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Abstract
This work suggests to optimize the geometry of a quadrupole magnet by means of a genetic algorithm adapted to solve
multi-objective optimization problems. To that end, a non-domination sorting genetic algorithm known as NSGA-III is used.
The optimization objectives are chosen such that a high magnetic field quality in the aperture of the magnet is guaranteed,
while simultaneously the magnet design remains cost-efficient. The field quality is computed using a magnetostatic finite
element model of the quadrupole, the results of which are post-processed and integrated into the optimization algorithm.
An extensive analysis of the optimization results is performed, including Pareto front movements and identification of best
designs.

Keywords Magnet design · Quadrupole · Geometry optimization · Multi-objective optimization · Genetic algorithm ·
NSGA-III

1 Introduction

Multipole magnets are essential components of particle
accelerators and are of paramount importance for the suc-
cess of particle physics experiments that are performed in
accelerator facilities [1]. Quadrupole magnets, in particu-
lar, are crucial for keeping particle beams focused on their
desired trajectories [2]. The very nature of particle physics
experiments places very high demands on the operation and
performance of accelerator magnets. Therefore, their pro-
duction must be based on meticulous design procedures.

Focusing on the case of quadrupole magnet design, com-
mon practice dictates to formulate the design objectives
into an optimization problem with respect to the geomet-
ric parameters of the quadrupole, while certain operational
parameters must also be taken into account during the opti-
mization process. Therein, the electromagnetic phenomena
taking place inside themagnet are typically simulated using a
digital magnet model and are included into the optimization
as performance measures [3–7]. However, such geometry
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optimization problems are notoriously hard to solve, in fact,
NP-hard [8], due to the fact that their computational com-
plexity increases exponentially with the number of solution
candidates. In many cases, the only viable option is to
employ search algorithms that are capable of comprehen-
sively exploring the parameter space and finding an adequate
configuration at a reasonable computational cost. Popular
methods of choice areMonte Carlo algorithms [9–11], simu-
lated annealing [12, 13] or genetic algorithms (GAs) [14–17],
all of which have been successfully applied to a number of
geometry optimization problems [18–20].

This work focuses on the use of GAs for the purpose
of quadrupole design. Originally, GAs have been devel-
oped for unconstrained, single-objective optimization prob-
lems, which constitute their natural domain of application
[21]. However, most geometry optimization applications,
also including quadrupole magnet design, feature multiple
and often conflicting objectives. In such cases, a multi-
objective optimization (MOO) [22, 23] must be solved
instead. Therein, the goal is to find so-called Pareto optimal
solutions, which cannot be further improved with respect to
one objective without worsening another [24]. Such MOO
problems are faced and tackled increasingly more often in
various engineering applications that concern geometry opti-
mization [25–28]. To address these problems, traditional
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GAs have been extended, e.g., in the form of so-called non-
dominated sorting genetic algorithms (NSGAs) [29–32].

Regarding the quadrupole magnet design problem con-
sidered in this work, the objectives of the MOO are: (a) the
maximization of magnetic field quality within the aperture
of the quadrupole magnet and (b) the minimization of the
magnet’s radius. The former objective is aligned with the
desired magnet operation with respect to beam focusing.
The latter objective aims at designs that use the minimum
necessary amount of magnet material, so that production
costs remain acceptable. The magnetic field quality is first
computed using a magnetostatic finite element (FE) magnet
model and then expressed in the form of relative multi-
pole coefficients on a reference radius. The evaluation of
the relative multipole coefficients is integrated into the fit-
ness function of an NSGA, such that only solutions which
maximize the magnetic field quality are allowed to propa-
gate through the evolution process, as dictated by the first
optimization objective. In particular, the algorithm known as
NSGA-III [31] is employed. The solutions are further con-
strained by the second objective, i.e., the need for a minimal
magnet radius. The Pareto optimal solutions, i.e., those that
provide an acceptable balancewith respect to both objectives,
are then analyzed such that the bestmagnet design candidates
are identified.

While works featuring GA-based MOO algorithms for
the optimization of accelerator systems do appear in the
literature [33–38], the application of such optimization algo-
rithms to accelerator magnet design seems to have been so
far neglected. In fact, the only relevant work that the authors
are aware of is [1], which mentions the option of optimiz-
ing accelerator magnets by means of MOO based on GAs,
however, without providing any verification in the form of
numerical experiments. The present work aims to fill this
gap.

The rest of this paper is organized as follows. Section2
presents the problem formulation with respect to comput-
ing the magnetic field of the magnet for a given design, the
magnet model considered in this work, and the computation
of the magnetic field quality in the aperture of the magnet.
Section3 presents the general formulation ofMOOproblems
and discusses GAs suitable for the solution of such problems,
in particular the NSGA-III. In Sect. 4, the MOO problem
with respect to the quadrupole magnet design is formulated.
The numerical results obtained by means of the NSGA-III
algorithm are presented and extensively discussed in Sect. 5.
Finally, conclusions are drawn in Sect. 6.

2 Problem formulation andmagnet model

The physical behavior of a quadrupole magnet can be fully
described by theMaxwell equations,which provide themath-

ematical foundation for classical electrodynamics. However,
in most cases, it suffices to provide an approximate descrip-
tion of the electromagnetic phenomena appearing in a given
problem setting, thus simplifying the underlying equations
and the resulting simulation model. For our particular appli-
cation of a quadrupole magnet with nonlinear materials, it is
sufficient to consider a magnetostatic representation of the
underlying magnetic field quantities. Therefore, we employ
the magnetic vector potential formulation in the steady-state
regime.

Considering the 3D case, the magnetic vector potential
formulation is given as

∇ × (ν(b)∇ × a) = j, (1)

where ν is the magnetic reluctivity tensor, b the magnetic
flux density, a the magnetic vector potential, and j the current
density. Equation (1) is discretized by employing a projection
on (1) with a test function v on a computational domain �

with boundary ∂� = ∂�N ∪ ∂�D, where ∂�N and ∂�D,
respectively, denote the boundary parts where Neumann and
Dirichlet boundary conditions (BCs) are imposed [39]. The
corresponding weak formulation reads:

Find a ∈ L0(curl,�) such that∫
�

ν(b)∇ × a · ∇ × v d� =
∫

�

j · v d�, (2)

for all test functions v in the space L0(curl,�), defined as

L0(curl,�) = {u ∈ H(curl,�) : n × u = 0|∂�D}. (3)

In (3),H(curl,�) is the space of square-integrable functions
with square-integrable weak curl. Note that the Neumann
boundary integral arising in the deduction of (2) vanishes
by applying the Neumann BC n · (ν (b) b) = 0, where n is
the outer normal unit vector. The Dirichlet BC n × a = 0 is
enforced in L0(curl,�).

The magnetic vector potential is approximated within a
finite element space as

a =
E∑
j=1

â jw j , (4)

where â j are the degrees of freedom (dofs), E is the number
of dofs, and w j denotes Nédélec basis functions of the first
kind and the first order [40]. We apply the Ritz–Galerkin
procedure, such that the set of test functions is the same as
the set of shape (basis) functions.
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2.1 2Dmagnet model

The magnet model is further simplified taking into account
the translation invariance of the magnet along the z-axis.
Therefore, we may consider a magnetic vector potential per-
pendicular to a 2D cross section of the 3D domain, in which
case a = [0, 0, az = az(x, y)]� and j = [0, 0, jz]�. We
denote the computational domain of the 2D cross section of
the quadrupole magnet with �2D := {x ∈ R

2 | ‖x‖2 ≤ R},
which corresponds to a circle with radius R ∈ R around
the origin. Figure1 depicts the full 2D quadrupole magnet
model contained in �2D, where the corresponding geome-
try descriptors and numerical identifiers are given in Table
1. The Dirichlet BC n × a = 0 is imposed on the boundary
∂�D, also shown in Fig. 1.

Table 1 also presents the intervals [ai , bi ], within which
the geometrical parameters are allowed to vary during the
optimization procedure, i.e., ai ≤ xi ≤ bi , i = 1, . . . , 6.
Parameters with constant values throughout the optimiza-
tion are denoted with the identifiers A and B. Shims are
included in the quadrupole model as important pole adjust-
ments, which can lead to significant improvements in the
homogeneity of the magnetic field, thus, to field quality
improvements as well [41]. Further improvements can also
be achieved through pole shape optimization as in [42]. The
nonlinearmaterial of the yoke and the poles ismodeledwith a

Brauer curve approximation [43] upon 1010-Steel and imple-
mented in a FE solver with the Newton method [44]. The
model is implemented using three open-source tools, namely
the mesh generator Gmsh [45], the GetDP FE solver [44],
and the ONELAB interface [46].

2.2 Convergence of the finite element discretization

The convergence of the FE discretization of the magnet
model is investigated by solvingEquation (1) for a repeatedly
finer 2D mesh, while for each refinement step the magnetic
energy in the computational domain � is post-processed.
Figure2 depicts the resulting relative error of the magnetic
energy over the number of dofs, indicating a first-order poly-
nomial convergence with respect to the number of 2D mesh
nodes. For the further results in this paper, the magnetostatic
problem is solvedwith 18665 2Dmesh nodes and 9081 trian-
gular elements for each model evaluation of the quadrupole
magnet.

2.3 Aperture field quality

One of the most important quantities of interest to be taken
into account during the design of a quadrupole magnet is
the field quality here represented by the harmonic distortion
factor Q, which can be computed upon the multipole coef-

Fig. 1 2D cross section of the
quadrupole magnet. The
computational domain, its
boundaries, and the different
material-based subdomains are
presented as in the legend. The
identifiers 1 − 6 and the letters
A, B, denote the geometrical
parameters of the magnet, as
described in Table 1 (color
figure online)
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ficients of the calculated field in the magnet’s aperture. The
harmonic distortion factor captures the relationship between
the desired multipoles such as the quadrupole components,
and undesired multipoles such as duodecapole components
and higher-order terms. Therefore, Q is a measure for the
magnetic field quality of the quadrupole magnet and can be
calculated as follows: The FE solution az is evaluated at a ref-
erence circle with radius rref. The result is then represented
by a Fourier series with Fourier coefficients ap and bp, such
that

az(rref, ϕ) =
∞∑
p=0

(
ap cos (pϕ) + bp sin (pϕ)

)
, (5)

using the polar coordinate system (r , ϕ). Then, the Fourier
characterization of the magnetic vector potential and the
magnetic flux density in the beam aperture are given as [1]

az(r , ϕ) =
∞∑
p=0

(
r

rref

)p (
ap cos (pϕ) + bp sin (pϕ)

)
, (6)

br (r , ϕ) =
∞∑
p=1

(
r

rref

)p p

r

(−ap sin (pϕ) + bp cos (pϕ)
)
,

(7)

bϕ(r , ϕ) =
∞∑
p=1

(
r

rref

)p p

r

(−ap cos (pϕ) − bp sin (pϕ)
)
.

(8)

The evaluation at r = rref for the radial magnetic flux density
yields

br (rref, ϕ) =
∞∑
p=1

⎛
⎜⎜⎜⎝−ap

p

rref︸ ︷︷ ︸
Bp(rref)

sin (pϕ) + bp
p

rref︸ ︷︷ ︸
Ap(rref)

cos (pϕ)

⎞
⎟⎟⎟⎠ ,

(9)

where Bp and Ap are called normal and skew harmonic coef-
ficients, respectively. The harmonic distortion factor Q(rref)
in the aperture of a 2P-pole magnet considered at a refer-
ence radius rref can be obtained from the harmonic Fourier
coefficients using the formula [1]

QP (rref) = 1

A2
P (rref)

∞∑
p=1
p 	=P

(
B2
p(rref) + A2

p(rref)
)

. (10)

For a quadrupole magnet (P = 2), with a quadrupole field
gradient

g(r) = A2(r), (11)

Table 1 Geometrical parameters of the quadrupole magnet

Description Identifier Notation Value Units

Pole width 1© x1 [14.0, 20.0] mm

Pole height 2© x2 [45.0, 120.0] mm

Yoke height 3© x3 [10.0, 25.0] mm

Pole bending1 4© x4 [0.03, 0.1] –

Shim height 5© x5 [0.1, 0.55] mm

Shim width 6© x6 [0.4, 1.2] mm

Bore radius A© – 15.0 mm

Reference radius B© rref 11 mm

The pole tip profile is modeled using a B-spline that is dependent
on the design variable x4. Only the radial coordinate of the resulting
parametrization is proportional to x4. Accordingly, in the case of the
1
8 -th quadrupole, x ∝ acosh(cx4)

Fig. 2 Convergence of the FE discretization. Four refinements of the
2D FEmesh have been executed, ranging from 990 dofs to 161028 dofs
(color figure online)

the magnetic field should be close to a pure quadrupole field,
i.e., the field gradient g should be high in comparison with
the other multipole coefficients Ap, with p = 1, . . . ,C ,
and p 	= 2, where C refers to the truncation coefficient.
Accordingly, the corresponding harmonic distortion factor
for a quadrupole magnet, given by

Q2(rref) = 1

g2(rref)

C∑
p=1
p 	=2

(
B2
p(rref) + A2

p(rref)
)

, (12)

should be in the order of 10−4 [1].
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3 Multi-objective optimization

In MOO, we seek to minimize (or maximize, depending
on the problem at hand) a set of—possibly conflicting—
objective functions fi (x) : X → R, i = 1, ..., k, k ≥ 2,
where x = (x1, . . . , xn) ∈ X denotes the vector of deci-
sion variables, equivalently, optimization parameters, and the
domainX ⊂ R

n is referred to as the feasible decision region
[22, 23]. For a feasible parameter vector x ∈ X , a corre-
sponding feasible objective vector z = ( f1(x), . . . , fk(x)) is
obtained, where z ∈ Z and Z ⊂ R

k is called the feasible
objective region.

The structure of X is induced by a set of constraints
applied to the decision variables. In the specific case of geom-
etry optimization, these constraints are often given in the
form of bounding box intervals, similar to the ones shown
in Table 1, such that X := [a1, b1] ⊗ · · · ⊗ [an, bn], where
ai ≤ xi ≤ bi , i = 1, . . . , n. Given this set of constraints, the
MOO problem reads

min
x∈X

{ f1(x), ..., fk(x)} . (13)

Inmost cases, a parameter vector that minimizes all objec-
tive functions simultaneously does not exist. It is therefore
necessary to have a method of comparing a set of solutions
while taking into account the satisfaction of all objectives.
This issue is resolved using the concept of dominating solu-
tions. Assuming two parameter vectors x, x̃ ∈ X arising in a
minimization procedure, then x̃ dominates x if

fi (x̃) < fi (x) and f j (x̃) ≤ f j (x),∀i, j ∈ {1, ..., n}, i 	= j .
(14)

A parameter vector that cannot be dominated is called Pareto
optimal [24]. In essence, Pareto optimality means that the
current solution cannot be further improved with respect
to one of the objectives, without simultaneously deteriorat-
ing another objective. The set of Pareto optimal solutions is
referred to as the Pareto front. A Pareto front is bounded by
the ideal and nadir objective vectors, respectively, denoted
with z∗ and znad. The former is obtained by individually
optimizing the objective functions and the latter by approxi-
mating the worst objective values of the Pareto front.

3.1 Genetic algorithms

GAs belong to a class of population based, stochastic opti-
mization algorithms which solve optimization problems by
only allowing candidate solutions with a promising “gene
pool” to reproduce and propagate through generations t =
1, 2, . . . , T , where T is the final generation [15, 16]. This
generation-based evolution of candidates is realized by cre-
ating a sequence of subsets P in the feasible decision space

called populations, which eventually converge to a set of
minimizers. In that way, a sequence (Pt )t∈N ⊂ X with

Pt
t→∞−−−→ P∗ (15)

is generated, such that each x ∈ P∗ is a minimizer of (13).
To deal with the limitations of realistic and thus finite cal-
culations, Equation (15) needs to be truncated by a final
generation T , so that with

Pt
t→T−−−→ PT , (16)

a set of generation-related minimizers x ∈ PT is considered.
The sequence of populations (Pt )t=1,2,...,T is dictated by

the genetic operators crossover Cσ ,mutation Mr , and fitness
selection F , such that

Pt+1 = F ◦ Mm ◦ Cσ (Pt ) , (17)

where ◦ expresses the concatenation of the sequentially
applied genetic operators on the current population Pt . The
indices σ andm, respectively, denote the crossover andmuta-
tion rates of the corresponding operators, where σ,m ∈
[0, 1]. The crossover andmutation rates determine the proba-
bility that the given operator is applied to a given population.
The crossover operator Cσ describes how sample solutions
are recombined to generate new solutions for the next popula-
tion. Themutation operatorMm describes randomdistortions
to the elements of a population and is particularly significant
for the convergence of the GA, as it ensures that the objective
space X is searched comprehensively and that the limit P∗
is initialization-independent. Last, the fitness selection oper-
ator F allocates a fitness value to the population members
and selects those with the highest values to progress to the
next generation.

In this work, simulated binary crossover [47, 48] and poly-
nomial mutation [49, 50] are employed as crossover and
mutation operators, respectively. For fitness evaluation, we
use the FE model of the quadrupole to compute the magnetic
field distribution in themagnet and evaluate the aperture field
quality, which in turn determines the fitness of a given pop-
ulation. As a selection operator, we use binary tournament
selection [51], due to its ease of implementation and robust-
ness against stochastic noise.

3.2 Non-dominated sorting genetic algorithms &
NSGA-III

As noted before, GAs were originally developed to solve
single-objective optimization problems. Therefore, they can-
not address a number of issues related to MOO, such as
dealing with multiple objective functions and ensuring diver-
sity in the populations. These issues have been addressedwith
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the introduction ofNSGAs [29–32]. In this work, we resort to
the so-called NSGA-III algorithm [31, 32], which is briefly
discussed in the following.

First, NSGA-III deals with the issue of optimizing numer-
ous objective functions by preferentially handling solutions
that dominate other members of a population according to
definition (14), by using non-dominated sorting. Given the
current population P , non-domination sorting partitions the
population P = F1 ∪ · · · ∪ FN−1 into disjoint sets Fi ,
which form the hierarchy F1 < F2 < · · · < FN−1.
This hierarchy is induced according to a domination factor
n p = 0, 1, ..., N − 1, which indicates how many solutions
from an equal or lower hierarchy level dominate the given
solution. The hierarchy construction is as follows: The setF1

includes x ∈ P , which have n p = 0, i.e., they are not domi-
nated by any solution. Then, we consider the setQ = P\F2

and decrement the domination factor for n p → n p − 1 for
all q ∈ Q that are dominated by an element of F1. This pro-
cess is repeated iteratively, thus yielding a hierarchical set
sequence. The sets with lower domination factors qualify to
the next population, whereas the sets with higher domination
factors are discarded. It is thus ensured that that the solutions
propagating to future generations are Pareto optimal with
respect to the current population they belong to.

To ensure population diversity, NSGA-III adds another
operation to the fitness selection procedure. Therein, the
objective vectors z are normalized to the unit cube by using
the ideal objective vector z∗ and the nadir objective vector
znad.. In that way, it is possible to consider objective func-
tions that are scaled differently. Then, reference points on the
unit hypercube are chosen, which lie on a simplex [52]. The
reference points typically have a space-filling property and
the objective vectors are projected to the reference points.
The population members are then determined by an explicit
diversity-preserving mechanism.

4 Quadrupole magnet optimization

The MOO concerns maximizing the absolute value of the
field gradient g, as introduced in Sect. 2.3, while minimizing
the outer radius R of the magnet. The optimization parame-
ters are the six geometrical parameters listed in Table 1 and
the current density j. The latter takes values within the inter-
val [1.0, 20.0] A/mm2 and in the following is denoted with
x7. Then, the MOO problem reads

min
x∈X

{−|g(x)|, R(x)} , (18)

where the feasible decision space is X = [a1, b1] ⊗ · · · ⊗
[a7, b7].

Fig. 3 One-eighth of the 2D quadrupole magnet model (color figure
online)

Instead of optimizing the full 2D magnet model shown in
Fig. 1, we exploit the three mirror symmetries of the mag-
net model in order to reduce it to the one-eighth segment
depicted in Fig. 3. This model reduction leads to a significant
improvement in terms of the computational cost of the finite
element method (FEM).

Besides constraints on the geometrical parameters and the
current density, we also introduce constraints on the absolute
duodecapole gradient gd, aswell as on the saturation behavior
of the iron yoke of the magnet, which read

|gd(x)| ≤ |g(x)|10−2, (19a)

b̃in ≤ bth, (19b)

b̃out ≤ bth. (19c)

Analogously to the quadrupole field gradient g in Equation
(11), the duodecapole gradient is given by gd = B6(rref). In
any case, the additional constraints demand that the duode-
capole gradient gd should not exceed a certain percentage
of the absolute field gradient g, as well as that the magnetic
flux density entering the pole nose b̃in and the magnetic flux
density exiting the yoke bend b̃out are bounded by a fixed
saturation threshold value bth. The magnetic flux densities
b̃in and b̃out are illustrated in Fig. 3. Both are obtained by
post-processing the FE solution az .

The solutions to the MOO problem defined by equa-
tions (18)-(19) are obtained, as previously noted, using the
NSGA-III algorithm. In particular, the implementation of
the algorithm which is available in the open-source, Python-
based optimization software pymoo is used [53].

5 Numerical results

In this section, the numerical results of the MOO are pre-
sented, which are additionally employed to identify the best
solutions, i.e., the ones corresponding to the most suitable
magnet designs. The notion of the best solution is split into:
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Fig. 4 MOO results for three optimization runs, each corresponding to
a different saturation threshold bth. The arrows show the Pareto front
movement from the initial point (×) towards the mass point of the final
Pareto front (✖ ) (color figure online)

• Best balanced solution, that is, the Pareto optimal solu-
tion with the lowest Euclidean distance to the ideal
objective vector, where the latter is approximated with
respect to the final Pareto front.

• Best field gradient solution, that is, the Pareto optimal
solution found in the final Pareto front, which results in
the highest field gradient.

Using NSGA-III with a crossover rate σ = 1.0 and a
polynomial mutation rate m = 0.1, each optimization run
is performed for T = 300 generations, with an initial pop-
ulation of 80 individuals, and an offspring population of 56
individuals. These empirically enforced values remain fixed
during several optimization runs, where the influence of dif-
ferent saturation behaviors of the iron is investigated. To
analyze the saturation behavior, three optimization runs are
performed, within which the saturation threshold bth, which
is embedded in the optimization’s constraints as in Equations
(19), is selected as 1.0T, 1.2T, or 1.4T, respectively. Eachopti-
mization run is performed upon the same feasible decision
space X . The initial point is chosen to be the center point
of X and represents a naive but admissible choice of geom-
etry with respect to the optimization constraints, see Fig. 4.
The associated initial objective values are R = 0.115m and
|g| = 11.305T/m. Here, the initial point serves as a ref-
erence point to compare the locations of the different final
Pareto fronts.

Figure4 shows the Pareto frontmovement and the location
of the final Pareto front after T = 300 generations for the
three chosen saturation thresholds. Therein, the Pareto front
movement is obtained by connecting the mass points of the
fronts obtained from each generation of theNSGA-III, where
the mass point is defined as the mean of all Pareto optimal
solutions. As can be seen, both the final Pareto front and the
front movement depend strongly on the chosen saturation
threshold. For bth = 1.0T and bth = 1.2T, the final Pareto
fronts are biased toward low values of the outer radius R. In
contrast, the Pareto front for bth = 1.4T is biased toward high
field gradient values. As for the individual evolution of the
different objective spaces, Fig. 7 in Appendix shows each of

Fig. 5 Relative skew harmonic
coefficients of the Pareto front
solutions associated with the
highest, i.e., worst harmonic
distortion factor for each
saturation threshold bth,
respectively (color figure online)
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(a) Best
bal-
anced
solu-
tions.

(b) Best
field
gradient
solu-
tions.

Fig. 6 Best solutions (normalized) for different saturation thresh-
old values bth. Additionally to the best solutions, the corresponding
objective values R and |g| are given. Filled black circles: normalized
parameter combinations of the best solutions. Transparent blue-colored

circles: normalized parameter combinations of all final Pareto optimal
solutions with respect to the different saturation thresholds (color figure
online)

the optimization solutions and their Pareto front movements
individually.

Figure5 depicts the relative skew harmonic coefficients
with respect to the quadrupolemain component, of the Pareto
front solutions associated with the highest, i.e., worst har-
monic distortion factor Qmax for each saturation threshold
bth, respectively. Further, it is verified that the Pareto optimal
solutions of all optimization runs have a harmonic distortion
factor Q below or of order 10−4. This observation is con-
sistent with the theoretical requirements for the harmonic
distortion factor of a sufficiently undistorted quadrupole
field, as mentioned in Sect. 2.3.

Next, focus is shifted to the best solutions of the final
Pareto front for each saturation threshold. For a better visual
comparison of the best solutions, the parameter combina-
tion corresponding to each solution is normalized to the unit
cube Xnorm = [0, 1]7. Using this normalization, the param-
eter distributions and the associated objective values of the
best solutions are depicted in Fig. 6. As can be observed, the
saturation threshold has a strong influence on the magnet’s
pole width, both for best balanced and for best field gradient
solutions. This is attributed to the fact that higher saturation
thresholds lead to a larger pole width design. It is further
observed that larger pole widths lead to higher field gradi-
ents for both cases of best solutions. The saturation threshold
has also a slight to moderate influence on the pole bending
design.With regard to the current flow, it can be seen that, for
both best solution cases, higher saturation thresholds allow
higher current densities, as expected. In the case of the best

balanced solutions (Fig. 6a), it is observed that changes in the
saturation threshold have almost no impact on the dimensions
of the pole height, yoke height, and the shim geometry. Con-
trarily, the dimension of the pole height is more important in
the case of the best field gradient solution, as can be seen in
Fig. 6b. Additionally, the choice of the shim geometry seems
to be more important for best field gradient solutions than for
best balanced solutions.

6 Conclusion

This work presented a framework for optimizing predomi-
nantly the geometrical and secondarily the operational char-
acteristics of a quadrupole magnet. The framework employs
a MOO formulation, where two conflicting objectives must
be satisfied, namely high magnetic field quality and accept-
able production cost. The MOO problem is solved by means
of the so-called NSGA-III algorithm, which is a GA suitably
modified to address the issues arising in MOO. Therein, a
magnetostatic FE model of the magnet is employed in order
to assess the quality of the magnetic field in the aperture
of the magnet. Finally, the MOO problem is complemented
with additional constraints on the duodecapole gradient and
the saturation threshold of iron.

The numerical results indicate that saturation has a major
impact on the obtained Pareto optimal solutions. Further ana-
lyzing the connection between optimization parameters and
Pareto fronts, it is possible to deduce useful information
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(a) bth = 1.0T.

(b) bth = 1.2T.

(c) bth = 1.4T.

Fig. 7 Pareto front movements for each saturation threshold. Colored
points: Pareto fronts for different optimization generations. Gray arrow:
Pareto front movement from the initial point (×) to the mass point of
the final Pareto front (✖ ) (color figure online)

regarding the impact of the different geometrical charac-
teristics of the magnet onto the optimization objectives.
Importantly, all identified optimal magnet designs lead to
a sufficiently low harmonic distortion factor, while it is pos-
sible to identify designs with an acceptable balance between
field quality and production cost.

Future work should consider the utilization of a 3D mag-
net model, in order to consider fringe field effects during
MOO studies. The impact of eddy currents and power losses
should also be taken into account.As a result,MOOproblems
with k > 2 objectives can be formulated and investigated,
leading to even more improved magnet designs. To limit the
computational burden of MOO, especially for an increased
number of objectives, surrogate modeling approaches could
be considered [54].
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Appendix A Pareto Front Movements

See Figure 7.
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