
Vol.:(0123456789)1 3

Electrical Engineering (2020) 102:2481–2491 
https://doi.org/10.1007/s00202-020-01046-y

ORIGINAL PAPER

Analytical determination of the end‑winding portion 
of the winding‑to‑rotor capacitance for the prediction of bearing 
voltage in electrical machines

Jan Ole Stockbrügger1 · Bernd Ponick1

Received: 30 March 2020 / Accepted: 15 June 2020 / Published online: 29 June 2020 
© The Author(s) 2020, corrected publication 2021

Abstract
The number of inverter-fed motors is increasing due to the good controllability of the motor and the meanwhile low acqui-
sition costs. As a result of the discrete switching states of the power transistors, the average of the three output voltages of 
a two-level inverter is a common mode voltage, which differs from zero. The common mode voltage is impressed into the 
motor winding by the inverter, and an image of the common mode voltage is produced across the bearings via the winding-
to-rotor capacitance. The voltage applied to the motor bearings can exceed the dielectric strength of the lubricating film of 
the bearings and lead to discharge currents resulting in damage to the motor bearings. The winding-to-rotor capacitance is 
composed of a slot and an end-winding portion. In this article, an analytical determination of the end-winding portion of 
the winding-to-rotor capacitance is presented, which, in addition to the rotor geometry, considers the influence of materials 
with different permittivities. The method is validated by means of FEM simulations for different geometries and materials.

Keywords Winding-to-rotor capacitance · Bearing voltage · EDM currents · Traction motor

1 Introduction

The inverter supply of electrical motors can lead to EDM 
bearing currents, which can result in matted raceway and 
rolling element surfaces, periodic raceway corrugation 
structures and chemical lubricant changes [1]. EDM cur-
rents occur in the area of liquid friction/full lubrication when 
the critical field strength of the lubricating film in the rolling 
bearing is exceeded and resulted from the discharge of the 
bearing capacitance [2]. The bearing voltage Ul is the image 
of the common mode voltage Ucm and can be calculated by 
means of the capacitive voltage divider [3] as

The capacitive voltage divider is composed of the wind-
ing-to-rotor capacitance Cwr , the stator-to-rotor capacitance 
Csr and the capacitances of the two bearings Cl1 and Cl2 . 

The winding-to-rotor capacitance, which is composed of the 
motor’s slot and end-winding portion, is decisive for the 
amount of bearing voltage applied [4, 5]. The end-winding 
portion of the winding-to-rotor capacitance can be estimated 
analytically or numerically. In [6], a complex 3D FEM simu-
lation is performed to determine the capacitance. The cur-
rent analytical determination of the end-winding portion of 
the winding-to-rotor capacitance is based on the calculation 
of a cylindrical capacitor [7–9]. The basic problem when 
applying the calculation rule for a cylindrical capacitor is 
the one-dimensional potential problem used for derivation. 
When using a cylindrical capacitor, the influenced charge on 
the front surface of the rotor is not taken into account due to 
the purely radially assumed E-field.

In order to consider the influence of the charge influ-
enced on the lateral surface of the rotor properly in the cal-
culation of the end-winding portion of the winding-to-rotor 
capacitance, a limited, two-dimensional field problem can 
be solved.

(1)Ul =
Cwr

Cwr + Csr + Cl1 + Cl2

⋅ Ucm.
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2  Modelling the end‑winding of an electrical 
machine

Figure 1 illustrates a simplified, rotationally symmetrical 
geometry of an electric machine. An electric machine con-
sists of an active part, which extends over the length of the 
stator core, and the end-windings. The stator winding is 
galvanically separated from the stator core by insulation.

For the determination of the end-winding portion of 
the winding-to-rotor capacitance, only the end-winding 
geometry is considered.

A simplified, rotationally symmetrical end-winding 
geometry of an electric machine is shown in Fig. 2. The 

entire area, which consists of the insulation protruding into 
the end-winding region, the potting compound, if applicable, 
and the air region, is axially limited by the stator core and 
the end shield. In radial direction, the area is limited by the 
rotor and the stator housing.

It is assumed that the majority of the capacitive coupling 
between the stator end-winding and the rotor takes place in 
the field area of interest marked with dashes in Fig. 2.

On the area’s left-hand side, the stator core is located 
between the insulation and the air gap. On the right-hand 
boundary in longitudinal direction, the E-field should only 
have a tangential component. Assuming Neumann boundary 
conditions, no E-field escapes from the area (Fig. 3).

Fig. 1  Simplified longitudinal section of an electric machine

Fig. 2  Simplified longitudinal 
section of the end-winding of an 
electric machine
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Overall, the calculation model is based on the following 
simplifications:

• The capacitive coupling between the stator end-winding 
and the rotor takes place in the area between the end-
winding and the rotor.

• The stator core, the stator winding and the rotor are ide-
ally electrically conductive.

• There are no space charges within the considered area.
• The media within the considered geometry consist of 

materials with constant permittivity.

3  Determination of the end‑winding portion 
of the winding‑to‑rotor capacitance

The field area of the area of interest drawn in Fig. 2 is 
enlarged. The spatial area is described in cylindrical coordi-
nates and is rotationally symmetrical around the longitudinal 
coordinate. It is limited in radial direction by the horizontal 
stator end-winding with the potential �w and the stepped 
contour of the rotor with the potential �r . The stator has the 
potential �s . The total length in the axial direction of the area 
of interest corresponds to the winding overhang.

The area of interest consists of three materials with dif-
ferent permittivities. The first medium with the permittivity 
�1 is used to consider an insulation with the axial length 
liso protruding into the end-winding region. A possibly cast-
ing component of the end-winding is covered by the second 
material with the permittivity �2 . The third medium consid-
ers the medium adjacent to the rotor with the permittivity �3 , 
i.e. air. With the exception of the Dirichlet boundary condi-
tion on the radial axis used to consider the stator lamination, 
the axial limitation of the area is done by specifying Neu-
mann boundary conditions. The Dirichlet boundary condi-
tions specify the values of the solution along the boundaries, 

and the Neumann boundary conditions specify the derivate 
of the solution along the boundaries.

The determination of the end-winding portion of the 
winding-to-rotor capacitance is carried out with the aid of 
Maxwell’s capacitance coefficients, with which the concept 
of capacitance can be transferred to systems consisting of 
several electrodes insulated from each other [10]. In the pre-
sent problem, the electrodes are considered to be the stator 
end-winding with the charge Qw and the potential �w , the 
stator with the charge Qs and the potential �s and the rotor 
with the charge Qr and the potential �r . The corresponding 
capacitance coefficient matrix is

The capacitance coefficients c�v correspond to the capaci-
tances C�v for counter capacitances � ≠ v , establishing a 
connection between the charges and the potential differ-
ences. By selecting a stator and a rotor potential of zero 
volts each, the end-winding portion of the winding-to-rotor 
capacitance Cwr is calculated according to (2) as

The charge influenced on the rotor Qr is composed of the 
partial surface charges on the lateral surface and the front 
surface of the rotor.

To calculate the charge stored on the rotor, the field area 
is divided into the sections as shown in Fig. 4. The deter-
mination of the partial charges Qr3,1 , Qr3,2 , Qr3,3 , Qr4,1 on the 
lateral surface and Qz4,1 on the front surface is carried out 
independently of each other. The areas are separated when 
the materials or the rotor radius changes (see dashed lines 
in Fig. 4).

(2)
⎛
⎜⎜⎝

Qw

Qs

Qr

⎞
⎟⎟⎠
=

⎛
⎜⎜⎝

cww cws cwr
csw css csr
crw crs crr

⎞
⎟⎟⎠
⋅

⎛
⎜⎜⎝

�w

�s

�r

⎞
⎟⎟⎠
.

(3)Cwr = crw =
Qr

�w

.

Fig. 3  Model of the considered 
geometry with boundary condi-
tions
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The total rotor charge corresponds to the sum of the 
charges present in the single sections. The end-winding 
portion of the winding-to-rotor capacitance is calculated 
according to (3) to

Due to the complex consideration of the alternating bound-
ary conditions present on the radial axis, the stator lami-
nation is initially ignored and the corresponding Dirichlet 
boundary condition is replaced by a Neumann boundary 
condition. Afterwards, the influence of the stator core on 
the end-winding portion of the winding-to-rotor capacitance 
is analysed and considered in the calculation.

4  Calculation of the influenced rotor charge 
without considering the stator lamination

Figure 5 shows exemplarily FEM-determined equipotential 
lines of the modified model presented in Fig. 3. Neumann 
boundary conditions serve as axial boundaries on both sides. 

(4)Cwr =
Qr

�w

=
Qr3,1 + Qr3,2 + Qz4,1 + Qr4,1 + Qr3,3

�w

.

With the exception of the dashed area shown in Figs. 3 and 
5, the equipotential lines represent approximately concentric 
circles. The E-field has a dominant radial component. The 
determination of the partial rotor charges Qr3,1 , Qr3,2 , Qr3,3 
on the lateral surface is based on the assumption of a purely 
radial E-field.

Within the marked square step area, there is a radial and 
axial dependence of the potential. The pitch of the rotor con-
tour corresponds to the side length of the marked area. The 
determination of the surface charges Qr4,1 and Qz4,1 is done 
separately from the other partial charges.

4.1  Partial determination of the rotor charge 
outside the step range

In electrostatics, it is necessary to solve the Poisson equation 
with the charge density � and the permittivity � for the deter-
mination of the scalar potential field � in a considered space 
area with linear, isotropic and homogeneous materials [11]:

If there are no space charges in the region, (5) is simplified 
to Laplace’s equation:

For the sectional calculation of the rotor charge outside the 
step area depicted in Fig. 3 as dashed lines, the area shown 
in Fig. 6 is modelled. It consists of three materials with dif-
ferent permittivities. The end-winding of the stator winding 
and the outer rotor radius limit the field in radial direction.

Using the Laplace operator in the cylindrical coordinate 
system yields

(5)Δ� = −
�

�
.

(6)Δ� = 0.

Fig. 4  Representation of the partial charges on the rotor

Fig. 5  FEM-determined equipotential lines of the considered geom-
etry

Fig. 6  Representation of the cylindrical field area, i.e. the area out-
side the dashed lines in Fig. 4
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The scalar potential field is independent of the angular 
coordinate � due to the rotationally symmetrical spatial region, 
and by assuming a purely radial E-field, the dependence on the 
longitudinal coordinate z is eliminated.

The Laplace operator is simplified to the ordinary differ-
ential equation:

The solution of the differential equation dependent on the 
radius yields the general solution of the Laplace equation for 
the three space regions considered:

The coefficients are determined by means of the two bound-
ary conditions:

and by considering the continuity conditions of the potential 
and the normal component of the D-field at the material 
boundaries:

The boundary conditions (12) and (13) lead to the equations

(7)

Δ�(r, � , z) =
1

r

⋅

�

�r

(
r ⋅

��(r, � , z)

�r

)

+
1

r
2

�2�(r, � , z)

��2
+

�2�(r, � , z)

�z2
= 0.

(8)Δ�(r) =
1

r
⋅

�

�r

(
r ⋅

��(r)

�r

)
= 0.

(9)�1(r) = A1 + B1 ⋅ ln(r),

(10)�2(r) = A2 + B2 ⋅ ln(r),

(11)�3(r) = A3 + B3 ⋅ ln(r).

(12)�1

(
r = rw

)
= �w,

(13)�3

(
r = rr

)
= 0

(14)�1

(
r = rg1

)
= �2

(
r = rg1

)
,

(15)�2

(
r = rg2

)
= �3

(
r = rg2

)
,

(16)−�1 ⋅
��1

(
r = rg1

)
�r

= −�2 ⋅
��2

(
r = rg1

)
�r

,

(17)−�2 ⋅
��2

(
r = rg2

)
�r

= −�3 ⋅
��3

(
r = rg2

)
�r

.

(18)A1 + B1 ⋅ ln
(
rw
)
= �w,

(19)A3 = −B3 ⋅ ln
(
rr
)
.

The continuity conditions of the potential (14) and (15) 
result in

and the differentiability conditions (16) and (17) lead to

The unknown constants A1 , B1 , A2 , B2 , A3 and B3 of the 
potential fields of the three regions (9)–(11) can be deter-
mined using Eqs. (18)–(23). To determine the charge on the 
rotor, the surface charge density �r3 is initially calculated 
with the aid of the electric field E⃗3

and the surface normal vector n⃗ of the rotor to

The charge on the lateral surface of the rotor section Qr3 
is calculated using the surface integral of the surface charge 
density over the length lr in the longitudinal direction of the 
rotor section as

Equation (26) is applied depending on the number of layers 
and on the rotor radius to determine the partial rotor charges 
Qr3,1 , Qr3,2 , Qr3,3 on the lateral surface.

4.2  Partial determination of the rotor charge 
within the step region

For the calculation of the rotor charge within the step region, 
the area shown in Fig. 7 is modelled. The field is filled with 
the material adjacent to the rotor. In radial direction, the 
space area is limited by the two radii of the step area of 
the rotor. The front face of the rotor is on the left side of 
the considered field area. At the two edges adjacent to the 
rotor, the potential of the rotor is present. For reasons of 
simplification, the spatial area is infinitely extended in the 
longitudinal direction.

(20)A1 + B1 ⋅ ln
(
rg1

)
= A2 + B2 ⋅ ln

(
rg1

)
,

(21)A2 + B2 ⋅ ln
(
rg2

)
= A3 + B3 ⋅ ln

(
rg2

)
,

(22)−�1 ⋅
B1

rg1
= −�2 ⋅

B2

rg1
,

(23)−�2 ⋅
B2

rg2
= −�3 ⋅

B3

rg2
.

(24)E⃗3 = E3re⃗r = −grad
(
𝜑3

)
= −

B3

r
e⃗r

(25)

𝜎r3 = n⃗ ⋅ D⃗3

(
r = rr

)
= e⃗r ⋅ 𝜀3E3r

(
r = rr

)
e⃗r = −𝜀3 ⋅

B3

rr
.

(26)Qr3 =
lr

∫
0

2⋅�

∫
0

�r3 ⋅ r ⋅ d� ⋅ dz = −2 ⋅ � ⋅ �3 ⋅ lr ⋅ B3.
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Figure 5 shows that, dependent on the longitudinal coor-
dinate, a potential is present at the upper side of the area. 
To determine the potential function �s , the potential curve 
of the spatial area is analysed by means of FEM software. 
Figure 8 shows the potential dependence on the longitudi-
nal direction of the upper side of the step area (potential 
curve along the upper horizontal dashed line in the positive 
z-direction shown in Fig. 5) of the first model geometry of 
Table 1. As already shown in the scalar potential field in 
Fig. 5, this is a nonlinear potential curve.

The potential curve can be modelled using the exponen-
tial function:

with the steady-state end value

and the constant

The stationary final value �̃�3

(
rr1

)
 corresponds to the poten-

tial at the upper right edge of the square step range. This can be 
calculated using the third potential field (11) in order to deter-
mine the partial rotor charge Qr3,3 . The stationary final value 
corresponds to the potential which would be present at the 
position with a purely radial E-field. The constant � describes 
the rise of the potential. It is assumed that the stationary final 
value is approximately reached in the axial direction at the 
position of the step height. This distance corresponds approxi-
mately to five times the constant �.

(27)𝜑exp(z) = �̃�3

(
rr1

)
⋅

(
1 − e

−
z

𝜏

)

(28)�̃�3

(
rr1

)
= Ã3 + B̃3 ⋅ ln

(
rr1

)

(29)� =
rr1 − rr2

5
.

Fig. 7  Field area in the step region of the rotor

Fig. 8  Representation of the 
potential curves �

s
(z) of the first 

model geometry of Table 1

Table 1  Geometric and material 
properties of the investigated 
models

Variant r
w

in mm
rg1
in mm

rg2
in mm

rr1
in mm

rr2
in mm

l
iso

in mm
lr1
in mm

lr2
in mm

�r1 �r2 �r3

1 80.0 79.6 77.2 76.1 65.7 7.0 10.0 34.0 3.1 5.2 1.0
2 72.0 71.7 67.5 66.4 63.7 5.0 7.0 31.0 3.1 5.2 1.0
3 71.0 70.7 67.5 66.4 48.0 5.0 7.0 31.0 3.1 1.0 1.0
4 70.0 69.5 66.8 65.8 50.0 4.0 8.0 33.7 3.3 5.2 1.0
5 69.0 68.7 65.8 65.0 35.0 8.0 9.0 25.0 3.3 5.2 1.0
6 69.0 68.7 65.8 65.0 35.0 8.0 9.0 25.0 5.2 5.2 1.0
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A significant simplification of the solution of the Laplace 
equation for the field area shown in Fig. 7, however, results 
from the assumption of a linear potential function. Conse-
quently, there is a linearly increasing potential curve

with the slope m on the upper side of the area in the axial 
direction. The ordinate section b is set to zero volts due to 
the selected rotor potential. The linear approximation func-
tion contained in Fig. 8 intersects the exponential function 
in the longitudinal direction at the location of the constant 
� . The slope of the function results in

The linear function reaches the stationary final value 
after the distance

From this position, as shown in Fig. 8, the constant 
potential of the stationary final value is assumed for the 
approximation of the potential curve, independent of the 
longitudinal direction. The determination of the rotor 
charge in the step range is carried out with this model in 
the axial direction at the maximum over the distance zc . 
Axially, the potential field, which only depends on the 
radius, is connected to determine Qr3,3.

One of the most important methods for the analytical 
treatment of partial differential equations is the so-called 
separation method [9]. In this method, the partial differ-
ential equation is transformed into ordinary differential 
equations in the selected coordinate system by means of 
a product approach. Finally, the solution is adapted to the 
given boundary conditions.

Due to the rotationally symmetrical spatial region, the 
scalar potential field is independent of the angular coordi-
nate � , which simplifies the Laplace operator (7) to

By inserting the selected product approach

into the Laplace Eq. (33)

and then dividing it by the product approach (34), the 
relation

(30)�s(z) = m ⋅ z + b

(31)m =
Δ𝜑s

Δz
=

𝜑s(𝜏)

𝜏
=

5 ⋅ �̃�3

(
rr1

)
⋅

(
1 − e−1

)
rr1 − rr2

.

(32)zc =
�̃�3

(
rr1

)
m

=
rr1 − rr2

5 ⋅
(
1 − e−1

) .

(33)Δ�(r, z) =
1

r
⋅

�

�r

(
r ⋅

��(r, z)

�r

)
+

�2�(r, z)

�z2
= 0.

(34)�(r, z) = R(r) ⋅ Z(z)

(35)
Z(z)

r
⋅

�

�r

(
r ⋅

�R(r)

�r

)
+ R(r) ⋅

�2Z(z)

�z2
= 0

is obtained. The summands of Eq. (36) are constant func-
tions, and by means of the definitions

the partial differential Eq. (33) breaks down into the two 
decoupled ordinary differential Eqs. (37) and (38), taking 
into account the constraint

For the realization of a linear potential curve in the lon-
gitudinal direction, the constant kz is set to zero, so that, 
according to the separation condition (39), the constant kr 
must also be zero. The solutions of the homogeneous differ-
ential Eqs. (37) and (38) result in the general solution of the 
Laplace equation for the area under consideration:

The coefficients are determined by means of the bound-
ary conditions:

The coefficient D4 must be zero according to boundary 
condition (41). The boundary condition on the lateral surface 
of the rotor (42) leads to

The remaining boundary condition (43) gives

with

(36)
1

r ⋅ R(r)
⋅

�

�r

(
r ⋅

�R(r)

�r

)
+

1

Z(z)
⋅

�2Z(z)

�z2
= 0

(37)k2
r
=

1

r ⋅ R(r)
⋅

�

�r

(
r ⋅

�R(r)

�r

)
,

(38)k2
z
=

1

Z(z)
⋅

�2Z(z)

�z2
,

(39)k2
r
+ k2

z
= 0.

(40)�4(r, z) =
[
A4 + B4 ⋅ ln (r)

]
⋅

(
C4 ⋅ z + D4

)
.

(41)�4(r, z = 0) = 0,

(42)�4

(
r = rr2, z

)
= 0,

(43)�4

(
r = rr1, z

)
= �s(z).

(44)A4 = −B4 ⋅ ln
(
rr2

)
.

(45)

B̃4 ⋅

[
ln
(
rr1

)
− ln

(
rr2

)]
⋅ z =

5 ⋅ �̃�3

(
rr1

)
⋅

(
1 − e−1

)
rr1 − rr2

⋅ z,

(46)B̃4 =
5 ⋅ �̃�3

(
rr1

)
⋅

(
1 − e−1

)
(
rr1 − rr2

)
⋅

[
ln
(
rr1

)
− ln

(
rr2

)]

(47)B̃4 = B4 ⋅ C4.
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The scalar potential function adapted to the given bound-
ary conditions is

To determine the charge present on the front and on the 
lateral surface of the step area, the D-field D⃗4 in the spatial 
area is determined as

with

and

The surface charge density �r4 on the lateral surface of the 
step area is calculated with the surface normal vector n⃗ to

The charge on the lateral surface of the step area Qr4 is 
calculated using the surface integral of the surface charge 
density over the length lr4 in the axial direction of the rotor 
section as

The length lr4 of the rotor section corresponds to the 
distance zc , provided that the length lr2 in the longitudinal 

(48)𝜑4(r, z) = B̃4 ⋅

[
ln (r) − ln

(
rr2

)]
⋅ z.

(49)D⃗4 =

(
D4r

D4z

)
= 𝜀3 ⋅

(
E4r

E4z

)
= −𝜀3 ⋅ grad

(
𝜑4

)

(50)D4r = −
5 ⋅ 𝜀3 ⋅ �̃�3

(
rr1

)
⋅

(
1 − e−1

)
(
rr1 − rr2

)
⋅

[
ln
(
rr1

)
− ln

(
rr2

)] ⋅ z
r

(51)

D4z = −
5 ⋅ 𝜀3 ⋅ �̃�3

(
rr1

)
⋅

(
1 − e−1

)
(
rr1 − rr2

)
⋅

[
ln
(
rr1

)
− ln

(
rr2

)] ⋅ [ln (r) − ln
(
rr2

)]
.

(52)

𝜎
r4
= n⃗ ⋅ D⃗

4

(
r = r

r2

)
= e⃗

r
⋅ D⃗

4

(
r = r

r2

)

= −
5 ⋅ 𝜀

3
⋅ �̃�

3

(
r
r1

)
⋅

(
1 − e

−1
)

(
r
r1
− r

r2

)
⋅

[
ln

(
r
r1

)
− ln

(
r
r2

)] ⋅ z

r
r2

.

(53)

Qr4 =
lr4

∫
0

2⋅𝜋

∫
0

𝜎r4 ⋅ r ⋅ d𝛾 ⋅ dz = −
5 ⋅ 𝜋 ⋅ 𝜀3 ⋅ l

2
r4
⋅ �̃�3

(
rr1

)
⋅

(
1 − e−1

)
(
rr1 − rr2

)
⋅

[
ln
(
rr1

)
− ln

(
rr2

)] .

direction, as shown in Fig. 3, is greater than or equal to the 
distance zc . Otherwise, the length lr4 is equal to the length lr2 . 
To determine the charge on the front face of the step area of 
the rotor, the surface charge density �z4 is first determined as

The charge on the front surface of the step area Qz4 is calcu-
lated using the surface integral of the surface charge density 
over the height of the step in the radial direction to

The total charge present at the step area on the rotor 
surface is the sum of the partial charges on the lateral 
surface and the front surface of the step area. It should be 
noted that this model only determines the charge on the 
lateral surface up to the axial position zc in the step area. 
The charge on the lateral surface from zc to the axial posi-
tion of the pitch of the rotor step is calculated separately 
using (26).

5  Calculation of the influenced rotor 
charge within consideration of the stator 
lamination

Figure 9 shows an example of FEM-determined equipo-
tential lines of the model presented in Fig. 3. Compared 
to the equipotential lines in Fig. 5, a significant distortion 
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Fig. 9  FEM-determined equi-
potential lines considering the 
stator core
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of the potential field can be seen due to the consideration 
of the sheet metal stator core with a specified potential of 
zero volts. The height of the stator core part corresponds 
to the difference between the radius of the insulation rg1 
and the radius of the air gap rg2.

FEM simulations of the axial course of the D-field on 
the rotor radius rr1 show that there is a minimum of the 
radial component at z = 0 due to the grounded stator lami-
nation. The radial component of the D-field increases in 
the longitudinal direction to the stationary value derived 
in Sect. 4.1. In the presented model, the increase in the 
radial component of the D-field in the axial direction can 
be approximated by a linear function. To determine the 
course of the D-field, it is assumed that the radial com-
ponent of the D-field at z = 0 is 0 C

m2
 and reaches the sta-

tionary final value at the z position of the stator core part 
height ( rg1 − rg2 ). When determining the partial rotor 
charge Q∗

r3,1
 presented in Sect. 4.1, however, a constant 

radial component of the D-field over the length of the slot 
insulation liso on the rotor radius rr1 is assumed. The line 
charge density of Q∗

r3,1
 is

Taking into account the linear approximation of the 
D-field, the rotor charge Q∗

r3,1
 is overestimated by the charge

By the distance of the stator lamination, the charge 
Qr3,1,s corresponds to the half of the rotor charge originally 
assumed over the axial length of the stator core part height. 
Under the assumptions made, the consideration of the stator 
lamination leads to the modified equation for the partial rotor 
charge Qr3,1 in the section of the insulation shown in Fig. 4:

6  Validation of the model

The model is validated using FEM software. The six investi-
gated geometry variants, which are based on different actu-
ally built motors with different material properties, are given 
in Table 1.

Table 2 shows the analytically calculated and the numeri-
cally determined end space portions of the winding rotor 
capacities without consideration of the stator lamination. 
The deviations are in the single-digit percentage range. The 

(57)Q∗�

r3,1
=

Q∗
r3,1

liso
.

(58)Qr3,1,s =
Q∗�
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⋅
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2
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)
.

errors can be explained by the non-analytically closed solu-
tion of the considered range. Deviations are also caused by 
the linearization of the potential function at the upper side 
of the step range and by neglecting the superelevation of the 
E-field at the edge of the rotor.

The differences between the analytically and the numeri-
cally determined capacitances of the fifth and the sixth vari-
ant are due to the given Neumann boundary condition at 
z = lr1 + lr2 and the smaller value of lr2 . In the analysis, it 
is assumed that the stationary final value of the potential is 
present on the upper side of the square step area in the axial 
direction. This point lies outside the considered geometries. 
Due to the Neumann boundary condition, the stationary 
final value of the potential is reached at the edge, so that 
the result is a steeper increase in potential compared to the 
analytical solution. The gradient is proportional to the rotor 
charge on the lateral surface and end face of the step area, 
and consequently, the analytically determined rotor charge is 
lower compared to the numerically determined rotor charge. 
Table 3 contains the analytically calculated rotor charges of 
the sections shown in Fig. 5. The simulated potential of the 
stator end-winding is 1 volt.

From Table 3, it can be seen that the charge on the face 
of the rotor Qz4.1 has an effect on the capacitance of the end-
winding portion of the winding-to-rotor capacitance due to 
its value. Moreover, it becomes apparent that most of the 
rotor charge is present on sections with a small distance 
between the head of the stator winding and the rotor. The 
highest line charge density is present on the sections with 
the smallest distance.

Table  4 contains the analytically calculated and the 
numerically determined end-winding portions of the wind-
ing-to-rotor capacitances of the models presented in Table 1, 
taking into account the stator lamination.

It can be seen that the capacitances shown in Table 4 are 
smaller than those collated in Table 2. The stator lamination 
leads to a reduction in the capacitive coupling between the 
stator end-winding and the rotor. It can also be seen from 
Table 4 that the simple calculation and consideration of the 
differential charge Qr3,1,s lead to an acceptable deviation 

Table 2  Comparison of the analytically calculated end-winding por-
tions of the winding-to-rotor capacitances with the FEM results

Variant Step height 
Δrr in mm

C
wr.anal

 in pF C
wr.FEM

 in pF Deviation 
C
wr

 in %

1 10.40 42.11 41.62 1.18
2 2.70 40.92 39.40 3.86
3 18.40 14.61 13.53 7.98
4 15.80 29.10 29.54 1.49
5 30.00 29.84 31.98 6.69
6 30.00 30.30 32.40 6.48
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between the analytically calculated and the numerically 
determined capacitances. The errors are resulted from the 
non-closed solution of the field problem and the lineariza-
tion of the course of the radial component of the D-field on 
the rotor surface.

In contrast to the 3D FEM simulation described in [6], the 
application of the analytical method presented here is less 
complex due to the simple equations. In a three-dimensional 
model, on the other hand, the position and the shape of the 
coils can be taken into account. In comparison with the 3D 
FEM simulation, the assumption of a rotationally symmetri-
cal end-winding described here leads to an overestimation of 
the capacitive coupling due to the lack of stator winding in 
the teeth area of the stator core. Nevertheless, that assump-
tion is fair, as the E-field exiting the coils spreads radially 
within the teeth area towards the rotor.

7  Conclusion

This paper presents a simple, two-dimensional analytical 
calculation of the end-winding portion of the winding-
to-rotor capacitance. The considered capacitive coupling 
between the stator end-winding and the rotor extends in 
the axial direction over the winding overhang. A closed 
solution of the field problem is not determined. Instead, 
the solution for the step-shaped rotor contour is carried 
out separately for the step area and the remaining lateral 
surface of the rotor. The determination of the capacitance 
is based on the separation method for solving the Laplace 

equation of a one- and a two-dimensional area. The mod-
elled end-winding consists of three media with different 
permittivities. An extension to a higher number of media is 
easily possible due to the repeating boundary conditions. 
Further steps on the rotor contour can also be taken into 
account by calculating the additional rotor charge influ-
enced on the rotor surface.

The stator lamination between the air gap and the deck 
slide contained in the extended field area leads to a reduc-
tion in the capacitive coupling. The decrease can be taken 
into account by the presented reduction in the rotor charge.

With the help of the presented model, the effect of differ-
ent geometries and materials on the end-winding portion of 
the winding-to-rotor capacitance can be determined fast and 
reliable with only small deviations.
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