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Abstract
Fault diagnosis of Medium Voltage power Cables (MVCs) research nuclear reactor, incredibly inaccessible/remote ones, has
to be carefully identified, located, and fixed within a short time. Therefore, this paper proposes a perfect simultaneous fault
diagnosis scheme based on Multiclass Support-Vector Machine (MCSVM) in the fractional Fourier domain. First, the three-
phase sending currents are simulated under different conditions then their features are extracted using Discrete Fractional
Fourier Transform (DFRFT). Afterward, the features reduction process occurs via the Singular Value Decomposition (SVD)
approach. MCSVM scheme is used to diagnose faults (i.e., discover, categorize, and trace) using reduced features outcome
from DFRFT and SVD stages. Alternating Transient Program/Electromagnetic Transient Program (ATP/EMTP) simulations
have been carried out for 22 kV unreachable MVC. Different kernels of SVM, i.e., linear, quadratic, or polynomial, and
diverse factors of DFRFT, i.e., α, are investigated in simulations to obtain the optimum performance (i.e., best α and kernel
pair). Hence, performance analysis of the proposed diagnosis method under different conditions (i.e., various fault resistances,
locations, and inception angles) concluded two highest accuracy and lowest time settings, which were found at α � 0.5 (for
both) quadratic kernel, and linear kernel, respectively. Moreover, the linear kernel achieves 99.8% accuracy rate, the lowest
execution time (10 ms), and fault tracing error rate of 0.525789%, which is proper for real-time applications. Besides, our
proposedmethod ismore reliable and accurate against variable operating conditions (fault resistances, distances, and inception
angles), leading to more reliable power production systems.
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1 Introduction

Electric power plants, especially nuclear ones, are spread
worldwide as a leading source of electricity for subscribers.
Recently, underground power distribution networks have
played a crucial role by integrating different power plants
into distributed networks, changing the system’s behavior
and affecting the system [1, 2]. Typically, MVCs are buried
underground rather than overhead to feed electric plants,
preserving them against adversary weather conditions [3].
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However, those cables might still malfunction with asym-
metric and symmetric faults due to insulation breakdown
or external damage [4]. Moreover, they are spread in urban
areas, industries, nuclear, and densely populated areas. Since
traditional fault diagnosis methods consume time and cost,
the reliance on automated intelligent solutions increases.
Hence, lately, real-time monitoring solutions for systems
have recently received significant interest. Among cable fault
tracing, in particular, has become crucial in industrial appli-
cations, owing to its primary role in interconnecting each
electrical element [2].

Without precise fault prediction and tracing solutions for
those MVCs research nuclear reactor, it can overload the
electric network, resulting in hazardous transients, excessive
heating, i.e., fire and explosion, equipment failure, power
outages, and losing system reliability [5–7]. Over the years,
there have been many different ways to measure the loca-
tion of faults in transmission networks [8]. However, due
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to structural differences between underground cables dis-
tribution networks and the transmission network, some of
the current solutions are not proper for both power network
types [8]. Efficient fault location necessitates the integration
of knowledge andmethods. It is required to complete the task
rapidly in order to limit nuclear reactor outages and prevent
future damage to the cable system. This comprises under-
standing of cable system design, construction, and proper
fault locating processes, which should include a high resis-
tance fault. Hence, this paper provides a precise fault tracing
solution for MVCs in distributed networks feeding research
nuclear reactor.

Awell-known fault diagnosismethods includingMachine
Learning (ML) techniques [9], impedance-based meth-
ods [10], traveling wave-based algorithms [11], and state
estimation-based approaches [12]. The authors of [6] sur-
veyed different fault detection methods, including their pros
and cons. The transient patterns of voltage and current
are used to determine the fault distance in transient-based
fault location methods [13]. Moreover, in [14], in compar-
ison to prior impedance-based approaches, a fault location
methodology was proposed that uses both the peak time and
amplitude of the fault current at the local place with rea-
sonable accuracy and speed. The authors of [15] discussed
applying wavelets for locating faults in distribution systems,
resulting in several milliseconds of fault detection speed.
Still, such a method cannot trace faults.

Manual outage mapping utilizing information from cus-
tomers is now the most prevalent method for predicting the
fault location [16]. However, new fault location methods in
distribution systems have been proposed as a result of recent
improvements in monitoring systems. The location of the
fault is identified using deep graph deep learning approach
in [17]. The graph network model is utilized to locate the
fault in this method, which uses input from various sensors
on separate buses. [18] suggests installing phasor measure-
ment units (PMU) in the distribution system to develop fault
location identification. This method locates the defect using
real-time data from PMUs and state estimation. However, it
necessitates a high-bandwidth communication connection as
well as additional costs for equipment installation. In actual
systems, however, just the current and voltage at the upstream
power substation are monitored. The fault location can be
estimated by calculating the impedance between the prob-
lematic point and the substation [19]. In general, existing
approaches estimate the fault location in these instances,
where only the power substation is monitored, by ignoring
fault resistance and load impact during the fault. The pattern
recognition method was used to define the fault localization
problem in [20] and [21], but it requires extensive databases,
which include fault cases for the entire distribution system.
As a result, in addition to reliable system modeling, there is

always the chance of differing findings when testing in real-
istic distribution systems. In [22], a traveling wave-based
method for fault location in a radial distribution system is
proposed. However, because of the large number of laterals
in distribution systems, this method necessitates the use of
additional equipment and has low accuracy in experimen-
tal conditions. [23] Proposes a method for locating faults in
a medium voltage (MV) distribution system’s underground
cable using current and voltage sensors at the primary sub-
station 10 kV feeder. The current and voltage waveforms
measured by an overcurrent relay at the head end of the MV
distribution system are used instead of installing additional
sensor devices. The key transient features for estimating the
fault are the peak time and current value. Previous related
work concentrated only on a few forms of fault detection
without tracing or fastly fixing the problem. Moreover, pre-
vious methods are inadequate and unreliable due to the over
cost of sensors. The precision of the location in the traveling-
wave-based approach, for example, is heavily dependent on
the performance of the expensive high-speed data collecting
system, and the fault location is identified by traveling wave
timing analysis. The voltage and current during pre-fault
and post-fault are acquired and analyzed in the impedance-
measurement-based technique. The transmission line model
can then be used to determine the line parameters, and the
fault can be located. The earlier work was less accurate and
effective in synchronous supervisor anddecentralized control
over the whole power cable. With this backdrop, we devel-
oped an exact approach based onMCSVM in fraction Fourier
domain for fault identification and location of underground
power cables feeding research nuclear reactors. Only deliver-
ing end transient current for fault detection and classification,
this technology was considered a low-cost, high-precision
solution.

Lately, SVM has witnessed remarkable achievements in
many research areas, such as face recognition, signal process-
ing, and fault diagnosis. Moreover, SVM-based classifiers
have better generalization properties than artificial neural
networks (ANN)-based classifiers as their efficiency do not
depend on the number of features. Hence, such merit is ben-
eficial in fault diagnostics due to the unlimited number of
features in our case, making it possible to compute directly
using original data without pre-processing them to extract
their features. Therefore, SVM is an excellent choice for fault
detection and localization applications. Moreover, it is appli-
cable to any distribution system. However, we focus here on
research nuclear reactor faults due to its severe importance
and safety as it may cause national disaster.

The following are the main contributions of this paper: -

• A novel supervised machine learning-based fault diagno-
sis approach for MVC feeding research nuclear reactor
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using Multiclass Support-Vector Machine (MCSVM) in
fractional Fourier domain.

• TheAlternatingTransient Program/Electromagnetic Tran-
sient Program (ATP/EMTP) is used to simulate an actual
22 kV MVCs that are fed to our proposed method.

• First, Discrete Fractional Fourier Transform (DFRFT)
extracts features from ATP/EMTP current signal. The
DFRFT processes both spatial and frequency domains of
the processed current signal. Therefore, it is appropriate to
handle different fractional power parameters of the current
signal throughout the spatial-frequency domain to enhance
the classification performance.

• Singular Vector Decomposition (SVD) extracts the essen-
tial features by removing each phase’s most significant
singular value. This feature reduction helps in reducing
the classifier’s processing time, which is proper for real
time.

• Afterward, MCSVM approach is used to detect, classify,
and trace faults using the output current training patterns
obtained from previous stages.

• The performance of our proposed method is studied
against different fractional power parameters and various
kernels of SVM to find out the near-optimal pair.

• In addition, the MCSVM performance is investigated
under various fault conditions (fault resistances (R) and
inception angles (º)).

Paper organization is as follows: Sect. 2 highlights the
concepts of DFRFT, SVD, and MCSVM schemes. Section 3
describes the system model, namely, 22kv MVC, research
nuclear reactor load, and faults. The proposed fault diagnosis
algorithm for the system under study is discussed in Sect. 4.
Section 5 shows ATP/EMTP simulated fault results followed
by simulation results. Finally, Sect. 6 summarizes the paper.

2 FRFT, SVD, and SVM overview

This section will briefly discuss FRFT, SVD, and SVM
schemes since they are utilized in our proposed fault diagno-
sis algorithm.

2.1 Fractional Fourier transform (FRFT)

The FRFT, proposed by N.Victor [24], generalizes the
Fourier Transform (FT) used in various disciplines, includ-
ing signal processing, quantum mechanics, quantum optics,
optical systems, and communication systems. FT determines
the spectral content of a signal, not the spectral components’
time location [24]. The FRFT algorithm rotates signals in the
time–frequency domain. Time–frequency patterns are criti-
cal when analyzing time-varying or non-stationary signals.
FRFT forms the signals as rotations in the time–frequency

plane as a powerful tool for signal analysis. In this case,
an order parameter is utilized to introduce revolve in the
time–frequency plane. As a result, the FRFT can convert a
signal x (t) to X α (u), which is represented in an intermediate
domain between time and frequency.

Xα(u) � FRFTα(x(t)) �
∞∫

−∞
x(t) · Kα(t , u)dt (1)

where α is the transform order and Kα is the transform kernel
that is calculated as follows:

Kα �

⎧⎪⎪⎨
⎪⎪⎩

√
1− jcot(α)

2π e
j
(
u2
2

)
cot(α) − jutcsc(α) α �� nπ

δ(t − u) α � 2nπ

δ(t + u) α � (2n ± 1)π
(2)

The Dirac function is represented as δ(t). When α is equal
toπ/2, the FRFT transforms to the standard FT, i.e., the trans-
formed signal is completely in the frequency domain. The
converted signal, on the other hand, can be in the time domain
if α is equal to 0. As a result, the FRFT has an extra degree
of flexibility throughout the order parameter (α) compared
to the FT.

Let x (t) be a sampled periodic signalwith a period�0. The
αth order DFRFT of x(t) can be mathematically expressed as
follows [18]
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2

f

(
�0

N

) ∞∑
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Kα

(
x

(
n +

K

N

)
�0

)
(3)

where N is the number of points and k � 0,1,2,…..N of
DFRFT matrix as diagonal elements. The coefficients of the
DFRFT are determined by a fractional factor (α) ranging
from 0 to 1 [25]. Thus, due to its superior benefits, we employ
eigenvector DFRFT as a feature extractor in the proposed
method (with a factor between 0 and 1).

2.2 Singular value decomposition (SVD)

SVD is an orthogonal transformation that simplifies the
matrix into a diagonal form,whose eigenvalues reflect several
of the original matrix’s primary characteristics. Specifically,
it is a matrix factorization technique that is extremely useful
for various tasks such as pattern recognition, data dimension
reduction, matrix approximation, pseudo inverse calculation,
and solving linear equations. SVD has been successfully
applied to signal processing as a data processing method
and approved its effectiveness at avoiding modal aliasing.
It decomposes any singular matrix into upper, diagonal, and
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lower matrices as follows:

A � U · S · V ′ (4)

where U and V are unitary matrices, i.e., UU’ � 1 and VV’
� 1, called left and right singular vectors, respectively. The S
matrix is a diagonal matrix representing the singular values
of A, which are evaluated by calculating the eigenvalues of
AA’. It can be described as follows:

S �

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

s1 0
. . .

sρ
0

0
. . .

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5)

where ρ is the rank of thematrixA.Note that s1 > s2 >…> sρ,
i.e., s1 is the largest singular value. SVD extracts the unique
features matrix in several values (singular values), so it is
endowed with a dimension reduction strategy with good sta-
bility performance. In other words, when the feature matrix
element changes, the single values do not vary significantly.

2.3 Support-vector machine (SVM)

SVM is a ML-based approach mainly utilized for classifi-
cation and regression prediction [26], where it is used to
maximize forecast accuracy while avoiding overfitting the
data automatically. A system that uses the hypothesis space
of a linear function in a high-dimensional feature space can
be defined as this technique. This system is trained using
an optimization-based learning algorithm that incorporates
a learning bias derived from statistical learning theory. The
SVM’s primary objective is to find the optimal separating
hyperplane that maximizes the training data’s margin [27].

The optimal separating hyperplane is obtained by max-
imizing the margin between two or more training data set
classes. The separable case’s optimization problem (no mis-
classified training example)

Minimze :
1

2
‖W‖2

subject to the constrains : yi ((W .Ci + b) ≥ 1) (6)

where n denotes the number of training data points. Then,
the solution to this problem is achieved by optimizing the
following equation:

E � 1

2
‖W‖2−

∑
i

αi

(
yi

( �W .
−→
Vi + b

)
− 1

)
(7)

where W is a collection of weights, one for each input fea-
ture, y is the output result that shows the class label (y ∈ {1,
− 1} for binary classifier), and C is the input feature vectors
V’s (also known as support vectors) are picked locations from
the input training features’ data (C) that satisfy themaximum
margin above and below the hyperplane. The parameters b
and α are used to determine a unique maximummargin solu-
tion. The chosen support vectors V’s are represented by the
y’s and α’s. The decision function d (Q), which is positive for
class 1 and negative for class 2, predicts the classification of
an unknown vector Q and is defined for kernel (K) as follows:

d(Q) � sign

(∑
i

K (Q, V i )

)
yiαi + b (8)

To classify the DFRFT transform’s output, different SVM
kernels such as the linear-SVM and nonlinear formulations
such as the quadratic and Gaussian radial basis function
(RBF) were investigated.

2.3.1 Multiclass SVM

SVMwas developed to address the problem of binary classi-
fication. Numerous extensions tomulticlass classification are
proposed [28], includingOne-Versus-All (OVA), one-versus-
one (OVO), and the Crammer–Singer multiclass extension.
OVO-SVM generates all possible pairwise SVMs with train-
ing examples drawn from a set of N classes. For each pair of
classes I and j, the decision function is defined as follows:

f i j (x) �
〈
ϕ(x) · wi j

〉
+ bi j (9)

Different decision functions are used for N (N-1)/2-class
problems. Various strategies can be used to obtain a shared
decision between the generated classifiers. The most com-
mon is majority voting, also referred to as "max-wins." Thus,
the decision function can be defined as follows:

argmax
i

k∑
j ��i , j−1

sign( f i j (x)) (10)

3 Systemmodel

3.1 MVC research nuclear reactor description

Figure 1 shows the layout of 22 kV MVC feeding research
nuclear reactor have length 20 km, transmitted power is 1500
MVA, 0.024+ j 0.23 positive sequence and 0.412+ j 1.13 zero
sequence impedance per phase in � [3, 23, 29]. A balanced
direct-sequence three-phase set of 50 Hz sinusoidal currents
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Fig. 1 Power network comprised of a research nuclear reactor load, a 20-km three-phase single-core MVC

Fig. 2 Structure and installation
of the three-phase single core
cable

specified by Eq. (11), with 53-A rms and 18 kV rms, defines
the phase conductor currents and voltages.

IP � 53
[
1, e− j2π/3, e j2π/3

]
A (11)

Due to significant influence on the nuclear underground
cable behavior under different faults must be either accu-
rately measured or reliably predicted by simulations. This
performance requires accurate modeling of system compo-
nents. As a result, high-frequency model components using
ATP/EMTP are used to implement 22 kV MVC feeding
research nuclear reactor load.

3.2 Power stationmodeling

The power station’s synchronous generator (SG � 1500
MVA/22 kV) is represented by the ATP/EMTP model
SM59/58 have 14� resistance and 0.35 mH inductance.

3.3 MVCmodeling

Figure 2 shows the underground cable type and geometry
used in this study. Under identification of dimension of 22 kV
underground cable as in Table 1, the MVC was simulated
using the LCC JMarti model (Frequency-dependent model
with constant transformation matrix), which was likewise
based on traveling wave theory [3, 29, 30].

Table 1 Specification of 22 kV cross-linked polyethylene (XLPE)
underground cable material

Radius (mm) R1 � 0 mm, R2 � 20 mm, R2 � 40 mm, R3 �
43 mm, R5 � 45 mm,

Core conductor μc � 1, ρc � 1.724e–8 �.m

Insulation μr1 � μr2 � 1, ε r1 � ε r2 � 2.7

Sheath μs � 1, ρs � 2.84e–8 �.m

Where: ρc: Resistivity of the conductor material. ρs:
Resistivity of the sheath material. μc: Relative permeabil-
ity of the conductor material. μs: Relative permeability of
the sheath material. μ r: Relative permeability of the insulat-
ing material outside the conductor. εr: Relative permittivity
of the insulating material outside the conductor.

3.4 Load (research nuclear reactor) modeling

A standard component RLCY3 can easilymodel the load as a
Three-Phase Grounded-Wye loadwith parallelR, L elements
R � 300 � and L � 1.5mH.
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Fig. 3 Fault types

3.5 Asymmetric, symmetric faults modeling

Faults are classified as asymmetric and symmetric faults
based on the types shown in Fig. 3 [3, 6]. This type of asym-
metrical fault is called a single phase to ground fault (LG), a
two-phase fault (LL), and a two-phase fault to ground (LL-
G). However, three-phase faults like three-phase short circuit
(LLL) and three-phase short circuit to ground (LLL-G) are
also symmetric faults. Accordingly, a short circuit ismodeled
as a time-controlled switch with resistance in ATP/EMTP to
study the effects of different fault inception angels and fault
resistances.

4 Proposed fault diagnosis technique

SinceDFRFT eliminates the discrimination’s reliance on sig-
nal energy and noise effects and SVD is an efficient feature
dimension reduction scheme, our proposed technique makes
use of them as a feature extractor and a feature reducer,
respectively. Besides, MCSVM is utilized as our classi-
fier because SVM achieves high discrimination efficiency.
Among, we used the OVO-SVM to generate all possible
paired SVMs with low computational complexity. Addition-
ally, the linear function is chosen as the kernel function
to maximize classification performance while minimizing
execution time. Figure 4 presents a detailed flowchart for
the steps of our proposed fault diagnosis approach, which
is divided into three stages. The first stage processes the
current signals obtained from the MVC’s sending end for
various fault types and locations under different conditions.
In the second stage, the signals are transformed usingDFRFT
and SVD to remove the discrimination’s dependence on the
signal’s energy and noise effects. In the third stage, iden-
tification, categorization, and tracing are performed using
MCSVMs, composed of several binary SVMs. Thus, the
most efficient parameters that produce the best results can
be identified. The final stage involves the prediction of fault
locations using MCSVMs, which are composed of several
binary SVMs.

4.1 ATP/EMTP simulated results

Figure 5 shows the simulated design of a practical 22 kV
MVC feeding research nuclear reactor. The ATP/EMTP sim-
ulation uses a 20 km MVC model, part of the nuclear power
plant system published in [31]. Each 1 km in length, twenty
identical blocks are connected in a cascade to develop the
20 kmMVCmodel. Faults have been conducted at the inter-
mediate junctions of each consecutive block, and the fault
current waveforms are recorded at the sending end only.
Faults depend on four main fault parameters: type, distance
r, resistance R, and inception angle º.

In this regard, five fault types (LG, LL, LL-G, LLL, LLL-
G), ten fault resistances in the case of ground fault (R � 0
�, 10 �, 20 �, 30 �, 40 �, 50 �, 75 �, 100 �, 150 �,
200 �), five inception angles (including º � 0°, 45°, 90°,
135°, 180°), and nineteen distances of fault from recording
point (including r � 1 km, 2 km, 3 km, 4 km, 5 km, 6 km,
7 km, 8 km, 9 km, 10 km (Midpoint), 11 km, 12 km, 13 km,
14 km, 15 km, 16 km, 17 km, 18 km, 19 km) are simulated.
Figure 6 depicts the sending end three-phase current wave-
forms after applying various fault types to phases at a distance
of 10 km (cable midpoint) from the source. These faults are
implemented atº � 0° for the system phases and R � 20 �.

Figure 7 shows the phase (a) currentwaveform at the send-
ing end under different locations (with fault resistance R �
20, inception angleº� 0°, and fault location r� (1 km, 5 km,
10 km, 15 km, and 19 km) for the one-phase (a) to ground
fault. The faulted phase current amplitude was reduced from
950A at 1 km to 799A at 19 km by about 16%.

Figure 8 shows the phase (a) currentwaveform at the send-
ing end under different fault resistances (with fault resistance
R � (10, 20, 50, 75, 100), inception angle º � 0° and fault
location r � 10 km for the one-phase (a) to ground fault. It
is noticed that the faulted phase current amplitude is reduced
at high fault resistance from 1509A at 10 � to 238A at 100
� by about 84%.

Figure 9 shows the phase (a) currentwaveform at the send-
ing end under different inception angles (with fault resistance
R � 20, inception angle º � (0°, 45°, 90°, 135°, 180°) and
fault location r� 10 km for the one-phase (a) to ground fault.
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Fig. 4 Flowchart of the proposed
method
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Fig. 5 Simulated MVC model
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Fig. 6 Three-phase currents waveforms at different faults type (with R � 20�, º � 0° and r � 10 km)
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Fig. 7 Phase a current waveform
at sending end under different
location (with fault resistance R
� 20�, Inception Angle º � 0°
and fault location r � (1 km,
5 km,10 km, 15 km, 19 km)
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Fig. 8 Phase a current waveform at sending end under different fault
resistance (with R � (10 �, 20 �, 50 �, 75 �, 100�),º � 0° and fault
location r � 10 km

It is concluded that the initial current amplitude in the case
of fault inception angles of 45°, 90°, and 135° is much more
than 0° and 180°.

5 Results and discussion

To illustrate the efficiency of the proposed method, five fault
types (LG, LL, LL-G, LLL, LLL-G), ten fault resistances in
the case of ground fault R (0 �, 10 �, 20 �, 30 �, 40 �,
50 �, 75 �, 100 �, 150 �, 200 �), five inception angles º
(including 0°, 45°, 90°, 135°, 180°), and nineteen distances
of fault from recording point (including r� 1 km, 2 km, 3 km,
4km, 5km, 6km, 7km, 8km, 9km, 10km(Midpoint), 11km,
12 km, 13km, 14km, 15km, 16km, 17km, 18km, 19km) are
simulated This section describes the related results of Feature
extraction, and reduction using DFRFT, SVD fault detection,
classification and location via the MCSVM approach.

5.1 Feature extraction, and reduction using DFRFT,
SVD

The proposed technique utilizes DFRFT and SVD to extract
features. The DFRFT is used because of its fractional power
parameter, which allows for a spatial-frequency representa-
tion of the signal. As a result, both the spatial and frequency
domains can be utilized. By extracting the most significant
singular value for each phase, SVD is used to reduce the
number of features.

Figure 10 illustrates the output of the DFRFT on various
faults’ three-phase current signal. This approach eliminates
the effect of noise on classification accuracy. In addition,
the DFRFT coefficients are used in conjunction with SVD
to reduce the number of features, which are then classified
using the MCSVM (Fig. 10).

5.2 Fault detection and classification
(discrimination) usingMCSVM

The main goal is to determine exactly which underground
cable is faulty or healthy. To accomplish this, the SVM clas-
sifier is fed training current patterns derived from DFRFT
and SVD. An SVM will build a hyperplane that separates in
an n-dimensional space that forms the boundary between the
two data sets if the input data is processed as two pairs of
vectors in that space. To compute the margin, we construct
two parallel hyperplanes that are superimposed over the two
data sets. The hyperplane with the greatest distance to the
neighboring data points of both classes, intuitively, gives a
suitable separation. The goal is to reduce the classifier’s gen-
eralization error by increasing the margin or gap between
these parallel hyperplanes. The decision function, by utiliz-
ing a kernel function, returns the faulty or healthy (No fault).
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Fig. 9 Phase (a) current waveform at sending end under different inception angle (with fault resistance R � 20 �, Inception Angle º � � (0°, 45°,
90°, 135°,180°) and fault location r � 10 km

As soon as the faulty phases have been detected, our
next goal is to determine the type of fault, at which point
the MCSVM is activated. The proposed fault classification
approach is divided into two steps. The first is DFRFT fea-
ture extraction, followed by SVD reduction, and the second
is MCSVM classification. In the first step, the maximum sin-
gular value of DFRFT for each fault state is used to produce
one feature for each phase. One feature are obtained from the
maximum singular value of DFRFT for one phase only. The

fault currents were gained from ATP/EMTP simulation. The
simulation time is 0.12 swith 5microsecond time step, 10ms
fault clearing. Fault type, fault location and fault inception
time are changed to obtain training patterns covering a wide
range of different power system conditions. In ATP simula-
tion, the sample frequency is about 120 kHz and the transients
of only one-terminal phase currents is processed. For each
fault state of a three-phase 22 kV underground cable, three
characteristics are retrieved.As a result, the size of the feature
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Fig. 10 The output of DFRFT of different Faults

123



36 Electrical Engineering (2023) 105:25–42

Table 2 Training label for MCSVM fault type classification

Fault type Label

No fault 0

LG 1

LL-G 2

LL 3

LLL 4

LLL-G 5

vector, which comprises of three-phase transient characteris-
tics, is 3 × 950 for each failure type. The MCSVM classifier
will be trained and tested using these criteria. We selected
the characteristics corresponding to 3× 750 faults occurring
at 19 distinct locations along the 20 km cable for training.
The remaining 3 × 200 fault cases are used to evaluate the

MCSVMclassifier. Table 2 lists the fault types and their asso-
ciated class labels. The performance and training time using
different SVM kernels are shown in figs. 11, 12 and 13. The
linear kernel, with the hyperplane discriminating the coeffi-
cients properly and the DFRFT fractional factor (α) equal to
0.5, is the most often used kernel.

Linear MCSVM’s performance is compared to that of the
k-nearest neighbor method (kNN), probabilistic neural net-
works (PNN), multilayer perceptron (MLP) and radial basis
function networks (RBF). Table 3 presents the fault classi-
fication results obtained utilizing various network architec-
tures.

The DFRFT spectrum characteristics for a real signal are
conjugated symmetric, which means that the first half of the
DFRFT spectrum is a mirrored conjugate to the second half.
As a result, the features may be identified using only one half
of theDFRFT spectrum,which reduces complexity and saves
time. DFRFT and SVD provides optimal representation of

Fig. 11 The proposed method’s
performance based on different
fractional factor (α) values
utilizing Linear, Quadratic, and
RBF kernels

Fig. 12 The proposed method’s
execution time is based on
fractional factor (α) values
utilizing Linear, Quadratic, and
RBF kernels
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Fig13 The proposed method’s
execution time for fractional
factor (α � 0.5) utilizing Linear,
Quadratic, and RBF kernels

Table 3 Results of several network tests

Classifier Execution time (s) Performance
(%)

kNN [32] 0.6710 94.14

PNN [33] 0.4121 96.21

MLP [34] 110.283 96.19

RBF [35] 0.3571 95.32

CNN [3] 0.1500 99.60

DFRFT + SVD +
MCSVM

0.0100 99.80

signal by packing most of the information in few coefficients
for a given signal. The MLP takes a lot of times because
the computations are difficult and time consuming and the
proper functioning of the model depends on the quality of
the training.

As shown in Table 3, the best results were obtained using
MCSVM, which achieved 99.8% performance levels and
required less execution time than the others since MCSVM
is trained using just support vectors rather than the entire
training data set. As a result, MCSVM is the optimal option
for classification problems. Although the MCSVM has the
best classification performance, these resultsmight have hap-
penedby chance.To evaluate theMCSVMclassifier’s results,

a second validation test is required. Table 4 summarizes the
results of the fivefold cross-validation test. The dataset is
randomly partitioned into five exclusive subsets of nearly
identical size for fivefold cross-validation, and the suggested
approach is used five times. Each time, one of the five subsets
is used as the test set, while the other four are combined to
create the training set. The average percentage error for all
five trials is then calculated. In this strategy, it makes no dif-
ference how the data is split. Each data point appears exactly
once in a test set and four times in a training set. Table 4
shows that all fault categories are appropriately categorized.

5.3 MCSVM-based fault tracking

Our second goal, estimating the fault distance of the under-
ground cable, is triggered after the MCSVM classifier
identifies theMVCfaulty phases.MCSVMattempts to locate
the actual location of the fault using inputs containing three-
phase current data. There are several fault types to consider,
including single phase-to-ground (LG), phase-to-phase (LL),
two-phase-to-ground (LL-G), three-phase (LLL), and three-
phase-to-ground (LL-G) (LLL-G). SVM was trained and
evaluated using data from simulated faults that occurred at
different locations along the 20-kmMVC (approximately 19
data points for each case). Furthermore, the resistance and
inception angles of faults are changed to illustrate the SVM’s

Table 4 The results of the
fivefold cross-validation test SVM–1(LG) SVM–2(LL) SVM–3(LL-G) SVM–4(LLL) SVM–5(LLL-G)

Training 3 × 750 3 × 750 3 × 750 3 × 750 3 × 750

Testing 3 × 200 3 × 200 3 × 200 3 × 200 3 × 200

Performance
(%)

100 100 100 100 100
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Table 5 Results of SVM-1 for LG faults

Actual location (km) Estimated location (km) Error (%)

1 1.0040 0.021053

2 2.0131 0.068947

3 3.0147 0.077368

4 4.0112 0.058947

5 5.0113 0.059474

6 6.0235 0.123684

7 7.0187 0.098421

8 8.0159 0.083631

9 9.0187 0.098526

10 10.0210 0.110579

11 11.0151 0.079526

12 12.0110 0.058421

13 13.0311 0.163684

14 14.0094 0.049474

15 15.0321 0.168947

16 16.0234 0.123158

17 17.0324 0.169158

18 18.0535 0.281579

19 19.0871 0.458474

performance under varied operating situations. After defin-
ing the fault classes, five distinct SVMs (SVM-1–SVM-5)
were employed to forecast the locations of LG, LL, LL-G,
LLL, and LLL-G problems, respectively. The specific high-
frequency features of each type of fault were determined
using DFRFT and SVD, and were then employed in the sec-
ond stage of the method to derive the revised location of the
fault.

The results demonstrate that the cable’s nearest points
have the highest estimate errors. In terms of fault localization
accuracy, similar findings have been found for various fault
kinds and system situations. After defining the fault classes,
five distinct SVMs (SVM-1–SVM-5) were used to fore-
cast the locations of LG, LL, LL-G, and LLL-G problems.
Tables 5, 6, 7, 8 and9 provide the SVM-1–SVM-5 testing
results. In the worst-case situation, the maximum percentage
inaccuracy in identifying the fault is restricted to (0.47% of
total line length) kilometers, as indicated in the tables. Each
test case’s SVM results were examined to determine the esti-
mation error associatedwith that test instance. The difference
between the estimated fault distance (A) and the actual fault
distance (r) for the test instancewas used to quantify the inac-
curacy. The accuracy of themethod is equal to this estimation
error. The algorithm’s accuracy decreases as the distance
deviation increases. The overall accuracy, E, is defined as
the highest estimate error for the line’s whole length range,

Table 6 Results of SVM-2 for LL faults

Actual location (km) Estimated location (km) Error (%)

1 1.0112 0.058950

2 2.0211 0.111051

3 3.0101 0.053161

4 4.0230 0.121051

5 5.0220 0.115790

6 6.0213 0.112112

7 7.0112 0.058951

8 8.0110 0.057892

9 9.0310 0.163160

10 10.0270 0.142110

11 11.0340 0.178951

12 12.0401 0.104740

13 13.0115 0.060530

14 14.0254 0.133681

15 15.0341 0.179472

16 16.0145 0.076320

17 17.0412 0.216840

18 18.0521 0.274210

19 19.0881 0.463680

Table 7 Results of SVM-3 for LL-G faults

Actual location (km) Estimated location (km) Error (%)

1 1.0011 0.005789

2 2.0123 0.064737

3 3.0213 0.112105

4 4.0030 0.015789

5 5.0313 0.164737

6 6.0543 0.285789

7 7.0453 0.238421

8 7.9840 0.084210

9 9.0083 0.043684

10 10.0013 0.006842

11 11.0713 0.375263

12 12.0210 0.110526

13 13.0100 0.052632

14 14.0153 0.080526

15 14.9984 0.008420

16 16.0311 0.163684

17 17.0513 0.270000

18 18.0793 0.417368

19 19.0899 0.473316
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Table 8 Results of SVM-4 for LLL faults

Actual location (km) Estimated location (km) Error (%)

1 1.0005 0.002632

2 2.0103 0.054211

3 2.9983 0.008947

4 4.0000 0.000000

5 5.0017 0.008947

6 6.0041 0.021579

7 7.0453 0.238421

8 7.9990 0.005263

9 9.0782 0.411579

10 10.0101 0.053158

11 11.0610 0.321053

12 12.0220 0.115789

13 13.0010 0.005263

14 14.0114 0.060000

15 15.0010 0.005263

16 16.0451 0.237368

17 16.9198 0.422105

18 18.0893 0.470000

19 19.0910 0.478947

Table 9 Results of SVM-5 for LLL-G faults

Actual location (km) Estimated location (km) Error (%)

1 1.0210 0.110526

2 2.0125 0.065789

3 3.0351 0.184737

4 4.0148 0.077895

5 5.0320 0.168421

6 6.0112 0.058947

7 7.0010 0.005263

8 8.0090 0.0473684

9 9.0159 0.083684

10 10.0311 0.163684

11 11.0195 0.102632

12 12.0125 0.065789

13 13.0209 0.110000

14 14.0311 0.163684

15 15.0171 0.090000

16 16.0412 0.216842

17 17.0491 0.258421

18 18.0537 0.282632

19 19.0897 0.472105

as well as for all conceivable fault types, expressed as a per-
centage of the total line length L.

Error(E) �
∣∣∣∣estimated location (A) − exact location (r)

total cable length (L)

∣∣∣∣ × 100

(12)

Table 10 shows the actual and estimated locations of faults
at 19 kms with various fault resistance and inception angles.
The location of the fault, the resistance of the fault, and the
angle of inception all affect the accuracy of fault location.
The maximum error (0.525789) in fault location occur when
the fault resistance is equal to 200 � and the inception angle
is 90 degrees at the cable receiving end (19 km), as shown in
Table 10.

The results of this research demonstrate that using
MCSVM in conjunction with DFRFT and SVD is an excel-
lent strategy for identifying faults on subterranean cable
feeding research nuclear reactor. The suggested approach
may conveniently, rapidly, and precisely locate the position
of the fault.

6 Conclusion

This paper presented a novel fault classification technique
and location in a MVC research nuclear reactor that uses
MCSVM. First, ATP/EMTP simulates several faults with
varying fault locations under varying conditions to prepare
input data. Additionally, optimize classification and localiza-
tion performance and execution time by combining DFRFT
with SVD and MCSVM. The influence of the rotation angle
of the DFRFT on classification efficiency was also investi-
gated, and it was observed that classification efficiency varies
with the rotation angle value. SVM linear, quadratic, and
RBF kernels were used for classification. The results indi-
cate that a quadratic kernel is the most efficient due to the
quadratic plane’s efficient separation of classes. The most
obvious conclusion from examining various DFRFT factors
is that 0.5 factors perform the best in linear and quadratic
kernels.

On the other hand, the complexity of the kernel is the
critical determinant of execution time. Thus, the linear ker-
nel executes at the fastest rate, attaining 99.8% performance
and a time of 0.01 s for various faults at multiple locations,
resistances, and angles of inception. The maximum error is
equal to 0.525789% in fault location occur the fault resis-
tance is equivalent to 200� and the inception angle is 900 at
the MVC receiving end. This shows that the proposed tech-
nique can offer acceptable accuracy in fault classification and
fault location estimation. Moreover, MCSVM could be used
as a part of a new generation of high-speed advanced fault
locators.
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Table 10 Testing results of MCSVM for different fault resistances and inception angle

R
(�)

Fault
types

Inception angle º

00 450 900 1350 1800

X(km) Y(km) E (%) Y(km) E (%) Y(km) E (%) Y(km) E (%) Y(km) E (%)

10� LG 19 19.0981 0.516315 19.0823 0.433158 19.0990 0.521053 19.0872 0.458947 19.0982 0.516842

LL 19 19.0881 0.463684 19.0891 0.468947 19.0981 0.516316 19.0881 0.463684 19.0883 0.464737

LLG 19 19.0798 0.420000 19.0923 0.485789 19.0898 0.472632 19.0918 0.483158 19.0798 0.42

LLL 19 19.0788 0.414737 19.0844 0.444211 19.0988 0.520000 19.0888 0.467368 19.0787 0.414211

LLLG 19 19.0815 0.428947 19.0913 0.480526 19.0999 0.525789 19.0905 0.476316 19.0815 0.428947

20� LG 19 19.0973 0.512105 19.0888 0.467368 19.0933 0.491053 19.0887 0.466842 19.0972 0.511579

LL 19 19.0866 0.455789 19.0844 0.444211 19.0917 0.482632 19.0855 0.450000 19.0866 0.455789

LLG 19 19.0812 0.427368 19.0977 0.514211 19.0982 0.516842 19.0987 0.519474 19.0833 0.438421

LLL 19 19.0798 0.420000 19.0901 0.474211 19.0971 0.511053 19.0921 0.484737 19.0796 0.418947

LLLG 19 19.0956 0.503158 19.0923 0.485789 19.0994 0.523158 19.0941 0.495263 19.0854 0.449474

30� LG 19 19.0967 0.508947 19.0823 0.433158 19.0991 0.521579 19.0825 0.434211 19.0965 0.507895

LL 19 19.0877 0.461579 19.0891 0.468947 19.0988 0.520000 19.0894 0.470526 19.0873 0.459474

LLG 19 19.0945 0.497368 19.0923 0.485789 19.0911 0.479474 19.0923 0.485789 19.0943 0.496316

LLL 19 19.0777 0.408947 19.0844 0.444211 19.0984 0.517895 19.0842 0.443158 19.0776 0.408421

LLLG 19 19.0988 0.520000 19.0923 0.485789 19.0958 0.504211 19.0921 0.484737 19.0985 0.518421

40� LG 19 19.0987 0.519474 19.0876 0.461053 19.0975 0.513158 19.0878 0.462105 19.0988 0.520000

LL 19 19.0865 0.455263 19.0834 0.438947 19.0978 0.514737 19.0837 0.440526 19.0864 0.454737

LLG 19 19.0872 0.458947 19.0969 0.510000 19.0987 0.519474 19.0968 0.509474 19.0871 0.458421

LLL 19 19.0799 0.420526 19.0911 0.479474 19.0978 0.514737 19.0913 0.480526 19.0798 0.420000

LLLG 19 19.0944 0.496842 19.0933 0.491053 19.0989 0.520526 19.0932 0.490526 19.0945 0.497368

50� LG 19 19.0959 0.504737 19.0825 0.434211 19.0996 0.524211 19.0824 0.433684 19.0957 0.503684

LL 19 19.0866 0.455789 19.0899 0.473158 19.0988 0.520000 19.0898 0.472632 19.0867 0.456316

LLG 19 19.0812 0.427368 19.0935 0.492105 19.0936 0.492632 19.0936 0.492632 19.0813 0.427895

LLL 19 19.0798 0.420000 19.0839 0.441579 19.0951 0.500526 19.0836 0.440000 19.0797 0.419474

LLLG 19 19.0856 0.450526 19.0945 0.497368 19.0979 0.515263 19.0942 0.495789 19.0855 0.450000

60� LG 19 19.0973 0.512105 19.0894 0.470526 19.0996 0.524211 19.0898 0.472632 19.0970 0.510526

LL 19 19.0866 0.455789 19.0870 0.457895 19.0984 0.517895 19.0874 0.460000 19.0865 0.455263

LLG 19 19.0812 0.427368 19.0982 0.516842 19.0992 0.522105 19.0985 0.518421 19.0811 0.426842

LLL 19 19.0798 0.420000 19.0939 0.494211 19.0981 0.516316 19.0936 0.492632 19.0789 0.415263

LLLG 19 19.0922 0.485263 19.0987 0.519474 19.0958 0.504211 19.0988 0.520000 19.0935 0.492105

75� LG 19 19.0911 0.479474 19.0877 0.461579 19.0991 0.521579 19.0873 0.459474 19.0910 0.478947

LL 19 19.0920 0.484211 19.0916 0.482105 19.0914 0.481053 19.0914 0.481053 19.0922 0.485263

LLG 19 19.0915 0.481579 19.0904 0.475789 19.0934 0.491579 19.0905 0.476316 19.0916 0.482105

LLL 19 19.0959 0.504737 19.0918 0.483158 19.0989 0.520526 19.0919 0.483684 19.0954 0.502105

LLLG 19 19.0934 0.491579 19.0934 0.491579 19.0965 0.507895 19.0933 0.491053 19.0937 0.493158

100� LG 19 19.0949 0.499474 19.0913 0.480526 19.0988 0.520000 19.0915 0.481579 19.0948 0.498947

LL 19 19.0989 0.520526 19.0922 0.485263 19.0939 0.494211 19.0927 0.487895 19.0986 0.518947

LLG 19 19.0998 0.525263 19.0936 0.492632 19.0969 0.510000 19.0935 0.492105 19.0996 0.524211

LLL 19 19.0985 0.518421 19.0916 0.482105 19.0988 0.520000 19.0918 0.483158 19.0984 0.517895
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Table 10 (continued)

R
(�)

Fault
types

Inception angle º

00 450 900 1350 1800

X(km) Y(km) E (%) Y(km) E (%) Y(km) E (%) Y(km) E (%) Y(km) E (%)

LLG 19 19.0999 0.525789 19.0933 0.491053 19.0977 0.514211 19.0936 0.492632 19.0998 0.525263

150� LG 19 19.0919 0.483684 19.0932 0.490526 19.0988 0.520000 19.0936 0.492632 19.0929 0.488947

LL 19 19.0978 0.514737 19.0954 0.502105 19.0988 0.520000 19.0954 0.502105 19.0977 0.514211

LLG 19 19.0987 0.519474 19.0984 0.517895 19.0977 0.514211 19.0988 0.520000 19.0986 0.518947

LLL 19 19.0976 0.513684 19.0949 0.499474 19.0941 0.495263 19.0947 0.498421 19.0979 0.515263

LLLG 19 19.0989 0.520526 19.0977 0.514211 19.0977 0.514211 19.0979 0.515263 19.0987 0.519474

200� LG 19 19.0941 0.495263 19.0912 0.480000 19.0967 0.508947 19.0922 0.485263 19.0944 0.496842

LL 19 19.0981 0.516316 19.0932 0.490526 19.0938 0.493684 19.0943 0.496316 19.0983 0.517368

LLG 19 19.0998 0.525263 19.0918 0.483158 19.0905 0.476316 19.0919 0.483684 19.0994 0.523158

LLL 19 19.0976 0.513684 19.0988 0.520000 19.0915 0.481579 19.0987 0.519474 19.0979 0.515263

LLLG 19 19.0999 0.525789 19.0985 0.518421 19.0999 0.525789 19.0989 0.520526 19.0998 0.525263
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