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Abstract
This paper presents an algorithm estimating the regions of attraction of power systems based on the Lyapunov function
approach where a sublevel set of a Lyapunov function for a target system is used as the estimate. In particular, we focus here
on the algorithm based on sumof squares (SOS) programming, which has been recently proposed, and aim to develop a simpler
algorithm for the practical use. For this aim, we present an algorithm overcoming the difficulty of the SOS programming
problem addressed in the existing study, i.e., the bilinear constraints, in a simpler way. In the proposed algorithm, two SOS
programming problems are iteratively solved, and the number of the problems solved at each iteration is reduced to half of
that in the existing algorithm. In addition, we theoretically analyze the proposed algorithm, and show the convergence under
certain conditions. The performance of our algorithm is demonstrated by numerical examples.

Keywords Power systems · Transient stability · Regions of attraction · Lyapunov functions · Sum of squares

1 Introduction

Stability analysis of power systems has been a major topic
in the field of power engineering. This is because analyzing
the stability of power systems leads to the safe and efficient
operation of them. In fact, if the stability is not analyzed,
the impact of accidents on the stability cannot be estimated
and systems may unexpectedly become unstable. Moreover,
in such a case, we have to make the operation of systems
conservative, which decreases the efficiency.

A typical type of the stability of power systems is transient
stability [13]. The transient stability is the ability of power
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systems to maintain the synchronization of generators for
transient disturbances such as faults and the loss of a portion
of transmission networks. An index to evaluate the transient
stability is the size of the region of attraction (ROA). The
ROA is the set of all system states from which the system
converges to an equilibrium state. This is illustrated in Fig. 1.
If the state after the disturbances is in the ROA, then it again
converges to the equilibrium state. That is, the larger ROA
means the higher transient stability.

A straightforward method to investigate the ROA is time-
domain simulation [11] with differential equations describ-
ing system dynamics. This provides the exact ROA, but is
impractical for large-scale systemsdue to high computational
costs. A promising method to solve this problem is the Lya-
punov function approach, i.e., to find a Lyapunov function
for a target system and use the sublevel set as an estimate
of the ROA. This method does not require computing the
trajectory of the system for each initial state, and thus its
computational cost is low. Motivated by this, many studies
have been conducted so far. For example, much effort has
been devoted to studying methods utilizing energy functions
[4,5,9,15]. Also, there are studies on methods utilizing non-
linear control theory [10], extended Lyapunov functions [3],
and numerical optimization [1].

Among these studies, [1] has proposed an algorithmcalcu-
lating a Lyapunov function for a given power system by using
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Fig. 1 Region of attraction (ROA)

sum of squares (SOS) programming [6,7]. This algorithm is
promising for the following two reasons. First, the algorithm
is available for power systems with transfer conductances.
Transfer conductances correspond to losses in power sys-
tems, and cannot be neglected in practice. However, existing
studies have assumed that transfer conductances are zero
[5,9,15] or small [3,4]. Meanwhile, the algorithm in [1] is
availablewithout assumptions on transfer conductances. Sec-
ond, the algorithm in [1] enables us to systematically obtain
Lyapunov functions. As a result, the time and effort spent
to find Lyapunov functions are reduced. On the other hand,
the algorithm in [1] is complicated. In fact, the algorithm
is composed of two loops, and we have to iteratively solve
four different types of SOS programming problems in a loop.
Such complexity is undesirable for the users because the time
and effort spent to understand and implement the algorithm
increase. Moreover, the complexity makes the analysis of the
algorithm difficult. This leads to the lack of the theoretical
guarantees of the algorithm. In fact, [1] has not provided a
theoretical result on the behavior (e.g., the convergence) of
the algorithm.

The purpose of this paper is to develop a simpler algo-
rithm estimating the ROA than the algorithm in [1]. For this
purpose, we make two contributions. First, we present an
improved algorithm. In our algorithm, two SOS program-
ming problems are iteratively solved, and the number of the
problems solved at each iteration is reduced to half of that
in the algorithm in [1]. The key idea is to consider a simpler
method to overcome the difficulty of the SOS programming
problem addressed in [1]. The problem addressed in [1]
includes bilinear constraints, and thus cannot be efficiently
solved by numerical optimization techniques. To overcome
this difficulty, [1] has introduced four subproblems, while we
overcome it by only two subproblems. Second, by utilizing
the simple structure of the proposed algorithm, we analyze it
and clarify its behavior. As a result, we guarantee that there
exist solutions to the two SOS programming problems solved
at each iteration, and show that the algorithmconverges under
certain conditions. This provides a theoretical guarantee for
the proposed algorithm.

Notation: Let R, R+, and R0+ be the real number field,
the set of positive real numbers, and the set of nonnegative
real numbers, respectively. Both the zero scalar and the zero
vector are expressed by 0. For the number c ∈ R and the
function f : Rn → R, Lc( f (x)) denotes the sublevel set of
f , i.e., Lc( f (x)) := {x ∈ R

n | f (x) ≤ c}. We denote by
P the set of polynomials. Moreover, for x ∈ R

n , let P0 :=
{p(x) ∈ P | p(0) = 0}, and let P+ be the set of positive
definite polynomials, i.e., P+ := {p(x) ∈ P0 | p(x) >

0 ∀x ∈ R
n \ {0}}. Finally, we use deg(p) to represent the

degree of the polynomial p.

2 Problem formulation

Consider the power system � in Fig. 2, composed of n gen-
erators.

From the swing equation, the dynamics of generator i
(i ∈ {1, 2, . . . , n}) is described by

Gi : Mi δ̈i (t) = Pmi − Pei (δ(t)) − Di δ̇i (t) (1)

where δi (t) ∈ R is the phase angle of the generator volt-
age, δ(t) ∈ R

n denotes the phase angles of all the generator
voltages, i.e., δ(t) := [δ1(t) δ2(t) · · · δn(t)]�, Mi ∈ R+ is
the moment of inertia, Pmi ∈ R is the mechanical input,
and Di ∈ R+ is the damping coefficient. The variable
Pei (δ(t)) ∈ R is the electrical output given by

Pei (δ(t)) : =
∑

j∈{1,2,...,n}
Ei E j (Bi j sin(δi (t) − δ j (t))

+ Ci j cos(δi (t) − δ j (t))) (2)

where Ei ∈ R+ is the generator voltage and Bi j ,Ci j ∈ R are
the susceptance and conductance between generators i and
j , respectively.
By considering δi (t)− δ j (t) in (2), we introduce the state

variable x(t) := [δ1(t) − δn(t) δ2(t) − δn(t) · · · δn−1(t) −
δn(t) δ̇1(t) δ̇2(t) · · · δ̇n(t)]� ∈ R

2n−1. Then, from (1) and
(2), the state equation of the system � is of the form

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẋ1(t)
ẋ2(t)

...

ẋn−1(t)
ẋn(t)
ẋn+1(t)

...

ẋ2n−1(t)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xn(t) − x2n−1(t)
xn+1(t) − x2n−1(t)

...

x2n−2(t) − x2n−1(t)
(1/M1)(Pm1−Pe1,x (x(t))−D1xn(t))
(1/M2)(Pm2−Pe2,x (x(t))−D2xn+1(t))

...

(1/Mn)(Pmn−Pen,x (x(t))−Dnx2n−1(t))

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3)
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Fig. 2 Power system �

where xi (t) (i ∈ {1, 2, . . . , 2n − 1}) is the i-th element of
x(t) and Pei,x (x(t)) (i ∈ {1, 2, . . . , n}) is given by

Pei,x (x(t)) :=
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ei En(Bin sin xi (t) + Cin cos xi (t)) +
∑

j∈{1,2,...,n−1}
Ei E j

×(Bi j sin(xi (t) − x j (t)) + Ci j cos(xi (t) − x j (t)))

if i ∈ {1, 2, . . . , n − 1},
E2
nCnn+

∑

j∈{1,2,...,n−1}
EnE j (−Bnj sin x j (t)+Cnj cos x j (t))

if i = n.

(4)
Furthermore, for simplicity, we assume that an equilibrium
point of � is x = 0; otherwise, we perform a coordinate
transformation so as to shift the equilibrium point to x = 0.

Then, we address the following problem.

Problem 1 For the power system �, assume that the equi-
librium point x = 0 is asymptotically stable. Then, estimate
the region of attraction (ROA), i.e., the set of all x ∈ R

2n−1

such that the solution of � starting from x converges to the
equilibrium point.

3 Estimation of region of attraction by using
sum of squares programming [1]

As a method to solve Problem 1, [1] has proposed an esti-
mation method of the ROA based on sum of squares (SOS)
programming. In this section, we briefly introduce it.

3.1 Preliminary

For the power system �, the Lyapunov stability theory (see,
e.g., [8]) yields the following result.

Lemma 1 Consider the power system � with the asymptot-
ically stable equilibrium point x = 0. Assume that there
exist a set D ⊂ R

2n−1 containing x = 0 and a continuously
differentiable function V : D → R0+ such that

V (0) = 0 andV (x) > 0 ∀x ∈ D \ {0}, (5)

V̇ (0) = 0 andV̇ (x) < 0 ∀x ∈ D \ {0}. (6)

Then, the set Lc(V (x)) satisfying Lc(V (x)) ⊆ D is included
in the ROA, where c ∈ R+ is a positive number.

The function V (x) is called the Lyapunov function.
Lemma 1 means that Lc(V (x)) ⊆ D is an estimate of the

ROA. That is, this result reduces Problem 1 to the problem of
finding apair (V (x), c) satisfying (5), (6), andLc(V (x)) ⊆ D

for a set D.

3.2 Estimation algorithm of region of attraction
based on sum of squares programming

The authors in [1] have proposed the use of SOS program-
ming to find appropriate V (x) and c.

3.2.1 Sum of squares programming problems

We first define the SOS.

Definition 1 For z ∈ R
m , the polynomial p(z) ∈ P is said to

be the SOS if there exist polynomials q1(z), q2(z), . . . , qμ(z)
satisfying

p(z) =
μ∑

i=1

q2i (z). (7)

As shown in Definition 1, SOS polynomials are polyno-
mials which can be expressed as the sum of the squares of
polynomials. For example, p(z) := 4z21 + 2z22 + 4z1z2 +
2z2 + 1 for z := [z1 z2]� is an SOS polynomial. In fact,
q1(z) := 2z1 + z2 and q2(z) := z2 + 1 satisfy (7).

SOS programming problems are optimization problems
with constraints that polynomials must be SOS ones. This
type of problems can be transformed into semidefinite pro-
gramming problems [2] under certain conditions, and can be
efficiently solved by numerical optimization techniques.

3.2.2 Coordinate transformation

However, the idea of the SOS cannot be directly applied to the
system� because (3) is not described by polynomials due to
the trigonometric functions in (4). Hence, [1] has performed
the coordinate transformation z(t) := h(x(t)) where h :
R
2n−1 → R

3n−2 is the function such that

zi (t) :=
⎧
⎨

⎩

sin xi (t) if i ∈ {1, 2, . . . , n − 1},
xi (t) if i ∈ {n, n + 1, . . . , 2n − 1},
1 − cos xi−2n+1(t) if i ∈ {2n, 2n + 1, . . . , 3n − 2}

(8)

for the i-th element zi (t) (i ∈ {1, 2, . . . , 3n − 2}) of z(t).
Here, for the convenience of explanation, the numbering of
zi (t) (i = 1, 2, . . . , 3n−2) is different form that in [1]. From
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(3), (4), and (8), the transformed system is written as

{
ż(t) = f (z(t)),

g(z(t)) = 0
(9)

where f : R3n−2 → R
3n−2 and g : R3n−2 → R

n−1 are the
functions whose i-th elements fi (z(t))(i ∈ {1, 2, . . . , 3n −
2}) and gi (z(t)) (i ∈ {1, 2, . . . , n − 1}) are defined as

fi (z(t)) :=
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 − zi+2n−1(t))(zi+n−1(t) − z2n−1(t))

if i ∈ {1, 2, . . . , n − 1},
(1/Mi−n+1)(Pm(i−n+1)−Pe(i−n+1),z(z(t))−Di−n+1zi (t))

if i ∈ {n, n + 1, . . . , 2n − 1},
zi−2n+1(t)(zi−n(t) − z2n−1(t))

if i ∈ {2n, 2n + 1, . . . , 3n − 2},
(10)

gi (z(t)) := z2i (t) + z2i+2n−1(t) − 2zi+2n−1(t) (11)

for

Pej,z(z(t)) :=
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E j En(Bjnz j (t)+ C jn(1−z j+2n−1(t))) +
∑

k∈{1,2,...,n−1}
E j Ek

×(Bjk(z j (t)(1 − zk+2n−1(t)) − zk(t)(1 − z j+2n−1(t)))

+C jk((1 − z j+2n−1(t))(1 − zk+2n−1(t)) + z j (t)zk(t)))

if j ∈ {1, 2, . . . , n − 1},
E2
nCnn +

∑

k∈{1,2,...,n−1}
EnEk

×(−Bnkzk(t) + Cnk(1 − zk+2n−1(t))) if j = n.

(12)

In (9), g(z(t)) = 0 is the constraint imposed as the property
of the trigonometric functions, i.e., sin2 xi + cos2 xi = 1 for
every xi ∈ R. We see from (9)–(12) that the transformed
system is described by polynomials.

For this system, if we find a pair (V (z), c) satisfying (5),
(6), and Lc(V (z)) ⊆ D where x corresponds to z, by SOS
programming, then from Lemma 1 we can use Lc(V (h(x)))
as an estimate of the ROA of the original system (3).

3.2.3 Estimation algorithm

The estimation algorithm in [1] is called the expanding
interior algorithm. This has been originally introduced in
[6], and the idea is explained as follows. Consider the set
Lγ (p+(z)) ⊂ R

3n−2 where p+(z) ∈ P+ is a positive
definite polynomial and γ ∈ R+ is a positive number. If
Lγ (p+(z)) ⊆ Lc(V (z)), then we can expand Lc(V (z)) by
expanding Lγ (p+(z)) as illustrated in Fig. 3, which will
present a better estimate of the ROA. Hence, for a given

Fig. 3 Idea of expanding interior algorithm

p+(z), we find the pair (V (z), c) maximizing γ subject to
Lγ (p+(z)) ⊆ Lc(V (z)).

Based on this idea,we consider the following optimization
problem:

(OP) max
V∈P0

γ

s.t.

{z ∈ R
3n−2 | V (z) ≤ 0, g(z) = 0, z 	= 0} = ∅,

{z ∈ R
3n−2 | p+(z)≤ γ, g(z)=0, V (z) ≥ c, V (z) 	=c}=∅,

{z ∈ R
3n−2 | V (z) ≤ c, g(z) = 0, V̇ (z) ≥ 0, z 	= 0} = ∅

where p+(z) and c are assumed to be given. The first, sec-
ond, and third constraints correspond to (5), Lγ (p+(z)) ⊆
Lc(V (z)), and (6), respectively,whereLc(V (z)) corresponds
toD. By replacing z 	= 0 with q+(z) 	= 0 where q+(z) ∈ P+
and applying the Positivstellensatz theorem (see, e.g., [7]) to
the resulting constraints, we obtain the following SOS pro-
gramming problem:

(SOSP) max
V∈P0,v1,v2,v3∈Pn−1,s1,s2,s3∈S

γ

s.t.

V (z) − v�
1 (z)g(z) − q+(z) ∈ S, (13)

− s1(z)(γ − p+(z)) − v�
2 (z)g(z) − (V (z) − c) ∈ S, (14)

− s2(z)(c − V (z)) − s3(z)V̇ (z) − v�
3 (z)g(z) − q+(z) ∈ S

(15)

where S is the set of SOS polynomials, v1(z), v2(z), v3(z) ∈
P
n−1 are polynomial vectors, s1(z), s2(z), s3(z) ∈ S are

SOS polynomials, and q+(z) is assumed to be given. The
constraints (13)–(15) correspond to sufficient conditions for
satisfying the three constraints of the OP, respectively.

Since the SOSP contains the products of the variables
such as s2(z)V (z), it cannot be transformed into a semidefi-
nite programming problem and cannot be efficiently solved.
Therefore, [1] has proposed the following algorithm. Here,
k ∈ R+ and � ∈ R+ are the iteration indices, and super-
scripts are used to represent the variables at each iteration.
For instance, V k(z) denotes V (z) at iteration k. Note that the
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following algorithm has been given as a modified expanding
interior algorithm, and the original algorithm can be found in
[6]. Also, there are some variations of the expanding interior
algorithm in [7].

Algorithm 1 [1]

Step 0 Choose the initial Lyapunov function V 0(z) and
polynomial p0+(z), the polynomial q+(z), and the
thresholds εγ , εp ∈ R+ in Steps 6 and 7. Set
γ 0 := 0, k := 1, and � := 1.

Step 1 Set p+(z) := p�−1+ (z).

Step 2 Set V (z) := V k−1(z) and γ := γ k−1, and solve the
SOS programming problem

(SOSP1) max
v2,v3∈Pn−1,s1,s2,s3∈S

c

s.t. (14) and (15).

Save the resulting c as ck .

Step 3 Set V (z) := V k−1(z) and c := ck , and solve the
SOS programming problem

(SOSP2) max
v2,v3∈Pn−1,s1,s2,s3∈S

γ

s.t. (14) and (15).

Save the resulting γ , s2(z), and s3(z) as γ k , sk2 (z),
and sk3 (z), respectively.

Step 4 Set γ := γ k , s2(z) := sk2 (z), and s3(z) := sk3 (z),
and solve the SOS programming problem

(SOSP3) min
V∈P0,v1,v2,v3∈Pn−1,s1∈S

c

s.t. (13)–(15).

Save the resulting c as ck .

Step 5 Set c := ck , s2(z) := sk2 (z), and s3(z) := sk3 (z), and
solve the SOS programming problem

(SOSP4) max
V∈P0,v1,v2,v3∈Pn−1,s1∈S

γ

s.t. (13)–(15).

Save the resulting γ and V (z) as γ k and V k(z),
respectively.

Step 6 If γ k − γ k−1 < εγ , then go to Step 7. Otherwise,
set k ← k + 1, and go to Step 2.

Step 7 If � > 1 and the largest absolute value of the coef-
ficients of p�−1+ (z) − p�−2+ (z) is smaller than εp,

then go to Step 8. Otherwise, set V 0(z) := V k(z),
p�+(z) := V k(z), γ 0 := ck , k := 1, and � ← � + 1,
and go to Step 1.

Step 8 Output V k(h(x)) and ck .

The flowchart of Algorithm 1 is illustrated in Fig. 4. The
algorithm is composed of the two loops. In Loop 1, we solve
four SOS programming problems, i.e., SOSP1–SOSP4 at
each iteration k for obtaining a solution to the SOSP. The
SOSP1 is for determining c to be given in the SOSP2. This
problem can be solved by the linear search for c. In fact,
the constraints (14) and (15) include no products of the vari-
ables when V (z), γ , and c are fixed, and thus the problem of
finding v2(z), v3(z), s1(z), s2(z), and s3(z) satisfying the con-
straints can be solved as a semidefinite feasibility problem.
The SOSP2 is for finding a better γ . In a similar way to the
above, we can show that this problem also can be solved by
the linear search for γ . The SOSP3 and the SOSP4 play sim-
ilar roles to the SOSP1 and the SOSP2, respectively, where
s2(z) and s3(z) are fixed instead of V (z). In summary, we fix
some variables as an approach to the problem of the products
of the variables. Meanwhile, in Loop 2, we update p+(z) and
γ 0 based on V (z) and c obtained in Loop 1. This is because
setting Lγ (p+(z)) := Lc(V (z)) and solving again the SOSP
will give a better estimate of the ROA as seen from Fig. 3.

Remark 1 From V 0(z) := V k(z), p�+(z) := V k(z), and
γ 0 := ck in Step 7, the constraint (14) of the SOSP1 at � > 1
and k = 1 means Lc�−1∗ (V �−1∗ (z)) ⊆ Lc(V �−1∗ (z)) where

c�−1∗ and V �−1∗ (z) are the final c and V (z) at iteration � − 1,
respectively. Thus, the maximum value of c in the SOSP1 at
� > 1 and k = 1 would be c�−1∗ ; that is, c would not change.
However, the algorithm is not stuck because V (z) is updated
so as to increase γ in the SOSP4.

3.3 Problem to be considered

As mentioned in Sect. 1, the above algorithm is compli-
cated. In fact, the algorithm consists of the nine steps (Steps
0–8), and we have to iteratively solve the four SOS program-
ming problems (SOSP1–SOSP4), while changing the fixed
variables. Such complexity causes the increase of the time
and effort spent to understand and implement the algorithm,
which is undesirable in practice. In addition, due to the com-
plexity, it is difficult to theoretically analyze the behavior of
the algorithm.

4 Improvement of algorithm

Now, we present a simpler algorithm to solve the SOSP.
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Fig. 4 Flowchart of Algorithm 1

4.1 Proposed algorithm

As explained in Sect. 3.2.3, the SOSP includes the products
of the variables, and as a result, it cannot be efficiently solved
as a semidefinite programming problem. From the above dis-
cussion and the fact that the products are s1(z)γ , s2(z)V (z),
and s3(z)V̇ (z), we can solve the SOSP by the linear search
for γ if s2(z) and s3(z) are fixed. Therefore, we consider the
two SOS programming problems:

– a problem to determine s2(z) and s3(z) in addition to c,

– a problem to find V (z) maximizing γ ,

and alternately solve them.
Based on this idea, we modify Algorithm 1 as follows:

– Step 2 is modified as Step 2’:

Step 2’ Set V (z) := V k−1(z) and γ := γ k−1, and solve
the SOSP1. Then, save the resulting c, s2(z), and
s3(z) as ck , sk2 (z), and sk3 (z), respectively.

– Steps 3 and 4 are removed.

In the modified algorithm, we only have to solve the SOSP1
and the SOSP4. The SOSP1 is for determining c, s2(z), and
s3(z), and the SOSP4 is for finding V (z)maximizing γ . This
algorithm does not need the steps to solve the SOSP2 and the
SOSP3, and thus is simpler than the original one.

Furthermore, we choose the initial Lyapunov function
V 0(z) in Step 0 by solving the following problem:

(SOSP0) find (V 0, v1, v3, s2)

s.t.

V 0(z) − v�
1 (z)g(z) − q+(z) ∈ S, (16)

− s2(z)(β − r+(z)) − V̇ 0(z) − v�
3 (z)g(z) − q+(z) ∈ S

(17)

where β ∈ R+ is a positive number, r+(z) ∈ P+ is a positive
definite polynomial, and q+(z), β, and r+(z) are assumed to
be given. The first constraint corresponds to (13), that is, the
first constraint of the OP. Meanwhile, the second constraint
corresponds to the third constraint of the OP. In fact, this is
derived by substituting s3(z) = 1 for the constraint (15) of
the SOSP and by replacing c and V (z) with β and r+(z),
respectively. By imposing these constraints, we can obtain a
Lyapunov function satisfying (5) and (6). Also, the SOSP0 is
anSOS feasibility problem, and does not include the products
of the variables. Thus, this problem, can be efficiently solved
as a semidefinite feasibility problem.

4.2 Analysis

For the proposed algorithm, we obtain the following result.

Theorem 1 For the proposed algorithm, let the initial Lya-
punov function V 0(z) in Step 0 be given as a solution to
the SOSP0. Then, for each � ∈ {1, 2, . . .}, if there exists a
solution to the SOSP1 at k = 1, the following statements
hold.

(i) There exist solutions to the SOSP1 and the SOSP4 and

γ k ≥ γ k−1 (18)

holds at every k ∈ {1, 2, . . .}.
(ii) The relation Lc�−1∗ (V �−1∗ (z)) ⊆ Lc1(V

1(z)) holds.

Proof (i) We prove the statement by showing the following
three facts for the four cases of � = 1 and k = 1, � = 1 and
k > 1, � > 1 and k = 1, and � > 1 and k > 1.

(a) There exists a solution to the SOSP1.
(b) There exists a solution to the SOSP4.
(c) The relation (18) holds.

The proofs of (a)–(c) for those cases are given in Appendix
A.

(ii) From (i), for each � ∈ {1, 2, . . .}, there exists a solution
to the SOSP4 at k = 1. The constraint (14) of the SOSP4
at k = 1 implies that Lγ 1(p�+(z)) ⊆ Lc1(V

1(z)) holds at
each iteration � ∈ {1, 2, . . .}. This and p�+(z) := V �−1∗ (z) in
Step 7 provideLγ 1(V �−1∗ (z)) ⊆ Lc1(V

1(z)) at each iteration
� ∈ {1, 2, . . .}. In addition, (18) implies Lγ 0(V �−1∗ (z)) ⊆
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Lγ 1(V �−1∗ (z)). Therefore, from γ 0 := c�−1∗ in Step 7, we
have Lc�−1∗ (V �−1∗ (z)) ⊆ Lc1(V

1(z)), which proves (ii).

In Theorem 1, (i) guarantees the existence of solutions to
the SOSP1 and the SOSP4 at each iteration k ∈ {2, 3, . . .},
and further clarifies the behavior of γ k . More precisely, γ k is
monotone nondecreasing with respect to k ∈ {0, 1, . . .} for
each � ∈ {1, 2, . . .}. In this sense, the estimate of the ROA
does not becomeworse in Loop 1.Meanwhile, (ii) means that
when � is updated, the resulting Lc(V (z)) does not become
smaller than the previous one; that is, Loop 2 also does not
make the estimate of the ROA worse.

FromTheorem 1, the proposed algorithmworks as long as
there exists a solution to the SOSP1 at k = 1, and it converges
if the ROA is bounded. The convergence is proven as follows.
From (18), γ k converges as k → ∞ for each � ∈ {1, 2, . . .} if
the ROA is bounded. Moreover, for a bounded ROA, p�+(z)
converges as � → ∞. In fact, Lc(V (z)) does not become
smaller in Loop 2 from (ii) in Theorem1, and thusLγ (p+(z))
is asymptotically close to Lc(V (z)) if the ROA is bounded
(see Fig. 3). These two facts prove the convergence of the
proposed algorithm.

Theorem 1 does not guarantee the optimality of the
obtained solution, but is reasonable for the SOSP. In fact,
as explained in Sect. 3.2.3, the SOSP cannot be transformed
into a semidefinite programming problem, and thus it is dif-
ficult to directly obtain the optimal solution.

4.3 Examples

In order to demonstrate the performance of the proposed
algorithm, we provide examples for the two power systems
discussed in [1].

4.3.1 Model A: Systemwithout transfer conductances

Consider the power system

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) = x3(t),

ẋ2(t) = x4(t),

ẋ3(t) = − sin(x1(t)) − 0.5 sin(x1(t) − x2(t)) − 0.4x3(t),

ẋ4(t) = −0.5 sin(x2(t)) − 0.5 sin(x2(t) − x1(t))

−0.5x4(t) + 0.05.

(19)

This is a power system without transfer conductances, com-
posed of three generators, which has been called Model A
in [1]. In (19), for simplifying the description, the relative
phase angles and angular velocities to generator 3 are chosen
as the state variable vector, i.e., x(t) := [δ1(t)−δ3(t) δ2(t)−
δ3(t) δ̇1 − δ̇3(t) δ̇2(t) − δ̇3(t)]�. Since (19) has the asymp-
totically stable equilibrium point x = [0.020 0.060 0 0]�,

0 1 2 3 4 5
k

0

1

2

3

4

γ
k

Fig. 5 Time evolution of γ k at � = 1 for Model A in [1]

we perform a coordinate transformation for shifting the equi-
librium point to x = 0.

For the shifted system, we use the proposed algorithm,
where the SOS problems are handled by the free MATLAB
toolboxes: SOSTOOLS [12] version 3.00 and SeDuMi [14]
version 1.3. As the inputs to SOSTOOLS, let the degrees of
the polynomials be deg(V ) := 2, deg(v1) := 2, deg(v2) :=
0, deg(v3) := 2, deg(s1) := 0, deg(s2) := 2, and deg(s3) :=
0. Solving the SOSP0 for q+(z) := 10−3 ∑6

i=1 z
2
i , β :=

3, and r+(z) := ∑6
i=1 z

2
i , we obtain the initial Lyapunov

function

V 0(z) = 3.01z21 − 1.34z1z2 + 0.958z1z3 + 0.0354z1z4

− 0.00252z1z5+0.0643z1z6+2.37z22+0.259z2z3

+ 1.36z2z4 − 0.0827z2z5 − 0.0726z2z6 + 2.24z23
+ 0.741z3z4 − 0.00507z3z5 − 0.0216z3z6

+ 2.62z24 − 0.0166z4z5 − 0.00272z4z6

+ 3.06z25 − 0.955z5z6 + 2.51z26.

We further set p0+(z) := ∑6
i=1 z

2
i −1.5z1z2−0.5z5z6, εγ :=

0.05, and εp := 0.2.
Figure 5 illustrates the time evolution of γ k at � = 1. This

shows that γ k increases as k increases, which demonstrates
(18) in Theorem 1. Figure 6 also illustrates the time evolu-
tion of Lck (V

k(h(x))) and Lγ k (p+(h(x))), where � = 1,
(x3, x4) = (0, 0), and the thick and thin lines express the
boundaries of Lck (V

k(h(x))) and Lγ k (p+(h(x))), respec-
tively. We observe that Lγ k (p+(h(x))) ⊆ Lck (V

k(h(x)))

holds at each k and that Lck (V
k(h(x))) and Lγ k (p+(h(x)))

become larger as k increases.
The proposed algorithm then outputs

V (h(x)) = 2.32 sin2 x1 − 1.96 sin x1 sin x2 + 2.01 sin2 x2

+ 2.58 cos2 x1−2.09 cos x1 cos x2+2.58 cos2 x2

− 0.0174 sin x1 cos x1 − 0.0101 sin x1 cos x2

+ 0.0400 sin x2 cos x1 + 0.0405 sin x2 cos x2

+ 0.445x3 sin x1 − 0.0162x3 cos x1

+ 0.158x3 sin x2 + 0.0221x3 cos x2

+ 0.0536x4 sin x1 + 0.0256x4 cos x1

+ 1.15x4 sin x2 − 0.0939x4 cos x2
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Fig. 6 Time evolution of Lck (V
k(h(x))) and Lγ k (p+(h(x))) at � = 1 for Model A. a k = 1, b k = 2, c k = 3 d k = 5

+ 1.55x23 − 0.550x3x4 + 1.53x24
+ 0.0275 sin x1 − 3.06 cos x1 − 0.0805 sin x2

− 3.07 cos x2 − 0.00596x3 + 0.0683x4 + 3.07

and c = 10.18. The resulting estimate of the ROA (that
is, Lc(V (h(x)))) is depicted in Fig. 7 where (a) is for
(x3, x4) = (0, 0), (b) is for (x3, x4) = (1, 1), the thin line
expresses the estimate given in [1], i.e., the estimate obtained
by Algorithm 1, and the gray area represents the true ROA.
We see that the resulting estimate is included in the true
ROA. In addition, by numerical integration, the volume of
the estimated sets is calculated as 2.28 × 102 for the pro-
posed algorithm and 2.02 × 102 for Algorithm 1. Thus, we
conclude that the estimate of the ROA by the proposed algo-
rithm is better than that by the existing algorithm.

4.3.2 Model B: Systemwith transfer conductances

We next consider the power system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) = x3(t),

ẋ2(t) = x4(t),

ẋ3(t) = 33.5849 − 16.9811 sin(x1(t) − x2(t))

−1.8868 cos(x1(t) − x2(t)) − 59.6226 sin(x1(t))

−5.2830 cos(x1(t)) − 1.8868x3(t),

ẋ4(t) = 48.4810 + 11.3924 sin(x1(t) − x2(t))

−1.2658 cos(x1(t) − x2(t)) − 99.3671 sin(x2(t))

−3.2278 cos(x2(t)) − 1.2658x4(t).

(20)

This is a power systemwith transfer conductances, composed
of two generators and an infinite bus, which has been called
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Fig. 7 Estimates of ROA of Model A for two (x3, x4). a(x3, x4) = (0, 0), b(x3, x4) = (1, 1)

Model B in [1]. Note here that the infinite bus is regarded as
generator 3 and x(t) := [δ1(t) δ2(t) δ̇1(t) δ̇2(t)]� due to
δ3(t) ≡ 0 and δ̇3(t) ≡ 0. Since (20) has the asymptotically
stable equilibrium point x = [0.4680 0.4630 0 0]�, we per-
form a coordinate transformation for shifting the equilibrium
point to x = 0.

For the shifted system, we again use the proposed algo-
rithm, where the degrees of the polynomials and the param-
eters of the algorithm are the same as those in Sect. 4.3.1
unless otherwise stated. Solving the SOSP0, we obtain the
initial Lyapunov function

V 0(z) = 4.17z21 − 0.568z1z2 + 0.0991z1z3 + 0.0371z1z4

− 0.676z1z5 − 0.904z1z6 + 5.10z22 − 0.0394z2z3

+ 0.0598z2z4−0.385z2z5−0.774z2z6+0.0643z23
+ 0.0133z3z4 − 0.0133z3z5 − 0.0140z3z6

+ 0.0529z24 − 0.0299z4z5 − 0.0178z4z6

+ 2.56z25 − 0.116z5z6 + 3.16z26.

We also set p0+(z) := ∑6
i=1 z

2
i .

Figure 8 illustrates the time evolution of γ k at � = 1.
Figure 9 also illustrates the time evolution of Lck (V

k(h(x)))
andLγ k (p+(h(x))) at � = 1 in the sameway as that in Fig. 6.
We see that similar results to those in Sect. 4.3.1 are obtained.

The proposed algorithm then outputs

V (h(x)) = 1.09 sin2 x1 − 0.204 sin x1 sin x2 + 1.21 sin2 x2

+ 1.04 cos2 x1 − 0.287 cos x1 cos x2

+1.03 cos2 x2

+ 0.336 sin x1 cos x1 + 0.228 sin x1 cos x2

+ 0.139 sin x2 cos x1 + 0.376 sin x2 cos x2

+ 0.0517x3 sin x1 − 0.0259x3 cos x1

− 0.0254x3 sin x2 + 0.0133x3 cos x2

0 2 4 6 8 10

k

0

0.5

1

1.5

2

γ
k

Fig. 8 Time evolution of γ k at � = 1 for Model B in [1]

+ 0.0242x4 sin x1 − 0.00378x4 cos x1

+ 0.0262x4 sin x2 − 0.00508x4 cos x2

+ 0.0176x23 + 0.00289x3x4 + 0.0120x24
− 0.564 sin x1 − 1.79 cos x1 − 0.515 sin x2

− 1.77 cos x2 + 0.0126x3 + 0.00885x4 + 1.78

and c = 2.30. Figure 10 depicts the resulting estimate of the
ROA (that is, Lc(V (h(x)))) in the same way as that in Fig. 7,
where (a) is for (x3, x4) = (0, 0) and (b) is for (x3, x4) =
(7.5, 7.5). It turns out that the resulting estimate is included
in the true ROA. Moreover, by numerical integration, the
volume of the estimated sets is calculated as 1.97 × 103 for
the proposed algorithm and 1.67×103 for Algorithm 1. This
shows that the estimate of the ROA by our algorithm is better
than that by the existing algorithm also in this case.

Finally, we show examples of the time response of the
(shifted) system (20) in Fig. 11 where (a) is for x(0) :=
[0.5 − 0.5 0 0]� in the estimated ROA Lc(V (h(x))), (b)
is for x(0) := [1 − 2 0 0]� outside it, and each line
corresponds to each element of x(t). It turns out that x(t) in
(a) converges to the equilibrium point x = 0 but that in (b)
does not.
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Fig. 9 Time evolution of Lck (V
k(h(x))) and Lγ k (p+(h(x))) at � = 1 for Model B. a k = 1, b k = 2, c k = 5, d k = 10
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Fig. 10 Estimates of ROA of Model B for two (x3, x4). a (x3, x4) = (0, 0), b (x3, x4) = (7.5, 7.5)
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Fig. 11 Time responses of (shifted) Model B for two initial states.
a x(0) := [0.5 -0.5 0 0]�, b x(0) := [1 − 2 0 0]�

5 Conclusion

This paper has considered an algorithm estimating the ROA
of a given power systemby using SOSprogramming.By sim-
plifying the existingmethod to handle the bilinear constraints
of an SOS programming problem, we have presented a sim-
pler algorithm than the existing one. In addition, we have
analyzed the algorithm, and shown the convergence under
some conditions. These results provide an estimation algo-
rithm of the ROA which is simpler and with a theoretical
guarantee.

A future work is to extend our algorithm to power sys-
tems with uncertain parameters. Also, we should consider
the extension to controller design for improving the transient
stability of power systems.
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A Proofs of facts (a)–(c) in proof of (i)
in Theorem 1

A.1 Case of � = 1 and k = 1

(a) This follows from the condition in Theorem 1.

(b) The constraints (14) and (15) of the SOSP1 yield

− s11(z)(γ
0− p+(z))−v12

�
(z)g(z)−(V 0(z) − c1) ∈ S,

(21)

− s12(z)(c
1 − V 0(z)) − s13(z)V̇

0(z)

− v13
�
(z)g(z) − q+(z) ∈ S (22)

where s11(z) ∈ S and v12(z), v
1
3(z) ∈ P

n−1 are s1(z),
v2(z), and v3(z) given as a solution to the considered
SOS programming problem (e.g., the SOSP1 in this
case) at k = 1. By letting v01(z) ∈ P

n−1 be v1(z) given as
a solution to the SOSP0, it follows from (16), (21), and
(22) that the tuple (V 0(z), v01(z), v

1
2(z), v

1
3(z), s

1
1(z))

satisfies the constraints (13)–(15) of the SOSP4 for γ 0.
That is, there exists at least one feasible solution to the
SOSP4, which completes the proof.

(c) As shown in the proof of (b), there exists a tuple
(V (z), v1(z), v2(z), v3(z), s1(z)) satisfying the cons-
traints (13)–(15) of the SOSP4 for γ 0. This implies that
γ 1 is not worse than γ 0. Hence, (18) holds.

A.2 Case of � = 1 and k > 1

(a) By noting the constraints (14) and (15) of the SOSP4 at
iteration k − 1, we obtain (21) and (22) where the super-
scripts 0 and 1 are replacedwith k−1. Thismeans that the
tuple (vk−1

2 (z), vk−1
3 (z), sk−1

1 (z), sk−1
2 (z), sk−1

3 (z)) sat-
isfies the constraints (14) and (15) of the SOSP1 at
iteration k for ck−1. That is, there exists at least one feasi-
ble solution to the SOSP1 at each iteration k ∈ {2, 3, . . .},
which completes the proof.

(b) The constraint (13) of the SOSP4 at iteration k−1 yields

V k−1(z) − vk−1
1

�
(z)g(z) − q+(z) ∈ S (23)

where vk−1
1 (z) ∈ P

n−1 is defined similar to vk−1
2 (z) and

vk−1
3 (z). Next, by noting the constraints (14) and (15) of
the SOSP1 at iteration k, we obtain (21) and (22) where
the superscripts 0 and 1 are replaced with k − 1 and k,
respectively. This, togetherwith (23), shows that the tuple
(V k−1(z), vk−1

1 (z), vk2(z), v
k
3(z), s

k
1 (z)) satisfies the con-

straints (13)–(15) of the SOSP4 at iteration k for γ k−1.
That is, there exists at least one feasible solution to the
SOSP4 at each iteration k ∈ {2, 3, . . .}, which proves (b).

(c) The proof of (b) implies that a similar discussion to the
proof of (c) in Appendix A.1 holds for γ k and γ k−1 at
every k ∈ {2, 3, . . .}. Hence, (18) holds.

A.3 Case of � > 1 and k = 1

(a) This follows from the condition in Theorem 1.
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(b) From the constraint (13) of the SOSP4 and V 0(z) :=
V k(z) in Step 7, there exists a v1(z) ∈ P

n−1 satisfying
(16) at each iteration � ∈ {2, 3, . . .}. This, together with
the proof of (b) in Appendix A.1, shows (b).

(c) Similar to the proof of (c) inAppendixA.1, we can prove
(c).

A.4 Case of � > 1 and k > 1

The difference from the case of � = 1 and k > 1 is only
V 0(z), and this does not relate to the discussion in Appendix
A.2. Hence, similar to Appendix A.2, (a)–(c) are proven.
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