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Abstract
Present space robots such as planetary robots and flexible robots have structural flexibility in their arms and joints that leads
to an error in the tip positioning owing to tip deflection. The flexible-link manipulator (FLM) is a non-collocated system
that has unstable and inaccurate system performance. Thus, tip-tracking of FLM possesses difficult control challenges. The
purpose of this study is to design adaptive intelligent tip-tracking control strategy for FLMs to deal with this control challenges
of FLM. A vision sensor is utilized in conjunction with a traditional mechanical sensor to directly measure tip-position in
order to address the aforementioned problem. Image-based visual servoing (IBVS), one of several visual servoing control
techniques, is more efficient. However, the IBVS scheme faces numerous difficulties that impair the system’s performance
in real-time applications, including singularities in the interaction matrix, local minima in trajectory, visibility issues. To
address the issues with the IBVS scheme, a novel adaptive intelligent IBVS (AI-IBVS) controller for tip-tracking control of a
two-link flexible manipulator (TLFM) is designed in this study. In particular, this paper addresses the IBVS issues along-with
retention of visual features in the field-of-view (FOV). First, in order to retain object within the camera FOV, an intelligent
controller with off-policy reinforcement learning (RL) is proposed. Second, a composite controller for TLFM is developed to
combine RL controller and IBVS controller. The simulation has been conducted to examine the effectiveness and robustness
of the proposed controller. The obtained results show that the AI-IBVS controller developed here possesses the capabilities of
self-learning and decision-making for robust tip-tracking control of TLFM. Further, a comparison with other similar approach
is presented.

Keywords Flexible-link manipulator · Image-based visual servoing · Reinforcement learning · Robot vision · Tip-tracking
control

1 Introduction

Nowadays, the satellite, aerospace, and space industries
use lightweight flexible robots, planetary robots, and space
robots. Due to its lightweight, lower overall cost, low energy
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consumption during transportation, larger payload handling
capacity, increased maneuverability, and faster operational
speed, the flexible-link manipulator (FLM) has many advan-
tages. However, compared to a rigid manipulator, the struc-
tural flexibility of FLM arms and joints causes inaccuracy in
tip positioning [1]. Over the past four decades, research on
FLM control has been active. The control of flexible-link
manipulators (FLMs) is well reviewed in [2, 3]. Because
FLM is nonlinear and non-collocated, it acts as a non-
minimum phase system. Additionally, model truncation and
errors are evident, which affects system stability and also
leads to the inaccurate tip-tracking performance.

The primary cause of the non-collocation in FLM is the
placement of the sensor and actuator in different locations.
Themajority of the literature uses a standardmechanical sen-
sor, such as a accelerometer, encoder, strain gauge tomeasure
tip position information. However, occasionally electromag-
netic interference causes these sensors to perform poorly in
the difficult environment and give a noisy response. Since the
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tip point information ismeasured indirectly by thesemechan-
ical sensors, a model is required to relate the information
to the tip deflection. Moreover, wave propagation along the
beam causes the end-effector response to occur a little bit
later than a control input. To address this issue, sensor and
actuator averaging method were developed in [4]. However,
the use ofmultiple sensors and actuators increases the weight
of the flexible manipulator. Instead of using mechanical sen-
sors, optical sensors can also be utilized for the measurement
of tip point information, but they are very susceptible to noise.
These challenges,which yield an indirect estimate of tip point
deflection, are overcome by the vision sensor. Research in
flexible manipulator high-performance control using visual
servoing (VS) has grown recently. VS in FLM can signifi-
cantly increase the accuracy of the tip point information.

The eye-in-hand configuration (camera placed in tip, just
observing target object) is taken into consideration in this
work because it does not take kinematics into account when
determining positioning accuracy. Based on the error, there
are four visual servoing strategies. It has been established that
image-based visual servoing (IBVS), which is more com-
petent than other VS techniques, is one of the preferable
strategy for controlling FLMs. Additionally, IBVS removes
inaccuracies caused on by sensor modeling and is adaptable
to errors in camera calibration. However, the IBVS scheme
faces numerous difficulties that impair the system’s perfor-
mance in real-time applications, including singularities in
the interaction matrix, local minima in trajectory, visibility
issues.

Singularity and local minima in IBVS are caused by
improper pairings of visual features that impair FLM’s abil-
ity to monitor tips. Recent studies reveal that IBVS faces two
significant difficulties: (1) choosing visual features to avoid
singularities in the interactionmatrix and (2) designing a con-
trol scheme using those chosen visual features such that FLM
track the target trajectory with the least amount of tracking
error. Designing and choosing appropriate visual features for
IBVS is a challenging task. In [5], the shifted moment-based
visual feature is used to address the IBVS approach’s issues
with singularity in the interaction matrix and local minima in
trajectories. The work described in [5] demonstrated robust-
ness with a field-of-view (FOV) limitation, i.e., when the
object is partially occluded out of the FOV.

Usually,measured visual features are used as control input
for IBVS to compute the controller output. However, due
to disruption during movement, objects may occasionally
depart the camera’s FOV. Keeping the visual characteristics
in the camera’s field of view becomes difficult in this case.
Additionally, the stability and performance of the system are
directly impacted by the visual features’ visibility. However,
the work presented in [5] may fail if the object is fully out
of the FOV. Given the success of the image moment-based
visual serving control scheme in many robotic applications,

in thiswork to address the visibility issue of IBVS,we expand
the approach to design and build an adaptive IBVS controller
based on image moment for robust tip-tracking control of
TLFM.

Many approaches have been reported to prevent the afore-
said visibility issue of IBVS, for example, potential field [6],
navigation function [7], path planning [8]. Also, the visi-
bility issue of IBVS is addressed by employing a pan-tilt
camera [9], odometry with vision system [10] and specific
visual features [11]. Themethods described in [6–11] lack the
self-learning and online decision-making capabilities, ren-
dering them unsuitable for real-time applications (i.e., they
cannot automatically adapt to changing control tasks). Also,
these approaches cannot guarantee that all visual features
remain in the FOV [12]. Therefore, a machine learning solu-
tion is necessary to solve the aforesaid issue of IBVS. In the
realm of robotics, reinforcement learning (RL) [13] is a well-
known method for increasing flexibility to changing control
tasks and environments and for enhancing self-learning and
decision-making capabilities. RL in robotics is applied for
control of flexible aircraft wing [14], TLFM [15], SLFM
[16] and in many other applications. The algorithm in [15]
employs the method of on-policy learning. In the design
of proposed intelligent controller, the off-policy learning
method is used, as it is model-free, data efficient and faster
as compared to the on-policy learning method [17]. In order
to keep objects in the FOV of the camera, an intelligent con-
troller with off-policy reinforcement learning is proposed in
this study.

In this line of research, similar studies that combine both
RL and VS for mobile robot are presented in [18–32]. For
VS-based control of a 7-DOF redundant robot manipulator
to reach the target position, a self-organizing map (SOM)
network-based learning algorithm has been given in [28].
In [29], an interesting method for controlling a mobile robot
manipulator by fusing RL and IBVS is described. In this
work, off-line training with traditional Q-learning is adopted
for robust grasping of spherical object. An improvement over
[29] is presented in [30], in which neural network RL (NN-
RL) and IBVS is used for control of robot manipulator. To
enable online learning and flexibility with changing control
tasks, the NN-RL algorithm is applied into a hybrid control
system in [30]. In [31], a model-free RL strategy is intro-
duced for the robotic grasping of unknown objects. In [32],
the learning outcome of a generative model is directly used
in real-time application. Also, asymmetric actor-critic and
variational auto-encoder-based RL algorithm are designed
to achieve the desired target. However, results on integration
of RL and IBVS for tip-tracking control of the TLFM have
not been reported yet in the literature, which motivates us
to make an effort in this paper. Therefore, in this work, off-
policy RL controller is integrated with IBVS controller for
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accurate and robust tip-tracking control of TLFM is devel-
oped.

The objective of this paper is to develop a vision-based tip-
tracking control of TLFM, with a view of developing a novel
adaptive intelligent IBVS controller. It consists of following
contributions.

• An intelligent controller with off-policy reinforcement
learning (RL) is developed to guarantee that the object
remains within the camera FOV for accurate tip-tracking
control of TLFM.

• An adaptive intelligent IBVS (AI-IBVS) controller is
implemented into the composite controller to enable the
ability of self-learning and decision-making for robust
tip-tracking control of TLFM.

The remaining sections of the paper are structured as follows.
The preliminary TLFM dynamics and the robust tip-tracking
control (RTTC) problem formulation are presented in Sect. 2.
The solution to the RTTC problem is presented in Sect. 3, in
which the basics of RL (Sect. 3.1) are presented followed
by the design of actor-critic-based off-policy RL controller
(Sect. 3.2) and the new two-time scale IBVS control scheme
(Sect. 3.3). Section4 presents the development of the pro-
posed adaptive intelligent IBVS controller. In Sect. 5, the
training procedure (Sect. 5.1) is presented and analyzed the
tip-tracking performance (Sect. 5.2) with symmetrical and
non-symmetrical objects to validate the proposed hybrid
(AI-IBVS) controller using simulation studies. Also, a brief
theoretical comparison is given in Sect. 5.3. The conclusion
and scope of further work is given in Sect. 6. Appendix A
and Appendix B are included to support the theoretical and
simulation studies of the work.

2 Preliminaries and problem formulation

2.1 Dynamics of TLFM

The dynamics of TLFM is given by [5]

M(θi , δi )

[
θ̈i
δ̈i

]
+

[
c1(θi , δi , θ̇i , δ̇i )
c2(θi , δi , θ̇i , δ̇i )

]
+ K

[
0
δi

]

+ D

[
0
δ̇i

]
=

[
τi
0

] (1)

The matrices M , c1, c2, K , and D in (1) are, respec-
tively, a positive definite symmetric inertia matrix, Coriolis
and centrifugal force vectors, stiffness matrix, and damping
matrix. The detailed theoretical TLFMmodel conversion and
a comprehensive explanation of matrices of (1) are given in
Appendix A.

In state space form, the dynamics of TLFM (1) can be
expressed as

ẋ(t) = fi (x(t)) + gi (x(t))ui (t)

y(t) = l(x(t))
(2)

where x(t) ∈ �2n represents the state vector, y(t) ∈ �m rep-
resents the output vector (or tip position), u(t) ∈ �n denotes
the control input, fi (x(t)) ∈ �n is the drift dynamics of
TLFM, gi (x(t)) ∈ �n×m is the input dynamics and l(x(t)) is
the output dynamics. A comprehensive explanation of matri-
ces of (2) is provided in Appendix A.

Assumption 1 The system (2) has the following properties:

1. f (.) = 0, when the variable x(t) is equal to zero;
2. f (.) + g(.)ui (t) is Lipschitz continuous to all x(t) and

(2) is controllable/stabilizable.
3. | f (x(t + T )) | − | f (x(t)) |≤ b f | x(t + T ) −

x(t) | where T = �t is the sampling period and b f is a
constant.

4. | g(x(t)) |≤ bg , i.e., g(x(t)) is bounded by a constant
bg .

Lemma 1 If f (x(t)) is Lipschitz and f (.) = 0 (Assumption
(1)), which is a typical assumption to ensure that the solution
x(t) of the system (2) is unique for any finite initial condition,
thenAssumption (3) inAssumption1 is satisfied for the system
(2). On the other hand, some physical systems do meet this
condition even though Assumption (4) is not appropriate for
the considered nonlinear system (TLFM).

2.2 Problem formulation

The aim is to create control input u(t) for a system (2) such
that state of the system x(t) shall track a desired trajectory
xd(t) and stabilize the TLFM (by controlling link vibration).
The tracking error is described as

e(t) = x(t) − xd(t). (3)

The control input u(t) for the robust tip-tracking control
(RTTC) problem can be expressed as

u(t) =
{
url(t) if object is out of FOV
usp(t) if object is in desirable/safe area

(4)

where u(t) denotes the TLFM’s behavior policy that has to be
modified. To bring the object within the FOV, the RL control
input url(t) is used to correct the tip position of the TLFM.
To accomplish the visual servoing operation, IBVS control
input usp(t) is used.
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The formulation of the RTTC problem can be split into
two subproblems for TLFM when taking into account the
overall dynamics of the system (2).

Problem 1 The control input is intended to correct the posi-
tion of the TLFM’s tip for the system (2) in order to maintain
the object’s FOV. Consider the following cost function

J (e(t), url(t))

=
∞∫
t

e− τ−t
ψ [e(τ )T Q1e(τ ) + uT f (τ )R1url(τ )]dτ (5)

where R1 = RT
1 > 0 and Q1 ≥ 0 are positive-definite

function, and 0 < ψ ≤ 1 describes the constants used to
discount future costs.

The Hamilton–Jacobi–Bellman (HJB) equation related to
(5) can be used to determine the input url(t).

∂ J (e(t),url (t))
∂url (t)

= 0 (6)

Remark 1 It is not possible to encode input constraints into
the optimization problem by employing a non-quadratic per-
formance function since only the feedback part of the control
input url(t) is acquired by minimizing the cost function (5).

Remark 2 Note that singular perturbation (SP) approach [33]
uses the gap between the fast and slow variables to sepa-
rate overall dynamics into two reduced order system. In [5],
presents decomposition of TLFM dynamic model into two-
time scale by singular perturbation approach (slow and fast
subsystems).

Problem 2 The control input usp(t) for the system (2) is
intended to, (i) ensure perfect tracking and, (ii) account for
link vibration (for system stabilization). usp(t) control input
can be written as

usp(t) = u f (t) + us(t) (7)

where u f (t) and us(t) are control input for fast and slow
subsystem, respectively.

Remark 3 The RTTC problem for the slow subsystem is
to realize the tracking performance of x(t) to the desired
trajectory xd(t) with minimum tracking error. The desired
trajectory xd(t) can be achieved if e(t) → 0.

Therefore, a new formulation that provides both control
inputs concurrently needs to be created. Due to RL’s greater
ability to address the RTTC problem without necessitating
in-depth understanding of system dynamics, it has been suc-
cessfully used in a variety of practical applications.

3 Solution to the robust tip-tracking control
problem

In this section, two controllers for Problems 1 and 2 are
designed. An actor-critic-based off-policy reinforcement
learning controller is developed and new two-time scale
IBVS controller [5] are utilized to deal with Problems 1 and
2, respectively. The proposed composite controller is termed
as adaptive intelligent IBVS (AI-IBVS) controller.

3.1 Reinforcement learning

In RL, action-value methods have three major limitations
that cause problems in real-time application and their con-
vergence. First, their target policies are deterministic, where
as many problems have stochastic optimal policies. Second,
for larger action space, it is very difficult to find the greedy
action with respect to action-value function. Third, a small
variation in the action-value function results in major devi-
ations in the policy that causes convergence issue for some
real-time applications [34].

To overcome the limitations of action-valued methods,
actor-critic methods are utilized. The on-policy actor-critic
policy gradient algorithm is successfully used for learning in
continuous action spaces in many robotics applications [35].
The on-policy actor-critic algorithmdoes not take advantages
of off-policy learning. Off-policy algorithmsmake it possible
to followand collect data frombehavior policywhile learning
a target policy. However, off-policy actor-critic algorithms
are advantageous for real-time applications than action-value
methods aswell as off-policy actor-critic algorithms, because
it presents the policy, as a results the policy can be stochastic
and used large action space [34].

The memory structure of actor-critical techniques is inde-
pendent, allowing them to present the policy without regard
to any value function. The actor is called as policy structure,
because it is used to update the control policy. The critic
is called the estimated value function, because it is used to
criticize the actions made by the actor.

In recent years, neural networks (NNs) have been widely
employed for the control design of uncertain nonlinear sys-
tems since NNs have a good ability to approximate with less
system knowledge. This ability of NN helps to cop-up with
nonlinearity and uncertainty present in the TLFM.Therefore,
NNs are used for approximation in the present work. The
proposed RL controller comprises of two NNs: actor NN for
generating control input by estimating the uncertain param-
eter or system information, and critic NN for approximating
the cost function. For a continuous function f (Z) : Rk → R,
following NN is applied

f (Z) = WS(Z) (8)
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where Z = [Z1, Z2, Z3, . . . , Zk] ∈ �R
k is the input vector,

W = [w1, w2, w3, . . . , wl ] ∈ �R
l is the weight vector with

NN node number l > 1. S(Z) = [S1(Z), S2(Z), S3(Z), . . . ,

Sl(Z)] in which Si (Z) uses Gaussian function. It has been
established that NN is capable of estimating any continuous
function over a compact set�z ⊂ R

k to any desired precision
as

f (Z) = εb + W ∗S(Z), ∀Z ∈ �z (9)

where εb is the bounded estimation error andW ∗ is the ideal
constant weight.

3.1.1 Off-policy RL algorithm

In order to develop off-policy algorithm, augmented system
and value function need to be constructed. To determine
tracking error defined in (3), desired trajectory is assumed
as

ẋd(t) = hd(xd(t)) (10)

where xd(t) ∈ R
n . Taking into account e(t) (3) and xd(t)

(10), an augmented closed loop system can be constructed as

Ẋ(t) =
[
ė(t)
ẋd(t)

]
=

[
fi (xd(t) + e(t)) − hd(xd(t))
hd(xd(t))

]

+
[
gi (e(t) + xd(t))
0

]

= Fi (X(t)) + Gi (X(t))url(t)

(11)

where, the augmented states are

X(t) =
[
e(t)
xd(t)

]
(12)

The value function in terms of the states of the augmented
system thus produces

V (X(t)) =
∞∫
t

e− τ−t
ψ r(X(t), url(t))

= (XT (τ )QT X(τ )) + url(τ )RT u
T
rl(τ ))

(13)

where QT ≥ 0 and RT ≥ 0 are positive-definite function.
The augmented system dynamics (11) is expressed as the

off-policy RL algorithm.

Ẋ(t) = Fi (X(t)) + Gi (X(t))url(t)

+Gi (X(t))(url(t) + u j (t))
(14)

where u j (t) denotes the policy that needs to be updated. In
contrast, the behavior policy url(t) is the one that is actually

applied to the dynamics of the system to produce the data for
learning.

Differentiating value function along with the dynamics

(14) and using u j+1(t) = −0.5RT
T G

T (x)
(

∂Vj (X(t))
∂X(t)

)

Vj =
(

∂Vj (X(t))

∂X(t)

)T (
Fi + Giu j (t)

)

+
(

∂Vj (X(t))

∂X(t)

)
Gi (url(t) − u j (t))

= −QT (X) − uTj RT u j − 2uTj+1RT (url(t) − u j (t))

(15)

Integrating both sides of (15) yields the off-policy RL Bell-
man equation

e− τ
ψ Vj (X(t + T )) − Vj+1(X(t))

=
∫ t+T

t
e− τ

ψ

(
(QT (X(t)) − uTj RT u j

−2uTj+1RT (url(t) − u j (t))
)
dτ

(16)

Equation (16) is also known as off-policy Bellman equation,
that yields the following off-policy RL algorithm.

Algorithm 1 Off-Policy RL Algorithm to Find the Solution
of HJB
1: procedure
2: Given admissible policy u0
3: for j = 0, 1, 2... given u j , solve for the value Vj and u j+1 using

off-policy Bellman equation

e− τ
ψ Vj (X(t + T )) − Vj+1(X(t)) =∫ t+T

t
e− τ

ψ ((QT (X(t))

−uTj RT u j − 2uTj+1RT (url (t) − u j (t))
)
dτ

on convergence, set Vj+1 = Vj ,
4: Go to 3.
5: end procedure

The design of actor-critic structure is utilized to approx-
imately the various function and control policy in order to
build off-policy RLAlgorithm 1. Design of actor-critic struc-
ture is given in Sect. 3.2.

3.2 Design of actor-critic-based off-policy
reinforcement learning controller

Problem 1 is resolved by developing an actor-critic-based
off-policy reinforcement learning controller. The structure
of off-policy RL controller is depicted in Fig. 1.

In Fig. 1, actor is used to update the desired control policy
to minimize the cost function, critic is used to approximate
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Fig. 1 Off-policy RL controller for adaptive tip-tracking control of
TLFM

the reward function/current state information and cost func-
tion, behavior policy is used to select/generate the action
data/control input while learning about target policy for
TLFM. The estimated/target policy is unrelated to policy that
is evaluated and improved.

3.2.1 Design of critic NN

As the cost function (5) describes, the approximate error of
cost function can be expressed as

γ (t) = ˙̂J (e(t), u(t)) − 1
ψ
Ĵ (e(t), u(t)) + φ(t) (17)

whereφ(t) represent the instant cost function.As the constant
ψ → ∞, the approximate error of the cost function can be
represented as

γ (t) = ˙̂J (e(t), u(t)) + φ(t)

= ∇ ˙̂J (e(t), u(t))Żc + φ(t)
(18)

where Zc = y(t) = z1 = x(t) − xd(t) = e(t) and ∇ is
the gradient of Zc. Equation (18) is also known as Bellman
equation.

Critic weight (Wc)update Critic weight update law can
be designed as

˙̂Wc = −lc
∂Ec
∂Wc

(19)

where Ec is the square Bellman error [17], i.e., defined as

Ec = 1
2γ

T (t)γ (t) (20)

Substituting (20) in (19), one obtains

˙̂Wc = −lcγ (t)
∂γ (t)

∂Wc

= −lcγ (t)
∂[ ˙̂J (e(t), u(t)) − 1

ψ
Ĵ (e(t), u(t)) + φ(t)]

∂Wc

= −lcγ (t)

[
− 1

ψ

∂ Ĵ

∂Wc
+ ∂

∂Wc

(
∂ Ĵ

∂Zc

)]

= −lc(φ(t) + WT
c ∧)∧

(21)

where lc > 0, which represents the learning rate of critic NN
and ∧ = −(Sc/ψ) + ∇Sc Żc.

3.2.2 Design of actor NN

The dynamics of TLFM (1) can be rewritten as

M11θ̈ + M12δ̈ + c11θ̇ + c12δ̇ = τ (22)

M21θ̈ + M22δ̈ + c21θ̇ + c22δ̇ + K δ + Dδ̇ = 0 (23)

From (23), one obtains

δ̈ = −M−1
22 [M21θ̈ + c21θ̇ + c22δ̇ + K δ + Dδ̇] (24)

Substituting (24) into (22) gives

(M11 − M12M
−1
22 M21)θ̈ + (c11 − M12M

−1
22 c21)θ̇

+ (c12 − M12M
−1
22 c22 − M12M

−1
22 D)δ̇

− M12M
−1
22 K δ = τ

(25)

Equation (25) can be expressed as

P θ̈ + Qθ̇ + S = τ (26)

The dynamic of TLFM (26) can be rewritten by considering
x1(t) = θ , and x2(t) = θ̇ as

{
ẋ1(t) = x2(t)
ẋ2(t) = P−1(τ − (Qx1(t) + S)) = P−1τ + x3(t)

(27)

where x3(t) = −P−1(Qx1(t) + S).
To achieve the control objective, the tracking error vari-

ables e1(t) and e2(t) are defined as

e1(t) = x1(t) − x1d(t)

e2(t) = x2(t) − α1(t)
(28)

where x1d(t) is the control input and α1(t) is a virtual back-
stepping control variable to e1(t).
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Using (27), derivative of (28) can be written as

ė1(t) = e2(t) + α1(t) − ẋ1d(t)

ė2(t) = P−1τ + x3(t) − α̇1(t).
(29)

Virtual control variable is selected as α1(t) = ẋ1d(t) −
k1e1(t), where k1 > 0 is the constant design parameter. From
(29), ė1(t) can be presented as

ė1(t) = e2(t) − k1e1(t). (30)

Define a candidate Lyapunov function V1 = 1
2e

2
1(t). Its

time-related derivative can be expressed as

V̇1 = e1(t)ė1(t) = [e2(t) − k1e1(t)]e1(t)
= −k1e

2
1(t) + e2(t)e1(t).

(31)

To realize e2(t) → 0,we define candidate Lyapunov func-
tion V2 = V1+ 1

2e
2
2(t). Its derivative with respect to time can

be written as

V̇2 = V̇1 + e2(t)ė2(t)

= −k1e
2
1(t) + e2(t)[e1(t) + P−1τ + x3(t) − α̇1(t)].

(32)

To realize V̇2 < 0, we choose

e1(t) + P−1τ + x3(t) − α̇1(t) = −k2e2(t) (33)

where k2 > 0 is the constant design parameter. Then (32)
can be expressed as

V̇2 = −k1e
2
1(t) − k2e

2
2(t) (34)

From (33), the desired control law can be designed as

url(t) = P[α̇1(t) − k2e2(t) − e1(t) − x3(t)] (35)

However, to realize the control law (35), modeling infor-
mation x3(t) are needed, which are difficult in practical
engineering. In order to estimate the unknown information,
actor NN must be introduced.

So, control law url(t) can be redefined as

url(t) = P[α̇1(t) − k2e2(t) − e1(t) − Ŵ T
a Sa(Za)] (36)

where Ŵa = W ∗
a + W̃a is the neural weight estimation and

Za = [x1(t), x2(t), x1d(t), ẋ1d(t)]T . W ∗
a and W̃a are the

ideal and instant neural weights, respectively.
The instant estimation error is expressed as

εa = W̃ T
a Sa(Za) (37)

Then, the actor NN error ea can be designed as

ea(t) = εa + κI [ Ĵ (e(t), u(t)) − Jd(t)] (38)

where κI is a positive constant and Jd(t) ∈ �N+1 is the
desired cost.

Actor weight (Wa)update Actor weight update law can
be designed as

˙̂Wa = −la
∂Ea
∂Wa

(39)

where Ea = 1
2ea

T (t)ea(t).
Substituting (38) in (39), we get

˙̂Wa = −la
∂Ea

∂ea

∂ea
∂εa

∂εa

∂Wa

= −la(εa + κI Ĵ (e(t), u(t)))Sa

(40)

where la is the actor NN’s learning rate. As εa is unavailable,
we can redefine update law as

˙̂Wa = −la(Ŵ T
a Sa(Za) + κI Ĵ (e(t), u(t)))Sa (41)

3.2.3 Stability analysis

Define a candidate Lyapunov function Vc as

Vc = 1

2
W̃ T

c W̃c (42)

Taking the time derivative of (42), and substitute (21) into
(42), we have

V̇c = W̃ T
c

˙̃Wc = W̃ T
c

˙̂Wc

= −lcW̃
T
c (φ(t) + WT

c �)�
(43)

As γ (t) → 0, Eq. (18) will become

φ(t) = −∇ ˙̂J (e(t), u(t))Żc = −∇ ˙̂J ė(t) (44)

Substituting φ(t) from (44) to (43), one obtains

V̇c = −lcW̃
T
c (−∇ ˙̂J ė(t) + WT

c �)�

≤ lcW̃
T
c ∇ ˙̂J ė(t)� − lcW̃

T
c WT

c �T�
(45)

This means that when tracking error e(t) will be zero, V̇c
will be negative definite, i.e., V̇c ≤ 0 that will ensure the
stability.

The following lemma can be used to demonstrate the
closed loop system’s boundedness.
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Lemma 2 [16]CandidateLyapunov function Vr (t) is bounded
if the initial condition Vr (0) is bounded, Vr (0) ≥ 0 is con-
tinuous and the following equation satisfies

V̇r (t) ≤ −κVr (t) + λ (46)

where λ and κ are both positive constant.

Define a candidate Lyapunov function as

Vr = 1

2
eT1 e1 + 1

2
eT2 Pe2 + 1

2
W̃ T

c W̃c + 1

2
W̃ T

a W̃a (47)

Its time-derivative can be expressed as

V̇r = eT1 ė1 + eT2 Pė2 + W̃ T
c

˙̃Wc + W̃ T
a

˙̃Wa (48)

Substituting (41) into (48), one obtains

V̇r = −eT1 k1e1 − eT2 k2e2 + eT2

(
W̃ T

a Sa − εa

)

− lcW̃
T
c (−WT

c � + εc)�

− la W̃
T
a Sa

(
W̃ T

a S(Za) + κI Ĵ (e(t), u(t))
) (49)

As Ĵ (e(t), u(t)) = WT
c Sc(Zc) + W̃ T

c Sc(Zc), one obtains

Ĵ (e(t), u(t))T Ĵ (e(t), u(t))

≤ 2(WT
c Sc)

T WT
c Sc + 2(W̃ T

c Sc)
T W̃ T

c Sc
(50)

Substituting (50) into (49), one obtains

V̇r ≤ −κVr + Br (51)

where,

κ = min

(
λmin(k1),

la − 1

2
b2s ,

λmin(k2 − I ),
lcb2� − 2laκ2

I ‖Sc‖2
2

)
(52)

Br = la
2

‖Wa‖2‖Sa‖2 + laκ
2
I ‖Sc‖2‖Wc‖2

+ 1

2
‖εa‖2 + 1

2

∥∥εc,max
∥∥2 (53)

where I represents an identitymatrix, Br is positive constant,
b� ≤ ‖�‖ and bs ≤ ‖Sa‖. Further following condition must
satisfy to ensure κ > 0.

λmin(k1) > 0, λmin(k2 − I ) > 0,

la − 1

2
> 0,

lcb2� − 2laκ2
I ‖Sc‖2

2
> 0

(54)

As per Lemma 2, Vr (t) is bounded. Now, by using the
subsequent theorem, the RL controller’s boundedness is
established.

Theorem 1 Consider the TLFM, with the proposed RL con-
troller, the system parameters e1(t), e2(t), W̃c and W̃a are
bounded, since the initial conditions are bounded. Also, the
parameters e1(t), e2(t), W̃c and W̃a will eventually remain
within the compact set�e1 ,�e2 ,�W̃c

and�W̃a
, respectively,

which are defined as

�e1 =
{
e1 ∈ R

N+1 | ‖e1‖
√
2Vr (0) + Br/κ

}

�e2 =
{
e2 ∈ R

N+1 | ‖e2‖
√
2Vr (0) + Br/κ

λmin(P)

}

�W̃c
=

{
W̃c ∈ R

N+1 |
∥∥∥W̃c

∥∥∥ √
2Vr (0) + Br/κ

}

�W̃a
=

{
W̃a ∈ R

N+1 |
∥∥∥W̃a

∥∥∥√
2Vr (0) + Br/κ

}
(55)

Proof In (51), multiply eκt yields

d(Vreκt )

dt
≤ Bre

κt (56)

From (56), one obtains

Vr ≤ (Vr (0) − Br/κ) e−κt + Br/κ ≤ Vr (0) + Br/κ (57)

From (47) and (57), it can be observed that

eT1 e1 ≤ 2(Vr (0) + Br/κ)

eT2 Pe2 ≤ 2(Vr (0) + Br/κ)

W̃ T
c W̃c ≤ 2(Vr (0) + Br/κ)

W̃ T
a W̃a ≤ 2(Vr (0) + Br/κ)

(58)

Then, one can obtain

1

2
‖e1‖2 ≤ (Vr (0) + Br/κ)

1

2
‖e2‖2 ≤ (Vr (0) + Br/κ)

λmin(P)

1

2

∥∥∥W̃c

∥∥∥2 ≤ (Vr (0) + Br/κ)

1

2

∥∥∥W̃a

∥∥∥2 ≤ (Vr (0) + Br/κ)

(59)

3.3 Design of new two-time scale IBVS controller

A new two-time scale IBVS control scheme [5] is utilized in
order to address Problem 2. The goal of the new two-time
scale IBVS control scheme is to ensure tracking and stabilize
the system in order to fulfil the visual servoing task (to damp
out the vibration).
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3.3.1 Model decomposition by two-time scale perturbation
method

According to the SP technique, the design of a feedback
control system for an under-actuated system can be divided
into two subsystems: a fast subsystem for compensating tip
deflection/vibration and a slow subsystem for measuring and
controlling tip position. The state variable of the TLFM
dynamic model (1) can be expressed using SP theory as

x1 = θi = x̄1 + O(εs)

x2 = θ̇i = x̄2 + O(εs)

z1 = K δi = z̄1 + η1 + O(εs)

z2 = εs K δ̇i = z̄2 + η2 + O(εs)

(60)

where εs = 1√
k
is the SP parameter with the common stiff-

ness coefficient scale factor, and the overbars indicate the
slow part of each variable. The fast parts of the variables z1
and z2 are η1 and η2, respectively.

The slow subsystem is described as

˙̄x1 = x̄2
˙̄x2 = M−1

rr (x̄1, 0)[−c1(x̄1, x̄2) + ūs]
(61)

The fast subsystem can be expressed as

z̄1 = −Ĥ−1
f f (x̄1, 0)Ĥr f (x̄1, 0)[c1(x̄1, x̄2) − ū f ]

− c2(x̄1, x̄2)

z̄2 = 0

(62)

In terms of η1 and η2, the fast subsystem can be defined as

dη1

dT
= η2

dη1

dT
= Ĥr f (x̄1, 0)(usp − ūsp) − Ĥ−1

f f (x̄1, 0)η1

(63)

where H = M−1, T = t
εs

is the fast time scale, u f and us
are the fast and slow control signal, respectively.

With respect to (61) and (63), the slow and fast compo-
nents of the tip position variables and the deflection variables
change, respectively.Consequently, using the composite con-
trol theory, the TLFM’s control input can be written as

u = u f (x̄1, η1, η2) + ūs(x̄1, x̄2) (64)

where ū f and us are the fast and slow control inputs, respec-
tively. u f (x̄1, 0, 0) = 0, i.e., fast control signal is not needed
during trajectory tracking with slow subsystem (61).

3.3.2 Slow subsystem controller

Shifted moment-based IBVS is used to create the us(t) for
the slow subsystem. Two moment-based visual features are
required to control the 2-DOF of TLFM, according to [36].
To adjust the 2-DOFof theTLFManddecrease the sensitivity
of the data noise, a low order shifted moment-based visual
feature is applied. These are three polynomials that were
calculated using shifted moments. Here are the polynomials
of orders 2 and 3 that were constructed from shiftedmoments
[37].

Is1 = μs
20μ

s
02 − μs

11μ
s
11;

Is2 = −μs
30μ

s
12 + μs

21μ
s
21 − μs

03μ
s
21 + μs

12μ
s
12;

Is3 = 3μs
30μ

s
12 + μs

30μ
s
30 + 3μs

03μ
s
21 + μs

03μ
s
03

(65)

Features that are invariant to scaling, rotation, and translation
include

rs1 = Is2

I 8/10s1

; rs2 = Is3

I 8/10s1

; rs3 = Is3
Is2

;

rs4 = Is3
m5

00

; rs5 = Is2
m5

00

; rs6 = Is1
m4

00

.

(66)

By integrating three different types of moment invariants
(invariant to translation, to the 2D rotation and to scale), two
visual features with shifted moments are chosen from two
invariants from (65) and (66). The Ls

θ interaction matrix for
the two shifted moment-based visual features that regulate
the 2-DOF of the TLFM can be represented as

Lμs
i j

= [ Ls
θ1

Ls
θ2

] (67)

where,

Ls
θ1

= (i + j + 3)μs
i, j+1

+ (i + 2 j + 3)yoμ
s
i j + j xoμ

s
i−1, j+1

Ls
θ2

= −(i + j + 3)μs
i, j+1

− (2i + j + 3)xoμ
s
i j − qyoμ

s
i+1, j−1

(68)

From a binary or a segmented image, the analytical form
of the interaction matrix corresponding to every moment can
be calculated.

The purpose of a shiftedmoment-based IBVS controller is
to ensure that the real visual feature approaches the desired
visual feature asymptotically. For the slow subsystem, the
control input is designed for guaranteed accurate/perfect
tracking. It is designed using IBVS approach.

us(t) = −kL−1
s [ẋd(t) − f (xd(t))] (69)
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Fig. 2 IBVS flow control algorithm of TLFM

Equation (69) can be derived in the similar fashion as
adopted in [5]. In (69), Ls = Lμs

i j
is the interaction matrices

related to shifted moment (67) of the tip with respect to the
position variables [5].

The interaction matrices for the shifted tip moment (67)
with regard to the position variables are represented by Ls =
Lμs

i j
in Eq. (69) [5].

To achieve the objective of shifted moment-based IBVS
controller, the formulation of problem is described in the
following steps:

1. Initially, pre-processed captured image-based features
based on shifted moments are extracted.

2. Interaction matrix is estimated from features, which are
extracted from shifted moments in previous step.

3. Camera/tip velocity or acceleration for robot controller
to be calculated from estimated interactionmatrix related
to visual features.

4. Then camera/tip is move to reach desired position unless
and until error of image features is minimized. When the
features align with the desired ones, the visual servoing
work is finished.

Figure2 shows the IBVS flow control algorithm, in which
s∗ is the desired image features and s is the current value of
image features.

For a closed-loop system (61), it is necessary to construct
an IBVS-based shifted moment control strategy so that the
output trajectory closely tracks the reference output trajec-
tory. As stated in [38], slow control input is planned as

ūs(x̄1, x̄2) = c1(x̄1, x̄2) + Mrr (x̄1)v (70)

3.3.3 Fast subsystem controller

Here, the fast subsystem of the TLFM is controlled by the
LQR controller. A state observer is typically required in fast

controllers to estimate the immeasurable modal coordinates.
The best option for closed-loop system stability and robust-
ness against time delay is a Kalman filter based on a fast
model that contains the first three modes and a fast feedback
that dampens the first mode only [38].

For the fast subsystem, consider the following cost func-
tion

J =
∞∫
0

xT (Q2+KT R2K )xdt (71)

where Q2 and R2 are positive definite symmetric matrices,
K f = [K1, K2] is the feedback gain. After minimizing the
cost function (71), the fast subsystem control input is repre-
sented by

u f (t) = −R−1BT Px(t) (72)

Equation (72) can be derived in the similar fashion as adopted
in [5].

The new two-time scale IBVScontrol lawusp(t) is derived
from (70) and (72) to solve Problem 2.

usp(t) = c1(x̄1, x̄2) + τ f (x̄1, η1, η2) + Mrr (x̄1)v (73)

4 Proposed adaptive intelligent IBVS
controller for TLFM

The new two-time scale IBVS controller presented in
Sect. 3.3 is a summary of work presented in [5] has the fol-
lowing practical problem: (1) the proposed controller cannot
guarantee the retention of visual features within the camera
FOV, (2) increased input torque results from increased con-
troller gain, which causes the visual feature to move out of
the FOV more quickly, resulting in system instability and
inaccurate system performance. In this section, the design
of a novel adaptive intelligent IBVS (AI-IBVS) Controller
for robust tip-tracking control of TLFM is presented in order
to address the visibility issue of the proposed new two-time
scale IBVS controller.

The proposed AI-IBVS controller design is depicted in
Fig. 3; it is discussed in Sect. 3. To increase the reliability
of vision-based tip-tracking control of the TLFM, RL-based
adaptive intelligent IBVS controller is built. The position of
the tip is corrected by the proposedRL controller (36) and the
new two-time scale IBVS controller (73). The proposed RL
controller brings the visual feature on the FOV by choosing
the best control input, while the new two-time scale IBVS
controller moves the tip of the TLFM in the direction of the
reference target.
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Fig. 3 Proposed adaptive
intelligent IBVS control scheme

Fig. 4 FOV for visual feature

In particular, the controller will employ the AI-IBVS con-
troller to learn and choose the best control input u(t) for the
robot under the current state. The TLFM’s RL controller will
receive the optimal control input to direct the visual features
into a desirable or safe region of the image plane. The reward
is used to update the actor-critic weight of the action under
the world state after the TLFM takes action. The reward is
computed based on the updated position of the visual features
on the image plane.

The image plane in Fig. 4 is arranged as a discrete grid
with 40 pixels per cell that is 16 × 12. It is divided into
three areas: desirable, safe, and undesirable. If the image
features is present in the desired/safe region, a new two-time
scale IBVS controller is employed. If not, an RL controller
is employed. As a result, the proposed AI-IBVS controller
ensures the presence of visual features inside the FOV.

When a vision sensor captures an image, it is simple to
translate the location of the visual features on the image

plane into coordinates in the grid world using the formu-
lation below:

X = round(r/40); Y = round(c/40). (74)

where r = 0, 1, . . . , 639 and c = 0, 1, . . . , 479 are the pixel
coordinates of the visual feature point on the image plane,
X = 0, 1, . . . , 15 and Y = 0, 1, . . . 11 are the corresponding
coordinates in the grid world.

For each state, the RL controller is only expected to take
two actions. The default value of wx or wy is 2 degrees per
second for the tip/camera rotational velocity. Therefore, one
of these actions is used in each stage or iteration depending
on the location of the visual feature in the image.

Algorithm 2 AI-IBVS Algorithm
1: Moment-based feature computation.
2: Compute current feature coordinate (X , Y ) in the grid from (74)
3: if (X , Y ) ∈ the undesirable/out of FOV area then
4: repeat
5: tip move wx or wy in each state
6: reward value computation from (75)
7: update critic weights (21)
8: update actor weights (41)
9: generate action data (control input)
10: url (t) is computed from (36)
11: until (X , Y ) ∈ in the desirable/safe area
12: else if (X , Y ) ∈ in the desirable/safe area then
13: repeat
14: interaction matrix estimation
15: estimation of error vector
16: usp(t) is computed from (73)
17: until visual servoing task is achieved.
18: end if

The environment will reward the TLFM after it takes an
action. Based on the placement of visual features, the reward
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Table 1 Physical parameter
values of TLFM

Parameter Link-1 Link-2

Mass of link m1 = 0.15268 kg m2 = 0.0535 kg

Link length l1 = 0.201 m l2 = 0.2 m

Armature resistance Rm1 = 11.5 � Rm2 = 2.32 �

Armature inductance Lm1 = 3.16 mH Lm2 = 0.24 mH

Gear ratio Kg1 = 100 Kg2 = 50

Torque constant Kt1 = 0.0119 Nm/A Kt2 = 0.0234 Nm/A

Back-EMF constant Km1 = 0.119 V s/rad Km2 = 0.0234 V s/rad

Torsional stiffness Ks1 = 22 Nm/rad Ks2 = 2.5 Nm/rad

Young’s modulus E1 = 2.0684 × 1011 N/m2 E2 = 2.0684 × 1011 N/m2

Rotor MI∗ Jm1 = 6.28 × 10−6 kg m2 Jm2 = 1.03 × 10−6 kg m2

Drive MI∗ J1 = 7.361 × 10−4 kg m2 J2 = 44.55 × 10−6 kg m2

Link MI∗ I1 = 0.17043 kg m2 I2 = 0.0064387 kg m2

∗MI, moment of inertia

value is calculated using the relation shown below.

reward =

⎧⎪⎪⎨
⎪⎪⎩

+100, i f (X ,Y ) ∈ the desirable area
−40, i f (X ,Y ) ∈ is out of FOV
−20, i f (X ,Y ) ∈ the undesirable area
0, i f (X ,Y ) ∈ the safe area

(75)

where (X ,Y ) is the new coordinate of the grid world in the
image plane, after the TLFM takes action.

It is obvious from (75) that the reinforcement signal
rewards actions that keep visual features inside the FOV
by forcing them into the desirable part of the image plane
and punishes them when they are in the undesirable area. To
accomplish theTLFM’s vision-based tip positioning task, the
AI-IBVS Algorithm 2 is used.

5 Results and discussion

In this section, performance of proposed AI-IBVS controller
is analyzed by simulation studies. The proposed controller is
evaluated using machine vision toolbox for MATLAB [39].
The physical TLFM parameters taken into account for simu-
lation studies are listed in Table 1. Tasks-1 and task-2 in this
study are referred to as tip positioning with symmetrical and
non-symmetrical objects, respectively.

5.1 Training procedure

The critic NN and actor NN are set as fully connected NNs
with a hidden layer, an input layer, and an output layer in
the actor-critic-based off-policy RL controller. Given that the
size of the feature column is five, the input layer has six
neurons. Two neurons in the output layer correspond to each
state’s two RL controller actions. There are six neurons in

the hidden layer. The learning rates, i.e., lc of critic NN is set
as 0.6 and la of actor NN is set as 0.9.

Six activation functions are present in the hidden layer and
two activation functions are present in the output layer for
the actor and critic NNs. The actor and critic NN is utilized,
which employs the backpropagation algorithm, a hyperbolic
tangent (nonlinear) activation function for the hidden layer,
and a liner activation function for the output layer. The hyper-
bolic tangent activation function is differentiable; therefore,
it can be easily employed in backpropagation (derivative-
based) learning algorithm. The output of actor and critic
network is RL control input url(t) for TLFM. The RL control
input of hub-2 for task-1 and task-2 are shown in Figs. 5 and
6, respectively.

5.2 Tip-tracking performance

The effectiveness of the proposed controller is evaluated for
two distinct object shapes: the symmetrical object (rectangle)
and the non-symmetrical object (whale). The object in the
initial position of the visual servoing task is not in the FOV. In
this work, the TLFM uses the AI-IBVS controller to perform
the tip-tracking task for both objects with small undesirable
areas. The undesirable region is described as

80 > r > 560 or 80 > c > 400 (76)

Figure7 depicts the unwanted area, which is the outer part
of the white bounding box; the remaining space is thought to
be safe and desirable.
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Fig. 5 RL control input of
hub-2 for task-1

Fig. 6 RL control input of
hub-2 for task-2

Fig. 7 Task-1’s desired position

5.2.1 Tip-tracking performance for task-1

Figures7 and 8 depict the task-1’s desired location and ini-
tial position, respectively. Because the object centroid on the
image is initially in an undesirable location, specifically at
(608, 224), RL controller is employed to correct the TLFM
position. The history of pixel coordinates for a visual fea-
ture is shown in Fig. 9. As seen in Fig. 9, the RL controller
only takes six steps to put the visual feature inside the image
plane’s safe area, or within FOV.

A new two-time scale IBVS controller becomes active to
finish the visual servoing task once the object enters the FOV.
With the invariants rs5 and rs6 that are acquired from (66),
the interaction matrix (67) is computed for the required posi-
tion. Table 2 gives the initial and expected values of selected
image features. Observed condition number is 2.49, which is
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Fig. 8 Task-1’s initial position

satisfactory. The image feature errors are shown in Fig. 10.
As seen in Fig. 10, task-1’s feature errors converge to zero
after 62 s.

5.2.2 Tip-tracking performance for task-2

Figures11 and 12 show the desired position and initial posi-
tion of task-2, respectively.

Because the object centroid on the image is initially in an
undesirable location, specifically at (585, 220), RL controller
is chosen to adjust the TLFM position. The history of pixel
coordinates for a visual feature is shown in Fig. 13. As seen

in Fig. 13, the RL controller only takes five steps to put the
visual feature into the image plane’s safe area, or within FOV.

A new two-time scale IBVS controller becomes active
to accomplish the visual servoing task whenever the object
enters the FOV.With the invariants rs4 and rs6 that are derived
from (66), the interaction matrix (67) is computed for the
required position. Table 2 gives the initial and desired values
of selected image features. It is seen that the condition num-
ber is 3.89, which is satisfactory. The image feature errors
are shown in Fig. 14. As can be seen in Fig. 14, for task-2,
the feature errors converge to zero after 42 s.

The task-1 and task-2 results indicate that the AI-IBVS
controller is able to quickly correct the tip position of the
TLFM when the visual feature is in an undesirable area or
outside of FOV, allowing the visual feature to move through
a significant distance as quickly as possible into the safe area
to complete the visual servoing task.

In addition, the detailed study on coordinate vector rela-
tive to coordinate frame is included in Appendix B, in which
the position and orientation (pose) of the object coordinate
frames with respect to the base coordinate frame are high-
lighted.

5.3 Comparison

In this work, the important difference between the proposed
control scheme as compared to other schemes [29–32] is pre-
sented as follows. First, the control scheme in [29–32] is not
intended for flexible manipulators. Second, in order to pre-
vent joint damage, it is not advised for a robot manipulator

Fig. 9 Visual features pixel
coordinates of task-1

Table 2 The initial and desired
value of image features for
IBVS controller

Visual feature Task-1 Task-2
Desired value Initial value Feature error Desired value Initial value Feature error

rs5/rs4 * −0.027 0.213 0.240 0.318 0.151 −0.167

rs6 0.0684 0.0524 −0.016 0.082 0.563 0.481

*rs5 and rs4 are selected for task-1 and task-2, respectively
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Fig. 10 Task-1’s Feature error

Fig. 11 Task-2’s desired position

Fig. 12 Task-2’s initial position

to transition between two controllers in the hybrid scheme
presented in [29]. Third, in [29, 31], a typical Q-learning
algorithm with offline training is implemented in the hybrid
system, while in [30], two RL algorithms with NN are sep-

arately constructed and in [32], asymmetric actor-critic and
variational auto-encoder-based RL algorithm are designed,
making the control scheme complex.

The proposed AI-IBVS controller possesses the capabil-
ities of self-learning and decision-making and provides a
balanced performance to complete the visual servoing task
similar to [29–32].

6 Conclusion

In this work, an adaptive intelligent IBVS (AI-IBVS) con-
troller for two-link flexible manipulator (TLFM) is devel-
oped. The challenges with IBVS and the retention of visual
details in the FOV are specifically covered in this work.
A wise selection of shifted moment-based visual features
has been made in the new two-time scale IBVS controller
to address the problems of singularity and local minima in
IBVS. Therefore, in order to retain the object within camera
FOV, an intelligent controller with reinforcement learning
(RL) is proposed here. Moreover, a composite controller for
TLFM is developed to combine RL controller and IBVS
controller. Simulation have been performed to investigate
the performance and robustness of the proposed controller.
The results demonstrated that the proposed controller can
successfully complete the visual servoing task by quickly
correcting the tip position to bring the objectwithin FOV. The
proposed control scheme will be implemented and adapted
in the real-time flexible manipulator in future studies.
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Fig. 13 Visual features pixel
coordinates of task-2

Fig. 14 Task-2’s feature error
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Appendix A Dynamics of TLFM

The dynamics of FLM is a distributed parameter system
owing to the distributed link flexure. Due to distributed link
flexure, the positioning and tracking of the tip in case of a
TLFMare very difficult. In this case, it is assumed thatmotion
of the TLFM in the horizontal plane, the links have uniform
material properties and have constant cross-sectional area
[40]. The schematic diagram of TLFM with a tip mounted
camera is shown in Fig. 15, where XbObYb is the fixed
coordinate frame with the joint of link-1 located at world
coordinate XwOwYw. X2O2Y2 and X̂b ÔbŶb are the rigid
and flexible body moving coordinate frame, respectively, of
i th link and is fixed at the joint between link-1 and link-2.
τi represents the applied torque of i th link, θi represents the
joint angle of i th joint, and yi (li , t) denotes the deflection
along i th link.
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Fig. 15 Schematic diagram of an eye-in-hand camera configured
TLFM

The complete system behaves as a non-minimum phase
system, when the tip position is taken as the output. The
actual output vector ypi is considered as the output for the
i th link. Hence, the redefined output can be written as

ypi = θi +
(
yi (li ,t)

li

)
(A1)

where li is the length of i th link.
The dynamics of flexible links are derived as Euler–

Bernoulli beams with deformation yi (li , t) for i th link
satisfying the link partial differential equation

(E I )i
∂4yi (li ,t)

∂li 4
+ ρi

∂2 yi (li ,t)
∂ti 2

= 0 (A2)

where ρi and (E I )i represent the density and flexural rigidity
of the i th link, respectively.

The finite-dimensional expression for yi (li , t) can be pre-
sented using the AMM [1] as

yi (li , t) =
n∑
j=1

ϕi j (li )δi j (t) (A3)

where ϕi j and δi j denote j th mode shape and modal coor-
dinate of the i th link, respectively, and n is the number of
assumed modes.

The dynamics of TLFM is derived by using the energy
principle and the Lagrangian formulation technique along
with AMM. The total Lagrangian (L) can be defined as

d
dt

∂L
∂qi

− ∂L
∂qi

= τi (A4)

where qi is the i th generalized coordinates, i.e., qi =
[θi θ̇i δi δ̇i ]. In (A4), total Lagrangian (L) value is substi-

tuted, i.e., difference of total kinetic energy and total potential
energy of the TLFM and solve for the qi generalized coordi-
nates. The dynamics of TLFM is expressed in (1). The details
of the matrices and vectors of (1) are

M(θi , δi ) =
[
Mrr (θi , δi ) Mr f (θi , δi )

M f r (θi , δi ) M f f (θi , δi )

]

=
[
Mrr Mr f

M f r M f f

] (A5)

[
c1
c2

]
=

[
crr (θi , δi , θ̇i , δ̇i ) cr f (θi , δi , θ̇i , δ̇i )
c f r (θi , δi , θ̇i , δ̇i ) c f f (θi , δi , θ̇i , δ̇i )

]

=
[
crr cr f
c f r c f f

] (A6)

K = diag{0, 0, k11, k12, k21, k22} (A7)

θi = [
θ1 θ2

]T (A8)

δi = [δ1 δ2]T = [δ11 δ12 δ21 δ22]T (A9)

where Mrr and M f f describe the positive definite sub-
matrix related to rigid and flexible variable, respectively.
Mr f = M f r representing coupling between the rigid and
the flexible displacement variable. ki j = ω2

i jmi with ωi j is
natural frequency of j thmode and i th link, andmi is themass
of i th link. The dampingmatrix, D = diag{di j } for j thmode
of i th link. θi and θ̇i are the joint angle and velocity of the i th
joint, respectively. δi and δ̇i are the modal displacement and
velocity for the i th link, respectively. τi is the actual applied
torque for the i th link.

The matrices and vectors of state space model of TLFM
presented in (2) are

x(t) = [ θi θ̇i δi δ̇i ]T
ui (t) = [ τi 0 ]T

fi (x(t)) = M(θi , δi )
−1

(
−

[
c1(θi , δi , θ̇i , δ̇i )
c2(θi , δi , θ̇i , δ̇i )

]

−K

[
0
δi

]
− D

[
0
δ̇i

])

gi (x(t)) = M(θi , δi )
−1

Appendix B Pose of Coordinate Frames

With reference to Fig. 15, the object coordinate frame {o} can
be described by coordinate vectors relative to either frame
{w}, {b}, {2}, {c} or {o} is shown in Fig. 16, where {w},
{b}, {2}, {c}, {o} are the coordinate frame of world, joint-
1 base, joint-2 base, camera, object, respectively. In Fig16,
solid and dashed vector represent the known and unknown
pose, respectively.

ξbo represents the position and orientation of an object
coordinate frame (is known as its pose) {o} with respect to
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Fig. 16 Coordinate vectors relative to either frames

base coordinate frame {b}. In the pose representation, the
superscript denotes the reference coordinate frame and the
subscript denotes the frame being described [39]. The pose
of {o} relative to {b} can be expressed as

ξb0 = ξb2 ⊕ ξ2c ⊕ ξ co (B10)

where ⊕ is used to indicate composition of relative poses.
For TLFM, the pose of the object relative to base coordinate
is expressed as

ξbo = (R(θ1)Tx (l1)R(θ2)Tx (l2)) ⊕ ξ co (B11)

where R(·) and T (·) represent the rotational and transnational
motion of coordinate frame.
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