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Abstract
This paper presents a theoretical analysis of the small-signal stability of a power system in which a synchronous generator and
a photovoltaic (PV) generator supply power to an infinite bus. The problem considered here is to investigate the existence of the
equilibrium points of the system and their stability. In terms of this problem, by focusing on the condition to be satisfied by the
equilibrium points and appropriately using the intermediate value theorem, we derive a sufficient condition on the magnitude
of the PV current for the existence of the equilibrium points. The condition is given as inequalities with respect to the system
parameters. These inequalities show that, if the power system fromwhich the PV generator is removed has equilibrium points,
then equilibrium points exist also in the original system as long as the PV current is small. Moreover, we analyze the stability
of the equilibrium points and show that the equilibrium points found under our existence condition are asymptotically stable.
These results imply that, when the PV current is below a certain level, the existence of the asymptotically stable equilibrium
points is preserved even though the PV generator is introduced.

Keywords Power systems · Photovoltaic generators · Small-signal stability · Equilibrium points

1 Introduction

Modern power systems are characterized by a high penetra-
tion of photovoltaic (PV) generators [11]. This is because
the increasing use of electricity generated in environmen-
tally friendly ways, such as by using solar energy, is driven
by critical concerns over the depletion of fossil fuels and
greenhouse gas emissions. Since PV generators convert solar
energy directly into electricity, there is no consumption of
fossil fuels and hence are no greenhouse gas emissions.

However, the introduction of PV generators affects the
performance of power systems. For example, PV penetration
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degrades the stability of power systems because PV gener-
ators do not have the synchronizing torque [6], i.e., internal
torque to preserve the synchronization of generators. To solve
this problem, many studies have been conducted to date. For
instance, a model of a PV generator has been constructed
to study the interaction of PV generators with power sys-
tems [12]. Other researchers have analyzed the impact of
PV penetration on the transient stability [10,14] and voltage
characteristics [1,7,13,16] of power systems. Additionally,
controller design for PV systems connected to power grids
has been carried out [5,9,15].

Our interest in this research is to determine the impact of
the penetration of PV generators on the small-signal stability
[6] of power systems. This stability indicates the ability of
power systems to maintain the synchronization against small
disturbances such as variations in loads and power. Themoti-
vation for considering the small-signal stability is that this
characteristic is fundamental to the problem-free operation
of power systems. In fact, a power system without the small-
signal stability is destabilized even by small disturbances,
which ultimately leads to the disruption of the power supply.

The purpose of this paper is to investigate the impact of
PV penetration on the small-signal stability. For this pur-
pose, we consider the system in Fig. 1. This is composed
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Fig. 1 Power system Σ with PV generator

of a synchronous generator, a PV generator, and an infinite
bus corresponding to a large system to which the two gen-
erators are connected. The generators supply power to the
infinite bus through a transmission line. The system in Fig. 1
focuses only on the synchronous generator and the PV gener-
ator and thus is suitable for investigating the direct impact of
PV penetration on the behavior of the synchronous generator.
For this system, we consider the stability of the equilibrium
points, i.e., the states inwhich the electrical output of the syn-
chronous generator is in balance with the mechanical input
to it, as the small-signal stability. We then address the prob-
lem of verifying the existence of the equilibrium points and
analyzing their stability.

In terms of the above problem, this paper makes two
contributions. First, we derive a sufficient condition on the
magnitude of the PV current for the existence of the equilib-
rium points. As a result, we show that, if the power system
from which the PV generator is removed has equilibrium
points, then equilibrium points exist also in the original sys-
tem as long as the PV current is small. The key idea behind
this result is to employ the intermediate value theorem. A
straightforward method for solving our problem would be
to derive the equilibrium points and clarify their properties.
However, deriving the equilibrium points is difficult because
it is necessary to solve a nonlinear equation with trigono-
metric functions and their inverses from the presence of the
PV generator. We address this difficulty by focusing on the
condition to be satisfied by the equilibrium points and by
appropriately using the intermediate value theorem. Second,
we analyze the stability of the equilibrium points of the
system in Fig. 1 and characterize those equilibrium points
that are asymptotically stable. We consequently show that
the equilibrium points found under the existence condition
derived above are asymptotically stable; that is, the first con-
tribution provides an existence condition of asymptotically
stable equilibrium points. This result and the above discus-
sion enable us to conclude that, when the PV current is below
a certain level, the small-signal stability is preserved even
though the PV generator is introduced.

Before closing this section, we give three remarks on this
paper.

First, we note the difference between the results of this
paper and those of previous studies. Four previous studies
have considered the impact of PV penetration on the small-
signal stability [2,3,8,17]. In these studies, the authors have
used systemmodels given by the linearization around certain
operating points, i.e., equilibrium points. That is, they have
implicitly assumed that the target systems have equilibrium
points. Contrary to this, we focus on the loss of equilibrium
points as the impact of PV penetration on power systems and
derive a condition for the existence of equilibrium points. In
addition, we clarify the relation between the existence condi-
tion and the stability of equilibrium points. In these respects,
the contributions of this paper are distinct from those of the
previous studies.

Second, this paper presents an analytical result on the
small-signal stability by considering the simplified system
in Fig. 1. In the field of power engineering, researchers have
often focused on stability analysis methods based on numer-
ical computation and have applied their proposedmethods to
specific systems (see, e.g., [3,8,17]). Thus, for other systems
with different parameter values, we cannot obtain any insight
unless the analysis methods are again used. In addition, to
investigate the effects of the parameter values on the systems,
we have to use the analysis methods for various parameter
values, which requires considerable time and effort. By con-
trast, this paper presents a stability condition as inequalities
with respect to the parameters of the system in Fig. 1. As a
result, we clarify that the system in Fig. 1 has the property
mentioned above. This property is essential in the sense that
it holds regardless of the values of the system parameters.
Moreover, our stability condition allows us to estimate the
magnitude of the PV current such that the small-signal sta-
bility is guaranteed, in advance. This is useful to construct a
PV-integrated power system that is small-signal stable. The
analytical result of this paper has these advantages, compared
with results based on numerical computation.

Finally, this paper is based on our conference paper [4],
but differs from it in the following points. First, this paper
includes the full explanations and the rigorous proofs of the
main results, omitted from [4]. Second, we ensure that the
paper is self-contained by showing the detailed derivation
of the dynamics of the target system given in the Japanese
paper [10]. Third, we present additional numerical examples
to verify our result.

Notation Let R, R+, and R0+ be the real number field, the
set of positive real numbers, and the set of nonnegative real
numbers, respectively. We use 0 to represent both the zero
scalar and the zero vector. We denote by a � θ the complex
numberwith the absolute value a and the argument θ . Finally,
the following properties [18] for trigonometric functions and
their inverses are used in this paper:
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sin(cos−1 x) =
√
1 − x2, (1)

sin(tan−1 y) = y
√
1 + y2

, (2)

cos(cos−1 x) = x, (3)

cos(tan−1 y) = 1
√
1 + y2

, (4)

where −1 ≤ x ≤ 1 and −∞ ≤ y ≤ ∞.

2 Problem formulation

2.1 System description

Consider the power system Σ in Fig. 1, composed of the
synchronous generator GS , the PV generator GP , and an
infinite bus.

For the power system Σ , we impose the following
assumptions.

– The phase angle of the current of GP for the infinite bus
voltage tracks δB , i.e., the phase angle of the voltage of
the bus to which GP is connected.

– The magnitude of the PV current is constant.

The former implies that GP has a power conditioning unit.
The latter is satisfied if the dynamics of GS is sufficiently
faster than that of GP . In addition, we regard GS as the
combination of a voltage source and reactance.

Then, the dynamics of the system Σ (i.e., the generator
GS) is described by

M δ̈S(t) = Pm − Pe(δS(t)) − Dδ̇S(t), (5)

where δS(t) ∈ R is the phase angle of the voltage of GS for
the infinite bus voltage, M ∈ R+ is the moment of inertia,
Pm ∈ R is the mechanical input, and D ∈ R+ is the damp-
ing coefficient. The variable Pe(δS(t)) ∈ R is the electrical
output defined as

Pe(δS(t))

:= vSv∞ sin δS(t) − rLvSiP cos(δS(t) − δB(δS(t)))

rS + rL
, (6)

where vS, v∞ ∈ R+ are the magnitude of the voltages of GS

and the infinite bus, rS, rL ∈ R+ are the reactance of GS

and the transmission line, iP ∈ R0+ is the magnitude of the
current of GP , and

δB(δS(t)) :=
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

cos−1

(
−rSrLiP√

(rLvS sin δS(t))2 + (rLvS cos δS(t) + rSv∞)2

)

−φ(δS(t)) if sin δS(t) �= 0,

sin−1
(

rSrLiP
rLvS cos δS(t) + rSv∞

)
if sin δS(t) = 0,

(7)

for

φ(δS(t)) :=
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

tan−1
(
rLvS cos δS(t) + rSv∞

rLvS sin δS(t)

)
if sin δS(t) > 0,

π + tan−1
(
rLvS cos δS(t) + rSv∞

rLvS sin δS(t)

)
if sin δS(t) < 0.

(8)

Equation (5) is given as the swing equation. The derivations
of (6) and (7) are based on [10]. The details are given in
Appendix A.

2.2 Stability analysis problem

2.2.1 Motivating examples

Based on [6], we select the system parameters as M :=
0.0186 s2, Pm := 1.15 pu, D := 0.00531 s, vS := 1.12 pu,
v∞ := 0.995 pu, rS := 0.300 pu, and rL := 0.500 pu. Fig-
ure 2 shows the time responses of the system Σ with iP :=
0.2 pu and iP := 0.5 pu, where (δS(0), δ̇S(0)) := (1, 0).
We see that δS(t) with iP := 0.2 pu converges but that with
iP := 0.5 pu does not.

To clarify the reason, we focus on the equilibrium points
of the system Σ . Let [δS(t) δ̇S(t)]� be the state variable
vector. Then, (5) yields the following state equation of Σ :

d

dt

[
δS(t)
δ̇S(t)

]
=

[
δ̇S(t)

1

M

(
Pm − Pe(δS(t)) − Dδ̇S(t)

)

]

. (9)

From (9), the equilibrium points ofΣ are of the form [δ�
S 0]�

where δ�
S ∈ R is a solution to

Pm = Pe(δS). (10)

Thus, if the curve of Pe(δS) in (6) intersects with the straight
line Pe(δS) = Pm , then there exists an equilibrium point
of Σ . In Fig. 3, the plots of Pe(δS) with iP := 0.2 pu and
iP := 0.5 pu and the straight line Pe(δS) = Pm are depicted
by the solid and dotted curves and the thin line, respectively.
We see that the curve of Pe(δS) with iP := 0.2 pu intersects

123



324 Electrical Engineering (2019) 101:321–331

0 5 10 15 20
t [s]

0.9
1

1.1
1.2
1.3
1.4

δ S
(t
)
[r
ad

]

(a) iP := 0.2 pu

0 0.5 1 1.5 2
t [s]

1

1.5

2

2.5

3

3.5

δ S
(t
)
[r
ad

]

(b) iP := 0.5 pu

Fig. 2 Time responses of Σ with iP := 0.2 pu and iP := 0.5 pu
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Fig. 3 Plots of Pe(δS) with iP := 0.2 pu and iP := 0.5 pu

with the straight line Pe(δS) = Pm but that with iP := 0.5 pu
does not. This means that the existence of the equilibrium
points of Σ depends on iP , which gives rise to the results in
Fig. 2.

2.2.2 Problem to be considered

Motivated by these examples, we consider the following
problem.

Problem 1 For the power system Σ ,

(a) find a condition on iP for the existence of the equilibrium
points;

(b) if an equilibrium point exists, then check its stability.

Remark 1 A straightforwardmethod for solving Problem 1 is
to directly solve (10) and clarify the properties of the equilib-

riumpoints; however, solving (10) is difficult. This is because
Pe(δS) contains the nonlinear term due to the presence of the
PV generator GP , i.e., rLvSiP cos(δS(t) − δB(δS(t))) that
includes trigonometric functions and their inverses, from (6)
to (8). Although one may think that the system Σ is simple,
this fact makes the problem challenging.

3 Existence of equilibrium points

In this section, we address (a) in Problem 1. To this end,
we first derive a condition to avoid the singular points of
the system Σ . Based on this, we present a condition for the
existence of the equilibrium points.

3.1 Condition for avoiding singular points

Because of cos−1(·) and sin−1(·) in (7), the system Σ has
singular points where the absolute values of the arguments of
cos−1(·) and sin−1(·) are greater than one. We address this
issue by presenting a condition on iP to avoid the singular
points of Σ .

Lemma 1 If iP satisfies

iP ≤ |rLvS − rSv∞|
rSrL

, (11)

then the power system Σ has no singular points, i.e.,
∣∣∣∣∣

−rSrLiP√
(rLvS sin δS)2 + (rLvS cos δS + rSv∞)2

∣∣∣∣∣
≤ 1, (12)

for every δS ∈ R satisfying sin δS �= 0 and
∣∣∣∣

rSrLiP
rLvS cos δS + rSv∞

∣∣∣∣ ≤ 1, (13)

for every δS ∈ R satisfying sin δS = 0.

Proof The inequality (12) holds if
(

−rSrLiP√
(rLvS sin δS)2 + (rLvS cos δS + rSv∞)2

)2

≤ 1. (14)

We can rewrite (14) as

(rSrLiP )2 ≤ (rLvS sin δS)
2 + (rLvS cos δS + rSv∞)2,

which yields

iP ≤
√

(rLvS sin δS)2 + (rLvS cos δS + rSv∞)2

rSrL

=
√
r2Lv2S + r2Sv

2∞ + 2rSrLvSv∞ cos δS

rSrL
, (15)
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because of rS, rL ∈ R+ and iP ∈ R0+. Since cos δS ≥ −1
for every δS ∈ R, the right-hand side of (15) is greater than or

equal to

(√
r2Lv2S + r2Sv

2∞ − 2rSrLvSv∞
)

/(rSrL) for every

δS ∈ R. Thus, we obtain

iP ≤
√
r2Lv2S + r2Sv

2∞ − 2rSrLvSv∞
rSrL

=
√

(rLvS − rSv∞)2

rSrL
,

which implies that (12) holds for every δS ∈ R under (11). In
addition, by choosing δS such that sin δS = 0 in (12), we can
show that (13) holds for every δS ∈ R satisfying sin δS = 0
under (11). This completes the proof. �	

3.2 Main result

Now, we derive the condition under which the equilibrium
points of the system Σ exist.

As explained in Sect. 2.2.1, Σ has an equilibrium point if
(10) has a solution. From (6)–(8) and Lemma 1, Pe(δS) is a
continuous function for δS ∈ (0, π) under (11). Therefore,
it follows from the intermediate value theorem that if there
exist a δ−

S ∈ (0, π) and a δ+
S ∈ (δ−

S , π) satisfying

Pe(δ
−
S ) < Pm, (16)

Pe(δ
+
S ) > Pm, (17)

then there exists at least one equilibrium point on (δ−
S , δ+

S )×
{0} (where {0} corresponds to δ̇S = 0), as illustrated in Fig. 4.
Hence, we derive a condition on iP to achieve (16) and (17)
for given δ−

S and δ+
S .

Based on this idea, we obtain the following result.

Theorem 1 For the power systemΣ , assume that (11) holds.
If there exist a δ−

S ∈ (0, π/2) and a δ+
S ∈ (δ−

S , π/2] satisfying
the following two conditions, then there exists at least one
equilibrium point on (δ−

S , δ+
S ) × {0}.

(C1) c0(δ
−
S ) < 0 and c0(δ

+
S ) > 0,

(C2) iP < α21(δ
+
S ),

where

c0(δS) := vSv∞ sin δS

rS + rL
− Pm, (18)

α21(δS) :=
−c12(δS) −

√
c212(δS) − 4c2(δS)c0(δS)

2c2(δS)
, (19)

Pm

Fig. 4 Idea of analysis

for

c12(δS) := −rLvS(rLvS + rSv∞ cos δS)

(rS + rL)
√

f (δS)
, (20)

c2(δS) := −r2Sr
2
LvSv∞ sin δS

(rS + rL) f (δS)
, (21)

f (δS) := r2Lv2S + r2Sv
2∞ + 2rSrLvSv∞ cos δS . (22)

Proof Using a trigonometric addition formula for (6) gives

Pe(δS) = vSv∞ sin δS

rS + rL

− rLvSiP (cos δS cos(δB(δS)) + sin δS sin(δB(δS)))

rS + rL
. (23)

If δS ∈ (0, π/2], then sin δS > 0. Furthermore, from Lemma
1, (12) holds for every δS ∈ (0, π/2] under (11). Thus, by
substituting the first equations of (7) and (8) into (23) and
using (1)–(4), we obtain

Pe(δS) = c2(δS)i
2
P + c1(δS, iP )iP + c0(δS) + Pm, (24)

where

c1(δS, iP )

:= −
rLvS(rLvS + rSv∞ cos δS)

√
f (δS) − r2Sr

2
Li

2
P

(rS + rL) f (δS)
. (25)

First, we derive a condition corresponding to (16). Based
on (11), we substitute iP = |rLvS − rSv∞|/(rSrL) into the
right-hand side of (25), which provides

c11(δS) := −rLvS(rLvS + rSv∞ cos δS)

rS + rL

×
√
2rSrLvSv∞(cos δS + 1)

f (δS)
. (26)

By the definition, f (δS) is positive for every δS ∈ (0, π/2]
because of cos δS ≥ 0. This and cos δS ≥ 0 (for every δS ∈
(0, π/2]) imply that c1(δS, iP ) ≤ c11(δS) for every iP ∈ R0+
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satisfying (11) if δS ∈ (0, π/2]. Thus, it follows from (24)
that

Pe(δS) ≤ c2(δS)i
2
P + c11(δS)iP + c0(δS) + Pm, (27)

for every iP ∈ R0+ satisfying (11) subject to δS ∈ (0, π/2].
Replacing δS in (27) with δ−

S gives

c2(δ
−
S )i2P + c11(δ

−
S )iP + c0(δ

−
S ) < 0, (28)

as a sufficient condition for (16).
Second, we derive a condition corresponding to (17).

Based on iP ∈ R0+, we substitute iP = 0 into the right-hand
side of (25), which provides c12(δS) in (20). Then, similar to
the first case,we can show that c1(δS, iP ) ≥ c12(δS) for every
iP ∈ R0+ satisfying (11) under δS ∈ (0, π/2]. Applying this
to (24) yields

Pe(δS) ≥ c2(δS)i
2
P + c12(δS)iP + c0(δS) + Pm, (29)

for every iP ∈ R0+ satisfying (11) subject to δS ∈ (0, π/2].
Replacing δS in (29) with δ+

S gives

c2(δ
+
S )i2P + c12(δ

+
S )iP + c0(δ

+
S ) > 0, (30)

as a sufficient condition for (17).
In summary, if (28) and (30) hold, then (16) and (17)

hold. Thus, if (28) and (30) hold for a δ−
S ∈ (0, π/2) and

a δ+
S ∈ (δ−

S , π/2], then there exists at least one equilibrium
point on (δ−

S , δ+
S ) × {0} as described at the beginning of this

section. Inequalities (28) and (30) have a solution under (C1),
which is expressed as (C2). The derivation of (C2) is shown
in Appendix B. This completes the proof. �	

Theorem 1 gives a sufficient condition on iP such that the
systemΣ has equilibrium points. Condition (C1) guarantees
that there exists at least one equilibrium point on (δ−

S , δ+
S )×

{0} in the case of iP := 0. In fact, by substituting iP = 0 to
(6) and considering (18), we can show that c0(δ

−
S ) < 0 and

c0(δ
+
S ) > 0 correspond to (16) and (17), respectively. On

the other hand, condition (C2) holds when iP is sufficiently
small. In fact, since α21(δ

+
S ) is a positive real number as

shown in Lemma 3 in Appendix B, there exists an iP > 0
satisfying (C2) for a given δ+

S . Hence, Theorem 1 means
that if the power system given by removing GP from Σ

has equilibrium points, then the existence of the equilibrium
points of Σ is guaranteed as long as iP is sufficiently small.

We comment on the choice of δ−
S and δ+

S . To use Theorem
1, we need to appropriately choose a δ−

S ∈ (0, π/2) and
a δ+

S ∈ (δ−
S , π/2]. A good choice is to let δ−

S and δ+
S be a

sufficiently small positive number andπ/2, respectively. The
reason is that finding the equilibrium points becomes easier
as the difference between δ+

S and δ−
S increases as shown in

Fig. 4. In this method, we only have to check (C1) and (C2)
for one pair consisting of a δ−

S and a δ+
S .

3.3 Example

Consider again the system Σ handled in Sect. 2.2.1, where
iP := 0.2 pu. Then, (11) in Lemma 1 is calculated as iP ≤
1.74 pu and thus is satisfied. For δ−

S := 0.01 and δ+
S := π/2,

(18) provides c0(δ
−
S ) = −1.14 and c0(δ

+
S ) = 0.243, from

which condition (C1) in Theorem 1 holds. Moreover, since
α21(δ

+
S ) is calculated as α21(δ

+
S ) = 0.375 from (19), con-

dition (C2) is iP < 0.375 pu and iP := 0.2 pu satisfies
it. Hence, there exists at least one equilibrium point on
(0.01, π/2) × {0} from Theorem 1.

Meanwhile, we see from Fig. 3 that when iP := 0.2 pu,
the system Σ has an equilibrium point on (0.01, π/2)×{0},
i.e., [1.17 0]�, which demonstrates the above result.

4 Stability of equilibrium points

Next, we address (b) in Problem 1. That is, we analyze the
stability of the equilibrium points of the system Σ .

4.1 Main result

We introduce the new state variable vector x(t) := [δS(t) −
δ�
S δ̇S(t)]� ∈ R

2 to shift the equilibrium point [δ�
S 0]� to

x = 0. Although the system Σ is a hybrid system from (7)
and (8), if sin δ�

S > 0, then there exists a set containing x = 0
on which Σ can be regarded as a non-hybrid system. In this
case, it follows from (6), the first equations of (7) and (8),
and (9) that the linearized system around x = 0 is expressed
as

ẋ(t) = Ax(t), (31)

where

A :=
⎡

⎣
0 1

a21(δ�
S) − D

M

⎤

⎦ , (32)

for

a21(δ
�
S) := −vSv∞ cos δ�

S

M(rS + rL)
− rLvSiP sin(δ�

S − δB(δ�
S))

M(rS + rL)

×
(
1 − 1

f (δ�
S)

(
r2Sr

2
LvSv∞iP sin δ�

S√
f (δ�

S) − r2Sr
2
Li

2
P

+ r2Lv2S + rSrLvSv∞ cos δ�
S

))
. (33)
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An investigation of the eigenvalues of the matrix A enables
us to analyze the stability of the equilibrium point [δ�

S 0]�
(satisfying sin δ�

S > 0).
As a result, we obtain the following theorem.

Theorem 2 For the power system Σ , assume that (11) holds
and there exists the equilibrium point [δ�

S 0]� satisfying
sin δ�

S > 0. Then, the equilibrium point is asymptotically
stable if δ�

S ∈ (0, π/2).

Proof From (32), the eigenvalues λ1 and λ2 of A are given
by

λ1 =
−D −

√
D2 + 4a21(δ�

S)M

2M
, (34)

λ2 =
−D +

√
D2 + 4a21(δ�

S)M

2M
. (35)

Therefore, it follows from M, D ∈ R+ that the equilibrium
point [δ�

S 0]� is asymptotically stable if a21(δ�
S) < 0. The

proof of a21(δ�
S) < 0 is shown in Appendix C, which proves

the theorem. �	
Theorem 2 characterizes the asymptotically stable equi-

librium points of the system Σ . This result means that the
equilibrium points found by Theorem 1 are asymptotically
stable. That is, Theorem 1 presents a sufficient condition for
the existence of the asymptotically stable equilibrium points.

4.2 Examples

Consider again the systemΣ handled in Sect. 2.2.1. As given
in Sect. 3.3, a condition for the existence of the equilibrium
points is iP < 0.375 pu.

For iP := 0.1, 0.2, 0.3 pu satisfying the above condition,
we calculate δ�

S in the interval (0, π) by numerically solving
(10) and then obtain λ1 and λ2 in (34) and (35). The result
is summarized in Table 1 where j := √−1. We see that the
equilibrium points satisfying δ�

S ∈ (0, π/2) are asymptoti-
cally stable because the real parts of the corresponding λ1
and λ2 are negative. This demonstrates Theorem 2.

As an example of the time response of the system Σ ,
that with iP := 0.3 pu is presented in Fig. 5, where
(δS(0), δ̇S(0)) := (1.2,−0.3) and the thin line expresses
δS = 1.31, i.e., δ�

S in the asymptotically stable equilibrium
point. It turns out that δS(t) converges to δ�

S .

5 Conclusion

This paper has examined the existence of equilibrium points
and their stability for a power systemwith a PV generator. By
focusing on a property of the equilibrium points and using

Table 1 Stability of equilibrium points (◦: asymptotically stable; ×:
unstable)

iP [pu] δ�
S λ1 λ2 Stability

0.1 1.06 −0.143 − 6.07 j −0.143 + 6.07 j ◦
2.09 −6.23 5.95 ×

0.2 1.17 −0.143 − 5.48 j −0.143 + 5.48 j ◦
1.99 −5.64 5.36 ×

0.3 1.31 −0.143 − 4.49 j −0.143 + 4.49 j ◦
1.85 −4.65 4.37 ×

0 5 10 15 20 25 30
t [s]

1.2

1.3

1.4

1.5

δ S
(t
)
[r
ad

]
Fig. 5 Time response of Σ with iP := 0.3 pu

the intermediate value theorem, we have derived a condi-
tion under which the equilibrium points exist. Furthermore,
we have characterized the asymptotically stable equilibrium
points and have proven that these points are found by the
existence condition. These results not only clarify the effect
of PV penetration on small-signal stability, but are also use-
ful to construct a power system with a PV generator with
asymptotically stable equilibrium points.

Although this paper has presented a solution to the stabil-
ity analysis problem, other problems remain to be addressed.
For example, it would be necessary to extend our result to
power systems consisting of multiple synchronous genera-
tors and PV generators. In addition, our result would have to
be extended to controller design for power systems with PV
generators.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

ADerivations of (6) and (7) [10]

Let ae jθ be the complex number with the absolute value a
and the argument θ , where e jθ = cos θ + j sin θ . In addition,
let z be the complex conjugate of the complex number z.
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Consider the power system Σ in Fig. 1. We have

vSe jδS − vBe jδB

jrS
+ iPe

jδB = vBe jδB − v∞
jrL

, (36)

as a circuit equation. This can be rewritten as

vB = rLvSe j(δS−δB ) + jrSrL iP + rSv∞e− jδB

rS + rL
. (37)

Thus, the complex power of the generator GS is given by

vSe
jδS vSe− jδS − vBe− jδB

− jrS

= vSv∞ sin δS − rLvSiP cos(δS − δB(δS))

rS + rL

+ j

(
− vSv∞ cos δS + rLvSiP sin(δS − δB(δS))

rS + rL

+ v2S

rS
− rLv2S

rS(rL + rS)

)
. (38)

By focusing on the real part of the right-hand side of (38),
we obtain (6).

Next, we derive (7). From vB ∈ R+, δB is determined so
that the imaginary part of the right-hand side of (37) is equal
to zero. Hence, we obtain

rLvS sin(δS − δB) + rSrLiP + rSv∞ sin(−δB)

= rLvS(sin δS cos δB − cos δS sin δB)

+ rSrLiP − rSv∞ sin δB

= rLvS sin δS cos δB

− (rLvS cos δS + rSv∞) sin δB + rSrLiP

= 0, (39)

where the first equality is given by a trigonometric addition
formula. For (39), we consider the following two cases.

(a) Case of sin δS �= 0: Combining cos δB and sin δB in (39)
yields

√
(rLvS sin δS)2 + (rLvS cos δS + rSv∞)2

× cos(δB + φ(δS)) = −rSrLiP . (40)

Equation (40) implies the first equation of (7).
(b) Case of sin δS = 0: By substituting sin δS = 0 into (39),

we obtain the second equation of (7).

From (a) and (b), (7) is derived.

B Derivation of (C2) in Theorem 1

B.1 Preliminary

We prepare the following lemma.

Lemma 2 Consider c12(δS), c2(δS), and c11(δS) in (20), (21),
and (26). These are negative for every δS ∈ (0, π/2].
Proof From (20)–(22), (26), and sin δS > 0 and cos δS ≥ 0
for every δS ∈ (0, π/2], we prove the lemma. �	

Lemma 2 leads to the following result.

Lemma 3 Consider α21(δS) in (19). Let

α22(δS) :=
−c12(δS) +

√
c212(δS) − 4c2(δS)c0(δS)

2c2(δS)
, (41)

α11(δS) :=
−c11(δS) −

√
c211(δS) − 4c2(δS)c0(δS)

2c2(δS)
. (42)

Then, the following statements hold.

(a) For every δ+
S ∈ (0, π/2] satisfying c0(δ

+
S ) > 0 in (C1)

in Theorem 1, α21(δ
+
S ) and α22(δ

+
S ) are positive and

negative real numbers, respectively.
(b) For every δ−

S ∈ (0, π/2) satisfying c0(δ
−
S ) < 0 in (C1)

and c211(δ
−
S )−4c2(δ

−
S )c0(δ

−
S ) > 0,α11(δ

−
S ) is a negative

real number.

Proof (a) From δ+
S ∈ (0, π/2] and Lemma 2, we obtain

c12(δ
+
S ) < 0 and c2(δ

+
S ) < 0. This and c0(δ

+
S ) > 0 imply

−c12(δ
+
S ) −

√
c212(δ

+
S ) − 4c2(δ

+
S )c0(δ

+
S ) < 0,

where c212(δ
+
S ) − 4c2(δ

+
S )c0(δ

+
S ) > 0 is noted. Thus, it fol-

lows from (19) and c2(δ
+
S ) < 0 that α21(δ

+
S ) is a positive

real number. Meanwhile, (41), c12(δ
+
S ) < 0, c2(δ

+
S ) < 0,

and c212(δ
+
S ) − 4c2(δ

+
S )c0(δ

+
S ) > 0 show that α22(δ

+
S ) is a

negative real number. This completes the proof of (a).
(b) From δ−

S ∈ (0, π/2) and Lemma 2, we have c2(δ
−
S ) <

0 and c11(δ
−
S ) < 0. Therefore, it follows from c0(δ

−
S ) < 0

that

−c11(δ
−
S ) −

√
c211(δ

−
S ) − 4c2(δ

−
S )c0(δ

−
S ) > 0,

where c211(δ
−
S ) − 4c2(δ

−
S )c0(δ

−
S ) > 0 is used. This, together

with (42) and c2(δ
−
S ) < 0, proves (b). �	

Lemma 3 provides the properties of the solutions to the
quadratic equations

c2(δ
−
S )i2P + c11(δ

−
S )iP + c0(δ

−
S ) = 0, (43)
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c2(δ
+
S )i2P + c12(δ

+
S )iP + c0(δ

+
S ) = 0. (44)

By using these properties, we derive (C2) in Theorem 1 in
the next section.

B.2 Main part

Condition (C2) is given as a solution to the simultaneous
inequalities of (28) and (30). In what follows, we solve each
inequality and then show (C2).

B.2.1 Solution to (28)

First, we consider (43). This has three types of solutions
depending on the value of c211(δ

−
S )− 4c2(δ

−
S )c0(δ

−
S ). Hence,

(28) also has three types of solutions, which are described as
follows.

(a) Case of c211(δ
−
S ) − 4c2(δ

−
S )c0(δ

−
S ) > 0: Equation (43)

has the two real solutions iP = α11(δ
−
S ) and iP =

α12(δ
−
S ) where

α12(δS) :=
−c11(δS) +

√
c211(δS) − 4c2(δS)c0(δS)

2c2(δS)
.

(45)

We should notice that α12(δ
−
S ) < α11(δ

−
S ) from

c2(δ
+
S ) < 0 in the proof of Lemma 3. This fact and

c2(δ
+
S ) < 0 show that a solution to (28) is expressed as

iP < α12(δ
−
S ) or iP > α11(δ

−
S ). (46)

(b) Case of c211(δ
−
S ) − 4c2(δ

−
S )c0(δ

−
S ) = 0: The solution to

(43) is iP = −c11(δ
−
S )/(2c2(δ

−
S )). Therefore, it follows

from c2(δ
−
S ) < 0 in the proof of Lemma 3 that iP �=

−c11(δ
−
S )/(2c2(δ

−
S )) solves (28). This means that (28)

holds for every iP ∈ R0+ since −c11(δ
−
S )/(2c2(δ

−
S )) <

0 from c11(δ
−
S ) < 0 in the proof of Lemma 3 and

c2(δ
−
S ) < 0.

(c) Case of c211(δ
−
S ) − 4c2(δ

−
S )c0(δ

−
S ) < 0: There are no

real solutions to (43), which implies that (28) holds for
every iP ∈ R0+ because of c2(δ

−
S ) < 0.

B.2.2 Solution to (30)

We next consider (44). Since c212(δ
+
S ) − 4c2(δ

+
S )c0(δ

+
S ) > 0

as shown in the proof of Lemma 3, (44) has the two real solu-
tions iP = α21(δ

+
S ) and iP = α22(δ

+
S ). This and c2(δ

+
S ) < 0

imply that

α22(δ
+
S ) < iP < α21(δ

+
S ) (47)

solves (30) because α22(δ
+
S ) < α21(δ

+
S ) from Lemma 3.

B.2.3 Solution to (28) and (30)

The solution to be obtained satisfies both (28) and (30). Thus,
from the above discussion, we consider the following three
cases.

(a) Case of c211(δ
−
S ) − 4c2(δ

−
S )c0(δ

−
S ) > 0: From (46) and

(47), a solution to (28) and (30) is given by iP > α11(δ
−
S )

and α22(δ
+
S ) < iP < α21(δ

+
S ). Therefore, by noting

α11(δ
−
S ) < 0, α21(δ

+
S ) > 0, and α22(δ

+
S ) < 0 in Lemma

3, we obtain (C2) in Theorem 1.
(b) Case of c211(δ

−
S ) − 4c2(δ

−
S )c0(δ

−
S ) = 0: As mentioned

in (b) in Appendix B.2.1, (28) holds for every iP ∈ R0+.
Hence, in a similar way to that in (a), we obtain (C2) as
a solution to (28) and (30).

(c) Case of c211(δ
−
S ) − 4c2(δ

−
S )c0(δ

−
S ) < 0: Similar to (b),

we obtain (C2) as a solution to (28) and (30).

From (a)–(c), we derive (C2) in Theorem 1.

C Proof of a21(ı�
S) < 0 in proof of Theorem 2

We show a21(δ�
S) < 0 by considering the following three

cases for sin(δ�
S − δB(δ�

S)) in a21(δ
�
S) in (33).

C.1 Case of sin(ı�
S − ıB(ı�

S)) > 0

If δ�
S ∈ (0, π/2), then sin(δ�

S) > 0. Furthermore, Lemma 1
means that (12) holds for every δ�

S ∈ (0, π/2) subject to (11).
Thus, the first equations of (7) and (8), and (1)–(4) provide

sin(δ�
S − δB(δ�

S)) = − rSrLiP (rLvS + rSv∞ cos δ�
S)

f (δ�
S)

+
rSv∞ sin δ�

S

√
f (δ�

S) − r2Sr
2
Li

2
P

f (δ�
S)

. (48)

From a similar discussion to that in the proof of Theorem 1,
f (δ�

S) > 0 holds for every δ�
S ∈ (0, π/2). Hence, (48) and

sin(δ�
S − δB(δ�

S)) > 0 imply

rSv∞ sin δ�
S

√
f (δ�

S) − r2Sr
2
Li

2
P

> rSrLiP (rLvS + rSv∞ cos δ�
S). (49)

For a21(δ�
S) in (33), (49) yields

r2Sr
2
LvSv∞iP sin δ�

S√
f (δ�

S) − r2Sr
2
Li

2
P

= r3Sr
2
LvSv

2∞iP sin2 δ�
S

rSv∞ sin δ�
S

√
f (δ�

S) − r2Sr
2
Li

2
P
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<
r3Sr

2
LvSv

2∞iP sin2 δ�
S

rSrLiP (rLvS + rSv∞ cos δ�
S)

= r2SrLvSv
2∞ sin2 δ�

S

rLvS + rSv∞ cos δ�
S
. (50)

In addition, we obtain

1

f (δ�
S)

⎛

⎝r2Sr
2
LvSv∞iP sin δ�

S√
f (δ�

S) − r2Sr
2
L i

2
P

+ r2Lv2S + rSrLvSv∞ cos δ�
S

⎞

⎠

<
1

f (δ�
S)

(
r2SrLvSv

2∞ sin2 δ�
S

rLvS + rSv∞ cos δ�
S

+ r2Lv2S + rSrLvSv∞ cos δ�
S

)

= 1

f (δ�
S)

(
rLvS(r2Sv

2∞ sin2 δ�
S + (rLvS + rSv∞ cos δ�

S)
2)

rLvS + rSv∞ cos δ�
S

)

= rLvS

rLvS + rSv∞ cos δ�
S

< 1, (51)

where the first inequality is derived by (50) and f (δ�
S) > 0 for

every δ�
S ∈ (0, π/2), the second and third equalities are given

by a simple calculation and (22), respectively, and the last
inequality follows from cos δ�

S > 0 for every δ�
S ∈ (0, π/2).

This, together with (33), cos δ�
S > 0, and sin(δ�

S − δB(δ�
S)) >

0, shows a21(δ�
S) < 0.

C.2 Case of sin(ı�
S − ıB(ı�

S)) < 0

In a similar way to that in the previous section, we have

r2Sr
2
LvSv∞iP sin δ�

S√
f (δ�

S) − r2Sr
2
Li

2
P

>
r2SrLvSv

2∞ sin2 δ�
S

rLvS + rSv∞ cos δ�
S
, (52)

instead of (50). Thus, similar to (51), we obtain

1

f (δ�
S)

⎛

⎝r2Sr
2
LvSv∞iP sin δ�

S√
f (δ�

S) − r2Sr
2
Li

2
P

+ r2Lv2S + rSrLvSv∞ cos δ�
S

⎞

⎠

>
rLvS

rLvS + rSv∞ cos δ�
S
. (53)

This and (33) provide

a21(δ
�
S) < −vSv∞ cos δ�

S

M(rS + rL )
− rLvSiP sin(δ�

S − δB(δ�
S))

M(rS + rL)

×
(
1 − rLvS

rLvS + rSv∞ cos δ�
S

)

= − 1

M(rS + rL )

⎛

⎝vSv∞ cos δ�
S + rLvSiP

×
⎛

⎝ − rSrL iP (rLvS + rSv∞ cos δ�
S)

f (δ�
S)

+
rSv∞ sin δ�

S

√
f (δ�

S) − r2Sr
2
L i

2
P

f (δ�
S)

⎞

⎠

×
(
1 − rLvS

rLvS + rSv∞ cos δ�
S

)⎞

⎠

= − 1

M(rS + rL )

⎛

⎝vSv∞ cos δ�
S − r2Sr

2
LvSv∞i2P cos δ�

S

f (δ�
S)

+
r2SrLvSv∞iP sin δ�

S cos δ�
S

√
f (δ�

S) − r2Sr
2
L i

2
P

f (δ�
S)(rLvS + rSv∞ cos δ�

S)

⎞

⎠ ,

(54)

where the first inequality is obtained from (53) and sin(δ�
S −

δB(δ�
S)) < 0, the second equality follows from (48), and the

last one is given by a simple calculation. Thus, we obtain

a21(δ
�
S) < − 1

M(rS + rL)

⎛

⎝vSv∞ cos δ�
S

− (rLvS − rSv∞)2vSv∞ cos δ�
S

f (δ�
S)

+
r2SrLvSv∞iP sin δ�

S cos δ�
S

√
f (δ�

S) − r2Sr
2
Li

2
P

f (δ�
S)(rLvS + rSv∞ cos δ�

S)

⎞

⎠

= − 1

M(rS + rL)

⎛

⎝2rSrLv2Sv
2∞ cos δ�

S(cos δ�
S + 1)

f (δ�
S)

+
r2SrLvSv∞iP sin δ�

S cos δ�
S

√
f (δ�

S) − r2Sr
2
Li

2
P

f (δ�
S)(rLvS + rSv∞ cos δ�

S)

⎞

⎠

< 0, (55)

where the first inequality is derived by (11) and f (δ�
S) > 0

for every δ�
S ∈ (0, π/2), the second equality is given by (22),

and the last inequality follows from sin δ�
S > 0, cos δ�

S > 0,
and f (δ�

S) > 0 for every δ�
S ∈ (0, π/2). From (55), the proof

is completed.

C.3 Case of sin(ı�
S − ıB(ı�

S)) = 0

As a direct consequence of (33) and cos δ�
S > 0 for every

δ�
S ∈ (0, π/2), a21(δ�

S) < 0 is established.

123



Electrical Engineering (2019) 101:321–331 331

References

1. Aly MM, Abdel-Akher M, Ziadi Z, Senjyu T (2014) Assessment
of reactive power contribution of photovoltaic energy systems on
voltage profile and stability of distribution systems. Int J Electr
Power Energy Syst 61:665–672

2. DuW,WangH,XiaoLY(2012)Power systemsmall-signal stability
as affected by grid-connected photovoltaic generation. Eur Trans
Electr Power 22(5):688–703

3. Eftekharnejad S, Vittal V, Heydt GT, Keel B, Loehr J (2013) Small
signal stability assessment of power systems with increased pene-
tration of photovoltaic generation: a case study. IEEETrans Sustain
Energy 4(4):960–967

4. Izumi S, Karakawa Y, Xin X, Yamasaki T (2016) Stability analysis
of power systems with photovoltaic generators. In: Proceedings of
the 55th IEEE conference on decision and control, pp 4136–4141

5. Krommydas KF, Alexandridis AT (2014) Nonlinear analysis of
a grid-connected photovoltaic/dc-load system driven by local
current-mode controllers. In: Proceedings of the 53rd IEEE con-
ference on decision and control, pp 3909–3914

6. Kundur P (1994) Power system stability and control.McGraw-Hill,
New York

7. Li Y, IshikawaM (2017) Statistical analysis of power system sensi-
tivity under random penetration of photovoltaic generation. Asian
J Control 19(5):1688–1698

8. Liu S, Liu PX, Wang X (2016) Stochastic small-signal stabil-
ity analysis of grid-connected photovoltaic systems. IEEE Trans
Indust Electr 63(2):1027–1038

9. Rezkallah M, Sharma SK, Chandra A, Singh B, Rousse DR (2017)
Lyapunov function and slidingmode control approach for the solar-
PV grid interface system. IEEE Trans Indust Electron 64(1):785–
795

10. Sakamoto N, Taniguchi H, Ota Y, Nakajima T, Chinuki T (2012)
Transient stability study of one-machine-to-infinite-bus power sys-
tem under large penetration of PV generation. IEEJ Trans Power
Energy 132(1):9–15 (in Japanese)

11. Shah R, Mithulananthan N, Bansal RC, Ramachandaramurthy VK
(2015) A review of key power system stability challenges for large-
scale PV integration. Renew Sustain Energy Rev 41:1423–1436

12. Tan YT, Kirschen DS, Jenkins N (2004) A model of PV gener-
ation suitable for stability analysis. IEEE Trans Energy Convers
19(4):748–755

13. Xue Y, Manjrekar M, Lin C, Tamayo M, Jiang JN (2011) Volt-
age stability and sensitivity analysis of grid-connected photovoltaic
systems. In: Proceedings of the 2011 IEEE power and energy soci-
ety general meeting, pp 1–7

14. Yagami M, Ishikawa S, Ichinohe Y, Misawa K, Tamura J (2014)
Transient stability analysis of power system with photovoltaic
systems installed. In: Proceedings of the 3rd renewable power gen-
eration conference, pp 1–6

15. Yahya A, El Fadil H, Oulcaid M, Ammeh L, Giri F, Guerrero
JM (2018) Control of grid connected photovoltaic systems with
microinverters: new theoretical design and numerical evaluation.
Asian J Control 20(2):906–918

16. Yan R, Saha TK (2012) Investigation of voltage stability for res-
idential customers due to high photovoltaic penetrations. IEEE
Trans Power Syst 27(2):651–662

17. Zhou Y, Li Y, Liu W, Yu D, Li Z, Liu J (2017) The stochastic
response surface method for small-signal stability study of power
system with probabilistic uncertainties in correlated photovoltaic
and loads. IEEE Trans Power Syst 32(6):4551–4559

18. Zwillinger D (2002) CRC standard mathematical tables and for-
mulae, 31st edn. CRC Press, Boca Raton

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123


	Analysis of small-signal stability of power systems with  photovoltaic generators
	Abstract
	1 Introduction
	2 Problem formulation
	2.1 System description
	2.2 Stability analysis problem
	2.2.1 Motivating examples
	2.2.2 Problem to be considered


	3 Existence of equilibrium points
	3.1 Condition for avoiding singular points
	3.2 Main result
	3.3 Example

	4 Stability of equilibrium points
	4.1 Main result
	4.2 Examples

	5 Conclusion
	A Derivations of (6) and (7) sakamoto2012transient
	B Derivation of (C2) in Theorem 1
	B.1 Preliminary
	B.2 Main part
	B.2.1 Solution to (28)
	B.2.2 Solution to (30)
	B.2.3 Solution to (28) and (30)


	C Proof of a21(δS)< 0 in proof of Theorem 2
	C.1 Case of sin(δS-δB(δS))>0
	C.2 Case of sin(δS-δB(δS))<0
	C.3 Case of sin(δS-δB(δS))=0

	References




