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Abstract
In this paper we use the puncturing and shortening techniques on two already-known 
classes of optimal cyclic codes in order to obtain three new classes of optimal linear 
codes achieving the Griesmer bound. The weight distributions for these codes are 
settled. We also investigate their dual codes and show that they are either optimal 
or almost optimal with respect to the sphere-packing bound. Moreover, these duals 
contain classes of almost maximum distance separable codes which are shown to 
be proper for error detection. Further, some of the obtained optimal linear codes are 
suitable for constructing secret sharing schemes with nice access structures.

Keywords Optimal linear codes · Almost MDS codes · Punctured codes · Shortened 
codes · Griesmer bound

1 Introduction

Let q be a power of a prime number. Denote by IFq the finite field with q elements. 
An [n, k, d] linear code, C , over IFq is a k-dimensional subspace of IFn

q
 with minimum 

Hamming distance d. In this context, the vectors of C are called codewords. We index 
the coordinates of the codewords in C with the elements in {0, 1,… , n − 1} . The 
linear code C is called cyclic if (c0, c1,… , cn−1) ∈ C implies (cn−1, c0,… , cn−2) ∈ C . 
In addition, C is called optimal if there is no [n, k, d�] code over IFq with d′ > d or 
its parameters meet a bound on linear codes. On the other hand, C is called almost 
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optimal if there is an optimal [n, k, d + 1] code over IFq or [n, k, d + 1] meets a bound 
on linear codes. Further, a linear code with parameters [n, k, n − k + 1] is called 
maximum distance separable (MDS for short), while a linear code with parameters 
[n, k, n − k] is said to be almost maximum distance separable (AMDS for short).

It is well known that there are several ways to construct new linear codes from 
old ones. For example, we can puncture a code or shorten it (see Sect. 2 for defini-
tions), extend it, we can also concatenate two codes or compute the subfield codes of 
a given code. In fact, many interesting and important codes have arisen by modify-
ing or combining existing codes (see for example [15, 16, 19, 21, 26, 28, 31, 32]). 
For instance, in [28] the authors studied the subfield codes and the subfield subcodes 
for a class of MDS codes, obtaining as a result a class of linear complementary dual 
codes (LCD codes) and a class of codes supporting 3-designs. Also, several new 
classes of optimal binary linear codes were derived by puncturing some binary lin-
ear codes in [31]. Furthermore, by shortening some Hamming, Simplex, Reed-Mul-
ler, and ovoid codes, eleven classes of optimal linear codes were presented in [21].

Recently, a class of optimal three-weight cyclic codes over IFq achieving the 
Griesmer bound was presented in [18, Theorem 11]. On the other hand, a class of 
optimal five-weight cyclic codes over IFq whose duals are also optimal was reported 
in [16, Theorem 6]. Shortly thereafter this class of codes was enlarged in [30, Theo-
rem 2]. In fact, the subfield and extended codes for these classes of optimal three- 
and five-weight cyclic codes were investigated in [19] and [16], respectively, show-
ing that some of the resulting codes are optimal or have the best known parameters.

In this paper we use the puncturing and shortening techniques on the optimal three- 
and five-weight cyclic codes presented in [18, Theorem 11] and [30, Theorem 2] in 
order to obtain three classes of optimal linear codes achieving the Griesmer bound. 
The weight distributions for these codes are settled using Prange’s Theorem (see The-
orem 4 below). It turns out that the studied codes have two, four, five or six nonzero 
weights, which is of interest as linear codes with few weights have a wide range of 
applications in many research fields such as authentication codes [9], secret sharing 
schemes [19, 23, 33], combinatorial designs [6], association schemes [4], design of 
frequency hopping sequences [10], strongly regular graphs [5, 19] and strongly walk-
regular graphs [25]. In fact, optimal linear codes with few weights have been reported 
in [2–4, 6–8, 13, 16–18, 25, 31] and more recently in [14, 15, 19, 23, 24, 28, 30, 32, 
34]. Thus, in the context of such reported codes, the codes presented here are new. 
The duals of the three classes of optimal linear codes are also investigated and it is 
shown that they are either optimal or almost optimal with respect to the sphere-pack-
ing bound. Moreover, these duals contain classes of AMDS codes which are shown to 
be proper for error detection. Further, some of the obtained optimal linear codes are 
suitable for constructing secret sharing schemes with nice access structures.

This paper is organized as follows: In Sect. 2 we establish the notation, give some def-
initions and recall some known results. In particular we recall two already-known classes 
of optimal cyclic codes over any finite field. In Sects. 3 and 4 we use the puncturing and 
shortening techniques on the optimal cyclic codes presented in Sect. 2 in order to obtain 
three new classes of optimal linear codes whose duals are either optimal or almost opti-
mal. Examples of such codes are given. Finally, Sect. 5 is devoted to conclusions.
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2  Notation, definitions and known results

Throughout this work we use the following:
Notation. Let IFq be as before. For an integer m ≥ 2 , let IFqm be the finite extension 

of degree m of the finite field IFq . Denote by TrIFqm∕IFq the trace function from IFqm to IFq . 
The weight enumerator of a linear code C of length n is defined as the polynomial ∑n

j=0
Aj(C)z

j , while the vector (Aj(C))
n
j=0

 is called its weight distribution, where Aj(C) , 
with 0 ≤ j ≤ n , denotes the number of codewords in C with Hamming weight j. If 
♯{1 ≤ j ≤ n ∶ Aj(C) ≠ 0} = M , then C is called an M-weight code. Let C be a linear 
code of length n over IFq . The dual code, C⟂ , of C is the linear code defined by

where ⟨⋅,⋅⟩ denotes the standard inner product in the vector space IFn
q
 . It is known 

that if C is an [n, k] linear code, then C⟂ is an [n, n − k] linear code. Let (Aj(C
⟂))n

j=0
 be 

the weight distribution of C⟂ , then the first five Pless power moments (see [20, pp. 
259–260]) for C are:

C
⟂ ∶= {v ∈ IFn

q
∶ ⟨v, c⟩ = 0, for all c ∈ C},

n∑
j=0

Aj(C) = qk ,

n∑
j=0

jAj(C) = qk−1(qn − n − A1(C
⟂)) ,

n∑
j=0

j2Aj(C) = qk−2[(q − 1)n(qn − n + 1) − (2qn − q − 2n + 2)A1(C
⟂)

+ 2A2(C
⟂)] ,

n∑
j=0

j3Aj(C) = qk−3[(q − 1)n(q2n2 − 2qn2 + 3qn − q + n2 − 3n + 2) − (3q2n2

− 3q2n − 6qn2 + 12qn + q2 − 6q + 3n2 − 9n + 6)A1(C
⟂)

+ 6(qn − q − n + 2)A2(C
⟂) − 6A3(C

⟂)] ,
n∑
j=0

j4Aj(C) = qk−4[(q − 1)n(q3n3 − 3q2n3 + 6q2n2 − 4q2n + q2 + 3qn3

− 12qn2 + 15qn − 6q − n3 + 6n2 − 11n + 6) − (4q3n3 − 6q3n2

+ 4q3n − q3 − 12q2n3 + 36q2n2 − 38q2n + 14q2 + 12qn3

− 54qn2 + 78qn − 36q − 4n3 + 24n2 − 44n + 24)A1(C
⟂)

+ (12q2n2 − 24q2n + 14q2 − 24qn2 + 84qn − 72q + 12n2

− 60n + 72)A2(C
⟂) − (24qn − 36q − 24n + 72)A3(C

⟂)

+ 24A4(C
⟂)] .
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The Pless power moments relate the weight distribution of a linear code to that of its 
dual code. In this paper we will use these identities to determine the minimum Ham-
ming distance of the dual code of a given code.

When constructing an [n, k, d] code over IFq it is desirable that its length n be 
minimal for given values of k, d and q. A lower bound for the length n in terms of 
these values is as follows (see [20, Theorem 2.7.4, p. 81]):

Theorem 1 (Griesmer bound) Let C be an [n, k, d] linear code over IFq . Then

where ⌈x⌉ denotes the smallest integer greater than or equal to x.

Another well-known bound for linear codes is [20, Theorem 1.12.1]:

Theorem 2 (Sphere-packing bound) An [n, k, d] linear code over IFq must satisfy

where ⌊x⌋ denotes the largest integer less than or equal to x.

The sphere-packing bound is useful, for example, to find out if a code with cer-
tain parameters exists. In the present work we use it to determine the maximum 
value that the minimum Hamming distance of a code can take given its length and 
dimension.

There are several ways to construct new codes from old ones (see [20, Sec-
tion 1.5]). In the following we recall two of these techniques.

Let C be a linear code of length n over IFq and i an integer such that 0 ≤ i ≤ n − 1 . 
We puncture the code C by deleting the i-th coordinate from each codeword. The 
resulting code is linear, of length n − 1 and is denoted by Ci . On the other hand, we 
shorten the code C by selecting only those codewords having a zero as their i-th 
component and deleting the i-th component from these codewords. The resulting 
code is linear, of length n − 1 and is denoted by Ci.

Remark 1 Let C , Ci and Ci be as before. Thus, since (C⟂)i = (Ci)
⟂ (see [20, Theo-

rem 1.5.7 (i)]) and (C⟂)⟂ = C , we have that ((C⟂)i)⟂ = Ci.

The parameters of a punctured code can be obtained through the following result:

Theorem 3 ([20, Theorem 1.5.1]) Let C be an [n,  k,  d] linear code over IFq and i 
an integer such that 0 ≤ i ≤ n − 1 . Let Ci be the punctured code of C whose i-th 

n ≥

k−1∑
j=0

⌈
d

qj

⌉
,

qk
⎛⎜⎜⎝

⌊ d−1

2
⌋�

j=0

(q − 1)j
�
n

j

�⎞⎟⎟⎠
≤ qn,
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coordinate is deleted. If d > 1 , then Ci is an [n − 1, k, d∗] code where d∗ = d − 1 if 
C has a minimum weight codeword with a nonzero i-th coordinate and d∗ = d 
otherwise.

Remark 2 From the previous theorem, it is important to stress that the dimension k, 
for the two linear codes C and Ci , remains unchanged.

When certain uniformity conditions hold, the weight distribution of a punctured 
or shortened code can be determined from the weight distribution of the original 
code. In order to recall that, let C be an [n,  k] linear code over IFq and let M be 
the qk × n matrix whose rows are all codewords in C . Let Mj be the submatrix of 
M consisting of the codewords of weight j. Then we say that the code C is homo-
geneous provided that for 0 ≤ j ≤ n , each column of Mj has the same weight (see 
[20, Sec. 7.6]). Prange proved the following result on homogeneous codes [20, 
Theorem 7.6.1]:

Theorem  4 (Prange) Let C be a homogeneous [n,  k,  d] linear code over IFq , with 
d > 1 , and i an integer such that 0 ≤ i ≤ n − 1 . Let Ci and Ci be the linear codes 
obtained from the code C by puncturing and shortening on the i-th coordinate, 
respectively. Then for 0 ≤ j ≤ n − 1 we have:

Let Symn denote the symmetic group composed of all permutations of the set 
{0, 1,… , n − 1} . Let v = (v0, v1,… , vn−1) ∈ IFn

q
 and � ∈ Symn . We define �(v) ∈ IFn

q
 

as

For a linear code C of length n, the permutation automorphism group of C , PAut(C) , 
is defined as

Moreover, PAut(C) is said to be transitive if for any two coordinates 
i, j ∈ {0, 1,… , n − 1} there is a permutation � ∈ PAut(C) such that �(i) = j.

Remark 3 It is known that a linear code C is homogeneous if C has a transitive auto-
morphism group (see [20, Exercise 402]).

Now, observe that if C is cyclic of length n, then by definition of cyclic code, the 
permutation � ∈ Symn defined as

Aj(C
i) =

n − j

n
Aj(C) +

j + 1

n
Aj+1(C), and Aj(Ci) =

n − j

n
Aj(C).

�(v) ∶=
(
v�(0), v�(1),… , v�(n−1)

)
.

PAut(C) ∶=
{
� ∈ Symn ∶ �(c) ∈ C, for all c ∈ C

}
.

� ∶=

(
0 1 2 ⋯ n − 2 n − 1

1 2 3 ⋯ n − 1 0

)
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is an element of PAut(C) . Therefore, note that for any two coordinates 
i, j ∈ {0, 1,… , n − 1} it holds that �j−i(i) = j , where the difference j − i must be 
taken modulo n. This means that PAut(C) is transitive (see also [22, Sec. II] and [27, 
Sec. 3.4]), and therefore, in the light of Remark 3, it is important to keep in mind 
that all cyclic codes are homogeneous.

The fact that cyclic codes are homogeneous is relevant since this property allows 
us to construct new linear codes from them, either through the puncturing or short-
ening techniques, whose weight distribution can be obtained immediately through 
Prange’s Theorem. This is, of course, provided that the weight distribution of the 
original cyclic codes is known. Furthermore if the cyclic codes, from which the 
punctured and shortened codes are constructed, have good parameters, then there 
are good chances that the resulting codes will also have good parameters. With this 
idea in mind, we end this section by recalling two already-known classes of optimal 
cyclic codes.

Theorem 5 ([18, Theorem 11]) Let e1 and e2 be integers (see [29, Theorem 1]) and 
let C(q,m,e1,e2) be the cyclic code of length n = qm − 1 over IFq given by

If gcd( q
m−1

q−1
, e2) = 1 and gcd(q − 1,me1 − e2) = 1 , then C(q,m,e1,e2) is an optimal three-

weight [n,m + 1, n − qm−1] cyclic code, achieving the Griesmer bound, with weight 
enumerator

In addition, if q > 2 , its dual code is an [n, n − m − 1, 3] cyclic code.

Recently, a class of optimal five-weight cyclic codes over IFq whose duals are 
also optimal was reported in [16, Theorem  6]. Shortly thereafter this class of 
codes was enlarged in [30, Theorem 2] and is presented below.

Theorem 6 Let e1, e2 and e3 be integers and let D(q,e1,e2,e3)
 be the cyclic code of length 

n = q2 − 1 over IFq given by

where

If q > 2 , gcd(q + 1, e3) = 1 , gcd(q − 1, e2 − e1) = 1 , and e3 ≡ e1 + e2 (mod q − 1) , 
then D(q,e1,e2,e3)

 is an optimal five-weight [n, 4, n − q − 1] cyclic code, achieving the 
Griesmer bound, with weight enumerator

C(q,m,e1,e2)
∶=

{(
ax

qm−1

q−1
e1 + TrIFqm∕IFq(bx

e2 )

)

x∈IF∗
qm

∶ a ∈ IFq, b ∈ IFqm

}
.

(1)1 + n(q − 1)zn−q
m−1

+ nzq
m−1(q−1) + (q − 1)zn.

D(q,e1,e2,e3)
=
{
c(a, b, c) ∶ a, b ∈ IFq, c ∈ IFq2

}
,

c(a, b, c) ∶=
(
ax(q+1)e1 + bx(q+1)e2 + TrIF

q2∕IFq
(cxe3 )

)
x∈IF∗

q2

.
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In addition, its dual code is an optimal [n, n − 4, 4] AMDS cyclic code achieving the 
sphere-packing bound (see [16, Theorem 6]).

3  The punctured and shortened codes of a class of optimal 
three‑weight cyclic codes

Through the following result we present two classes of optimal linear codes 
whose dual codes are either optimal or almost optimal.

Theorem  7 Let i be an integer such that 0 ≤ i ≤ n − 1 , where n = qm − 1 . Let 
C
i
(q,m,e1,e2)

 and C(q,m,e1,e2)i be the linear codes obtained from the cyclic code C(q,m,e1,e2) 
in Theorem 5 by puncturing and shortening on the i-th coordinate, respectively. If 
q > 2 , then the following assertions hold true: 

(A)  Ci
(q,m,e1,e2)

 is an optimal four-weight [n − 1,m + 1, n − qm−1 − 1] linear code 
over IFq , achieving the Griesmer bound, with weight enumerator 

 In addition, the dual code, Ci⟂
(q,m,e1,e2)

 , of Ci
(q,m,e1,e2)

 is an [n − 1, n − m − 2, 3] linear 
code which is almost optimal with respect to the sphere-packing bound.

(B)  C(q,m,e1,e2)i is an optimal two-weight [n − 1,m, n − qm−1] linear code over IFq , 
achieving the Griesmer bound, with weight enumerator 

 In addition, the dual code, C⟂
(q,m,e1,e2)i

 , of C(q,m,e1,e2)i is an optimal [n − 1, n − m − 1, 2] 
linear code achieving the sphere-packing bound.

Proof Part (A): Since C(q,m,e1,e2) is cyclic, then by Theorem 3 and the remark after it, 
the punctured code Ci

(q,m,e1,e2)
 has parameters [n − 1,m + 1, n − qm−1 − 1] . Conse-

quently, since the minimum Hamming distance of C
i
(q,m,e1,e2)

 is 
n − qm−1 − 1 = qm−1(q − 1) − 2 , we obtain

(2)
1 + (n − q)(q − 1)2zn−q−1 + 2n(q − 1)zn−q + nzq(q−1)

+ n(q − 1)zn−1 + 2(q − 1)zn.

(3)
1 + (n − qm−1)(q − 1)zn−q

m−1−1 + 2qm−1(q − 1)zn−q
m−1

+ (qm−1 − 1)zq
m−1(q−1) + (q − 1)zn−1.

(4)1 + qm−1(q − 1)zn−q
m−1

+ (qm−1 − 1)zq
m−1(q−1).
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which implies that Ci
(q,m,e1,e2)

 is optimal as it achieves the Griesmer bound. Again, 
since C(q,m,e1,e2) is cyclic, it is homogeneous (see Remark 3 and the discussion after 
it). Thus, by Theorem  4 and (1), we have that Aj(C

i
(q,m,e1,e2)

) = 0 , 0 ≤ j ≤ n − 1 , 
except for the following cases

which is in accordance with (3). Then the weight enumerator of Ci
(q,m,e1,e2)

 follows. 
Now, owing to (3) and the first four Pless power moments, we obtain that 
Aj(C

i⟂
(q,m,e1,e2)

) = 0 , for 1 ≤ j ≤ 2 , and

Since q > 2 , Ci⟂
(q,m,e1,e2)

 is an [n − 1, n − m − 2, 3] linear code. Further, by the sphere-
packing bound, it is not difficult to verify that for a code of length n − 1 and dimen-
sion n − m − 2 , its minimum Hamming distance can be at most 4. Therefore, the 
code Ci⟂

(q,m,e1,e2)
 is almost optimal.

Part (B): Since C⟂
(q,m,e1,e2)

 is an [n, n − m − 1] linear code, we have, thanks to 
Remark 2, that the punctured code (C⟂

(q,m,e1,e2)
)i is an [n − 1, n − m − 1] linear code. 

On the other hand, by Remark 1, we have that C(q,m,e1,e2)i = ((C⟂
(q,m,e1,e2)

)i)⟂ . In conse-
quence, C(q,m,e1,e2)i has length n − 1 and dimension n − 1 − (n − m − 1) = m . Further, 
as C(q,m,e1,e2) is homogeneous, we obtain by Theorem 4 and (1) that Aj(C(q,m,e1,e2)i) = 0 , 
0 ≤ j ≤ n − 1 , except for the following cases

⌈
qm−1(q − 1) − 2

q0

⌉
+

⌈
qm−1(q − 1) − 2

q1

⌉
+⋯ +

⌈
qm−1(q − 1) − 2

qm

⌉
,

= (qm − qm−1 − 2) + (qm−1 − qm−2) + (qm−2 − qm−3) +⋯ + (q − 1) + 1 ,

= qm − 2 = n − 1 ,

A0(C
i
(q,m,e1,e2)

) = A0(C(q,m,e1,e2)) = 1 ,

An−qm−1−1(C
i
(q,m,e1,e2)

) =
(n − qm−1 − 1) + 1

n
An−qm−1(C(q,m,e1,e2))

= (n − qm−1)(q − 1) ,

An−qm−1(C
i
(q,m,e1,e2)

) =
n − (n − qm−1)

n
An−qm−1(C(q,m,e1,e2))

+
(n − qm−1) + 1

n
Aqm−1(q−1)(C(q,m,e1,e2))

= qm−1(q − 1) + qm−1(q − 1) = 2qm−1(q − 1) ,

Aqm−1(q−1)(C
i
(q,m,e1,e2)

) =
n − (qm−1(q − 1))

n
Aqm−1(q−1)(C(q,m,e1,e2))

= qm−1 − 1 ,

An−1(C
i
(q,m,e1,e2)

) =
(n − 1) + 1

n
An(C(q,m,e1,e2)) = q − 1 ,

A3(C
i⟂
(q,m,e1,e2)

) =
(q − 1)(q − 2)(qm − 3)(qm − 4)

6
.
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which is in accordance with (4). Then the weight enumerator of C(q,m,e1,e2)i follows. 
From such weight enumerator we can see that the minimum Hamming distance of 
C(q,m,e1,e2)i

 is n − qm−1 = qm−1(q − 1) − 1 . Thus, we have

which implies that C(q,m,e1,e2)i is optimal by the Griesmer bound. Furthermore, owing 
to (4) and the first three Pless power moments, we obtain that A1(C

⟂

(q,m,e1,e2)i
) = 0 and

Since q > 2 , C⟂
(q,m,e1,e2)i

 is an [n − 1, n − m − 1, 2] linear code. Finally, by the sphere-
packing bound, it is not difficult to verify that for a code of length n − 1 and dimen-
sion n − m − 1 , its minimum Hamming distance can be at most 2. Hence, the code 
C
⟂

(q,m,e1,e2)i
 is optimal.   ◻

As particular cases of the previous theorem, the following two classes of AMDS 
codes are obtained.

Corollary 1 Assume the same notation as in the previous theorem. If m = 2 in Theo-
rem 7, then Ci⟂

(q,2,e1,e2)
 is an almost optimal [n − 1, n − 4, 3] AMDS code and C⟂

(q,2,e1,e2)i
 

is an optimal [n − 1, n − 3, 2] AMDS code.

Proof Direct from the definition of an AMDS code.   ◻

Example 1 The following are some examples of Theorem 7. 

(a)  Let (q,m, e1, e2) = (4, 4, 6, 8) and i an integer such that 0 ≤ i ≤ qm − 2 . Since 
gcd(

qm−1

q−1
, e2) = 1 and gcd(q − 1,me1 − e2) = 1 , C(4,4,6,8) belongs to the class of 

codes in Theorem  5. Thus, owing to Part (A) of Theorem  7, the punctured 

A0(C(q,m,e1,e2)i) = A0(C(q,m,e1,e2)) = 1 ,

An−qm−1(C(q,m,e1,e2)i) =
n − (n − qm−1)

n
An−qm−1(C(q,m,e1,e2))

= qm−1(q − 1) ,

Aqm−1(q−1)(C(q,m,e1,e2)i) =
n − (qm−1(q − 1))

n
Aqm−1(q−1)(C(q,m,e1,e2))

= qm−1 − 1 ,

⌈
qm−1(q − 1) − 1

q0

⌉
+

⌈
qm−1(q − 1) − 1

q1

⌉
+⋯ +

⌈
qm−1(q − 1) − 1

qm−1

⌉
,

= (qm − qm−1 − 1)+(qm−1 − qm−2) + (qm−2 − qm−3) +⋯ + (q2 − q) + (q − 1),

= qm − 2 = n − 1 ,

A2(C
⟂

(q,m,e1,e2)i
) =

(q − 1)(q − 2)(qm − 3)

2
.
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code Ci
(4,4,6,8)

 is an optimal four-weight [254, 5, 190] linear code over IF4 with 
weight enumerator 

 while its dual code Ci⟂
(4,4,6,8)

 is an almost optimal [254,  249,  3] linear code with 
respect to the sphere-packing bound. Furthermore, owing to Part (B) of Theorem 7, 
the shortened code C(4,4,6,8)i is an optimal two-weight [254, 4, 191] linear code over 
IF4 with weight enumerator 

 while its dual code C⟂
(4,4,6,8)i

 is an optimal [254, 250, 2] linear code.

(b)  Let (q,m, e1, e2) = (9, 2, 4, 3) and i an integer such that 0 ≤ i ≤ qm − 2 . Since 
gcd(

qm−1

q−1
, e2) = 1 and gcd(q − 1,me1 − e2) = 1 , C(9,2,4,3) belongs to the class of 

codes in Theorem 5. Thus, owing to Part (A) of Theorem 7 and Corollary 1, 
the punctured code Ci

(9,2,4,3)
 is an optimal four-weight [79, 3, 70] linear code 

over IF9 with weight enumerator 

 while its dual code Ci⟂
(9,2,4,3)

 is an almost optimal [79, 76, 3] AMDS linear code with 
respect to the sphere-packing bound. Moreover, owing to Part (B) of Theorem 7 and 
Corollary 1, the shortened code C(9,2,4,3)i is an optimal two-weight [79, 2, 71] linear 
code over IF9 with weight enumerator 

 while its dual code C⟂
(9,2,4,3)i

 is an optimal [79, 77, 2] AMDS linear code.

Remark 4 According to the code tables at [12], the dual codes [254,  249,  3] and 
[79, 76, 3] obtained through Part (A) of Theorem 7 are optimal.

We end this section by showing that the shortened codes in Part (B) of Theo-
rem 7 are minimal. To achieve this, we must first recall what a minimal code is.

For any c = (c0, c1,… , cn−1) ∈ IFn
q
 , the support of c is defined by the set 

{j ∶ 0 ≤ j ≤ n − 1, cj ≠ 0} . Furthermore, for any two vectors c, c� ∈ IFn
q
 , c is said 

to cover c′ if the support of c contains that of c′ . A nonzero codeword is called 
minimal if it covers only its multiples in a linear code. A linear code is said to be 
minimal if every codeword is minimal.

Minimal linear codes are of interest since these codes are suitable for con-
structing secret sharing schemes with nice access structures (see for example 
[19, 23, 33]). Ashikhmin and Barg [1] proved that a sufficient condition for a 
linear code C over IFq to be minimal is that

1 + 573z190 + 384z191 + 63z192 + 3z254,

1 + 192z191 + 63z192,

1 + 568z70 + 144z71 + 8z72 + 8z79,

1 + 72z71 + 8z72,
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where wmin and wmax denote the minimum and maximum nonzero weights in C , 
respectively. Thus, since

we have that any shortened two-weight code C(q,m,e1,e2)i , obtained from Part (B) of 
Theorem 7, is minimal.

4  The punctured codes of a class of optimal five‑weight cyclic codes

By means of the following result we present a class of optimal linear codes whose 
duals are not only optimal but also AMDS.

Theorem  8 Let i be an integer such that 0 ≤ i ≤ n − 1 , where n = q2 − 1 . Let 
D

i
(q,e1,e2,e3)

 be the code obtained from the cyclic code D(q,e1,e2,e3)
 in Theorem  6 by 

puncturing on the i-th coordinate. If q > 2 , then Di
(q,e1,e2,e3)

 is an optimal 
[n − 1, 4, n − q − 2] linear code over IFq , achieving the Griesmer bound, with weight 
enumerator

In addition, the dual code, Di⟂
(q,e1,e2,e3)

 , of Di
(q,e1,e2,e3)

 is an optimal [n − 1, n − 5, 4] 
AMDS linear code achieving the sphere-packing bound.

Proof Since D(q,e1,e2,e3)
 is cyclic, then by Theorem  3 and the remark after it, the 

punctured code Di
(q,e1,e2,e3)

 has parameters [n − 1, 4, n − q − 2] . Consequently, since 
the minimum Hamming distance of Di

(q,e1,e2,e3)
 is n − q − 2 = q(q − 1) − 3 , we obtain

which implies that Di
(q,e1,e2,e3)

 is optimal as it achieves the Griesmer bound. Further, 
by Remark 3 and the discussion after it, the cyclic code D(q,e1,e2,e3)

 is homogeneous. 
Thus, by Theorem 4 and (2), we have that Aj(D

i
(q,e1,e2,e3)

) = 0 , 0 ≤ j ≤ n − 1 , except 
for the following cases

wmin

wmax

>
q − 1

q
,

qm−1(q − 1) − 1

qm−1(q − 1)
>

q − 1

q
,

(5)
1 + (n − q)(q − 1)(q − 2)zn−q−2 + 3(n − q)(q − 1)zn−q−1

+ 3q(q − 1)zn−q + (q − 1)zq(q−1) + (n − 1)(q − 1)zn−2 + 3(q − 1)zn−1.

⌈
q(q − 1) − 3

q0

⌉
+

⌈
q(q − 1) − 3

q1

⌉
+

⌈
q(q − 1) − 3

q2

⌉
+

⌈
q(q − 1) − 3

q3

⌉
,

= (q2 − q − 3) + (q − 1) + 1 + 1 = q2 − 2 = n − 1 ,
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which is in accordance with (5). Then the weight enumerator of Di
(q,e1,e2,e3)

 follows. 
Now, owing to (5) and the first five Pless power moments, we obtain that 
Aj(D

i⟂
(q,e1,e2,e3)

) = 0 , for 1 ≤ j ≤ 3 , and

Since q > 2 , Di⟂
(q,e1,e2,e3)

 is an [n − 1, n − 5, 4] AMDS linear code. Finally, by the 
sphere-packing bound, it is not difficult to verify that for a code of length n − 1 and 
dimension n − 5 , its minimum Hamming distance can be at most 4. Therefore, the 
code Di⟂

(q,e1,e2,e3)
 is optimal.   ◻

Remark 5 Let D(q,e1,e2,e3)i
 be the linear code obtained from the cyclic code D(q,e1,e2,e3)

 
in Theorem 6 by shortening on some coordinate 0 ≤ i ≤ q2 − 2 . Thus, it is interest-
ing to note that if q > 2 , then the shortened code D(q,e1,e2,e3)i

 has the same parameters 
and the same weight distribution as the punctured code Ci

(q,2,e1,e2)
 in Part (A) of The-

orem 7 (therein m = 2).

Example 2 The following are some examples of the previous theorem. 

A0(D
i
(q,e1,e2,e3)

) = A0(D(q,e1,e2,e3)
) = 1 ,

An−q−2(D
i
(q,e1,e2,e3)

) =
(n − q − 2) + 1

n
An−q−1(D(q,e1,e2,e3)

)

= (n − q)(q − 1)(q − 2) ,

An−q−1(D
i
(q,e1,e2,e3)

) =
n − (n − q − 1)

n
An−q−1(D(q,e1,e2,e3)

)

+
(n − q − 1) + 1

n
An−q(D(q,e1,e2,e3)

)

= (n − q)(q − 1) + 2(n − q)(q − 1) = 3(n − q)(q − 1) ,

An−q(D
i
(q,e1,e2,e3)

) =
n − (n − q)

n
An−q(D(q,e1,e2,e3)

)

+
(n − q) + 1

n
Aq(q−1)(D(q,e1,e2,e3)

)

= 2q(q − 1) + q(q − 1) = 3q(q − 1) ,

Aq(q−1)(D
i
(q,e1,e2,e3)

) =
n − (q(q − 1))

n
Aq(q−1)(D(q,e1,e2,e3)

) = q − 1 ,

An−2(D
i
(q,e1,e2,e3)

) =
(n − 2) + 1

n
An−1(D(q,e1,e2,e3)

) = (n − 1)(q − 1) ,

An−1(D
i
(q,e1,e2,e3)

) =
n − (n − 1)

n
An−1(D(q,e1,e2,e3)

)

+
(n − 1) + 1

n
An(D(q,e1,e2,e3)

)

= (q − 1) + 2(q − 1) = 3(q − 1) ,

A4(D
i⟂
(q,e1,e2,e3)

) =
(q − 1)(q + 2)(q − 2)2(q2 − 3)(q2 − 5)

24
.



1 3

Obtaining new classes of optimal linear codes by puncturing…

(a)  Let (q, e1, e2, e3) = (3, 2, 7, 5) and i an integer such that 0 ≤ i ≤ q2 − 2 . Since 
gcd(q + 1, e3) = 1 , gcd(q − 1, e2 − e1) = 1 , and e3 ≡ e1 + e2 (mod q − 1) , 
D(3,2,7,5) belongs to the class of codes in Theorem  6. Thus, owing to Theo-
rem 8, the punctured code Di

(3,2,7,5)
 is an optimal five-weight [7,  4,  3] linear 

code over IF3 with weight enumerator 

 while its dual code Di⟂
(3,2,7,5)

 is an optimal [7, 3, 4] AMDS linear code.

(b)  Let (q, e1, e2, e3) = (8, 3, 14, 10) and i an integer such that 0 ≤ i ≤ q2 − 2 . Since 
gcd(q + 1, e3) = 1 , gcd(q − 1, e2 − e1) = 1 , and e3 ≡ e1 + e2 (mod q − 1) , 
D(8,3,14,10) belongs to the class of codes in Theorem 6. Thus, owing to Theo-
rem 8, the punctured code Di

(8,3,14,10)
 is an optimal six-weight [62, 4, 53] linear 

code over IF8 with weight enumerator 

 while its dual code Di⟂
(8,3,14,10)

 is an optimal [62, 58, 4] AMDS linear code.

(c)  Let (q, e1, e2, e3) = (9, 5, 2, 7) and i an integer such that 0 ≤ i ≤ q2 − 2 . Since 
gcd(q + 1, e3) = 1 , gcd(q − 1, e2 − e1) = 1 , and e3 ≡ e1 + e2 (mod q − 1) , 
D(9,5,2,7) belongs to the class of codes in Theorem  6. Thus, owing to Theo-
rem 8, the punctured code Di

(9,5,2,7)
 is an optimal six-weight [79, 4, 69] linear 

code over IF9 with weight enumerator 

 while its dual code Di⟂
(9,5,2,7)

 is an optimal [79, 75, 4] AMDS linear code.

When a q-ary [n, k] linear code C with weight distribution (Aj(C))
n
j=0

 is used for 
error detection on a q-ary symmetric channel with symbol error probability � , the 
probability of undetected error is given by (see [11, Sec. IV])

If Pue(C, �) is an increasing function of � on the interval [0, (q − 1)∕q] , then C is said 
to be proper for error detection. In [11] the error detection capability of AMDS 
codes was investigated and the authors found the following sufficient condition for 
an AMDS code to be proper for error detection:

Lemma 1 ([11, Lemma 4]) Let C be an [n, k] AMDS code over IFq . Then, C is proper 
if

1 + 10z3 + 30z4 + 18z5 + 16z6 + 6z7,

1 + 2310z53 + 1155z54 + 168z55 + 7z56 + 434z61 + 21z62,

1 + 3976z69 + 1704z70 + 216z71 + 8z72 + 632z78 + 24z79,

Pue(C, �) ∶=

n∑
j=1

Aj(C)

(
�

q − 1

)j

(1 − �)n−j.
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Remark 6 It is not difficult to verify that the AMDS linear codes Ci⟂
(q,2,e1,e2)

 , C⟂
(q,2,e1,e2)i

 
and Di⟂

(q,e1,e2,e3)
 , from Corollary 1 and Theorem 8, satisfy the above condition. There-

fore, it is important to remark that these codes are proper for error detection.

5  Conclusions

Let q > 2 be a prime power and m ≥ 2 an integer. In this paper we used the punctur-
ing and shortening techniques on two already-known classes of optimal cyclic codes 
(Theorems 5 and 6) in order to obtain: 

(i)  A class of optimal four-weight [qm − 2,m + 1, qm−1(q − 1) − 2] linear codes 
over IFq , achieving the Griesmer bound, whose duals are almost optimal 
[qm − 2, qm − m − 3, 3] linear codes with respect to the sphere-packing bound 
(Part (A) of Theorem 7). Through the analysis of several examples it is sug-
gested that such duals are optimal (Remark 4).

(ii)  A class of optimal two-weight [qm − 2,m, qm−1(q − 1) − 1] linear 
codes over IFq , achieving the Griesmer bound, whose duals are optimal 
[qm − 2, qm − m − 2, 2] linear codes with respect to the sphere-packing bound 
(Part (B) of Theorem 7). Further, as pointed out at the end of Sect. 2, these 
two-weight codes are minimal and therefore suitable for constructing secret 
sharing schemes with nice access structures.

(iii)  A class of optimal [q2 − 2, 4, q(q − 1) − 3] linear codes over IFq , achieving 
the Griesmer bound, whose duals are optimal [q2 − 2, q2 − 6, 4] AMDS linear 
codes achieving the sphere-packing bound (Theorem 8).

The weight distributions for these classes of codes were determined explicitly. More-
over, if m = 2 , then the dual codes in (i) and (ii) are AMDS (Corollary 1). Furthermore, 
all the AMDS codes presented in this paper are proper for error detection (Remark 6). 
Finally, as pointed out at the beginning of this work, the classes of optimal linear codes 
presented here seems to be new.
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