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Abstract
In this paper, gradient-based optimization methods are combined with finite-element modeling for improving electric devices.
Geometric design parameters are considered by piecewise affine parametrizations of the geometry or by the design element
approach, both of which avoid remeshing. Furthermore, it is shown how to robustify the optimization procedure, that is, how
to deal with uncertainties on the design parameters. The overall procedure is illustrated by an academic example and by
the example of a permanent-magnet synchronous machine. The examples show the advantages of deterministic optimization
compared to standard and popular stochastic optimization procedures such as particle swarm optimization.
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1 Introduction

In almost all electric design procedures, numerical opti-
mization is employed as one of the last design steps in
order to optimize the device’s performance and efficiency, to
minimize itsweight and size and to save onmaterial andman-
ufacturing costs. Often, the quality of this optimization step
indirectly determines the success of the product and, hence,
the market position of the company. The reliability, accu-
racy and computational cost of the numerical optimization
procedure becomes in itself a subject of competition. This
paper illustrates that shape optimization can be improved
substantially when finite-element (FE) analysis procedures
are equipped with piecewise affine parametrization or design
elements, such that well-performing deterministic optimiza-
tion methods become applicable.

Impressive technical improvements have been achieved
by numerical optimization on the basis of magnetic equiv-
alent circuits or 2D and 3D FE models. All have led
to highly optimized designs, for example, for permanent-
magnet synchronous machines (PMSMs) in automotive
applications. Since three decades, FE-based optimization has
been addressed in several text books (see, e.g., [12]) and hun-
dreds of journal articles (see, e.g., [14] and the references
therein). Although originally, gradient-based methods were
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preferred (see, e.g., [48,56,58]), already for more than two
decades, stochastic algorithms are more popular (see, e.g.,
[19,33]). The majority of the proposed procedures opt for
stochastic or population-based optimization methods, such
as genetic algorithms and particle swarm optimization (see,
e.g., [34]), because they allow to use FE solvers as a black
box, they can easily consider geometric parameters, their par-
allelization is straightforward and they aremore likely to find
the global optimum. Stochastic algorithms have been used
for robust optimization, have been applied together with sur-
rogate modeling and have been extended to multi-objective
optimization problems [3,23]. In particular for PMSMs, opti-
mization with stochastic methods became the method of
choice [2,9,51].

The trend toward stochastic optimization combined with
FE analysis continues without restraint, as is illustrated by
the number of according contributions at recent conferences.
This paper partially counteracts this tendency by turning
back to deterministic optimization algorithms. Determinis-
tic optimization methods are known to converge faster than
stochastic optimization methods, albeit possibly to a local
optimum. Moreover, the analysis of gradient-based meth-
ods is more mature, allowing for a rigorous control of mesh
discretization errors, for instance. The main drawback of
many deterministic methods is, however, the necessity to
provide derivatives, which is particularly cumbersome when
optimization according to geometric parameters is pursued.
This drawback is here addressed explicitly and is alleviated
by piecewise affine parametrizations of the geometry or by
the design element approach. The overall deterministic opti-
mization routine is shown to outperform the most popular
stochastic algorithms by factors. Moreover, the optimization
method will be robustified to include uncertainties on the
design parameters.

The paper is structured as follows: Sect. 2 recalls the
basics of mathematical optimization. It clearly distinguishes
between deterministic methods (Sect. 2.3) and particle
swarm optimization as a relevant representative of stochas-
tic methods (Sect. 2.4). Furthermore, an extension to robust
optimization is discussed in Sect. 2.5. Section 3 deals with
FE analysis of magnetodynamic fields. The core parts of
the paper are Sect. 3.3.1 about affine parametrization and
Sect. 3.3.2 about design elements, both facilitating and
improving the calculation of derivatives with respect to
geometric parameters. The superior performance of gradient-
type deterministic optimization is illustrated for a benchmark
example in Sect. 4 and for a PMSM in Sect. 5. Conclusions
are formulated in Sect. 6.

2 Constrained optimization

2.1 Constrained optimization problem

The optimization is carried out with respect to I design
parameters p = (p1, p2, . . . , pI ) belonging to the admissi-
ble set Pad = {p ∈ R

I |Gm(p) ≤ 0,m = 1, . . . , M}, where
Gm(p) denote the constraints. The design parameters can
be any continuous variables, for example material constants,
excitation parameters and geometric sizes or positions. The
constraints limit the admissible range of these parameters, for
example to preserve the topology of the geometry or to set
physical and operational constraints. Discrete design param-
eters are not considered in this work, althoughmanymethods
apply, for example as part of a branch-and-bound technique,
to mixed-integer optimization problems as well [21].

The optimization goal is represented by the objective
function J (p) returning a scalar value for every set of
design parameters. Relevant quantities are, for example
force, torque, current, efficiency, weight, temperature or a
combination thereof. When N objective functions Jn(p),
n = 1, . . . , N are relevant, a possible approach is to combine
them with user-defined weight factors αn into a single cost
function J (p) = ∑N

n=1 αn Jn(p). The optimization problem
then reads

minimize
p∈RI

J (p), (1a)

subject to Gm(p) ≤ 0, m = 1, . . . , M . (1b)

In this work, the evaluation of Gm(p) and/or J (p) involves a
FE analysis of the device. Hence, the computational perfor-
mance of the overall approach is heavily determined by the
number of FE-solver calls.

2.2 Optimizationmethods

The selection of a particular optimization method consists
of four essentially independent choices (see also Table 3 in
[18]).

– Problem (1) considers a single optimization goal. For a
multi-objective optimization problem, a Pareto front is
calculated such that the relative importance of the opti-
mization goals can be fixed later on [7,12]. This paper
does not further consider multi-objective optimization.
Nonetheless, the developed techniques are applicable to
multi-objective optimization as well.

– A distinction is made between global optimization and
local optimization, where the first strives to a global opti-
mum, whereas the second may run into a local one. This
paper is limited to methods for local optimization. In
practice, if a global optimum is required, the methods
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may be repeated for different start values, or could be
embedded as part of a global optimization scheme [24].

– Especially when the evaluation of the objective function
is computationally expensive, it is recommended to carry
out the optimization method on the basis of a surrogate
model (indirect optimization methods). Such a simpli-
fied model can be obtained by expert knowledge on the
application [59], by design space reduction [17], by a
response surface methodology [17] or by space mapping
[29] or manifold mapping [15]. Here, a direct optimiza-
tion procedure is used. All ideas presented here can,
however, be used in combination with indirect optimiza-
tion approaches as well [30].

– The result from a nominal optimization is a set of opti-
mized design parameters leading to an optimum of the
objective function. The optimum may, however, become
irrelevant when it is highly sensitive to uncertainties in
the design parameters. One speaks about robust opti-
mization when the optimization is carried out taking
such uncertainties into account. In this paper, both nom-
inal and robust optimization methods are considered. An
approach for robustification is discussed in Sect. 2.5.

– Two families of basic optimization methods exist: deter-
ministic and stochastic methods. Among the stochastic
methods, genetic algorithms [35], differential evolution
[38] and particle swarm optimization (PSO) [27] are well
known.

This papermotivates theuseof a gradient-baseddeterministic
method for nominal and robust optimization and compares
it with a standard particle swarm technique.

2.3 Gradient-based deterministic method

This work proposes to solve (1) by standard sequen-
tial quadratic programming (SQP) with damped Broyden–
Fletcher–Goldfarb–Shanno (BFGS) updates for the Hessian
approximation [22,40]. This method establishes locally a
second-order convergence, which means that

|J (pk+1) − J (popt)| ≤ C |J (pk) − J (popt)|2 (2)

for C > 0 and k the iteration step, which should be suf-
ficiently large. The method, however, requires knowledge
about the sensitivities of the objective function with respect
to the design parameters, in particular, ∇p J (p) or, alterna-
tively, a locally quadratic approximation of the objective
function [44].ManyFEsolution andpost-processing routines
do not provide this information, especially when geometric
design parameters are involved. Therefore, one is tempted to
approximate the sensitivities by finite differences as in, e.g.,
[48]. This is, however, known to be particularly cumbersome
because of the limited accuracy of the finite differences [58].

Even when relying on gradient-free deterministic methods
(e.g., [44,45]), artifacts caused by FE analysis may hamper
the convergence of the optimization routines. Eventually, as
apparently the only option, deterministic optimization algo-
rithms are abandoned in favor of stochastic approaches. This
paper, however, sticks to gradient-based deterministic meth-
ods by complementing the FE simulation procedure with
sensitivity information. The problems caused by the pres-
ence of geometric parameters are alleviated by introducing
piecewise affine parametrization (see Sect. 3.3.1) or, alterna-
tively, design elements (see Sect. 3.3.2) to the FE procedure.

2.4 Particle swarm optimization

Particle swarm optimization (PSO) [27] belongs to the broad
class of Stochastic algorithms and is particularly popular
for optimizing electric machines (see, e.g., [2,3,9,23,34]). In
PSO, a set of Q particles indicated by q = 1, . . . , Q moves
through the admissible set in the design space in search of
an optimum. At each iteration step k, the algorithm evaluates
the objective function J (p) in every particle position pk,q .
The newly obtained values are compared to the previous best
values in the individual particle histories and the best value
of the entire swarm. The corresponding best sets are denoted
by p̂q and p̂swarm, respectively. The velocities of the particles
are updated according to

vq ← ω0vq
︸ ︷︷ ︸
1)

+ω1N1(p̂q − pk,q)
︸ ︷︷ ︸

2)

+ω2N2(p̂swarm − pk,q)
︸ ︷︷ ︸

3)

,

(3)

where ω0, ω1 and ω2 are swarm characteristic constants and
N1 and N2 are two random diagonal matrices with elements
in [0, 1] generated independently and uniformly for each par-
ticle at every step, representing the free will of the swarm.
The components of the velocity update are:

1. Maintain a part of the current velocity;
2. Head toward the particle’s best found point (p̂q );
3. Head toward the swarm’s best found point (p̂swarm).

If at some iteration there is a particle that leaves the admis-
sible set, its position is projected on the boundary of the
admissible set. Initially, all particles are randomly and uni-
formly distributed in the admissible set and the initial
velocities are set to 0. The particle swarm is a gradient-free
method andworks for non-smooth functions aswell. The iter-
ation ends when a maximum number of iterations is reached,
or when the majority of the particles are close enough to the
best point p̂swarm:
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1

Q

Q∑

q=1

‖p̂swarm − pk,p‖2 < ε, (4)

with a user-defined tolerance ε, or if there is no further change
in the global best point p̂swarm over Nstall consecutive itera-
tions.

2.5 Robust optimization

In a nominal optimization procedure, one is looking for the
minimum value of an objective function. However, during
manufacturing, small deviations can occur on the parameters.
As a consequence, the optimal solutionmay become subopti-
mal in reality. Robust optimization searches for an optimum
that is not too much affected by the expected parameter devi-
ations [41,60].

One possibility is to optimize such that the worst-case
scenario within a stochastic set of possibilities around the
optimal design parameters is the best possible. The robust
counterpart of (1) adopting a worst-case scenario is

minimize
p∈RI

max
δ∈U

J (p + δ), (5a)

subject to max
δ∈U

Gm(p + δ) ≤ 0, m = 1, . . . , M . (5b)

Here, the uncertainty set for the deviations δ is defined by

U :=
{
δ ∈ R

n | δli ≤ δi ≤ δui , i = 1, . . . , n
}

=
{
δ ∈ R

n | ‖D−1δ‖∞ ≤ 1
}
, (6)

where D is a scaling matrix and where δli = −δui .
The nested optimization problem formulated by (5) is

hard to solve. A numerically feasible optimization prob-
lem is obtained by approximating the max problem, i.e., by
applying a first-order Taylor approximation of the objective
function and the constraints with respect to p [13]:

J (p + δ) ≈ J (p) + ∇p J (p) · δ; (7)

Gm(p + δ) ≈ Gm(p) + ∇pGm(p) · δ, (8)

form = 1, . . . , M . Inserting this approximation into (5), one
obtains the linear approximation of the robust optimization
problem:

minimize
p∈RI

J (p) + ‖D∇p J (p)‖1, (9a)

subject to Gm(p) + ‖D∇pGm(p)‖1 ≤ 0, (9b)

for m = 1, . . . , M . A dual norm || · ||∗ is defined by

‖ · ‖∗ : R
I → R

g �→ ‖g‖∗ := max
‖δ‖≤1

g�δ. (10)

In this particular case, one can use the property that the dual
of ‖D−1 · ‖∞ is given by ‖D · ‖1.

A further problem is introduced by the fact that the norms
are not differentiable, which leads to a non-smooth opti-
mization problem. A differentiable problem is obtained by
introducing M + 1 slack variables ξ0, . . . , ξM and reformu-
late (9) as

minimize
p∈RI ,ξ0,...,ξM∈RI

J (p) + V
�ξ0, (11a)

subject to Gm(p) + V
�ξm ≤ 0, (11b)

− ξ0 ≤ D∇p J (p) ≤ ξ0, (11c)

− ξm ≤ D∇pGm(p) ≤ ξm , (11d)

where m = 1, . . . , M and V = [1, . . . , 1]� ∈ R
I . This opti-

mization problem can now be efficiently solved numerically.
Additionally to the quantities introduced in the previous sec-
tion, now also second-order sensitivities with respect to the
design parameters are required. This approach can be gener-
alized to use a quadratic approximation with respect to p as
worked out in [30].

3 Finite-element model

The behavior of the devices under consideration is deter-
mined by magnetic field phenomena and is simulated using
a FE model.

3.1 Magnetoquasistatic formulation

The magnetoquasistatic (MQS) subset of Maxwell’s equa-
tions is considered. The design parameters p influence the
material distribution represented by the reluctivity ν(p) and
the conductivity σ(p), as well as the excitations, represented
by the applied current density Jsrc(p) in current carrying
conductors and the magnetizing field strength Hm(p) of the
present permanent magnets. The MQS formulation in terms
of the magnetic vector potential A(p) reads

∇ × (ν(p)∇ × A(p)) + σ(p)
∂A(p)

∂t
= Jsrc(p) − ∇ × Hm(p), (12)

and is complemented with adequate boundary conditions.
Equation 12 encompasses the case of linear, nonlinear and
remanent magnetic materials expressed by

H(p) = ν(p)B(p), (13)

H(p) = ν(p,B(p))B(p), (14)
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H(p) = Hm(p) + ν(p)B(p) (15)

respectively. H(p) and B(p) = ∇ × A(p) are the magnetic
field strength and magnetic flux density. In the nonlinear
setting, the formulation is treated by the Newton method,
which is equivalent to using a linearized material relation

H(p) = H(k)
m (p) + ν

(k)
(p)B(p) and updating the tensorial

differential permeability ν
(k)

(p) and the magnetizing field
strengthH(k)

m (p) between the successiveNewton steps k [28].

3.2 Finite-element discretization

The magnetic vector potential is discretized by lowest-order
Nédélec edge shape functions w j (x, y, z),

A(p) ≈
Ndof∑

j=1

a j (p)w j , (16)

where a j (p) are the degrees of freedom and Ndof is the num-
ber of degrees of freedom. In the 3D case, the shape functions
are associated with the edges of a tetrahedral mesh. In the 2D
Cartesian case, the edge shape functions are aligned with the
z-axis and are constructed from the nodal shape functions
N j (x, y) associated with the nodes of a 2D mesh:

w j (x, y) = N j (x, y)

lz
ez , (17)

where lz is the length of the device in z-direction. In both
cases, the discretization procedure leads to the system of
equations

Kν(p)a(p) + Mσ (p)
da(p)

dt
= jsrc(p) + jm(p), (18)

where

Kν,i, j (p) =
∫

VD

ν(p)∇ × w j · ∇ × wi dV ; (19)

Mσ,i, j (p) =
∫

VD

σ(p)w j · wi dV ; (20)

jsrc,i (p) =
∫

VD

Jsrc(p) · wi dV ; (21)

jm,i (p) = −
∫

VD

Hm(p) · ∇ × wi dV , (22)

and where VD is the computational domain [36]. In the 2D
case, VD = SD × [0, lz] where SD is the cross section of
the device. Equation 18 is further discretized in time by, for
example, an implicit Runge–Kutta method, linearized by the
Newton–Raphson method and solved by a solution method
for large sparse systems of equations [10,28].

3.3 Geometry parametrization

In the following, designs will be optimized with respect to
geometric parameters. At first sight, the changing geometry
necessitates the reconstruction of the computational mesh.
This would, however, lead to unacceptably high computation
times. Moreover, the unavoidable changes in mesh topol-
ogy would introduce numerical noise which could mask the
true sensitivity of the quantities of interest on the geomet-
ric parameters. Two different types of parametrizations are
presented in the following. Affine parametrization or affine
decomposition (see, e.g., [47]) is particularly appealing in
the context of model order reduction and well suited for
parallelization.However, complex transformations cannot be
represented exactly by this approach.Onemay turn to (empir-
ical) interpolation methods, but they introduce additional
approximation errors. This is not the case for the second
parametrization, which is based on the well-established con-
cept of design elements [6] in combination with non-uniform
rational B-splines (NURBS). Here, the mapping will not
be affine and more effort is needed for the update of the
FE matrices and vectors. In either case, good results can
be obtained for many shape optimization problems by one
of the two methods, with moderate implementation effort.
It should also be mentioned that nonparametric approaches
to shape optimization [11] present a viable alternative and
have already been applied for electric machines [16]. There,
however, advanced techniques for both derivation and imple-
mentation are needed.

The geometry is decomposed in a domain V 0
D that is unaf-

fected from the geometric parameters and domains V 

D(p),


 = 1, . . . , L subject to geometry changes according to the
geometric parameters p. The FE matricesKν(p) andMσ (p)

and vectors jsrc(p) and jm(p) can be partitioned accordingly:

Kν(p) = K0
ν +

L∑


=1

K

ν(p), (23)

and similarly for Mσ (p), jsrc(p) and jm(p). Reference
geometries V̂ 


D, 
 = 1, . . . , L and V̂ 0
D = V 0

D are defined,
as well as maps f 


p : V̂ 

D → V 


D(p), r̂ �→ f 

p (r̂) = r, which

depend on p.

3.3.1 Affine parametrization

This section discusses the idea of decomposing (a part of)
the mesh such that geometrical changes can be represented
by piecewise affine maps [30,47]. The affine maps will be
referred to by f 


p,aff.
As an example, an affine map for the 2D case is developed

(Fig. 1). Let r j = [
x j y j

]�, j = 1, 2, 3 denote the nodes of a

deformed triangle in the domain V 

D(p) and r̂ j = [

x̂ j ŷ j
]�,
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Fig. 1 Affine maps between a
deformed element and a
reference element

ŷ

x̂

y

x

f�
p,aff

p3

p2

p1

j = 1, 2, 3 the nodes of the corresponding triangle in the
reference domain V̂ 


D . The transformation from the reference
triangle to the deformed triangle r̂ �→ f 


p,aff(r̂) = r is given
by the affine map

[
x
y

]

=
[
x1 x2 x3
y1 y2 y3

]

× 1

Ŝ

⎡

⎣
x̂2 ŷ3 − x̂3 ŷ2 ŷ2 − ŷ3 x̂3 − x̂2
x̂3 ŷ1 − x̂1 ŷ3 ŷ3 − ŷ1 x̂1 − x̂3
x̂1 ŷ2 − x̂2 ŷ1 ŷ1 − ŷ2 x̂2 − x̂1

⎤

⎦

⎡

⎣
1
x̂
ŷ

⎤

⎦ ,

(24)

with Ŝ the cross-sectional area of the reference triangle. In
short, this becomes a linear transformation of the form

r = N

1(p) + T
(p)r̂ where r̂ ∈ V̂ 


D . (25)

In 3D, affine parametrization is organized using a tetrahe-
dral decomposition of the computational domain. The key of
affine parametrization is that the Jacobian of the map,

J 

aff(p) =

⎡

⎢
⎢
⎣

∂x
∂ x̂

∂x
∂ ŷ

∂x
∂ ẑ

∂ y
∂ x̂

∂ y
∂ ŷ

∂ y
∂ ẑ

∂z
∂ x̂

∂z
∂ ŷ

∂z
∂ ẑ

⎤

⎥
⎥
⎦ , (26)

is constant on each subdomain V 

D(p). In the integrations in

(19)–(22), the volume integrations now have to be carried
out according to dV = ϑ


0 (p) dV̂ , where ϑ

0 (p) = |J 


aff(p)|
denotes the determinant of the Jacobian. Hence,

Mσ (p) = ϑ

0 (p)M̂σ ; (27)

jsrc(p) = ϑ

0 (p)ĵsrc, (28)

where M̂σ and ĵsrc are assembled for the reference geometry
only once.Additionally, the affinemaps affect the differential
operators in (19) and (22). A bit of calculation is needed
to work out the transformed differential operators and the

scalar products component-wise. For the 2D Cartesian case,
the results are

K

ν(p) = ϑ


1 (p)K̂

ν,xx + ϑ


2 (p)K̂

ν,yy

+ ϑ

3 (p)K̂


ν,xy + ϑ

4 (p)K̂


ν,yx ; (29)

j
m(p) = ϑ

5 (p)ĵ
m,x + ϑ


6 (p)ĵ
m,y , (30)

where the matrix factors K̂

ν,xx , K̂



ν,yy , K̂



ν,xy , K̂



ν,yx , and

the vector factors ĵ
m,x and ĵm,y are assembled for the refer-
ence geometry in advance. Hence, the assembly of new FE
matrices and vectors can be avoided during the optimization
procedure. The functions ϑ


q (p) are simple scalar functions
in terms of the design parameters and are evaluated for each
model instantiation.

3.3.2 Design element approach

For many geometry optimization tasks, the domain under-
lying geometry changes cannot be decomposed in triangles
or tetrahedra with straight edges and faces, which excludes
the use of affine parametrization. NURBS are a more gen-
eral way to represent geometries and are widely used in CAD
systems. Therefore, it seems natural to use the control points
(andweights) of NURBS curves as design parameters [6,49].
This approach has received considerable attention in recent
years as new approaches, incorporating NURBS geometries
into FE analysis, have emerged. Isogeometric analysis [25]
and the NURBS-enhanced FE method [50] are important
examples. Here, NURBS are only used for the geometry
parametrization. A triangular (tetrahedral) mesh is gener-
ated once and deformed using the concept of design elements
[6,26].

In the following, for simplicity, the two-dimensional case
is considered solely. A generic NURBS curve of degree p is
given as

C(x̂) =
∑

i

R p
i (x̂)Pi , (31)
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C�
p,1(x̂

∗)

C�
p,2(x̂

∗)

x̂

ŷ

x

y

f�
p,de(x̂, 0)

f�
p,de(x̂, 1)

Fig. 2 Reference domain [0, 1]2 and design element patch

where Pi refers to a control point and the rational spline Rp
i

is defined in terms of B-splines N p
i and weights wi as

Rp
i (x̂) = N p

i (x̂)wi
∑

j N
p
j (x̂)w j

. (32)

In total, L design elements are considered, each of which
is represented by two NURBS curves C


p,1 and C

p,2, each

depending on the geometric parameters p. More precisely, a
design element is defined by a map f 


p,de : V̂ 

D = [0, 1]2 →

V 

D(p) given as

f 

p,de(x̂, ŷ) = C


p,1(x̂)ŷ + C

p,2(x̂)(1 − ŷ). (33)

Hence, design elements are obtained by successively con-
necting points of each NURBS curve by a straight line, as
depicted in Fig. 2. The affine parametrization may result in
unstructured representations where such a patch structure is
missing. For each node (xi , yi ) in V 


D(p), its position in the
reference domain [0, 1]2 is computed in advance by solving

(x̂i , ŷi ) ∈ argmin(x̂,ŷ)

∣
∣
∣ f 


p,de(x̂, ŷ) − (xi , yi )
∣
∣
∣ , (34)

for example with the Newton–Raphson method. Then, the
mesh can be easily deformed by applying the parameter-
dependent map f 


p,de to all nodes (x̂i , ŷi ).
The transformation of the FEmatrices and vectors is more

involved compared to the affine parametrization described in
Sect. 3.3.1. Each entry of the mass matrix is transformed as

Mσ,i, j (p) =
∫

V̂D

σ̂ ŵ j · ŵi |J 

de(p)| dV̂ , (35)

where it is important to emphasize that |J 

de(p)| is not constant

on each design element. A similar expression is obtained for
jsrc(p), whereas the conforming transformation of the curl
operator yields

Kν,i, j (p) =
∫

V̂D

ν̂

|J 

de(p)| J



de(p)∇ × ŵ j · J 


de(p)∇ × ŵi dV̂ ,

(36)

j
m,i (p) =
∫

V̂D

Ĥm(p) · J 

de(p)∇ × ŵi dV̂ . (37)

In (36) and (37), the dependence of the integration domain on
the geometry changes was eliminated. Because the Jacobian
J 

de(p) can be expressed as a function of the geometric param-

eters pi , the analytical derivative of the system matrix and of
the right-hand side with respect to the geometric parameters
can be determined.

3.4 Sensitivities

After differentiating the FE system, a new linear system for
the derivatives of the degrees of freedom with respect to the
geometric parameters is obtained:

Kνsi = ∂

∂ pi
(jsrc + jm) − ∂Kν

∂ pi
a, for i = 1, . . . , I , (38)

where si (p) = ∂a(p)
∂ pi

are the sensitivities of the FE solu-
tion. To calculate si , I equations of the form (38) have to be
solved. In the case of affine parametrization, derivatives of
Kν are easily calculated from (23) and (29) using expressions

for ∂ϑ
(p)
∂ pi

which are known analytically as derivatives of

the functions ϑ
(p). The expressions become more involved
when NURBS are involved, yet closed-form formulas also
exist in this case.

The optimization algorithm requires the derivatives of the
objective function with respect to each of the design parame-
ters. Often, the objective function does not explicitly depend
on the design parameters, i.e., J (p) = J̃ (a(p)). In this case,
the derivatives are given as

∂ J (p)

∂ pi
= ∇a J̃ (a(p)) · si (p), for i = 1, . . . , I . (39)
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For a large number of parameters, an adjoint method should
be used instead [57].

4 Example 1: Die press mold

As a first example, a die press mold for radially magnetizing
a segment of sintered magnetic powder (SMP) is considered
[54]. This problem has been proposed as testing electromag-
netic analysis methods (TEAM) benchmark problem 25 [53]
and has been used in numerous papers for comparing opti-
mization algorithms. The vast majority of these publications
apply and compare stochastic optimization methods [32,52],
possibly combined with surrogate models [8], uncertainty
quantification [39], multi-objective optimization or a com-
bination of them [31]. Only a few papers (see, e.g., [1,4])
choose deterministic methods, again possibly combinedwith
surrogate models [20], uncertainty quantification [55] or
multi-objective optimization. This paper addresses one of
the main drawbacks of deterministic methods, which is the
consideration of geometric parameters. For this example, the
design element approach is used.

The SMP segment is arranged between a cylindrical inner
pole and a more generally shaped outer pole (Fig. 3). The
original TEAM-25 problem considers an outer pole with an
elliptical inner surface. Here, the inner surface is described
by a spline. This is motivated by the fact that splines are
currently the basic building block for mechanical processing.
The considered design parameters are then chosen to be

p1: radius of the inner yoke;
p2, p3: semiaxis of ellipse between points i and j ;

p4: x-coordinate of points m and k.

Both the circle and the ellipse are exactly represented by
NURBS curves. The relation between the geometric param-
eters and theNURBS control points is given in theAppendix.

The optimization aims at a homogeneous, radially ori-
ented magnetic flux density of Bgoal = 0.35 T inside the
SMP segment. The objective function J (p) is defined as the
mean-squared error between the simulatedmagnetic field and
the goal at 9 sample points equidistantly distributed along
the arc with radius rsmp between points e = (rsmp, 0) and
f = (rsmp cosϕ f , rsmp sin ϕ f ):

J (p) =
9∑

k=1

‖B(rsmp cosϕk , rsmp sin ϕk; p) − Bgoalek‖22, (40)

where ϕk = ϕ f
k−1
8 and ek = (cosϕk, sin ϕk). The optimiza-

tion problem yields:

minimize
p

J (p), (41a)

subject to p ∈ F , (41b)

where the admissible set is defined as:

F = [5.1, 9] × [16, 18] × [14.5, 16] × [9.5, 13] mm.

Fig. 3 TEAM Problem 25:
Cross section of the inner part of
the die press showing the SMP
ring, the inner yoke and the
outer yoke (all measures in
mm). A horizontal magnetic
flux is exerted on the
configuration by an outer
magnetic circuit (not shown)
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Table 1 Results from the
optimization of the die press
mold with particle swarm
optimization (PSO), trust region
(TR) (with MATLAB�’s
fmincon) and an own
implementation of sequential
quadratic programming (SQP)
combined with the design
element approach

Method Minimizer p̂min Minimum Iteration Function calls Time
(in mm) (in T2) count f() ∇f() (in s)

PSO

⎛

⎜
⎜
⎝

5.1000
16.0000
16.0000
9.5000

⎞

⎟
⎟
⎠ 1.413498 7 280 N/A 56.63

SQP (fmincon)

⎛

⎜
⎜
⎝

5.1000
16.0000
16.0000
9.5000

⎞

⎟
⎟
⎠ 1.413498 4 7 7 31.61

SQP (own implementation)

⎛

⎜
⎜
⎝

5.1000
16.0000
16.0000
9.4999

⎞

⎟
⎟
⎠ 1.413498 2 3 2 12.84

For the gradient, the derivatives of J with respect to the geom-
etry parameters pi are needed. Before applying the chain rule
on (40), the derivatives of the degrees of freedomwith respect
to the geometry parameters ∂pi a are calculated as described
in Sect. 3.3.2.

The performance of a standard algorithm for particle
swarm optimization (PSO), of the sequential quadratic pro-
gramming (SQP) method implemented in MATLAB�’s
fmincon function [43] and of an own implementation of
SQP is compared in Table 1. Both SQP implementations use
the analytical gradients, the BFGS formula for updating the
Hessian and a sufficient decrease condition in a merit func-
tion. For the PSO, a set of 40 particles is considered and the
implementation is multi-threaded, while the gradient-based
methods are single-thread implementations. The termination
criterion for the PSO algorithm is the number of stall itera-
tions,whichwas set to 5. The PSOactually finds the optimum
after 2 iterations. This is because the optimum is at a vertex
of the box-shaped domain and all the particles leaving the
admissible region are projected onto the boundary. All three
methods converge to the same optimum. The deterministic
algorithms are substantially faster than PSO, even though
PSO exploits parallelization. On the same machine, an eval-
uation of the objective function J (p) is performed in 1.65 s,
an analytical evaluation of the gradient ∇ J (p) in 4.69 s and
a numerical evaluation of the gradient∇num J (p) using a for-
ward difference quotient in 7.48 s. All tests were done on a
64 GB RAM Intel� Xeon� E5-2630 v4 machine.

5 Example 2: Permanent-magnet
synchronousmachine (PMSM)

5.1 Design parameters

The second example is a 3-phase 6-pole permanent-magnet
(PM) synchronous machine (PMSM) borrowed from [42]

(Fig. 4) and already studied as an optimization example in
[5]. The stator features two slots per pole and per phase with
a conventional distributed double-layer winding. The rotor
contains a buried rare-earth magnet. The yoke parts are lam-
inated. The design parameters are

p1: width of the PM;

p2: thickness of the PM;

p3: distance from the PM to the rotor surface.

5.2 Objective function

The optimization goal is to minimize the size Spm = p1 p2
of PM material while preserving a prescribed electromotive
force E0. The electromotive force (EMF) E0(p) is post-
processed from a magnetostatic solution of a 2D FE model
of the PMSM using the loading method proposed in [46].
For that purpose, the FE solution of the z-component of the
magnetic vector potential is sampled at a circle (or in the
case of a partial machine model, an arc) in the PMSM’s air
gap, yielding Az(rag, ϕ) ≈ Âz,eff

√
2 sin(Npϕ − ϕd), where

Np = 3 is the pole-pair number, Âz,eff is the rms magnitude
of fundamental harmonic component and ϕd is the angle of
the PMSM’s direct axis. The EMF is then found from

E0 = 2 Âz,effωsynNwkw,1, (42)

where ωsyn is the synchronous speed and Nw is the number
of windings per phase. The winding factor is

kw,ν = sin
(
qν αel

2

)

q sin
(
ν αel

2

) · sin
(

ν
π

2

τc

τp

)

· sin
(
ν ε
2

)

ν ε
2

, (43)

where q is the number of coil sides per phase belt, αel is the
electric angle between two slots, τc is the coil pitch, τp is the
pole pitch and ε is the electric skew angle [37,46].
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p2

SD

p1

p3

Fig. 4 Cross section of one pole of the machine with the permanent magnet depicted in gray and the region of the affine parametrization indicated
by the dashed box. On the right-hand side, the triangulation into L subdomains is shown by the dashed-dotted lines. The figure is adapted from [5]

5.3 Optimization problem

The optimization problem reads

minimize
p∈R3

J (p) = p1 p2, (44a)

subject to G(p) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

pl1 − p1
pl2 − p2
pl3 − p3
p3 − pu3

p2 + p3 − 15 mm
3p1 − 2p3 − 50 mm
Ed − E0(p, a(p))

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

≤ 0. (44b)

The first four constraints are related to the lower (pl) and
upper (pu) bounds of p:

(
pl1, p

l
2, p

l
3

) = (1, 1, 5) mm and(
pu1, p

u
2, p

u
3

) = (∞,∞, 14) mm. To ensure the validity of
the affine parametrization (intersections are not allowed), the
fifth constraint is added. The sixth constraint is a design
constraint enforcing that each PM has to keep a sufficient
distance to the rotor surface, especially for wide PMs. The
last constraint expresses the requirement to fulfill the pre-
scribed EMF. Since the EMF is post-processed from the FE
solution, the optimization problem actually has a PDE con-
straint.

5.4 Results

The results for 5 different optimizationmethods are collected
in Table 2.

1. The first optimization run is carried out with the genetic
algorithm implemented in MATLAB�.

2. The second optimization run is carried out with
MATLAB�’s PSO implementation. To circumvent the
restriction to box-shaped parameter domains, the admis-

sible set is enforced by a penalty turn. The new objective
function reads

Jpen(p) = J (p) + 2J (p)
(
f (max(p2 + p3 − 15, 0))

+ f (max(3p1 − 2p3 − 50, 0))

+ f (max(g(x), 0))
)
, (45)

where f (t) = e(4t0.1) − 1 was chosen heuristically such
that Jpen grows exponentially if one of the constraints
is violated. The function Jpen was called 4740 times,
but was organized as to only evaluate the nonlinear con-
straint if all other constraints were satisfied. The number
of particles was set to 30, the maximum number of stall
iterations to Nstall = 15 and the function change tolerance
to 10−6. The PSO characteristic constants are chosen to
be ω0 = 0.5 and ω1 = ω2 = 1.49. The algorithm took
157 iterations before termination.

3. The third optimization is carried out with an own PSO
implementation, for the original objective function J (p)

and applying the nonlinear constraints directly. Here, it is
assumed that the admissible set is convex such that points
inside the convex hull formed by all previous points do
not need to be checked. Fifty particles were used. Termi-
nation was enforced after maximally Nit,max = 100 steps
or when Nstall,max = 15 stall iterations were observed.

4. The fourth run was done with the deterministic method
described in Sect. 2.3, relying upon FE simulations
equipped with an affine parametrization of the geome-
try as described in Sect. 3.3.1.

5. The fifth run was done with the deterministic method for
robust optimization expressed by (11) in Sect. 2.5, again
with affine parametrization of the geometry.

The three stochastic algorithms were run on a 64 GB RAM
Intel� Xeon� E5-2630v4machine.Bothdeterministic algo-
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Table 2 Numerical results
obtained for a δ = 0.2 mm [5]

p1 p2 p3 Spm E0 FE slv Time
(mm) (mm) (mm) (mm2) (V) calls (s)

Initial design 19.00 7.00 7.00 133 30.370 – –

Genetic algorithm 21.04 2.98 6.56 62.80 30.370 ≈ 6760 520.5

PSO with penalty term 20.60 3.09 5.91 63.71 30.370 ≈ 3470 267.16

PSO, own implementation 21.08 2.98 6.63 62.80 30.370 1765 217.52

SQP, nominal optimization 21.07 2.98 6.61 62.80 30.370 34 2.0

SQP, robust optimization 20.88 3.73 6.82 77.87 31.086 48 5.9

(a) (b) (c)

Fig. 5 Initial and optimized geometries together with the magnetic flux distribution at no-load. The figures are adapted from [5]. a Initial geometry,
b nominal optimum, c robust optimum

rithms were run on a 16 GB RAM Intel� CoreTM with
i7-5820K processors (3.30 GHz).

The results of all optimization procedures are compared
with the values of the initial design (Fig. 5). All routines
achieve a substantial decrease in the PM size from 133 mm2

up to about 63 mm2. The price for robustness is a slightly
larger size of about 77 mm2. The deterministic methods out-
perform the stochastic ones by two orders of magnitude. This
impressively illustrates the major message of this paper stat-
ing that deterministic optimization methods accompanied by
FE analysis providing gradients with respect to geometric
parameters should be favored over stochastic methods, at
least for the here considered class of problems.

6 Conclusion

Affine parametrization and design element approaches are
capable of parametrizing the geometry of finite-element
models such that accurate derivatives with respect to geo-
metric parameters become available. This alleviates one of
themajor drawbacks of gradient-type deterministic optimiza-
tion methods. For the example of a die mold press, standard
sequential programming combined with the design element
approach outperforms particle swarm optimization by more
than a factor ten. The second example illustrates the appli-
cability of gradient-type robust optimization combined with
an affine parametrization of the geometry for a permanent-

magnet synchronous machine. Supported by the substantial
improvement in computational efficiency, this paper stands
up for a revival of deterministic methods for numerical opti-
mization in electrotechnical design procedures.
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Appendix

The dependence between the geometry parameters and the
NURBS representation of the die press model is as follows.
For the ellipse arc, the control points and weights are

P0 =
(
L2

0

)

, P2 =
(
L2 cosα

L3 sin α

)

,

P1 = P2 +
(−λL2 sin α

λL3 cosα

)

,

w0 = w2 = 1, w1 = cos
α

2
,
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where

α = asin

(
10.5mm

p3

)

, λ = −p2 + p2 cosα

p2 sin α
.

The corresponding knots are K = {0, 0, 0, 1, 1, 1}, and the
degree of the basis functions is p = 2.

For the circular arc, the control points are

P0 =
(
p1
0

)

, P1 =
(
p1
p1

)

, P2 =
(
0
p1

)

,

with the constant weights

w0 = w2 = 1, w1 = √
2/2.

The degree of the basis functions is p = 2. The correspond-
ing knots are K = {0, 0, 0, 1, 1, 1}. The deformation of the
mesh inside one design element region V 


D with NV vertices
is given by

(xi , yi ) = C

1(x̂i ;p)ŷi + C


2(x̂i ;p)(1 − ŷi ), (46)

where (xi , yi ) are the coordinates of the vertices of the
deformed mesh and (x̂i , ŷi ) are the coordinates in the ref-
erence domain [0, 1]2.
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