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Abstract
With optimized design and modern brushless operation, wound rotor synchronous machines are resurrecting as a strong
contender in many applications presently dominated by permanent magnet machines. Considering the notion, this paper
introduces a novel brushless synchronous machine topology that utilizes sub-harmonic magnetomotive force (MMF) of its
stator winding for desirable brushless operation. It is significant to state that the sub-harmonicMMF component that is used in
this novel topology is one-fourth of the fundamental MMF component, whereas, in previous practices, it was half. Moreover,
the stator of the machine uses a new winding arrangement of two sets of balanced three-phase windings wound in two layers
to produce the fundamental and the sub-harmonic MMF. To achieve the brushless excitation, the rotor utilizes an additional
winding that is used to induce the electromotive force (EMF) by the sub-harmonic MMF component of the stator. This novel
two-layer stator winding topology permits the utilization of maximum allowable space in the stator to house conductors in
all of its 48 slots, which was not the case in previous papers. To validate the performance, and feasibility, an 8-pole 48-slot
brushless wound rotor synchronous motor is designed, and a 2-D finite element analysis simulation is conducted, where the
topology shows immense potential in terms of better torque performance.
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1 Introduction

Electric machines, one of the core components of the elec-
trified transportation system, and its technologies have been
broadly researched particularly in machine topologies, char-
acteristics, control strategies, and performance evaluations
[1–5]. Although induction machines have been in the elec-
trified transportation market for a long time, permanent
magnet synchronous machines (PMSMs) have taken their
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place because of higher torque density and efficiency [1, 3].
Despite the advantages, the high cost of rare earth mag-
nets and the fixed flux nature make them an unattractive
choice. To find alternatives, extensive research and develop-
ment works are going on regarding synchronous machines
that have reduced or absent permanent magnets [6, 7]. Evi-
dently, the PM-assisted or the PM-less switched reluctance
motors possess traits of induction motors and PMSMs in
terms of robustness, efficiency, and power density [8].

To seek additional alternatives to PMSMs, brushless
wound rotor synchronous machines (BL-WRSM), both
PM-less and PM-assisted, are becoming popular among
researchers for their controllability and simple excitation
system [7]. Apart from brushless exciters and rotating trans-
formers, three advanced brushless field excitation methods
were developed in recent times: harmonic, inductive, and
capacitive power transfer [7]. To discover the feasibil-
ity of sub-harmonic and higher-order harmonic MMF for
the brushless operation of the wound rotor synchronous
machines (WRSMs), a handful of investigations are done
[8–12]. However, the higher-order harmonics generated from
3-phase stator MMFwere used in aWRSM encounters addi-
tional harmonic losses [8].

Realizing the sub-harmonic MMFmethod, a dual inverter
BL-WRSM topology was presented in [9] where both invert-
ers provide two sets of currents to the stator winding in order
to generate fundamental and sub-harmonic rotatingmagnetic
field.On the rotor side, two separatewinding is used, i.e., field
winding and excitation winding, and among them, the exci-
tation winding induces the sub-harmonic MMF (SH-MMF)
component. The induced voltage is then rectified and feed

to the field winding for the brushless operation to be com-
pleted. In order to improve torque density and starting ability,
a PM-assisted BL-WRSM was introduced in [10].

Utilizing the SH-MMF component to achieve the brush-
less operation, another approach is introduced in [11] by
using a novel stator winding arrangement, where one inverter
is used instead of two for supplying the input current. Fur-
thermore, this one inverter BL-WRSM’s field and excitation
windings use 8 and 4 poles arrangement respectively as
opposed to 4 and 2 used in [9, 10]. Later in [12], an opti-
mized rotor design was presented, where the performance of
the machine was enhanced in terms of output power quality,
reduced torque ripple, and higher average torque production.
Although the machine performance was improved to some
extent, the machines in [11, 12] are underutilized in terms
of the slot space because of the stator winding arrangement.
Moreover, in [13] a new sub-harmonic synchronous machine
is proposed, where in the stator a novel three-layer winding
was introduced. Out of the three windings, two layers are
used for fundamental MMF production, and the third layer is
utilized for sub-harmonicMMF production that is ultimately
used for brushless operation of the synchronous machine.

With this objective in mind, this paper introduces a
novel BL-WRSM having a unique two-layer stator winding
arrangement that provides better performance than that of the
BL-WRSMs presented in [11, 12] having the exact size, vol-
ume, andmachine rating. The following sections of the paper
will cover the structure, machine configuration, and working
principle of the novel BL-WRSM. Along with these, a 2-D
finite element analysis (2-D FEA) has been performed to test
the validity of the machine. For proper identification, we, the

Fig. 1 Proposed brushless wound
rotor synchronous machine
topology
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Fig. 2 Proposed LSHSM-01
layout and stator-rotor winding
configuration

Fig. 3 Pole pitches of the 8-pole field and 2-pole harmonic windings of the rotor

author would like to name the machine: Lipo Sub-Harmonic
Synchronous Machine 01 (LSHSM-01).

2 Proposed brushless topology and principle
of operation

2.1 Proposed topology

The topology of the proposed LSHSM-01 is illustrated in
Fig. 1, and it can be seen that the stator winding is driven by
a single current source inverter. Moreover, the stator wind-
ing has a novel 2-layer distributed winding arrangement.

This two-layer winding is essentially two sets of series-
connected 3-phase windings: ABC and XYZ. Furthermore,
Fig. 2 depicts the machine layout with stator-rotor windings,
and it is illustrated that the bottom layer of the stator slots is
comprised of only ABC winding while the top layer consists
of both ABC and XYZwinding, where the XYZwinding has
alternative placement. Notably, winding ABC generates an
8-pole MMF, and winding XYZ produces a 2-pole MMF.

From Fig. 2 it can be seen that the rotor of the LSHSM-
01 is also comprised of two windings: field winding and
harmonic winding. Similar to the ABC winding, the field
winding is wound in an 8-pole manner but a concentrated
arrangement. The harmonic winding is a 2-pole concentrated
winding that is employed for inducing the sub-harmonic
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Fig. 4 Proposed 2-layer ABC and XYZ winding configuration over 360 mechanical degrees

Fig. 5 aFundamental component of the statorMMFand bSubharmonic
component of the stator MMF

Table 1 Design parameters of the proposed LSHSM-01

Parameter Unit Value

Rated power W 1281

Operating speed rpm 900

Stator outer diameter mm 177

Stator inner diameter mm 95

Air-gap length mm 0.5

Shaft diameter mm 25

Stack length mm 80

Number of poles of stator ABC winding – 8

Number of poles of stator XYZ winding – 2

Number of poles of rotor harmonic winding – 2

Number of poles of rotor field winding – 8

Number of stator slots – 48

Conductors per stator slot in ABC winding – 20 or
40

Conductors per stator slot in XYZ winding – 20 or
00

Conductors per stator slot of harmonic
winding

– 50

Conductors per stator slot of field winding – 24

MMF generated by the 2-pole XYZ winding. To portray the
structure of the rotor windings, Fig. 3 depicts the pole pitches
of the field winding and the harmonic winding. Furthermore,
a diode rectifier circuit is mounted on the periphery of the
rotor as a bridge between the two rotor windings.

2.2 Principle of operation

As previously discussed, a balanced 3-phase current is sup-
plied to the stator windings from a single current source
inverter, and as the stator windings are series-connected, both
ABC and XYZwindings receive an equal amount of currents
from the inverter. The three-phase balanced current supplied
by the inverter circuit is as follows,

ia = I sinωet

ib = I sin

(
ωe − 2π

3

)

ic = I sin

(
ωe + 2π

3

)
(1)

where ia, ib, and ic are the three-phase supply currents, I is the
peak supply current, ωe is the electrical angular frequency,
and t is the time.

Although the inverter supplies an equal amount of current
to the stator windings, ABC and XYZ windings generate
different MMF components because of their different pole
numbers. Since the ABC winding is wound in an 8-pole
manner, the winding generates the fundamental MMF com-
ponent that is used for torque generation purposes. On the
other hand, the XYZ winding generates its own MMF, but it
is of a 2-pole configuration.Moreover, it can be observed that
the 2-poleMMF component has quarter the frequency as that
of the 8-poleMMFcomponent; thus, the 2-pole component is
termed as a sub-harmonic component, and this sub-harmonic
MMF component is used for brushless field excitation. It is
important to realize that the ABC and XYZ windings gen-
erate two distinct rotating magnetic fields that they rotate
at a different speed than each other. Furthermore, Eqs. (2)
and (3) can be utilized to compute the rotational speed of
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Fig. 6 Flux density plot through
the stator, air-gap, and rotor

Fig. 7 Flux line distribution plot
through the stator, air-gap, and
rotor
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Fig. 8 a Induced voltage in the rotor harmonic winding, b current in the rotor harmonic winding, c rectified voltage in the rotor field winding, and
d rectified current in the rotor field winding

the fundamental and harmonic components. They are as fol-
lows,

ns = 120 f

p
(2)

ηs(h) = ns
h

= 120 f

hp
(3)

where ns is the rotating speed of the fundamental component,
f is the frequency of the supply current, p is the number
of poles of the machine, ns(h) is the rotating speed of the
harmonic component, and h is the harmonic number, which
is 1/4 for the proposed case.

For an 8-pole machine, considering 60 Hz as the sup-
ply frequency, the fundamental MMF component rotates at
900 rpm that can be calculated using Eq. (2). Correspond-
ingly, using Eq. (3), considering the value of h is 0.25, the
rotating speed of the harmonic component is 3600 rpm. That
authenticates the previously mentioned notion of having two
different rotating speeds of the fundamental and harmonic
component. To achieve the brushless operation, the harmonic
winding of the rotor of the LSHSM-01 gets induced by the
rotating SH-MMF generated by the stator XYZ winding.
Subsequently, the induced EMF is rectified to DC voltage

by the means of a diode rectifier that ultimately feeds the
8-pole rotor field winding. With the DC excitation, the field
winding creates a constant magnetic field that eventually is
synchronized with the fundamental rotating magnetic field
that is created by the ABC winding.

3 Design and analysis of the proposed
machine

To validate the proposed LSHSM-01, an 8-pole, 48-slot, 3-
phase machine is designed having a novel 2-layer distributed
stator winding. Figure 4 illustrates the stator winding struc-
ture, which shows the 8-pole ABC and 2-pole XYZwindings
that are placed throughout the 360° of the stator periphery.
Each slot has two layers, and the ABC winding is wound in
a unique two-layer manner where the bottom layer of the 48
slots are filled solely with the ABC winding; however, the
top layer is wound in an alternative pattern, where 24 slots
are wound with the ABC winding and the rest 24 slots are
with the XYZ winding. More elaborately, for the top layer
arrangement, if the 1st position of the top layer is wound
with one of the ABC windings, the 2nd position is going to
be wound with one of the XYZwindings. For example, it can

123



Electrical Engineering (2022) 104:3027–3035 3033

be seen from Fig. 4 that the very first position of the top layer
is wound with “X+” conductors, the 2nd position is wound
with “A+”, the 3rd position is woundwith “X+”, the 4th posi-
tion is with “C−”, the 5th position is with “Z−”, and so on
in an alternating fashion throughout the 360° periphery.

Therefore, it can be stated that the ABCwinding is wound
in a semi two-layer manner, and the XYZ winding is wound
in a semi single-layer manner. Eventually, the ABC and
XYZ windings combinedly make a unique two-layer series-
connected winding. If this exclusive two-layer winding is to
be compared to the sub-harmonically excited two-layerwind-
ing presented in [9–12], it can be observed that the proposed
2-layer winding arrangement utilizes the optimal slot-space
in 48 slots of the machine.

However, in [11, 12] the ABC and XYZ windings are
housed separately in two equally divided slot-spaces in the
stator, and winding ABC has doubled the number of turns
thanXYZ. Since the slots house different numbers of conduc-
tors in the different portions of the stator periphery, it causes
a heating-imbalance throughout. In [9], the machine encoun-
ters a similar heating imbalance, for that reason, the author
suggested supplying the high and low current alternatively
by the two inverters at fixed intervals. Although the method
may reduce the imbalance, it may impose newer complexity
in the machine drive and control.

Provided that the proposed topology utilizes the maxi-
mumnumber of conductors per slot in the stator winding, and
the slots may have either of the two combinations—winding
ABC has 20 when it shares with XYZ which has also, or
winding ABC has all 40 when it does not share slot XYZ.
Thus, each slot will have 40 turns in either combination as
opposed to the machines in [11, 12], wherein some portion
of the slots the turn number is 40 and, in some slots, it is
20. Importantly, the 40 turns in each stator slot results in an
equal amount of current circulation, which in return makes
the LSHSM-01 generate greater torque without having the
issue of heating imbalance as compared to [9–12].

Table 1 summarizes the design parameters of the LSHSM-
01, where the rated power of the machine is 1281 W with a
constant speed of 900 rpm. For this design, the MMF dis-
tribution of the ABC and XYZ windings are illustrated in
Fig. 5a, b respectively, where the supply current peak ampli-
tude of the phase A and X is 6.4 A, and at that instance, the
supply current value of B, C, Y , and Z phases are 3.2 A. To
elaborate, the mechanical frequency of the 8-pole ABC and
2-pole XYZ windings are ωm, and (ωm)/4 respectively.

3.1 4. 2-D finite element analysis

The proposed machine, LSHSM-01, has been extensively
investigated to observe the performance and feasibility by
using 2-D FEA. Data from Table 1 are taken as the simu-
lation parameters, and a single inverter is used to supply a

Fig. 9 Torque generation of the proposed LSHSM-01

balanced 3-phase sinusoidal current with a peak current of
6.4A at a 60Hz frequency. Figures 6 and 7 illustrate flux den-
sity and flux line distribution through the stator, air-gap, and
rotor respectively. As mentioned earlier, the slots are filled
evenly with the same number of conductors, as a result, the
flux density and flux lines are also consistently distributed
throughout the stator–airgap–rotor frame unlike in the case
of BL-WRSM in [11, 12]. It is also important to point out
that the proposed machine works equal and below the flux
density level of 1.9 T continuously.

Furthermore, the induced EMF and the current in the rotor
harmonic winding by the statorMMF from theXYZwinding
are shown in Fig. 8a, b, and the values are 4.75V and 14.78A
respectively. These alternating values are then rectified by a
rectifier to supply the rotor field winding, and the average
rectified voltage and current values are 0.63 V and 20.18 A
respectively, which are shown in Fig. 8c, d. From these, it is
apparent that the LSHSM-01 works on the principle of sub-
harmonically excited brushless operation. Nevertheless, the
performance of the LSHSM-01 could be further investigated
in terms of its torque generation, and the average value is
12.03 Nm with a torque ripple of 34%, which is depicted in
Fig. 9.

Further investigation is conducted to examine the effec-
tiveness of the LSHSM-01 where the performance of the
proposedmachine is comparedwith the conventionalWRSM
used in [11] and the single inverter BL-WRSM in [12]. The
summary of the evaluation is listed in Table 2, and it is impor-
tant to state that all design parameters are kept the same
to [12] which includes outer diameter, inner diameter, air-
gap length, stack length, the current density in the stator,
and rotor winding to name a few. Although three machines
are supplied with the same RMS current of 4.5 A, the rotor
field current of the LSHSM-01 (20.18 A) is found remark-
ably higher than the BL-WRSM (9.8 A) of [12]. The reasons
for this higher current are the unique 2-layer stator winding
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Table 2 Performance comparison
between the conventional
WRSM [11], BL-WRSM [12],
and the proposed LSHSM-01

Indicator Unit WRSM [11] BL-WRSM [12] Novel LSHSM-01

Stator current Arms 4.50 4.50 4.50

Field current Aavg 9.50 9.80 20.18

Harmonic current Arms 0 5.10 14.78

Terminal voltage V rms 68.10 72.03 91.75

Average torque N m 7.30 7.83 12.03

Torque ripple % 16.67 18.00 34

Stator winding copper loss W 68.04 85.03 113

Field winding copper loss W 51.60 57.62 97.73

Harmonic winding copper loss W 0 7.80 8.3

Core loss W 36.19 43.05 43.05

Efficiency % 81.53 79.22 81.10

arrangement, the 2-pole sub-harmonic winding, and opti-
mally utilized winding slot-space. As a result, the average
torque of the LSHSM-01 is recorded 12.03Nm that is around
65% more than that of the machine in [12] having the same
physical volume and design parameters. Although the torque
is enhanced, torque ripple on the other hand is recorded as
34%, and this issue may be covered in future research with
an optimized design. Moreover, calculating all the losses of
these three machines, the efficiency of the novel machine
is approximately 81%, which is exact compared to the con-
ventional brushed WRSM of [11], but better than that of
the similar sub-harmonic synchronous machine presented in
[12] having efficiency of approximately 79%. Even though
the efficiency is greater than the machine of [12], it can fur-
ther be improvedwith optimized structural design and proper
wire sizing selection.

4 Conclusion

The focal point of this paper is to develop a brushless wound
rotor synchronous machine and study the performance and
feasibility. For that, the proposed LSHSM-01 has substanti-
ated with the 2-D FEA. Although operation wise it resembles
the BL-WRSMs, performance-wise it surpasses inmany cru-
cial aspects demonstrating some certain advantages over
the newly developed BL-WRSMs in [9–12]. Hence, the
LSHSM-01 could be an alternative solution considering all
the attractive features provided, and they are listed as follows:

1. Single inverter brushless operation.
2. Optimal utilization of the maximum slot space.
3. No unbalanced current circulation in the stator.
4. No need for imposing an unbalanced cooling system.
5. Greater torque generation.

With all these advantages, it can certainly be a competi-
tive alternative not only to the BL-WRSMs but also with the
state-of-the-art PMSMsparticularly utilized in traction appli-
cations. It is equally important that the LSHSM-01 could
potentially improve its performance by reducing the torque
ripple through optimized design. In the power electronic
drive and control section, scopes are there for improvement
by utilizing the three-transistor voltage source inverter topol-
ogy presented in [14] and employing various pulsed width
modulation (PWM) techniques analyzed in [15]. Not tomen-
tion that these topics may be considered as future research
concerns.
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