vohm − Vcon (7)

Va � T(p + q. ln(I )) (8)

Vohm � I .Rohm (9)

Vcon � −RT

zF
ln

(
1 − I

Ilim

)
(10)

where Ener is the reversible voltage of the fuel cell (ther-
modynamic potential), Va—activation drop, Vohm—ohmic
drop, Vcon—concentrated voltage, and p, q—constants.

5 Proposed discrete wavelet transform
with deep neural network (DWT-DNN)

5.1 Concept of discrete wavelet transforms
in extracting the input features

Feature extraction is a process for transforming unprocessed
data into usable numerical features while preserving the orig-
inal data set’s information. Compared to manual extraction,
the automatic feature extraction method can be quite helpful
when we wish to move swiftly from raw data to constructing
machine learning algorithms. Wavelet transform is a sig-
nal processing method that examines interruptions in the
power system using a "Time–Frequency multi-resolution"
approach. It makes use of amovable window that, at high fre-
quencies shrinks and, at lower frequencies expands. With the
help of a variety of basic functions called "mother wavelets,"
the signal function can be constantly expanded and trans-
lated into distinct frequency levels. In the time–frequency
domain, wavelet transforms can both represent functions and
make their local properties evident. Due to these properties,
effectively training neural networks to model very nonlin-
ear signals is made easy. A given function (signal) can be
defined by the DWT (frequency) as the sum of wavelets and
scalable functions with coefficients at various time shifts and
scales. DWT can extract information from transient signals
by disassembling signal components that overlap in both time
and frequency. As per DWT, the coefficients of both detailed
and approximated time signal α

(
T
)
are decomposed using

a function (scaled) βk
(
T
)
, and the mother wavelet function

μk
(
T
)
is given in Eqs. (11) and (12) [3]. In this, we used

Daubechies-4 wavelet decomposition.

βkx
(
T
) � 2

0.5
j β

(
2(− j)T − n

)
(11)

μkx
(
T
) � 2

0.5
j μ

(
2(− j)T − n

)
(12)

Here n ∈ Z , k, j are integers, and the base function is
altered by “n” units. The function βk

(
T
)
is connected to

LPF with coefficients, and with these filter coefficients, the
wavelet is now connected to HPF and is expressed in math-
ematical form as given in Eqs. (13) and (14).

β
(
T
) �

∑
n

h(n).
√
2.β

(
2T − n

)
(13)

μ
(
T
) �

∑
n

g(n).
√
2.β

(
2T − n

)
(14)

For an easy understanding of the process of decomposing
detailed coefficients usingwavelet transform a sample, three-
level decomposition wavelet transform is shown in Fig. 6 [3].
The DWT of single dimension signal x(n) is determined by
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Fig. 3 Fuzzy logic controller a FIS editor and b surface plot

Table 1 Fuzzy rules developed
for the MPPT algorithm �e(r)e(r) −B −S Z + S + B

−B + S + B −B −B −S

−S + S + S −S −S −S

Z Z Z Z Z Z

+ S −S −S + S + S + S

+ B −S −B + B + B + S

Fig. 4 Implementation of solar PV system in Simulink environment

allowing this signal through LPF, HPF is given in Eq. (15).

x(n) �
∞∑

m�−∞
x(m).g(n − m) (15)

whereg(n) and h(n) are the wavelet sequence of LPF and
HPF.

In this stage, firstly, the original data consisting of a total
of eight input features, which include all 3-Ø voltages and
currents, positive and negative sequence voltages at 11-kV
bus are obtained as shown in Fig. 1.

The step-by-step procedure for obtaining the required out-
put signal to train the DNN is as follows. (1) Set the fault
resistance, (2) read the three-phase voltages, currents, and
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sequence voltages at the 11-kV bus, (3) define wavelet syn-
tax applied on signal [C, L]�wavedec (x, N, wavelet name),
(4) define wavelet syntax for detailed coefficients D � det-
coef (C, L, N), (5) repeat the same process for different fault
resistances, and (6) save data to the workspace to train the
DNN. Figure 7 shows the decomposition of detailed coef-
ficients using the “Daubechies 4 wavelet” of level 5. From
this, the required output is applied to DNN for proper iden-
tification and classification of faults that occur at the PCC of
the cluster.

6 Deep neural network

An artificial neural network (ANN) that has more than one
hidden layer of neurons between the input and the output
is called a DNN. It is frequently used to simulate intricate
nonlinear systems. Furthermore, DNN calculation is quick
because it simply requires the solution of basic algebraic
equations. Because of this feature, DNN can handle issues
immediately. The premise behind the suggested DNN-based
fault detection scheme is that the branch current and voltage
measurements at the cluster system’s PCC can quickly reveal
the presence of a defect in the system. To extract the char-
acteristics, DWT processes the measurements first. The data
and characteristics are then fed into a DNN for fault-type
classification. If a fault is found, its position is ascertained
using the fault detection DNN. In addition, the fault phase
is developed using the fault phase identification DNN if the
fault is classified as imbalanced. Lastly, the information pro-
duced can be used to decision-making processes for later
control operations, such as fault isolation and recovery.

Fault detection and classification in a system under
study can also be accomplished using deep neural networks
(DNNs), which are a type of machine learning algorithm
particularly effective at learning complex patterns and rela-
tionships in data. The input layer, hidden layer, softmax layer,
and output layer are the four main types of layers that a
deep neural network contains. As is frequently the case with
data-driven fault diagnostic approaches, input data must be
normalized before being sent into the input layer. To ensure
that all of the values lay within the range [0, 1], another pos-
sibility is to utilize the feature scaling of the following form.

p′ � p − min(p)

max(p) − min(p)
(15)

The following nonlinear transformations are used in the
hidden layers which convert the input data information into
high features. Wherex � (2, ....., d), p—input vector,
�—hidden vector, and β−—bias vector. The output of the
final hidden layer is transformed using Eq. (16)without using

the activation function is given in Eq. (17).

�1 � λ(W1.p + β1)

�x � λ(Wx .�x−1 + βx )

}
(16)

�s � Ws�d + βs (17)

The softmax layer uses the softmax function given by
Eq. (18) to determine the values of each output neuron. The
network then chooses the label with the highest output value
to apply as a predicted label to the input data.

q j � e�s, j

n�s∑
j�1

e�s, j

(18)

7 Implementation of DNN

The general structure of DWT-based DNN is as shown in
Fig. 8, this structure consists of three stages, namely, (1) data
set preparation, (2) feature extraction using DWT, and (3)
training of DNN. The deep neural networks can be applied to
fault detection and classification in a microgrid as described
follows.

Data collection: Collect the voltage, current, and sequence
components from the 11-kV bus of the system which is as
shown in Fig. 1. These data should cover a wide range of
normal and different faulty operating conditions. A total of
eight input features are extracted from the 11-kV bus.
Data preprocessing: Clean and preprocess the collected data
from the data collection by removing noise, outliers, and
inconsistencies. Perform normalization or scaling to ensure
that the data are on a consistent scale and format which is
given by Eq. (16).

8 Training of DNN for fault detection
and fault classification

Based on the number and kind of layers, the number of neu-
rons in each layer and the activation function have to be
employed while designing the architecture of the deep neu-
ral network. In this study, for designing DNN in both fault
detection and fault classification, a total of 360 samples were
considered at PCC. Out of which 70% of samples, i.e., 252
samples are considered for training, 15% samples, i.e., 54
samples are considered for testing, and 15% samples, i.e.,
54 samples are considered for validation. Common archi-
tectures for fault detection and classification tasks include
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Fig. 8 Structure of proposed
DWT-DNN
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convolutional neural networks (CNNs) and recurrent neural
networks (RNNs), such as long short-term memory (LSTM)
networks. Figures 9, 10, 11, and 12 show the performance
of DNN-1 (fault detection) and DNN-2 (fault classification)
in terms of regression, performance, training state, and error
histogram.

From the regression plot shown in Fig. 9, it is observed
that regression is equal to “1” which means that the DNN-
1 is accurately trained to identify the faults in the system
under study the mean square error is also very low between
actual and predicted values. Similarly in DNN-2, the regres-
sion value is approximately equal to one which means that
DNN is properly trained for classifying faults in the specified
location.

The flowchart implementation of DNN for both fault iden-
tification and fault classification is shown in Fig. 13. Two
DNNs are used in the suggested DWT-DNN fault detec-
tion strategy, one for fault identification and the other for
fault classification.Meanwhile, their schemata differ slightly
because of the differences in their outputs. First, we build the
DNN for defect detection. This network’s goal is to discover
fault detectionDNNbyaccepting as input theDWT-extracted
features and the three-phase time-series current and voltage
measurements at the system’s PCC. Three different sorts of
defects are examined in this work: LG faults, LLG faults,
and LLLG faults. The output of the built DNN has four 0–1
indications, each of which denotes a different kind of defect.
Additionally, an additional no-fault indicator is added to the

output since this DNN needs to differentiate between cases
with and without problems.

9 Simulation results

Simulink modeling of a two-area microgrid cluster system
with proposed DWT-DNN shown in Fig. 1 is implemented in
the MATLAB 2022a software. The recommended computa-
tional facility for this system simulation includes Windows
11 operating system, any Intel or AMD × 86–64 processor
with four or more cores and AVX2 instruction set support,
16 GB RAM, and SSD 23 GB storage for an all products
installation. There are two green microgrids in the system:
MG1 and MG2. Each microgrid has a circuit breaker that
is controlled by an energy management system before con-
necting to a neighborhood microgrid or other microgrids in
the neighborhood.Additionally, PCC and circuit breakers are
used to link the integrated MG system to the electrical grid.

10 Analysis of the system under normal
working conditions

Initially, the cluster system that is considered for study is
operated under grid-connected mode. The system is con-
nected to the utility grid through a circuit breaker (CB3).
When the system is operating under normal working con-
ditions, the system can make power transactions with the

123



Electrical Engineering

(a) (b)

Fig. 9 Regression plots of a DNN-1 and b DNN-2

(a) (b)

Fig. 10 Performance plots of a DNN-1 and b DNN-2

(a) (b)

Fig. 11 Training state plots of a DNN-1 and b DNN-2
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(a) (b)

Fig. 12 Error histogram plots of a DNN-1 and b DNN-2

Fig. 13 Implementation of deep
neural network. DNN-1: fault
detection and DNN-2: fault
classification
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Fig. 14 Power available at PCC of two-area MG cluster for exchange of power during grid-connected mode

Fig. 15 Instantaneous voltage,
current waveforms, and fault
detection signal of DNN-1
during no fault

utility grid, i.e., during excess power conditions, cluster sys-
tem exports the power to the utility grid, and during deficit
power condition, the cluster imports power from the utility
grid. Figure 14 illustrates how CB3 operates under excess
and deficit power conditions. It is observed that at 0.01 s
and also at 0.26 s, the cluster system has an excess of power
which is transferred to the utility grid and is shown as a zone
highlighted. Except for aforesaid times, during the remain-
ing times, the system is importing power from the utility grid.
From the instantaneous voltage and current waveforms at the
11-kV bus, as shown in Fig. 15, it is seen that voltage and
current waveforms are at nominal values. In this situation,
the DNN is properly trained, and it gives an output of fault
level “0” which means that DNN-1 accurately identifies that
there is no fault in the system.

11 Analysis of the system under abnormal
working conditions

11.1 Line–ground (LG) fault

During this stage, the system under study is subjected to LG
fault conditions. The fault is applied from 0.1 s to 0.25 s, and
correspondingly, the instantaneous voltage, current wave-
forms, and fault detection signals are measured at the 11-kV
bus as shown in Fig. 16.

From the results, it is observed that the voltage suddenly
drops to 1400 V, and the current increases to 20 A in a phase
where the LG fault occurred. It is also observed the output
of DNN-1 accurately determines the LG fault condition by
producing a result of the fault level as “1” at its output.When-
ever there exists a fault immediately, DNN-2 is trained with
the features extracted at 11-kV bus to classify which type of
fault it is. As shown in Fig. 17, the output indicates that there
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Fig. 16 Instantaneous voltage,
current waveforms, and fault
detection signal of DNN-1
during LG fault

Fig. 17 Fault classification with
DNN-2 at 11-kV bus a LG fault,
b LL fault, c LLG fault, and
d LLL fault

exists an LG fault in the system by showing fault level “1” at
its output by keeping the remaining faults at fault level “0.”

12 Line–line (LL) fault

The system under study is now subjected to LL fault condi-
tions. Again the fault is applied from 0.1 s to 0.25 s, and the
instantaneous voltage, currentwaveforms, and fault detection
signals are obtained at the 11-kV bus as shown in Fig. 18.

From the results, it is observed that the voltage drops to
3050 V, and the current increases to 16.5 A in phases where
the LL fault occurred. It is also observed that the output of
DNN-1 accurately determines the LL fault condition by pro-
ducing a result of the fault level as “1” at its output.Whenever
there is a fault immediately, DNN-2 is trained with the fea-
tures extracted at 11-kV bus to classify the fault. As shown
in Fig. 19, the output clearly indicates that there exists an LL
fault in the system by showing fault level “1” at its output by
keeping the remaining faults at fault level “0.”

13 Line–line–ground (LLG) fault

In this case, the system is subjected to LLG fault. Similar to
the previous cases, the fault is applied from 0.1 s to 0.25 s,
and the instantaneous voltage, current waveforms, and fault
detection signals are obtained as shown in Fig. 20. In this
case, the DNN-1 accurately identified the LLG fault condi-
tion by indicating the fault level as “1” at its output. From the
results, it is observed that the voltage drops to 1580 V, and
the current increases to 20 A in phases where the LLG fault
occurred. It is also observed the output of DNN-1 accurately
determines the LLG fault condition by producing a result of
the fault level as “1” at its output. Whenever there is a fault
immediately, DNN-2 is trained with the features extracted
at 11-kV bus to classify the fault. As shown in Fig. 21, the
output clearly indicates that there exists an LLG fault in the
system by showing fault level “1” at its output by keeping the
remaining faults at fault level “0.” Moreover, the same anal-
ysis is also carried out for the remaining faults, and Table 2
shows the comparison of actual outputs and outputs produced
from the DNN.
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Fig. 18 Instantaneous voltage,
current, and fault detection
signals form DNN-1 during LL
fault condition

Fig. 19 Fault classification with
DNN-2 at 11-kV bus a LG fault,
b LL fault, c LLG fault, and
d LLL fault

In this study, we mainly focused on unsymmetrical faults
only. In this way, the primary goal of any network training is
to increase the network’s accuracy, which is described using
Eq. (19).

%Accuracy � M

N
(19)

where M—number of samples with correct labels and
N—total number of samples.

When the system under normal working conditions both
wavelet packet transform (WPT) [3] and proposed DWT-
DNN-based methodologies is accurately detect the “No fault
condition” by indication level “0” which is shown in Fig. 22.

From Fig. 22, consider the total number of samples (N)
as 11 and the total samples with correct labels (M) are 11.
So, the accuracy under no fault condition is obtained for
both WPT and DWT-DNN methods is 100% using Eq. (19).
Similarly, when the system has been subjected to LG fault,
WPT methodology detects the LG fault by indicating level
1 at AG and also giving one incorrect label at ABG which is
as shown in Fig. 23. From Fig. 23, again the total number of

samples (N) is 11, and total samples with correct labels (M)
is 10. So, the accuracy under the LG fault condition obtained
with WPT is 90.90% using Eq. (19).

Similarly, fromFig. 24, it is observed that the total number
of samples (N) is 11, and the total samples with correct labels
(M) is 11. So, the accuracy under LG fault condition obtained
with DWT-DNN is 100%.

Similarly, the proposed DWT-DNN method is compared
with WPT in terms of accuracy for various faults, and
the quantitative comparison is given in Table 3. From the
obtained simulation results and also from quantitative com-
parison with the WPT method, the proposed DWT-DNN has
accurately identified and classified various unsymmetrical
faults that occurred at the 11-kV bus of two-area MG cluster
system.

14 Conclusions

In this study, discrete wavelet transform-based deep neural
networks were used to locate and classify the problems in a
two-areaMGcluster.We observed how the number of hidden
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Fig. 20 Instantaneous voltage,
current waveforms, and fault
detection signal during LLG fault

Fig. 21 Fault classification with
DNN-2 at 11-kV bus a LG fault,
b LL fault, c LLG fault, and
d LLL fault

Table 2 Comparison of actual and DNN outputs

S. No. Fault Actual output DWT-DNN output

Phase A Phase B Phase C Ground Phase A Phase B Phase C Ground

1 No fault 0 0 0 0 − 0.0000 − 0.0000 − 0.0000 − 0.0000

2 A–G 1 0 0 1 1.0000 − 0.0000 − 0.0000 1.0000

3 A–B 1 1 0 0 1.0000 1.0000 − 0.0000 − 0.0000

4 A–B–G 1 1 0 1 1.0000 1.0000 − 0.0000 1.0000

5 A–B–C 1 1 1 0 1.0000 1.0000 1.0000 − 0.0000

layers and the number of neurons in the final hidden layer
affected the performance of networks for fault detection. So,
it is being observed that above a certain level (roughly 95%),
increasing the network size does not improve fault detection
accuracy. Later, we demonstrated how data augmentation
may help further improve fault detection accuracy, as well
as how it worked out well for the fault classification exam-
ple. In this study, firstly, we developed and trained DNN for
fault detection, and after that another DNN is alsomodeled to
classify the faults. Later these models have been connected

to the system under study to observe the performance in
terms of accuracy. So, DNN outperforms when compared
with theWPT technique. However, the proposed method has
certain limitations such as feature extraction, data prepro-
cessing complexity, and real-time processing. But as future
scope, careful feature selection, parameter tuning, and hybrid
approaches that combine DNNs with other machine learning
techniques and domain expertise may be required to lessen
these constraints. Additionally, some of the drawbacks of
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Fig. 22 Fault detection and
classification with both WPT and
DWT-DNN under no fault
condition

Fig. 23 Fault detection and
classification with WPT under
LG fault conditions Incorrect

Sample

Fa
ul

t L
ev

el

Time (sec)

Fig. 24 Fault detection and
classification with proposed
DWT-DNN under LG fault
conditions
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Table 3 Quantitative comparision of WPT & DWT-DNN (proposed)

S. No. Type of fault % of accuracy

WPT [3] DWT-DNN
(Proposed)

1 No fault 100% 100%

2 L–G 90.90% 100%

3 L–L 81.81% 100%

4 L–L–G 81.81% 90.9%

5 L–L–L 90.90% 90.9%

DWT can be mitigated by utilizing wavelet packet decom-
position or lightweight DWT variations, which offer greater
feature extraction flexibility.
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