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Abstract
We introduce the concept of subalgebra spectrum, Sp(A), for a subalgebra A of finite 
codimension in �[x] . The spectrum is a finite subset of the underlying field. We also 
introduce a tool, the characteristic polynomial of A, which has the spectrum as its 
set of zeroes. The characteristic polynomial can be computed from the generators 
of A, thus allowing us to find the spectrum of an algebra given by generators. We 
proceed by using the spectrum to get descriptions of subalgebras of finite codimen-
sion. More precisely we show that A can be described by a set of conditions that 
each is either of the type f (�) = f (�) for �, � in Sp(A) or of the type stating that 
some linear combination of derivatives of different orders evaluated in elements of 
Sp(A) equals zero. We use these types of conditions to, by an inductive process, find 
explicit descriptions of subalgebras of codimension up to three. These descriptions 
also include SAGBI bases for each family of subalgebras.

Keywords Subalgebra spectrum · SAGBI basis · Derivation · Resultant

Mathematics Subject Classification 13P05 · 13P10 · 13P15 · 12H05

1  Introductory examples

Let � be an algebraically closed field of characteristic zero and A be a unital subalge-
bra in �[x]. To begin with we give several non-trivial examples of such subalgebras.
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Example 1 A = {f (x)|f �(0) = f ��(0) = f (5)(0) = 0}.

Example 2 Let � be a primitive root of order 8.

Example 3 Let � be a primitive root of order 12.

Example 4 Let � be a primitive root of order 3.

It is not difficult to verify directly that we really get subalgebras. One can check 
that in fact, if given by generators, they are:

We want to find general principles for how descriptions using conditions in our 
examples relate to descriptions in terms of generators and other characteristics of 
subalgebras.

We restrict ourselves to unital subalgebras of finite codimension n and give a 
classification for small n. Note that a unital subalgebra in �[x] is commutative, asso-
ciative and contains all constants.

2  SAGBI bases and type

One of our aims is to get a deeper understanding of the structure of SAGBI bases, 
for example to find ways to add an extra element to a SAGBI basis in ways that 
result in a new SAGBI basis. For this reason we remind the reader of some defini-
tions, which we adapt to our univariate situation. More general definitions can be 
found for example in [1, 2] or [3].

If A is a subalgebra in �[x] the set S of all possible degrees of the non-constant 
polynomials in A form a numerical semigroup (that is an additive semigroup con-
sisting of positive integers). It is well-known that such a semigroup is finitely gener-
ated. For any finite generating set we can find a finite set of polynomials G such that 
our set is exactly {deg gi|gi ∈ G}. We call G a SAGBI basis for A. A proper subset 
of G can be a SAGBI basis itself, but if there are no such subsets we say that G is 
minimal.

For any non-constant polynomial f of degree s ∈ S we can find a product 
g =

∏
gi∈G

gci such that deg g =
∑

ci deg gi = s. Forming f − �g with a suitable con-
stant � ∈ � we can obtain a polynomial of smaller degree. We call this operation 
subduction. If the degree of the obtained polynomial still belongs to S,  then we can 
perform another subduction. The importance of the SAGBI basis lies in the fact that 
f ∈ A if and only if there exists a sequence of subductions reducing f to a constant.

A = {f (x)|f (1) = f (−1), f (�) = f (�7), f (�3) = f (�5)}.

A = {f (x)|f �(0) = 0, f (�) = f (�5), f (�7) = f (�11)}.

A = {f (x)|f (1) = f (�) = f (�2), f �(1) + �2f �(�) + �f �(�2) = 0}.

1) ⟨x4, x3⟩ 2) ⟨x4, x3 − x⟩ 3) ⟨x4 − x2, x3⟩ 4) ⟨x4 − x, x3⟩.
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Let A be an algebra in �[x] of finite codimension. We define its 
typeT(A) = (d1,… , ds) as the ordered list of degrees di of the elements of a mini-
mal SAGBI basis. Thus the numbers di are simply the generators of the numerical 
semigroup S = {deg f (x)|f (x) ∈ A}. The type is uniquely determined and for a fixed 
small codimension we can easily enumerate all possible types. For example, there is 
only one possible type (2, 3) for codimension one and two types, namely (2, 5) and 
(3, 4, 5) for codimension two. For codimension three the possible types are:

3  Monomial subalgebras

As we have seen Example 1 in fact describes the subalgebra generated by x4 and x3 . 
This result can easily be generalised.

Theorem 1 Let A be a monomial subalgebra, thus A is spanned over � by mono-
mials {xs, s ∈ S}, where S is a numerical semigroup. Then f (x) ∈ A if and only if 
f (i)(0) = 0 for each i that does not belong to S.

Proof First we check that the derivative conditions describe a subalgebra A′ . The 
conditions are linear so we need only to make sure that if f(x) and g(x) satisfy the 
conditions then the same is true for the product f(x)g(x). Indeed if i ∉ S then we have

and either j or i − j does not belong to S (otherwise i ∈ S) and in any case we obtain 
that f (j)(0)g(i−j)(0) = 0. Secondly we see directly that any monomial xs, s ∈ S satis-
fies the conditions. In fact only the monomials xi with i ∉ S do not satisfy the condi-
tions. So certainly A ⊆ A′ , but we can say more: if f (x) ∈ A� then subduction by A 
reduces f(x) to another polynomial that satisfies the conditions but is a linear combi-
nation of the monomials xi with i ∉ S . Such a polynomial must be zero and therefore 
f (x) ∈ A and A′ ⊆ A. We conclude that A� = A .   ◻

Here is another useful property of monomial algebras.

Theorem 2 Let A = ⟨xa1 , xa2 ,… , xat⟩ be a monomial subalgebra. There exists � ≠ � 
such that f (�) = f (�) for all f (x) ∈ A if and only if d = gcd(a1, a2,… , at) > 1.

Proof If d > 1 let � be a primitive d-th root of unity, �d = 1. Then we can choose 
arbitrary nonzero � and � = �� to get f (�) = f (�) for all f (x) ∈ A.

For the opposite direction suppose that f (�) = f (�) for all f (x) ∈ A with � ≠ �. 
Note that � ≠ 0. Let d =

∑
ciai for some coefficients c1,… cn guaranteed to exist by 

the Euclidean algorithm. Then

(2, 7), (3, 4), (3, 5, 7), (4, 5, 6, 7).

(fg)(i) =
∑

j

(
i

j

)
f (j)g(i−j)
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  ◻

Note that if d > 1 then the subalgebra A is contained in �[xd] and therefore it has 
infinite codimension. Such A are outside the scope of our work.

4  Subalgebras of codimension one

Next, let us look at subalgebras of codimension one (in �[x]). Although relatively 
simple, these algebras give some insight. Obviously such subalgebras have type 
(2, 3) thus they contain polynomials of degree 2 and 3, which generate our subalge-
bra. Using variable substitution we can restrict ourselves to the case where the poly-
nomial of degree two is x2 . (Note that all constants are always in any subalgebra). 
Now the polynomial of degree three can be chosen as x3 − ax . (Again, the constants 
are not essential and bx2 can be subtracted). If a = 0 then we get a monomial case 
and know how to describe it from Theorem 1.

If a ≠ 0 then the replacement x → �x with �2 = a reduces the situation to the 
case x3 − x. So it is sufficient to study the subalgebra A = ⟨x3 − x, x2⟩. Note 
that for each odd k > 1 we have xk − x = (xk−2 − x)x2 + (x3 − x) ∈ A by induc-
tion. So f (x) =

∑
aix

i can be subduced to cx where c = a1 + a3 + a5 +⋯ . Thus 
f (x) ∈ A ⇔ c = 0 ⇔ f (1) − f (−1) = 0. This gives us the following result:

Theorem 3 For any subalgebra A of codimension one either there exists � such that 
f (x) ∈ A ⇔ f �(�) = 0 or there exists � ≠ � such that f (x) ∈ A ⇔ f (�) = f (�).

Proof We only need to recover the old variable. Then the monomial case corre-
sponds to the first case and f (1) = f (−1) to the second.   ◻

The above theorem already displays some ideas that we will try to generalise later 
on.

5  Derivations

Definition 1 Let � ∈ �. A linear map D ∶ A → � is called an �-derivation if it sat-
isfies the condition

for any f (x), g(x) ∈ A. We simply call it a derivation if it is an �-derivation for some 
�.

(
𝛼

𝛽

)ai

= 1 ⇒

(
𝛼

𝛽

)d

=
∏((

𝛼

𝛽

)ai
)ci

= 1 ⇒ d > 1.

D(f (x)g(x)) = D(f (x))g(�) + f (�)D(g(x))
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A simple example is trivial derivation f (x) → cf �(�). For A = �[x] we have only 
trivial �-derivations (with c = D(x) ), but as we will see later we can find other deri-
vations in proper subalgebras.

Note that the set of �-derivations is a vector space over �, but the set of all deriva-
tions on A is not. Nevertheless it is important for the future to note that a �-deriva-
tion is also an �-derivation if f (�) = f (�) for any f (x) ∈ A.

Now we can formulate an important result obtained in [4], that will turn out to be 
pivotal for our continued exploration.

Theorem 4 Any subalgebra A of codimension n > 1 is contained in a subalgebra B 
of codimension n − 1. Moreover A can be defined in B either as the kernel of some �
-derivation of B or as A = {f (x) ∈ B|f (�) = f (�)} for some �, � ∈ �.

Note that in [4] derivations are defined in a more general way, by the condition 
D(fg) = D(f )�(g) + �(f )D(g), for some ring homomorphism � ∶ B → � . But in the 
same article it is shown that any homomorphism A → � can be lifted to a homo-
morphism B → � . Induction over codimension shows that in our situation such an 
algebra homomorphism is simply a homomorphism �[x] → � which is nothing else 
than a map f (x) → f (�) for some � ∈ �. For that reason we can use �-derivation in 
our reformulation.

We are thankful our referee for the following important remark. We can introduce 
more general (�, �)-derivations as maps D ∶ B → � such that

and still have A = kerD as a subalgebra. Thus we can consider the map 
f (x) → f (�) − f (�) as (�, �)-derivation and �-derivations as (�, �)-derivation which 
explains why many of our proofs below are quite similar for both alternatives. In 
fact his comments give much deeper generalisation, but we restrict ourselves by this 
remark only.

6  Subalgebra conditions

A straightforward induction argument using Theorem 4 shows that any subalgebra A 
of codimension n can be described by n linear conditions Li(f ) = 0 where Li is either 
a derivation of some subalgebra containing A or has the form Li(f ) = f (�i) − f (�i) 
for some constants �i, �i ∈ �.

Our main hypothesis when initiating this work (which will be proved later) was 
that linear conditions defining subalgebras can be stated in a neater way. Namely, we 
hoped that for any subalgebra of finite codimension m there would exist a finite set, 
which we will call the spectrum of the algebra, and m linear conditions expressed 
in terms of f(x) and finitely many derivatives f (k) evaluated in the elements of the 
spectrum which determine if f (x) ∈ A. We have seen such conditions in Theorems 1 
and 3 and in Examples 1–4 and want to understand their nature.

D(f (x)g(x)) = f (�)Dg(x) + D(f (x))g(�)
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We want them to be subalgebra conditions. By this we mean that the set of all 
polynomials satisfying the conditions form a subalgebra. Since our conditions are 
linear we only need to demand two things for them to be subalgebra conditions. 
Firstly, a trivial one: that constants should satisfy the conditions. Secondly, a non-
trivial one: that whenever f(x) and g(x) satisfy the conditions, so does the product 
f(x)g(x).

For example the condition f (�) = 0 is not a subalgebra condition, because the 
non-zero constants do not satisfy it. But the condition f (�) = f (�) is a subalgebra 
condition. The same is true for the condition f �(�) = 0.

The single condition f �(�) + f �(�) = 0 is not a subalgebra condition, but together 
the conditions f (�) = f (�), f �(�) + f �(�) = 0 are subalgebra conditions. As this 
example shows being subalgebra conditions is a property of a set of conditions. (The 
set may, however, as in the first two examples, consist of just one element.)

In general, any condition 
∑

cif
�(�i) = 0 combined with f (�1) = f (�2) = ⋯ = f (�k) 

gives a set of subalgebra conditions.
Indeed since the conditions are linear we only need to check that if f(x) and g(x) 

satisfy the conditions then the same is true for f(x)g(x). We have

One can find generalisations including derivatives of higher order, but we skip this 
for now and show only one spectacular example of subalgebra conditions:

7  Spectrum

Now we want to introduce the main definition of this article.

Definition 2 Let A be a subalgebra of finite codimension. Its spectrum consists 
of � ∈ � such that either f �(�) = 0 for all f (x) ∈ A or there exists � ≠ � such that 
f (�) = f (�) for all f (x) ∈ A . In the second case � obviously belongs to the spectrum 
as well. We write Sp(A) to denote the spectrum of the algebra A.

Unfortunately the word spectrum already has a specific meaning, so it would be 
more correct to use something like “subalgebra spectrum”, but because we believe 
that this notion is very important and that the word spectrum reflects this concept 
very well we use the word “spectrum”. This makes our article more readable and in 
our context the interpretation should be unambiguous.

We have already seen in Theorem  3 how the spectrum naturally arises in the 
description of subalgebras of codimension one.

One trivial but useful remark is the following.

∑
ci(fg)

�(�i) =
∑

ci f
�(�i)g(�i) + ci f (�i)g

�(�i)

=
(∑

ci f
�(�i)

)
g(�

1

) + f (�
1

)
(∑

ci g
�(�i)

)
= 0.

f �(0) = 0; f ���(0) = 3f ��(0); f (5)(0) = 10f (4)(0).
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Theorem  5 If A ⊆ B are two subalgebras in �[x] then Sp(B) ⊆ Sp(A) . Thus the 
spectrum has the reversing inclusions property.

Proof Each condition that holds in B holds in A as well.   ◻

Theorem 6 Each proper subalgebra A in �[x] has non-empty spectrum.

Proof Induction and Theorem  4 shows that A is a subalgebra of a subalgebra of 
codimension 1. Then Theorems 5 and 3 finish the proof.   ◻

While this theorem is valid for any proper subalgebra in �[x], it is shown in 
Sect. 27 that for polynomials in two variables one can find a proper subalgebra 
with empty spectrum.

One of our main results can be formulated as follows.

Theorem 7 If A is a proper subalgebra of finite codimension then only the values of 
f(x) and finitely many of its derivatives f (j)(x) in the elements of the spectrum deter-
mine if f (x) ∈ A.

We will prove this later. We already have done so for monomial subalgebras 
and for subalgebras of codimension one.

Before moving on we give some equivalent definitions of the spectrum.

Theorem 8 Let A be a subalgebra of finite codimension and � ∈ � . The following 
is equivalent. 

 (i) � belongs to the spectrum of A.
 (ii) There exists � ∈ � such that (x − �)(x − �) divides f (x) − f (�) for any f (x) ∈ A

.
 (iii) There exists � ∈ � and a SAGBI basis G of A such that (x − �)(x − �) divides 

each element in G.
 (iv) � belongs to the spectrum of the subalgebra ⟨p(x), q(x)⟩ for each pair of monic 

p(x), q(x) ∈ A with relatively prime degrees.

Note that the condition of relatively prime degrees in (iv) is necessary since it 
guarantees that ⟨p(x), q(x)⟩ is of finite codimension.

Proof (ii) is a simple reformulation of (i). (Note that we can take � = � when the 
condition is f �(�) = 0).

(ii) implies (iii) almost directly. We choose any SAGBI basis and replace each 
element g by g − g(�) obtaining a new SAGBI basis.

(iii) implies (ii) because any f (x) ∈ A can be subduced to a constant c. In each 
subduction step a polynomial divisible by (x − �)(x − �) is subtracted. Hence 
f (x) − c is divisible by (x − �)(x − �) . It is easy to see that we must have c = f (�).
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By Theorem 5 (i) implies (iv). The opposite, that (iv) implies (i) is more difficult. 
If there exists f (x) ∈ A such that f �(�) ≠ 0 we need to find �. Subtracting a constant 
we can suppose that f (�) = 0 and let �1,… , �k be the other roots of f(x),   which 
exist because A is a proper subalgebra and � is algebraically closed. Then � should 
equal some �i. If the implication does not hold then for each i there exists gi(x) ∈ A 
such that gi(�i) ≠ gi(�). Subtracting a constant we can suppose that gi(�) = 0, but 
gi(�i) ≠ 0. Now, using that our field is infinite, we can easily construct a linear com-
bination g(x) of the gi , such that g(�) = 0 but g(�i) ≠ 0 for each i. Since A has a 
finite codimension we can for each large degree find a polynomial that belongs to 
A. We choose such a monic polynomial h(x) that has degree larger than deg g(x) and 
relatively prime to deg f (x). We can also suppose that h(�) = 0.

The next step is to construct a polynomial p(x) = h(x) + cg(x) that has the same 
property as g(x),   namely p(�) = 0 but p(�i) ≠ 0 for each i. Again, this is possible 
because our field is infinite. Let q(x) be f(x) divided by its leading coefficient. Con-
sider the subalgebra ⟨p(x), q(x)⟩. Because � belongs to its spectrum and q�(�) ≠ 0 
there exists � such that p(�) = p(�) and q(�) = q(�). But q(�) = 0 so � = �i for some 
i. On the other hand 0 = p(�) ≠ p(�i) and we get a contradiction. This proves that 
our assumption that (iv) does not imply (i) must have been wrong.   ◻

8  Linear independence

To be sure that the maps we use later are linearly independent we need to prove some 
auxiliary statements, even though they may seem quite obvious or well-known.

Theorem  9 Let �1,… �m be different elements in �. The maps Lij ∶ �[x] → � 
defined by

are linearly independent.

Proof Suppose the opposite. Then

and WLOG ck1 ≠ 0 and ci1 = 0 for i > k. Choose N such that cij = 0 for i ≥ N and 
consider

Then Lij(f ) = 0 for j > 1 and for j = 1, i < k. On the other hand

and we get a contradiction.   ◻

Lij(f ) = f (i)(�j)

∑
cijLij = 0

f (x) = (x − 𝛼1)
k
⋅𝛱j>1(x − 𝛼j)

(N+1).

Lk1(f ) = k! ⋅𝛱j>1(𝛼1 − 𝛼j)
(N+1) ≠ 0
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Naturally we can have some dependencies in a proper subalgebra but we want to 
show that all of them are linear combinations of defining subalgebra conditions.

Theorem 10 Let V be a vector space over � and L1,…Ln be linear independent 
linear maps Li ∶ V → �. Consider the vector subspace A =

⋂n

i=1
kerLi . Consider 

another linear map l ∶ V → � such that l|A = 0. Then l =
∑n

i=1
ciLi for some ci ∈ �.

Proof We use induction on n. If n = 1 then L1 ≠ 0 and we can choose a vector v ∈ V  
such that L1v = 1. Then V = �v + kerL1 and because kerL1 ⊆ ker l we get that 
l = c1L1, where c1 = l(v).

Now let n > 1. Consider U =
⋂n

i=2
kerLi . Then by induction L1|U ≠ 0 (other-

wise the L′
i
s are linearly dependent). Then A = U

⋂
kerL1 and the arguments above 

shows that l|U = c1L1|U . Applying the induction to l − c1L1 considered on U we get 
that l − c1L1 =

∑n

i=2
ciLi and we are done.   ◻

9  The size of the spectrum

How large can the spectrum of a subalgebra of finite codimension n be? To answer 
this question we first prove an important statement, which essentially says that ele-
ments in the spectrum appear in a natural way and there are no “ghost” elements in 
the spectrum.

Theorem 11 Suppose that the subalgebra A is obtained from the subalgebra B by 
adding an extra condition L(f (x)) = 0 where either L(f (x)) = f (�) − f (�) or L is 
some �-derivation. If � ∉ Sp(B) ∪ {�, �} then � ∉ Sp(A).

Proof Suppose the opposite, that � ∈ Sp(A), but � ∉ Sp(B) ∪ {�, �}. Then for any 
f = f (x) ∈ A we have l(f ) = 0, where either l(f ) = f (�) − f (�) or l(f ) = f �(�). By 
Theorem 10 we get that l = cL which obviously leads to the contradiction with The-
orems 9 and 10 in all four different situations (two alternatives for L and two alterna-
tives for l).   ◻

Now we can get a bound for the size of the spectrum.

Theorem 12 Let A be a subalgebra in �[x] of codimension n. Then

• |Sp(A)| ≤ 2n.

• |Sp(A)| = 2n if and only if A can be described by n conditions of the form 
f (�i) = f (�i), i = 1,… , n , all �1,… , �n, �1,… , �n being different.

• |Sp(A)| = 2n − 1 if and only if A can be described by n − 1 conditions of the 
form f (�i) = f (�i), i = 1,… , n − 1 and one extra condition either of the form 
f �(�0) = 0 or of the form f (�0) = f (�1), all �0,… , �n−1, �1,… , �n−1 being differ-
ent. The second alternative is possible only if n > 1.



760 R. Grönkvist et al.

1 3

Proof The first two statements follow directly by induction from the previous theo-
rem and Theorem  4. For the last statement we need to describe the induction in 
greater detail. For n = 1 the statement is trivial. If n > 1 and A is obtained from B 
by an extra condition then |Sp(B)| ≥ 2n − 3 . If |Sp(B)| = 2n − 3 the extra condition 
is of the form f (�) = f (�), where �, � does not belong to the spectrum of B and we 
can simply use the induction hypothesis. If |Sp(B)| > 2n − 3 then by Theorem 11 it 
must be 2n − 2 . If the extra condition is of the form f (�) = f (�) exactly one of � or 
� should belong to the spectrum of B. WLOG it coincides with �1. Otherwise the 
extra condition is an �-derivation for some � that does not belong to Sp(B). By Theo-
rem 18 below we can replace it by f (x) → f �(�) and it remains to rename � to �0.  
 ◻

10  The characteristic polynomial for subalgebras on two generators

Now we want to understand how to find the spectrum. We start from a special case 
where we can explicitly construct a polynomial which roots are exactly the elements 
of the spectrum.

Let p(x), q(x) be two monic polynomials. Consider the following polynomials in 
two variables:

We now introduce a definition that will be helpful when determining the spectrum 
of the subalgebra generated by p and q.

Definition 3 The characteristic polynomial�p,q is the resultant

of polynomials P and Q considered as polynomials in y.

For example, if p(x) = x3 − x, q(x) = x2 then P(x, y) = y2 + yx + x2 − 1,Q(x, y)

= y + x and

Its roots are 1 and −1 and this gives some insight into why f (1) = f (−1) was the sub-
algebra condition for A = ⟨x3 − x, x2⟩.

It is easy to check that get �x3,x2 (x) = x2 and this can be easily generalised, as 
shown below.

Theorem 13 If (m, n) = 1 then �xn,xm (x) = x(n−1)(m−1).

P(x, y) =
p(x) − p(y)

x − y
, Q(x, y) =

q(x) − q(y)

x − y
.

�p,q(x) = Resy(P(x, y),Q(x, y))

�p,q(x) =

||||||

1 x x2 − 1

1 x 0

0 1 x

||||||
= x2 − 1.
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Proof Assume without loss of generality that n > m . First note that the polynomials 
P(x, y) =

xn−yn

x−y
 and Q(x, y) =

xm−ym

x−y
 can be expressed as P =

∑n−1

i=0
yixn−1−i , 

Q =
∑m−1

i=0
yixm−1−i respectively. This means that

If m = 1 , this determinant is upper triangular and equal to 1 = x(m−1)(n−1) . This will 
be the base case for a proof by induction. If m ≠ 1 , for i ∈ {1,… ,m − 1} we subtract 
row m − 1 + i from row i. Now rows 1,… ,m − 1 will have xm as first nonzero ele-
ment, in column m + i . One can break out a factor xm from each of these rows. Now 
�A(x) is a block determinant on the form

where A is an upper triangular (m − 1)-matrix with ones on the main diagonal. 
Expanding the determinant along the first column m − 1 times and rearranging the 
rows gives

which is of size (n − 2) . Note that this is exactly the characteristic polynomial of 
⟨xm, xn−m⟩ multiplied by (xm)m−1.

Assuming, by induction hypothesis, that we have �xm,xn−m (x) = x(m−1)(n−m−1) we get 
�xn,xm (x) = xm(m−1)x(m−1)(n−m−1) = x(m−1)(n−1) . The induction hypothesis can be used 
since (n − m,m) = (n,m) = 1.   ◻

�p,q(x) =

|||||||||||||||||

1 x … xn−1 0 0 …

0 1 … xn−2 xn−1 0 …

⋮ ⋱ ⋱ ⋱ ⋱

0 … … 1 x … xn−1

1 x … xm−1 0 0 …

0 1 … xm−2 xm−1 0 …

⋮ ⋱ ⋱ ⋱ ⋱

0 … … 1 x … xm−1

|||||||||||||||||

.

||||
0 B

A C

||||

(xm)m−1

|||||||||||||||||

1 x … xm−1 0 0 …

0 1 … xm−2 xm−1 0 …

⋮ ⋱ ⋱ ⋱ ⋱

0 … … 1 x … xm−1

1 x … xn−m−1 0 0 …

0 1 x … xn−m−1 0 …

⋮ ⋱ ⋱ ⋱ ⋱

0 … … 1 x … xn−m−1

|||||||||||||||||
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11  Computing �p,q

An alternative proof of Theorem  13 stems from computing the resultant Resy(P,Q) 
using reductions of P by Q and vice versa. A more exact statement is given in the below 
proposition. Here lc(Q) denotes the leading coefficient of Q(x, y) when regarded as a 
polynomial in y with coefficients in �[x] , and degrees are also taken with respect to y.

Proposition 1 Assume that P,Q ∈ �[x, y] , and that P1(x, y) = P(x, y) − h(x, y)Q(x, y) 
for some polynomial h ∈ �[x, y] . Then

Similarly we have that

Proof This follows from the fact that the resultant

where �i are the roots of Q when regarding Q as a polynomial in y. (See [5].) The 
roots are counted with multiplicity and they may lie in some extension of the field 
�[x] of coefficients.

Now, in the same way, we get an expression

but P1(x, �i) = P(x, �i) − h(x, �i)Q(x, �i) = P(x, �i) and by comparing the two expres-
sions we get the first statement of the proposition.

The second statement is proven in the same way, but is slightly easier to handle 
since Resy(Q,P) = lc(Q)deg(P)

∏
P(x, �i) does not contain powers of −1 .   ◻

The above proposition, which also can be found in [6], can be a useful tool for 
computing the characteristic polynomial when the generating polynomials are 
sparse. Let us first look at the two easy examples. We have

and

The second computation can be generalised to any case of two monomial genera-
tors, as follows. If p = xn and q = xm with n = qm + r we can subtract powers of y 

Resy(P,Q) = ((−1)deg(Q)lc(Q))deg(P)−deg(P1)Resy
(
P1,Q

)
.

Resy(Q,P) = lc(Q)deg(P)−deg(P1)Resy
(
Q,P1

)
.

Resy(P,Q) = (−1)deg(P)deg(Q)lc(Q)deg(P)
∏

P(x, �i),

Resy
(
P1,Q

)
= (−1)deg(P1)deg(Q)lc(Q)deg(P1)

∏
P1(x, �i),

�x2,x3−x(x) = Resy
(
y + x, y2 + xy + x2 − 1

)

= Resy
(
y + x, x2 − 1

)
= x2 − 1

�x3,x5 (x) = Resy
(
y2 + xy + x2, y4 + xy3 + x2y2 + x3y + x4

)

= Resy
(
y2 + xy + x2, x3y + x4

)
= (x3)2Resy

(
y2 + xy + x2, y + x

)

= x6(y2 + xy + x2)|y=−x = x8.
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multiplied by Q from P until we obtain P1 =
∑r−1

j=0
xn−1−jyj = xn−r

∑r−1

j=0
xr−1−jyj . 

Note that the latter sum equals H(x, y) =
r(x)−r(y)

x−y
 for h = xr . This can be used to 

obtain a more elegant inductive proof of Theorem 13 as

By the induction hypothesis �q,h = x(m−1)(r−1) and this results in

as we already knew from Theorem 13.
Finally, let us consider a more complicated example where we compute the char-

acteristic polynomial of A = ⟨x7 + 2x3 − x, x5 + x2⟩.

Example 5 Let p(x) = x7 + 2x3 − x , q(x) = x5 + x2 and P(x, y) = p(x)−p(y)

x−y
 , Q(x, y) = q(x)−q(y)

x−y
.

Then

where P1(x, y) = P(x, y) − y2Q(x, y) is formed by subtracting multiples of Q from P 
in such a way that the y-degree decreases. Now degy(P1) = 3 and degy(Q) = 4 so the 
next step is to form Q1(x, y) = Q(x, y) + (y + 2)P1(x, y) = a(x)y2 + b(x)y + c(x) . We 
have

In the next step we want to reduce P1 using Q1 , but Q1 has a non-constant leading 
coefficient a(x) = x5 + x2 + 4 . We can get around this problem as follows:

where degy(P2) = 2 . A final step gives us Q2(x) = r(x)a(x)2 . Here

and hence

with h(x) = (x10 − x9 + 3x8 − 3x7 + 6x6 − 2x5 + 3x4 − x3 + x2 + 3x − 2) is our 
desired resultant. This shows that Sp(A) has 16 elements. (One can verify that h(x) 
has no multiple roots.)

�p,q = Resy(P,Q) = (lc(Q)(−1)m−1)deg(P)−deg(P1)Resy
(
P1,Q

)

= (lc(Q)(−1)m−1)qmResy(x
n−rH,Q) = (xn−r)m−1Resy(H,Q) = (xn−r)m−1�q,h.

�p,q = (xn−r)m−1x(m−1)(r−1) = (xn−1)m−1

�A(x) = Resy(P,Q) = Resy
(
P1,Q

)

Resy
(
P1,Q

)
= lc(P1)

2Resy
(
P1,Q1

)
= Resy

(
P1,Q1

)
.

Resy
(
P1,Q1

)
=

1

a4
Resy

(
a2P1,Q1

)

=
1

a4
lc(Q1)

2Resy
(
a2P1 + a(y − 4)Q1 + 8Q1,Q1

)

=
1

a2
Resy

(
P2,Q1

)

Resy
(
P2,Q1

)
= Resy

(
P2,Q2

)
= Q2,

r(x) = (x + 1)2(x2 − x + 1)3(x3 + x2 − x − 2)2h(x)
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As the above example shows, even if the process of computation is fairly simple, 
it is not easy to track how the resulting polynomial relates to the initial polynomials.

There are more efficient methods for computing resultants. For computing a 
resultant of two bivariate polynomials p, q of degree at most k there are well-know 
algorithms with time complexity k3+o(1) . There are also more efficient algorithms 
known, see [7], but for our purposes standard implementations have been efficient 
enough.

12  Properties of �p,q

Let us next turn to an interesting property of �p,q . The below theorem relates �p,q 
to partial derivatives of a polynomial F that turns up when applying the standard 
algorithm for computing a SAGBI basis for ⟨p, q⟩ . (See [1].) As we will see this 
theorem turns out to be an important building block for showing that derivations of 
non-spectral elements are trivial.

Theorem 14 If m = deg p(x), n = deg q(x) and (m, n) = 1 then

• �p,q(x) is a polynomial of degree (m − 1)(n − 1).
• If F(p, q) is the resultant of p(x) − p, q(x) − q then

Proof Let us look at what we did in the proof of Theorem  13 again. In a com-
plete expansion of the determinant we choose in each column j either xj−i (if we 
choose row i from the first m − 1 rows ) or we choose xj−i+(m−1) (if we choose a row i 
between the last n − 1 rows). Because 

∑
j =

∑
i we get a total degree in the product 

equal to (n − 1)(m − 1). We can never get larger degree. The difference when we use 
p(x) and q(x) instead is that we add some terms of smaller degree in each element of 
the matrix. But they cannot affect our maximum total degree term x(n−1)(m−1) so the 
highest coefficient in �p,q(x) at x(n−1)(m−1) is the same as for the monomial case.

To prove the second statement we use a well-known fact (see [8]) that

where the product is taken over all roots of q(y) − q in some field extension with 
multiplicity. When we evaluate this for p = p(x) and q = q(x) we get zero because 
y = x is one of the roots. If we take a partial derivative with respect to p first and 
evaluate in p = p(x) and q = q(x) after that we get a sum over roots where all terms 
except one (corresponding the root y = x ) are zero. But we can get this remaining 

�F

�p
|p=p(x),q=q(x) = ±�p,q(x)q

�(x).

�F

�q
|p=p(x),q=q(x) = ∓�p,q(x)p

�(x).

F(p, q) =
∏

�

p(�) − p
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term in another way if we replace q(x) − q by q(y)−q(x)
y−x

 and p(y) − p by p(y) − p(x) in 
our resultant. Thus (up to sign) we get the resultant Resy

(
p(y) − p(x),

q(y)−q(x)

y−x

)
.

Now, using another property of the resultant we get

where all resultants above are evaluated in y. Here we have also used that for any 
polynomial f(x) we have f �(x) =

f (x)−f (y)

x−y
|y=x because this is obviously true for 

f (x) = xk. We obtain the second formula in a similar way and the signs should be 
opposite because (F(p(x), q(x))� = F�

p
p�(x) + F�

q
q�(x) should be zero.   ◻

Example 6 Let p(x) = x3 − x , q(x) = x2. Then F(p, q) is the resultant of x3 − x − p 
and x2 − q and is equal to

As expected we get:

Are there instances when �f ,g has an infinite number of roots? The answer is 
yes, as we have already seen for certain monomial subalgebras. More precisely 
we have seen that �xm,xn = 0 if and only if (m, n) > 1 . We will now generalise this 
result.

Theorem  15 Let p(x) and q(x) be non-constant polynomials. Then �p,q(x) = 0 
if and only if there exists a polynomial h(x) of degree at least two such that 
p(x), q(x) ∈ �[h].

Proof Suppose first that p = �◦h. We know �(a) − �(b) = (a − b)�(a, b) for some � 
so

Resy

(
p(y) − p(x),

q(y) − q(x)

y − x

)

= Resy

(
p(y) − p(x)

y − x
,
q(y) − q(x)

y − x

)
Resy

(
y − x,

q(y) − q(x)

y − x

)

= �p,q(x)q
�(x),

F(p, q) =

||||||||||

1 0 − 1 − p 0

0 1 0 − 1 − p

1 0 − q 0 0

0 1 0 − q 0

0 0 1 0 − q

||||||||||

= p2 − q3 + 2q2 − q.

�F

�p
|p=p(x),q=q(x) = 2p|p=p(x) = 2(x3 − x) = (x2 − 1)2x,

�F

�q
|p=p(x),q=q(x) = −3q2 + 4q − 1p=p(x),q=q(x)

= −(q − 1)(3q − 1)p=p(x),q=q(x) = −(x2 − 1)(3x2 − 1).

p(x) − p(y) = �(h(x)) − �(h(y)) = (h(x) − h(y))�(h(x), h(y)).
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This means that P(x, y) = p(x)−p(y)

x−y
 has a factor h(x)−h(y)

x−y
 which is a polynomial in y of 

degree at least one. Similarly if q(x) ∈ �[h] then Q(x, y) also has this factor so they 
have a common factor as polynomials in y over �(x) and as a consequence their 
resultant �p,q(x) is equal to zero.

To prove the opposite assume now that deg p(x) = n and deg q(x) = m . Let 
F(p, q) be the resultant of p(x) − p, q(x) − q , as before. We know from lemma 19 
in [1] that F(p, q) =

∑
in+jm≤nm cijp

iqj where cij are constants in � . Moreover, it fol-
lows from that lemma that pm has non-zero coefficient and all other terms contain 
p to a power strictly lower than m. Assume now that �p,q(x) = 0 . Then it follows 
from Theorem  14 that we can differentiate F with respect to p and get another 
identity involving p and q. Regarding p as variable this identity is a polynomial of 
degree m − 1 with coefficients in �(q) , showing that adjoining p to the field �(q) 
is an extension of degree at most m − 1 . From Lemma 13 in [1] we get the first 
equality in m = [�(x) ∶ �(q)] = [�(x) ∶ �(p, q)][�(p, q) ∶ �(q)] . Now it follows 
that [�(x) ∶ �(p, q)] ≥ 2 . On the other hand we know by Theorem  14 in [1] that 
�(p, q) = �(h) for some polynomial h and this means that we have a polynomial h of 
degree [�(x) ∶ �(p, q)] ≥ 2 such that p(x), q(x) ∈ �[h] .   ◻

13  How the spectrum relates to �p,q(x)

Now we want to compare the roots of the characteristic polynomial with the 
spectrum.

To start with we will focus our attention on a special case - an algebra A gener-
ated by two monic polynomials p(x),  q(x) of degrees m > n with (m, n) = 1. It is 
known that they form SAGBI basis for A (see [1]) and therefore A has codimension 
g(m, n) = (m − 1)(n − 1)∕2 . (Here g(m, n) is the genus of the corresponding semi-
group of degrees.) So if we want to describe this algebra we need to find g(m, n) 
subalgebra conditions. For m = 3, n = 2 we have done that in Theorem 3.

Theorem 16 Let A = ⟨p(x), q(x)⟩ and � ∈ �. The following is equivalent. 

 (i) � belongs to the spectrum, thus either f �(�) = 0 for any f (x) ∈ A or there exists 
� ≠ � such that f (�) = f (�) for any f (x) ∈ A.

 (ii) Either p�(�) = q�(�) = 0 or there exists � ≠ � such that p(�) = p(�) and 
q(�) = q(�).

 (iii) � is a root of the characteristic polynomial of A.

Proof The alternatives (i) and (ii) are equivalent since each of the two conditions 
stated in (ii) are closed under sums and products, so we need only to prove that (ii) 
and (iii) are equivalent. By the fundamental property of the resultant (see e.g. [8]) 
we know that � is a root of the characteristic polynomial if and only if there is some 
� ∈ � such that P(�, �) = Q(�, �) = 0.
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We now regard two different cases. The first case is when � ≠ � . In this case we 
have that p(�) − p(�) = (� − �)P(�, �) = 0 and similarly q(�) = q(�) . Thus the sec-
ond statement of (ii) holds.

The other case is that � = � which means that 0 = P(�, �) = p�(�) . 
(The second equality can easily be derived from the definition of P as 
P(x, y) = (p(x) − p(y))∕(x − y) .) In the same manner we find that q�(�) = 0 so in this 
case the first statement of (ii) holds.   ◻

This shows that the characteristic polynomial allows us to find the spectrum 
explicitly, for the subalgebras we currently study. Note that the theorem also shows 
that the characteristic polynomial is never a constant, because the spectrum is always 
non-empty.

Also note that Theorem 8 gives us a theoretical way to find the spectrum for any 
subalgebra. In most practical cases it is sufficient to consider only �p,q for each pair 
{p, q} of generators, but the problem is that their degrees are not always relatively 
prime.

Here is another application of the theorem.

Proposition 2 If a(x) is a polynomial of degree at least two that divides both p(x) 
and q(x) then all the roots of a(x) are roots of �p,q(x).

Proof If (x − �)(x − �)|a(x) then (x − �)(x − �)|f (x) − f (�) for any f (x) ∈ A because 
p and q generate A and are divisible by a(x). The rest follows from Theorems  8 
and 16 .   ◻

This shows that common factors of p and q with no multiple roots are also factors 
of �p,q . By modifying the proof a little we can get the same result also for factors 
with multiple roots.

Theorem 17 If a(x) is a polynomial of degree at least two that divides both p(x) 
and q(x) then a(x)|�p,q(x).

Proof Assume that p(x) = a(x)p1(x) and q(x) = a(x)q1(x) . Now we modify a(x) to 
separate its roots by introducing an additional variable s. If a(x) =

∏k

i=1
(x − �i)

mi , 
then let ã =

∏k

i=1

∏mi

l=1
(x − 𝜉i − (l − 1)s). Let p̃ = ãp1 and q̃ = ãq1 . It follows that 

P̃(x, y) = P(x, y) + sR(x, y) and Q̃(x, y) = Q(x, y) + sT(x, y) for some polynomials 
R, T with coefficients in k[s]. Thus

for some polynomial h. The first equality in the last row comes from the fact that 
when computing the resultant from its definition as a determinant, every term that 
has been added contains at least one factor s. Now 𝜒P̃,Q̃(x) has a factor ã(x) by the 
previous theorem. That is 𝜒P,Q + sh(x, s) = ã(x)u(x, s) . Now let s = 0 to conclude the 
proof.   ◻

𝜒P̃,Q̃(x) = Resy(P(x, y) + sR(x, y),Q(x, y) + sT(x, y))

= Resy(P(x, y),Q(x, y)) + sh(x, s) = 𝜒P,Q + sh(x, s)
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As an example, let us apply the above theorem as a tool for finding conditions for the 
subalgebra A = ⟨x4 − x2, x3⟩.

We see that x2 divides both generators so it should divide the characteristic poly-
nomial as well. Thus zero is in the spectrum. Moreover f �(0) = 0 is valid for both 
generators and therefore is one of the conditions. Because g(4, 3) = 3 we should find 
two additional subalgebra conditions. The characteristic polynomial can be found 
using Maple and it is equal to x2(x4 − x2 + 1).

Thus, besides zero we have four other elements in the spectrum, which are 
in fact primitive roots of degree 12. If we name one of them �, the remain-
ing ones will be �5, �7, �11. From Theorem  12 we find that the remaining con-
ditions are of equality type. Thus we need to arrange those primitive roots 
in pairs to get conditions of the form f (�) = f (�). It is not hard to check that 
{f (x)|f �(0) = 0, f (�) = f (�5), f (�7) = f (�11)} is the choice that contains x3.

In fact, experiments suggests that when the degree of the factor a(x) is higher 
than two its multiplicity as a factor of the resultant is higher.

Conjecture 1 If a(x) is a polynomial of degree at least two that divides both p(x) and 
q(x) then a(x)deg(a)−1|�p,q(x).

14  Derivations in A

Now we want to formulate some general statements about derivations. We begin 
our study with a subalgebra A,  generated by two polynomials p(x) and q(x) of rela-
tively prime degrees. As we know (see [1]) p(x), q(x) form a SAGBI basis and has 
one relation F(p, q) = 0 arising from the corresponding resultant. (Thus this F is the 
same as in theorem 14.)

Denote D(p(x)) = Dp and D(p(x)) = Dq . First note that for any polynomial 
G(p, q) we have

If we denote �F
�p
(p(�), q(�)) by F�

p
(�) and �F

�q
(p(�), q(�)) by F�

q
(�) then we get that

is a necessary and sufficient condition for a linear map D to be a derivation of A.
Note also that taking the ordinary derivative in � we get

Suppose now that � does not belong to the spectrum Sp(A). Then we know that the 
vector v =

(
p�(�), q�(�)

)
 is non-zero. Also, according to Theorem  16, we have 

�p,q(�) ≠ 0. Now it follows from Theorem 14 that the vector w =
(
F�
p
(�),F�

q
(�)

)
≠ (0, 0). 

As the above equalities show that both the non-zero vector v =
(
p�(�), q�(�)

)
 and the 

vector (Dp,  Dq) are orthogonal to w, they must be parallel. This means that 

D(G(p(x), q(x)) =
�G

�p
(p(�), q(�))Dp +

�G

�q
(p(�), q(�))Dq.

F�
p
(�)Dp + F�

q
(�)Dq = 0

F�
p
(�)p�(�) + F�

q
(�)q�(�) = 0.
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(Dp,Dq) = c
(
p�(�), q�(�)

)
 and thus we simply have D(f (x)) = cf �(�) . In other words, 

D is a trivial derivation.
Now we generalise this to an arbitrary subalgebra A.

Theorem 18 Let A be an arbitrary subalgebra of finite codimension and D be an �
-derivation on A. Suppose that � does not belong to the spectrum of A. Then D is a 
trivial derivation, D(f (x)) = cf �(�).

Proof Let f(x) be any polynomial in A. First we prove that if � is a double root of f(x) 
then D(f (x)) = 0. Suppose the opposite. Let �1,… , �k be the other roots of f(x). For 
each i there exists gi(x) ∈ A such that gi(�i) ≠ gi(�). Subtracting a constant we can 
suppose that gi(�) = 0, but gi(�i) ≠ 0. Beside that there exists g0(x) ∈ A such that 
g0(�) = 0, but g�

0
(�) ≠ 0 (all this because � does not belong to the spectrum). Now, 

using the fact that an algebraically closed field is infinite, we can easily construct 
a linear combination g(x) of the gi such that g(�) = 0 but g(�i) ≠ 0 for each i > 0 
and g�(�) ≠ 0. Since A has a finite codimension we can for each large degree find 
a polynomial of that degree that belongs to A. We choose such a monic polynomial 
h(x) that has degree larger than deg g(x) and relatively prime to deg f (x). We can also 
suppose that h(�) = 0.

Our next step is to a construct polynomial p(x) = h(x) + cg(x) that has the same 
property as g(x),   namely p(�) = 0, p�(�) ≠ 0 and p(�i) ≠ 0 for each i > 0. Again, 
this is possible because our field is infinite. Let q(x) be f(x) divided by its leading 
coefficient. Consider subalgebra B = ⟨p(x), q(x)⟩. By construction � does not belong 
to its spectrum, so according to our arguments before the theorem the restriction 
of D to B should be a trivial derivation therefore D(f (x)) = cf �(�) = 0 which is a 
contradiction.

The rest is easy. Any polynomial in A can be written as a linear combination of 
g0(x) , some constant and some polynomial f(x) having � as double root. Therefore 
only the value of g0(x) determine the value of D, so it is sufficient to find c such that 
D(g0(x)) = cg�

0
(�).   ◻

15  Clusters

Let us now introduce a natural equivalence. For a given algebra A we define � ∼ � 
if and only if f (�) = f (�) is valid for all f ∈ A. Then the spectrum of the subal-
gebra A is a disjoint union of equivalency classes that we call clusters. If A is 
obtained from B by a linear condition L(f ) = 0 then Theorem 11 gives us a simple 
connection between clusters in B and A.

If L is an �-derivation then the clusters are the same if � ∈ Sp(B) and {�} con-
stitutes an additional cluster in A if � ∉ Sp(B).

If L(f ) = f (�) − f (�) there are several possibilities. If neither � nor � belongs to 
the spectrum of B then they together form a new cluster.
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If exactly one of them (say � ) belongs to the spectrum of B then we simply add 
� to the cluster containing �.

At last if both � and � belong to the spectrum of B then they should lie in dif-
ferent clusters and as a result those two clusters will be joined in A.

From now on we will use the notion A(C) = {f (x)|f (�) = f (�) for all �, � ∈ C} 
for the subalgebra defined by the fact that all its elements have the same value on 
the cluster C.

16  The main theorem

Now we want to prove Theorem 7. We begin with the following statement.

Theorem 19 Let A be a proper subalgebra of �[x] with Sp(A) = {�1,… , �s} and let 
�A = (x − �1)⋯ (x − �s). Then there exists N > 1 such that xi�N

A
∈ A for any i ≥ 0.

Proof We use induction on the codimension n. The base for the induction is guar-
anteed by Theorem 3 so let n ≥ 2. Let A be obtained from B as the kernel of L. Let 
C = Sp(B), �B =

∏
�∈C(x − �) and NB be the number N for the subalgebra B existing 

by the induction hypothesis. We consider several different cases.
Suppose first that L(p) = p(�) − p(�). We put N = NB.

If both �, � ∈ C then �A = �B . Because N > 0 we get that all xi�N
A
∈ kerL = A 

directly.
If neither � nor � belongs to the spectrum of B then �A = �B(x − �)(x − �). Note 

that xi�N
A
∈ B and xi�N

A
∈ kerL = A.

If only � ∈ C then �A = �B(x − �) and again xi�N
A
∈ kerL = A directly.

If L is an �-derivation and � ∉ C then, according to Theorem 18, L(f ) = cf �(�). 
We have that �A = �B(x − �) and put N = NB. Because N ≥ 2 we get that the multi-
plicity of � is at least two and xi�N

A
∈ kerL = A.

At last if L is an �-derivation and � ∈ C then �A = �B and we put N = 2NB. Then 
xi�

NB

A
,�

NB

A
∈ B and

In all cases we get that xi�N
A
∈ kerL = A.   ◻

Theorem 20 Let A be a subalgebra of codimension n > 1 with Sp(A) = {�1,… , �s}. 
Then there exists N > 1 such that A can be described by n conditions of the form

Thus p(x) ∈ A if and only if all n conditions are valid.

Proof We use the same notation as in Theorem 19. According to that theorem we 
have polynomials in A of each degree greater than Ns − 1. If we complete them to a 

L
(
xi�N

A

)
= L

(
xi�

2NB

A

)
= L

(
xi�

NB

A

)
�A(�)

NB + �i�A(�)
NBL

(
(�A)

NB

)
= 0.

N−1∑

i=0

s∑

j=1

cij p
(i)(�j) = 0.
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linear basis in A we get a set Q,  consisting of exactly Ns − n new polynomials q and 
we can suppose that 1 ∈ Q. Consider the vector space V consisting of linear maps

We have that dimV = Ns . Consider its subspace W of those maps that annihilate 
all q ∈ Q. The subspace W has dimension n (because the condition D(q) = 0 is a 
homogeneous linear equation on the set of the coefficients cij). We choose a basis in 
W consisting of n maps D and claim that the conditions D(p) = 0 for each D from 
this basis describes A. Indeed those conditions by construction describe exactly the 
subspace generated by q ∈ Q in the subspace of all the polynomials of degree less 
than Ns. It remains to show that each xi�N

A
 is annihilated by D.

Let D0 be the map

Because �A(�j) = 0 for each j we have that D0(x
i�N

A
) = 0 and it is sufficient to con-

sider D1 = D − D0 consisting of only the derivatives. D1 annihilates all the elements 
of the form xi�N

A
 because it has derivatives of degree at most N − 1 and the same is 

true for D.
Thus our conditions are valid on all basis elements in A and describe the vector 

space they generate, which is A. In other words the conditions that Ei(p(x)) = 0 for 
our basis elements Ei ∈ W determine the subalgebra A. Note that this automatically 
implies that we get subalgebra conditions.   ◻

In fact we can prove a stronger result. The subalgebra conditions are either of form 
f (�) = f (�) or derivations. For non-trivial derivations we can prove (see [9]):

Theorem 21 If � belongs to the spectrum then each �-derivation D can be written 
as

thus using pure derivatives (of some order) in the elements of the cluster containing 
�.

17  One element in the spectrum

Now we want to show some applications of the spectrum. We start from the subalge-
bras which have only one element in the spectrum.

D ∶ p(x) →

N−1∑

i=0

s∑

j=1

cij p
(i)(�j).

D
0

∶ p(x) →

s∑

j=1

c
0j p(�j).

D(f ) =

N∑

i=1

∑

�j∼�

cij f
(i)(�j),
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Theorem 22 Let A be a subalgebra of codimension k ≥ 1. The following statements 
are equivalent. 

1. The spectrum of A consists of a single element �.
2. A contains two elements (x − �)m, (x − �)n with (m, n) = 1.

3. A is defined by k linearly independent conditions of the form 
∑N

i=1
cif

(i)(�) = 0 for 
some N > 0.

Proof We can use induction on k. The base for the induction is guaranteed by Theo-
rem 3. Let k ≥ 2. Using the change of variable x̂ = x − � we can restrict ourself to 
the case � = 0.

(1) ⇒ (2). According to Theorem  4 the algebra A is obtained from B as a ker-
nel of some linear map. This map should be 0-derivation D, otherwise we have 
more than one element in the spectrum. By Theorem 5, B should have zero spec-
trum and according to the induction hypothesis B contains some monomials xm, xn 
with (m, n) = 1. Note that m, n > 1 because B is a proper subalgebra. Using that 
D(f k) = kf k−1(0)D(f ) we find that the monomials (xm)m = xm

2

, (xn)n = xn
2 belong to 

kerD = A.

(2) ⇒ (1). Because the subalgebra generated by xm and xn has spectrum zero, by 
Theorem 5 the spectrum of A cannot have any other elements than zero.

(1) ⇒ (3) Follows from Theorem 20.
(3) ⇒ (2) All the monomials xm with m > N satisfy the conditions.   ◻

18  Subalgebras containing a polynomial of degree 2

Suppose that the subalgebra A contains a polynomial q(x) of degree two. Two trivial 
cases are A = ⟨q(x)⟩ and A = �[x]. In non-trivial cases we should have a polynomial 
p(x) of odd degree 2l + 1 ≥ 3. If we suppose that l is as small as possible then it is 
easy to see that A = ⟨p(x), q(x)⟩. Using variable substitution we can suppose that 
q(x) = x2. Subtracting even terms we can WLOG suppose that p(x) is an odd poly-
nomial, thus

for some monic polynomial a(x) of degree l. We want to show that the spectrum of A 
consists of the roots of a(x2). (In fact the characteristic polynomial is equal to a(x2) , 
but that requires a longer proof.)

Indeed, if q�(�) = 0 then � = 0 and p�(0) = 0 implies a(0) = 0. If q(�) = q(�) for 
� ≠ � then � = −� and p(�) = p(−�) = −p(�) implies p(�) = 0 ⇒ a(�2) = 0.

Now we are ready for the general statement.

p(x) = a(x2)x, q(x) = x2
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Theorem 23 Any proper subalgebra A of finite codimension in �[x] containing a 
polynomial q(x) of degree two has a spectrum consisting of g elements for some 
g > 0 . The spectrum has k =

[
g

2

]
 pairs {�i, �i}, i = 1,… , k such that for each i the 

sum �i + �i has a constant value 2�0 and (for odd g) one extra element, namely 
�0(= �0). For each 0 ≤ i ≤ k there exists number mi ≥ 0 such that f (x) ∈ A if and 
only if

• f (j)(�i) = (−1)jf (j)(�i) for each 0 < i ≤ k and each 0 ≤ j ≤ mi,

• f (j)(�0) = 0, j = 1, 3,… , 2m0 − 1 (for odd g only).

Vice versa, if an algebra satisfies such conditions, then it is generated by

Proof Since the codimension is finite and the subalgebra is proper we can after sub-
stitution suppose that A is generated by p(x) = a(x2)x, q(x) = x2, where a(x) is a 
monic polynomial of degree l > 0. Here we put �0 = 0 and for each non-zero root 
�i of a(x) with i = 1,… , k we can put �i =

√
�i and �i = −�i. We define m0 to be 

the multiplicity of zero as a zero of a(x) and put g = 2k if m0 = 0 and g = 2k + 1 if 
m0 > 0. Now a(x) = xm0

∏
(x − �i)

mi+1 and

As we already discussed above the spectrum has exactly g elements. To check the 
conditions note that they are trivial for x2 and that

if j ≤ mi for i > 0. If m0 > 0 then all the derivatives until 2m0 + 1 are zero as well. 
Therefore p(x) and q(x) satisfy the conditions and it is sufficient to check that if f(x) 
and g(x) satisfy the conditions the same is true for f(x)g(x). We have

and get the desired property both for i > 0 and i = 0 (because if j is odd one of j1, j2 
is odd as well). So A satisfies the conditions. Let us now turn to the opposite direc-
tion. Our proof shows that the conditions determine some subalgebra that contains 
A and we need to prove that it equals A. If not there should be some polynomial f(x) 
which does not belong to A. Using subduction by p(x) and q(x) we can suppose that 
it has an odd degree less than the degree of p(x) and has only odd powers, and thus 
f (−x) = −f (x).

(x − �0)
2, (x − �0)

2m0+1
∏

i≥1

(x − �i)
mi+1(x − �i)

mi+1.

p(x) = x2m0

+1
∏

(x2 − �i)
mi+1

= x2m0

+1
∏

(x − �i)
mi+1(x − �i)

mi+1
.

p(j)(�i) = p(j)(−�i) = 0

(f (x)g(x))(j)(�i) =
∑

j
1

+j
2

=j

(
j

i
1

)
f (j1)(�i)g

(j
2

)(�i)

=
∑

j
1

+j
2

=j

(
j

i
1

)
(−1)j1 f (j1)(−�i)(−1)

j
2g(j2)(−�i)
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Note that for an odd function f(x) we have

We get the opposite sign compared to our conditions so all terms must be zero. Thus 
�i and �i have multiplicity at least mi + 1 as zeroes of f(x). Similarly the second con-
dition gives us that the multiplicity of zero as a zero is at least 2m0 + 1. But then f(x) 
cannot have degree less than the degree of p(x).

It remains to understand how we get back to the general case by using variable 
substitution back. Obviously �0 is the only root of the derivative in q(x) and the 
spectrum is simply shifted by �0.   ◻

19  ̨ ‑Derivations

Now we want to collect some general properties of the set DA

�
 of �-derivations. Let 

A be a subalgebra of finite codimension and M� = {f (x) ∈ A|f (�) = 0} be the cor-
responding maximal ideal in A.

Theorem 24 Let D ∶ A → � be a linear map. 

1. The following statements are equivalent:

• D ∈ D
A

�
, thus D is an �-derivation.

• D(1) = 0 and D(f 2) = 0 for any f ∈ M� .

2. dimD
A

�
= dimM�∕M

2
�
 (We denote this number dA

�
.)

3. If T(A) = (d1,… , ds) then dA
�
≤ s.

Proof (1) Obviously any �-derivation has these properties so we need only to work 
in the opposite direction.

For any f ∈ A we have that

Now for any f , g ∈ A we have:

(2) If we pick any SAGBI basis in M� and choose those gi from it that form a basis 
modulo M2

�
 then D will be uniquely determined by the values of D(gi). On the other 

hand we get an �-derivation for any choice of such values if we extend to a lin-
ear mapping that vanishes on constants and M2

�
 , by part (1). The values of D on 

the remaining elements in the SAGBI basis will be uniquely determined. This also 

f (j)(�i) = f (j)(−�i) = −(−1)jf (j)(�i).

f − f (�) ∈ M� ⇒ D
(
(f − f (�))2

)
= 0 ⇒

D(f 2) − 2f (�)D(f ) + D(f (�)2) = 0 ⇒ D(f 2) = 2f (�)D(f ).

2D(fg) = D
(
(f + g)2 − f 2 − g2

)
= 2(f (�) + g(�))D(f + g)

− 2f (�)D(f ) − 2g(�)D(g) = 2(f (�)D(g) + g(�)D(f )).
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proves (3) as we can start from a SAGBI basis with s elements and then possibly 
remove some of them to obtain our basis for the space of derivations.   ◻

The type T(A) = (d1,… , ds) gives us an upper bound d� ≤ s and we have equality 
in the monomial case. Indeed it is easy to check that the maps Di ∶ f → f (di)(0) form 
a linear basis for the set DA

0
 of zero-derivations.

Now we consider the following chain of subalgebras that differ by one in 
codimension:

We see that d� can both decrease by one and increase by two.

20  Some applications

Now we want to show some applications of the spectrum. First of all the spectrum 
gives us a much clearer picture of the inclusion of one subalgebra in another.

For example, which subalgebras B of codimension 2 can contain the subalgebra 
A = ⟨x4, x3⟩ of codimension 3? The subalgebra A ⊆ B has an element of degree 3, 
which does not belong to the semigroup generated by 2 and 5 so the type of B can-
not be (2, 5),  thus T(B) = (3, 4, 5).

Also Sp(A) = {0} implies that Sp(B) = {0} and our only candidate for B in the 
classification obtained in Theorem 27 below is s = 1 with � = 0. Using that x3 ∈ B 
we can specify the conditions from the Theorem further to f �(0) = f ��(0) = 0 and 
hence B must be the monomial algebra ⟨x3, x4, x5⟩.

Another obvious application is finding the intersection of two subalgebras: we 
take the union of their spectra and the union of their conditions and we only need to 
check if there are any linear dependencies between the conditions.

For example we can easily spot the situations when the intersection of two sub-
algebras is a monomial subalgebra. Both should have zero spectrum and the condi-
tions of the subalgebras should complete each other so that we obtain conditions of 
the form f (j)(0) = 0.

We can go in the opposite direction as well: if we have two subalgebras A1,A2 we 
can easily construct the subalgebra they generate together. We take the intersection 
of the spectra and try to see which conditions remain. Let us take an example from 
[2]. Is ⟨x3 − x, x4, x5 − 1⟩ = �[x]?.

The subalgebra ⟨x4, x5⟩ is monomial, so its spectrum is zero. But zero is not in 
the spectrum of the subalgebra ⟨x4, x3 − x⟩, so the intersection of their spectra is 
empty and we get �[x]. The most important application is the possibility to con-
struct SAGBI bases without having to invoke the standard algorithm based on 
subduction. We will expand on this aspect in the next section.

⟨x4, x6, x9, x11⟩ ⊃ ⟨x4, x6, x9⟩ ⊃ ⟨x6, x8, x9, x10, x13⟩.
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21  Constructing SAGBI bases

One useful thing we want to mention is that the inductive approach which we 
have used throughout the article also allows us to create SAGBI bases in A rela-
tively easily. Namely, when we have a SAGBI basis G for B and get A by add-
ing the condition L(f ) = 0 we do the following to obtain a SAGBI basis of A. 
All elements of G that satisfy the extra condition L(f ) = 0 will remain in the 
SAGBI basis. There must, however, be at least one element that does not satisfy 
the condition. Let us choose such a g ∈ G of minimal degree d, thus L(g) ≠ 0. 
Note that exactly this degree d should disappear from the numerical semigroup 
S of degrees. Thus we know the new semigroup SA = S ⧵ {d} and can easily 
find the type (s1,… , sm) of the subalgebra A. For each degree si we find a poly-
nomial hi ∈ B and our new SAGBI basis consists of fi = L(g)hi − L(hi)g . If we 
wish to make them monic we can just divide each fi by its highest coefficient. 
In order to further simplify calculations we want the basis elements to be inside 
M� , and there are several ways to do this. The simplest one is to replace fi(x) by 
fi(x) − fi(�), but a more efficient way is to choose hi and g in M� from the start. 
Sometimes it may be clever to choose a linear combination with the previous fj to 
get as high a degree of the factor x − � as possible.

We summarize this as follows.

Theorem 25 Let G be a SAGBI basis for B chosen inside MB
�
. Let g = gi be an ele-

ment of minimal degree in this basis that does not belong to A. Suppose WLOG that 
L(g) = 1 and L(gj) = 0 for j ≠ i (which we can obtain replacing gj by gj − L(gj)g).

• The set consisting of polynomials gj, hj = ggj − L(ggj)g with gj ∈ G , j ≠ i 
and two polynomials fk = gk − L(gk)g for k = 2, 3 forms a SAGBI basis for A 
inside MA

�
. (Not necessary a minimal one.)

• If A has type (s1,… , sm) then to construct a minimal SAGBI basis one should 
for each s = sj find a polynomial ps ∈ B of degree s and take ps − L(ps)g. If all 
ps are chosen inside MB

�
 then the obtained SAGBI basis will be inside MA

�
.

Proof If f (x) ∈ B then L(f − L(f )g) = 0, thus f − L(f )g belongs to A = kerL. This 
immediately proves the second statement because we get elements of degree si in 
A. To prove the first statement we need to find polynomials built up from our basis 
elements of each degree d ≠ deg g occurring in B. We can express d as the degree of 
some glu where u is a product of gj, where j ≠ i, but repetitions are allowed. Because 
each such gj belongs to MA

�
 the same is true for u,  so suppose that l > 0. If l ≥ 2 we 

can use f a
2
f b
3
u where l = 2a + 3b to get the degree d. At last if l = 1 and u = gjv for 

some gj we can use hjv .   ◻

Now we want to prove another result, where we want show how to use SAGBI 
bases.
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Theorem  26 Let B be a subalgebra of finite codimension such that � does not 
belong to its spectrum. If D is a non-zero �-derivation of an algebra B and A = kerD, 
then all �-derivations of subalgebra A can be written as

Proof First we choose a SAGBI basis {gi} for B inside MB
�
. Let g = gi be an ele-

ment of minimal degree in this basis that does not belong to A. Suppose WLOG 
that D(g) = 1. Subtracting cjg we can suppose that D(gj) = 0 for all j ≠ i. By Theo-
rem 25 the set consisting of polynomials gj, hj = ggj − D(ggj)g with gj ∈ G , j ≠ i 
and two polynomials fk = gk − D(gk)g for k = 2, 3 forms a SAGBI basis for A inside 
MA

�
.

By Theorem 18 we can suppose that D(f ) = f �(�) and dB
�
= 1. Then f → f (k)(�) 

for k = 2, 3 are two derivations and it is sufficient to prove that they are linearly inde-
pendent and that dA

�
≤ 2.

The linear independence is obvious if we restrict those maps to g2, g3 only, so let 
us concentrate on the inequality.

Because dB
�
= 1 we have that

In particular for j ≠ i we have

This can be seen as follows:

Using the fact that D(g2) = D(g3) = D(ggj) = 0 we get that MA
�
 is generated by 

g2, g3, gj, ggj with j ≠ i. Note that all those elements belong to 
(
MB

�

)2
. Since both (

MB
�

)2 and MA
�
 have codimension one in MB

�
 we conclude that

Next we want to study when products p = �gj of at least two elements belong to (
MA

�

)2
. This depends on the number of factors gj that equal g = gi. If there is no fac-

tor g then p ∈
(
MA

�

)2
. This also holds if at least four factors equal g, because gn with 

n ≥ 4 can be written as a product of g2 and g3.
If p = g3u or p = g2u where u does not contain g, the only exception is p = g3 

and p = g2, because otherwise u ∈ MA
�
.

At last if p = gu then u = gjv and the only exception is p = ggj. In all other cases 
p = (ggj)v ∈

(
MA

�

)2
.

Because the products �gj span 
(
MB

�

)2 we conclude that

f (x) → af ���(�) + bf ��(�).

MB
�
= �g +

(
MB

�

)2
.

gj ∈
(
MB

�

)2
.

gj = cg + m, m ∈
(
MB

�

)2
⇒

0 = D(gj) = c + D(m) = c + 0 ⇒ c = 0.

MA
�
=
(
MB

�

)2
.
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We know that gk ∈
(
MB

�

)2 for k ≠ i . As a result

Using the facts that g4 = (g2)2, (g2)gj ∈
(
MA

�

)2 and gMA
𝛼
⊆ MA

𝛼
 we find that

Applying this for k = j in (1) we can improve this to

From this it is clear that

Thus the two �-derivations of A we have found earlier form a basis for DA

�
 .   ◻

22  SAGBI bases in codimension one

Let us see how to find SAGBI bases in subalgebras of codimension one. We start from 
�[x] (which has x as SAGBI basis and from which we can get A either by the condition 
f �(�) = 0 or by the condition f (�) = f (�)). We now get Theorem 3 without any effort 
thanks to Theorem 4.

Now we want to prepare for the next codimension and for this we need to find 
SAGBI bases and derivations for the different subalgebras of codimension one. We 
obviously have that D� contains f ��(�), f ���(�) in the first case and f �(�), f �(�) in the 
second case.

Because d� and d� are not greater than the number of generators, which equals two, 
we have found all nontrivial derivations.

Type (2, 3) is the only possible semigroup of degrees, so an easy way to construct a 
SAGBI basis is to use the second part of Theorem 25. We get

as the SAGBI basis for the first alternative, that is when L is a derivation. For the 
second alternative we can choose

(1)
(
MB

𝛼

)2
⊆ �g2 + �g3 +

∑

j≠i

�ggj +
(
MA

𝛼

)2
.

ggk ∈ �g3 + �g4 +
∑

j≠i

�g2gj + g
(
MA

�

)2
.

ggk ∈ �g3 +
(
MA

�

)2
.

MA
𝛼
=
(
MB

𝛼

)2
⊆ �g2 + �g3 +

(
MA

𝛼

)2
.

dA
�
= dimMA

�
∕
(
MA

�

)2
≤ 2.

(x − �)2, (x − �)3

(x − �)(x − �);(x − �)2(x − �).
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23  Subalgebras of codimension two

We now turn to subalgebras of codimension two. By Theorem 4 they can be obtained 
by applying one extra condition to a subalgebra B of codimension one. This means 
we need to study how those conditions look. In the case when the extra condition is 
f (�) = f (�) we simply add one or two elements to the spectrum and obtain the alge-
bra A. This is an easy case. A more difficult case is when we need to describe a ker-
nel of some derivation. But we already know the derivations in each of the two cases 
considered above. Thus we are prepared to make a classification of all codimension 
two subalgebras:

Theorem 27 Let A be a subalgebra of codimension two. Then it is either type (2, 5) 
or type (3, 4, 5). The spectrum contains s ≤ 4 elements and depending on s we have 
the following possibilities: 

s=1  A = {f (x)|f �(�) = 0;af ��(�) + bf ���(�) = 0}.

  If a = 0, b ≠ 0 then T(A) = (2, 5) and if a ≠ 0 then T(A) = (3, 4, 5).

s=2  A = {f (x)|f (�) = f (�);af �(�) + bf �(�) = 0}.

  If a = b ≠ 0 then T(A) = (2, 5) and if a ≠ b then T(A) = (3, 4, 5).

s=2  A = {f (x)|f �(�) = f �(�) = 0}.

  In this case T(A) is always (3, 4, 5).

s=3  A = {f (x)|f (�) = f (�);f �(�) = 0}.

  If � + � = 2� then T(A) = (2, 5), and if � + � ≠ 2� then T(A) = (3, 4, 5).

s=3  A = {f (x)|f (�) = f (�) = f (�)}.

  In this case T(A) is always (3, 4, 5).

s=4  A = {f (x)|f (�) = f (�);f (�) = f (�)}.

  If � + � = � + � then T(A) = (2, 5) and if � + � ≠ � + � then 
T(A) = (3, 4, 5).

 Here �, �, � , � are different elements of the spectrum.
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Proof We know that the spectrum has at most four elements. We start with the case 
where there are no derivations in the subalgebra conditions. Either we have two 
clusters and get the only case with s = 4 or we have only one cluster of size 3 and 
get the second case with s = 3.

If some �-derivation is used then we can suppose that it was added to a subalge-
bra of codimension one. If � was not in the spectrum of this codimension one subal-
gebra, then � is a trivial derivation f → f �(�) and we get either the second case with 
s = 2 (with � = � ) or the first case with s = 3.

At last if � belongs to the spectrum we can WLOG suppose that � = � and use 
that we know all �-derivations. We get cases with s = 1, 2.

It is easy to check that (2, 5) and (3, 4, 5) are the only choices for the numerical 
semigroup of degrees. To see which choice is valid we only need to check if the ele-
ment of degree 2 in the SAGBI basis satisfies the added condition. If so we get type 
(2, 5), otherwise type (3, 4, 5). Alternatively we can use Theorem 23 which tells us 
exactly when T(A) = (2, 5) .   ◻

24  Subalgebras of codimension three

In codimension three we can use the same approach and get a classification, but the 
situation is more complicated. The spectrum has at most 6 elements. We will show 
only how it looks for a single element in the spectrum (the complete classification 
can be found in [10]).

Theorem 28 If an algebra A of codimension three has a spectrum consisting of a 
single element � then A is one of the following algebras 

1. A = {f (x)|f �(�) = f ��(�) = af ���(�) + bf (4)(�) + cf (5)(�) = 0}.

  If a ≠ 0 then T(A) = (4, 5, 6, 7) and for a = 1 a SAGBI basis is: 

  If a = 0 and b ≠ 0 then T(A) = (3, 5, 7) and for b = 1 a SAGBI basis is: 

 For a = b = 0, c ≠ 0 the type is (3, 4) and a SAGBI basis is 

 If a = b = c = d = 0 the codimension is 2.
2. A = {f (x)|f �(�) = f ���(�) − 3af ��(�) = f (5)(�) − 10af (4)(�) + bf ��(�) = 0}.

  with a ≠ 0. If b ≠ 0 then T(A) = (4, 5, 6, 7) and a SAGBI basis is: 

(x − �)4 − 4b(x − �)3, (x − �)5 − 20c(x − �)3, (x − �)6, (x − �)7.

(x − �)3, (x − �)5 − 5c(x − �)4, (x − �)7.

(x − �)3, (x − �)4.

b(x − �)4 + 120a2(x − �)3 + 120a(x − �)2,

b(x − �)5 − 60a(x − �)3 − 60(x − �)2, (x − �)6, (x − �)7.
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 If b = 0 then T(A) = (3, 5, 7) and a SAGBI basis is: 

3. A = {f (x)|f �(�) = f ���(�) = cf (5)(�) + df ��(�) = 0}. If d ≠ 0 then T(A) = (4, 5, 6, 7) 
and a SAGBI basis is: 

 If c ≠ 0, d = 0 then T(A) = (2, 7) and a SAGBI basis is: 

 If c = 0, d = 0 we get codimension 2.

Proof The subalgebra A is contained in a subalgebra B of codimension 2. Because 
the spectrum of B is a subset of the spectrum of A, the subalgebra B should have a 
single (and the same) element � in the spectrum. Moreover, A is obtained from B 
as a kernel of some �-derivation (all other possibilities would lead to a larger spec-
trum). So the result will follow from the description of all derivations of the sub-
algebra B = {f (x)|f �(�) = 0; a1f

��(�) + b1f
���(�) = 0} by adding an extra derivation. 

Using variable substitution x − � → x we can WLOG suppose that � = 0 . If a1 = 0 
(which corresponds to T(B) = (2, 5) ) we put b1 = 1 and get a monomial subalgebra 
B, where we know all derivations and obtain case 3.

If b1 = 0 we get a monomial subalgebra as well, and get the case 1. Otherwise we 
can put b1 = 1, and (in order to get a nice SAGBI basis) a1 = −3a where we suppose 
that a ≠ 0. Thus

Because T(B) = (3, 4, 5) we can choose p = x4, q = ax3 + x2, r = x5 as generators of 
B. Note that a2p2 − aqr + pq = x6 ∈ M2

0
. Thus

and we get 2aDr + Dp = 0. Therefore dB
0
≤ 2 which means that we only need to find 

two derivations of the desired form.
One is obviously the second derivative, D1 ∶ f (x) → f ��(0), but we cannot use the 

third derivative because in our algebra it is proportional to D1. So we need to try 
higher derivatives D2 ∶ f (x) → cf (4)(0) + df (5)(0). Our condition 2aD2r + D2p = 0 is 
equivalent to 2a ⋅ d ⋅ 5! + c ⋅ 4! = 0 so we can try c = −10a, d = 1 and only have to 
check that this is a derivation in B. We have (skipping terms that obviously equal 
zero)

(x − �)3 + a(x − �)2, 2a(x − �)5 + (x − �)4, (x − �)7.

(x − �)4, d(x − �)5 − 60c(x − �)2, (x − �)6, (x − �)7.

(x − �)2, (x − �)7.

f ���(0) − 3af ��(0) = 0.

q2 − a2x6 = 2ax5 + x4 = 2ar + p ∈ M2
0
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and we are done.
The arbitrary derivation is a linear combination of f (x) → f ��(�) and 

f (x) → f (5)(�) − 10af (4)(�) and we get the case 2 if we simply substitute 0 by � back.
When we get a description there is a straightforward way described above to get a 

SAGBI basis: we know the possible degrees and need only to search for elements of 
the degrees generating the semigroup that satisfy the subalgebra conditions.   ◻

25  About the characteristic polynomial �A(x) when A has more 
than two generators

We would like to generalise Theorem 16 to arbitrary subalgebras. For this we need 
to define the characteristic polynomial for an arbitrary subalgebra.

Let us look at the case where A has more than two generators. It is not evident 
how to extend the definition. The resultant is defined only for pairs of polynomials.

A naive attempt is to use the gcd of all �gi,gj
 where gi generate A. Let us first look 

at an example.

Example 7 Let p(x) = x12 + 3x6 , q(x) = x15 and r(x) = x10 and A = ⟨p(x), q(x), r(x)⟩ 
the subalgebra they generate. We can form the characteristic polynomial of any 
pair of generators. If we look at the pair p and q for example, it is obvious that 
they both belong to �[x3] . Hence their characteristic polynomial is zero by Theo-
rem  15. In the same way the other two pairs of generators have zero as char-
acteristic polynomial. In contrast, if we form P and Q as before and addition-
ally R(x, y) = (r(x) − r(y))∕(x − y) , then P(x, y) = Q(x, y) = R(x, y) = 0 has only 
a finite set of solutions. In particular the possible x-values are the 24 solutions of 
x24 + 6x18 + 26x12 + 81x6 + 81 and x = 0 . (This can be obtained by solving the sys-
tem in for example Maple.)

The above example shows that looking at pairs of generators of the algebra is not 
enough to define the characteristic polynomial in a suitable way. Inspired by Theo-
rem 8 we instead make the following definition.

Definition 4 Let A be a subalgebra of finite codimension. We define its character-
istic polynomial�A(x) as the gcd of all �p,q(x) where p and q are monic polynomials 
in A with relatively prime degrees.

Theorem 8 assures that the set of zeroes of �A(x) equals the spectrum.

− 10a(fg)(4)(0) + (fg)(5)(0)

−
(
−10af (4)(0) + f (5)(0)

)
g(0) − f (0)

(
−10ag(4)(0) + g(5)(0)

)

= −10a

(
4

2

)
f ��(0)g��(0) +

(
5

2

)
f ���(0)g��(0) +

(
5

3

)
f ��(0)g���(0)

= −10a ⋅ 6f ��(0)g��(0) + 10 ⋅ 3af ��(0)g��(0) + 10 ⋅ 3af ��(0)g��(0) = 0
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This definition has the drawback that it does not give an immediate way to 
compute �A(x) , as there are infinitely many pairs {p, q}.

We will therefore introduce another polynomial, D(x), that while still having 
the spectrum as its set of zeroes, also immediately allows computation for each 
finitely generated A.

Let us first assume that we have three generators A = ⟨p(x), q(x), r(x)⟩ . We also 
assume that deg q(x) ≥ deg r(x) . Introduce P(x,  y),  Q(x,  y) as before and analo-
gously R(x, y). Then form the resultant R(x, y, z) = Resy(P(x, y), zQ(x, y) + wR(x, y)) . 
An x-value x = � that makes this resultant disappear for all values of z and w 
means an x-value for which there is some y = � such that P(�, �) = 0 and 
zQ(�, �) + wR(�, �) = 0 regardless of the values of z and w. In other words 
P(�, �) = Q(�, �) = R(�, �) = 0.

Now it follows, from the construction of the resultant as a certain determinant 
and the fact that the determinant depends linearly on the columns of the matrix, 
that R can be written as R(x, z,w) =

∑n−1

j=0
dj(x)z

n−1−jwj . Here dj(x) is a polynomial 
in �[x] that can be computed by starting from the resultant-matrix of P and Q, 
then replace j columns of coefficients from Q by the corresponding coefficients 
of R. Finally sum over all choices of j such column replacements. That sum of 
determinants equals dj(x) . The x-values x = � that make R(�, z,w) = 0 are those 
which satisfy dj(�) = 0 for each j or equivalently those x = � that are zeroes of 
d(x) = gcd(d1(x), d2(x),… , dn−1(x)) . It is straightforward to generalise this idea to 
more than three generators. We therefore make the following definition:

Definition 5 Let A = ⟨p1(x), p2(x),… , pt(x)⟩ and n = deg p1(x) . Moreover, form 
Pi(x, y) = (pi(x) − pi(y))∕(x − y) and finally

Then R can be expressed as

where the sum is taken over all natural numbers ai satisfying a2 + a3 +⋯ at = n − 1 . 
Now let D(x) = gcd({d(a2,a3,…,at)

}) where the gcd is taken over the set of all polyno-
mials d(a2,a3,…,at)

 occurring in the sum (2).

This definition looks complicated, so let us see how it works in our previous 
example.

Example 8 Let p, q, r and P, Q, R be as in the previous example. In this case we need 
to compute the resultant

R(x, z2, z3,… , zt)

= Resy
(
P1(x, y), z2P2(x, y) + z3P3(x, y) +⋯ + ztPt(x, y)

)
.

(2)R(x, z2, z3,… , zt) =
∑

d(a2,a3,…,at)
(x)z

a2
2
z
a3
3
⋯ z

at
t ,

Resy(P(x, y), zQ(x, y) + wR(x, y)) =

10∑

j=0

d(10−j,j)(x).



784 R. Grönkvist et al.

1 3

(Here we have replaced z2 by z and z3 by w to improve readability.) By doing our 
computation in Maple we obtain:

where

and

Thus the gcd of the first five polynomials d(11−j,j) is x50b(x) . One can check that the 
remaining d(11−j,j) also are divisible by x50b(x) . (In particular d(0,11) = 0 , while the 
other polynomials are non-zero.)

Thus D(x) = x50b(x) , and the Sp(A) consists of zero together with the 24 zeroes 
of b(x).

Note that D(x) depends on the generators and even on which generator is chosen 
as p1 . For example if we take p1 = r in the above example we get D(x) = x54b(x) . As 
long as we are looking for the zeroes this is not a problem, but we cannot use D as 
our characteristic polynomial as it is not well defined for a given subalgebra A.

But we can define characteristic polynomial as a gcd of all such D(x) to have an 
invariant definition. In our example it still be x50b(x).

We conclude by using D to find descriptions of some subalgebras on several 
generators.

Example 9 Let

Using the above method we get D(x) = x2(x − 1)(x − 2)(x − 4)2(x − 5)2 . Hence 
Sp(A) = {0, 1, 2, 4, 5} . Since A has generators of degrees 3,  5,  7 its codimen-
sion in �[x] is at most three. By Theorem  7 we should look for conditions 
where f or its derivatives are evaluated in spectral points. It is evident that 
f (0) = f (4) = f (5) for all generators. Also f (1) = f (2) for the first two genera-
tors, and one can check that this holds also for the third generator. This shows that 
A = {f (x)|f (0) = f (4) = f (5), f (1) = f (2)} . Note that since we found three condi-
tions the codimension equals three, and this implies that our generators constitute a 
SAGBI basis.

d(11,0) =d(10,1) = 0

d(9,2) =4x
60a(x)2b(x)3

d(8,3) =18x
55a(x)b(x)2c(x)

d(7,4) =3x
50b(x)d(x)

a(x) = 2x6 + 3, b(x) = x24 + 6x18 + 36x12 + 81x6 + 81,

c(x) = 2x30 + 5x24 + 30x18 + 90x12 + 135x6 + 81

d(x) = 52x60 + 300x54 + 2025x48 + 8100x42 + 24300x36 + 65610x30

+ 153090x24 + 262440x18 + 295245x12 + 196830x6 + 59049.

A = ⟨(x − 5)(x − 4)(x − 2)(x − 1)x3, (x − 5)(x − 4)(x − 2)(x − 1)x, (x − 5)(x − 4)x⟩.
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Example 10 Let

In this case we get D(x) = x2(x − 2)(x + 2)(x − 1)2(x + 1)2 . Thus we get that 
Sp(A) = {0, 1,−1, 2,−2} . Since A has generators of degrees 4, 5, 6, 7 we must again 
have codimension at most three. If we factor the generators it is easy to see that 
A = {f (x)|f (0) = f (1) = f (−1), f (2) = f (−2)}.

Finally we want to consider quite different approach to generalise the notion of 
characteristic polynomial for to an arbitrary subalgebra A. It is based on the observa-
tion that the characteristic polynomial belongs to the subalgebra itself. According 
to Theorem 19 there exists a monic polynomial p(x) such that xkp(x) ∈ A for any 
k ≥ 0. If we choose such polynomial of minimal degree it will be unique. (Otherwise 
the difference between two such polynomials would provide a polynomial of lower 
degree.) Let us take call such a minimal polynomial M(x).

Note that any � ∈ Sp(A) is a root for M(x). This is immediate from the definition 
of spectrum applied to the elements M(x) and xM(x) of A. Obviously its degree is 
greater than the Frobenius number of the the corresponding numerical semigroup S 
of degrees. As we see in the last example it can be larger than the Frobenius num-
ber plus one, but we suspect it is not greater than twice the codimension. We have 
M(x) = x30b(x) in Example 8, so here the degree is exactly twice the codimension, 
but it is smaller than the degree of the characteristic polynomial obtained using our 
previous definition. It seems reasonable to think of M(x) as a kind of minimal poly-
nomial for A, but one could also take M(x) to be the characteristic polynomial of A.

26  Single element in the spectrum: derivations

To understand how derivations are formed, we will study a special concrete case, 
algebras A with a single element � in the spectrum.

First of all, if p�(�) = 0 for any p ∈ A , then D2 ∶ p →
p��(�)

2!
 and D3 ∶ p →

p���(�)

3!
 

are two �-derivations over A. Now one may ask: what �-derivations exist over the 
kernel of some linear combination D3 − cD2 ? Consider the following list of the 
maps created with the help of Maple:

A = ⟨x4 − x2 + 4, x5 − 5x3 + 4x, x6 − 5x4 + 4x2, x7 − 5x5 + 4x3⟩.
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Here Dk is the map Dk ∶ p →
p(k)(�)

k!
 and c is a constant.

We know that the first map is an �-derivation. But what is more interesting is that 
if the first k maps defines a subalgebra inside A (as the intersection C of their kernels 
with A), then the next map will be a derivation over C.

For any given map in the list above, let Ci be the coefficient of ckDi . I.e in the 
fourth map we have C7 = 1,C6 = −3,C4 = −3 . Then for every single map, the fol-
lowing relations all hold among the Ci of that map:

We use parenthesised superscripts to index a particular map above. We index the 
maps by the highest order among the derivatives in it. Note that this means that the 
map with index n is in row n+1

2
 in the above list. For example

C
(7)

6
= −3 . The following theorem states that the properties which we have 

observed (but not proved) the C(n)

k
 to exhibit, uniquely determine a set of integers.

Theorem 29 Let n = 2k + 1 be an odd number. If we demand

• C(n)
n

= 1 and C(n)

i
= 0 for all other odd i;

• C
(n)

i
= 0 for all even i > n;

• C
(n)

2m
+

(
m

1

)
C
(n)

2m+1
+

(
m

2

)
C
(n)

2m+2
+

(
m

3

)
C
(n)

2m+3
+⋯ +

(
m

m − 1

)
C
(n)

3m−1
+ C

3m = 0  

for all m

D1

D3 − cD2;

D5 − 2cD4;

D7 − 3cD6 + 3c3D4;

D9 − 4cD8 + 11c3D6 − 11c5D4;

D11 − 5cD10 + 26c3D8 − 78c5D6 + 78c7D4;

D13 − 6cD12 + 50c3D10 − 294c5D8 + 882c7D6 − 882c9D4;

D15 − 7cD14 + 85c3D12 − 816c5D10 + 4811cD7
8
− 14433c9D6 + 14433c11D4;

D17 − 8cD16 + 133c3D14 − 1881c5D12 + 18145c7D10

− 106989c9D8 + 320967c11D6 − 320967c13D4;

D19 − 9cD18 + 196c3D16 − 3822c5D14 + 54399c7D12

− 524880c9D10 + 3094881c11D8 − 9284643c13D6 + 9284643c15D4.

C0 = 0

C2 + C3 = 0;

C4 + 2C5 + C6 = 0

C6 + 3C7 + 3C8 + C9 = 0

C8 + 4C9 + 6C10 + 4C11 + C12 = 0

…

C2m +

(
m

1

)
C2m+1 +

(
m

2

)
C2m+2 +⋯ +

(
m

m − 1

)
C3m−1 + C3m = 0.
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then the numbers C(n)

i
 are uniquely determined.

Proof We only need to consider C(n)

i
 for even i less than n. For C(n)

2k
 we have

If C(n)

i
 is defined for all i > 2m then we have

and all C(n)

i
 are uniquely defined by induction.   ◻

Now for each odd n we can define

Conjecture 2 If L1(f ) = L3(f ) = ⋯ = Ln−2(f ) = 0 for each f ∈ A then Ln is an �-der-
ivation in A.

27  Further development

Here we want to discuss some possible ways to generalise the obtained results. We 
have several restrictions. Are they all necessary?

First of all we can consider subalgebras of infinite codimension. Then we need 
infinitely many conditions, so spectra can be infinite as well. But there are many 
interesting questions here.

Next we have the restrictions on the field. Characteristic zero seems to be impor-
tant. In positive characteristic we encounter problems already in the case of mono-
mial algebras as some derivatives vanish due to the characteristic regardless of what 
algebra we want to describe. But we can probably work with the divided powers.

The demand that the field is algebraically closed is probably less restrictive, at 
least if we allow the spectral elements to belong to the algebraic closure of the field. 
An interesting question related to this is to understand when the spectrum of a sub-
algebra over the field of complex numbers consists of real elements. It would also be 
interesting to investigate methods for constructing a SAGBI in this case. The main 
tool - the existence of a subalgebra B of codimension one less is absent. Though in 
the real case, we can find a subalgebra of codimension two less.

Perhaps, the most interesting generalization is to allow more than one variable. 
Here we need to use partial derivatives and for example the monomial subalgebras 
exhibit a similar description as in the univariate case. Thus there is a realistic hope 
for the theory to be extendable to several variables. One problem is that it is not 
clear that the spectrum cannot contain ghost elements if we increase the number of 
variables.

C
(n)

2k
+

(
k

1

)
C2k+1 + 0 +⋯ = 0 ⇒ C

(n)

2k
= −

(
k

1

)
= −k.

C
(n)

2m
= −

[(
m

1

)
C
(n)

2m+1
+

(
m

2

)
C
(n)

2m+2
+⋯ +

(
m

m − 1

)
C
(n)

3m−1
+ C3m

]

Ln =

n∑

i=0

C
(n)

i
ciDn−i.
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The main tool—containment in a subalgebra B still works but now we need (in 
the case of two variables) to speak about (�, �)-derivations. The SAGBI bases seem 
to be constructed in a similar way and therefore should still be finite. But there are 
many differences. First of all f (�, �) = 0 does not give us a factor in f(x, y) which 
is a fact that we have relied substantially on in the one-dimensional case. There-
fore we have no direct analogs for the proofs of theorems corresponding to Theo-
rems 18, 19, 20. It would be interesting to know if they are still valid.

Another difference is that there exists proper subalgebras in �[x, y] with empty 
spectrum. An example inspired by [11] is the subalgebra A = ⟨x, xy, xy2 − y⟩.

If we assume that

for all f ∈ A and apply this to the generators we find that � = � , �� = �� and 
��2 − � = ��2 − � . If � ≠ � then � = � = 0 . Now this in turn implies that � = � . We 
conclude that (�, �) = (� , �) so the pair (�, �) was not in the spectrum of A.

Similarly

applied to x gives a = 0. Thus b ≠ 0 and application to xy gives � = 0. But then

To check that it is a proper subalgebra suppose that

If we put y = 1

x
 here then we obtain 1

x
= F(x, 1, 0) - a contradiction.

In fact no yk belongs to A and we have, as expected, infinite codimension while 
�[x, y] is the only subalgebra of finite codimension that contains A.

But it is impossible to construct similar examples with finite codimension or in 
the one-variable case.

An interesting question is to find a homological interpretation of our results. 
Some kind of homological algebra should lie under the surface here.

The characteristic polynomial is especially interesting. What is the most natural 
way to define it? Can it be introduced for several variables? Can it be interpreted as 
the characteristic polynomial of some operator on V2 or V × V∗ , where V = �[x]∕A?

There are also fundamental open questions regarding the size of the spectrum. Is 
it an inner property of subalgebra? As ⟨x2⟩ has an infinite spectrum, the size of the 
spectrum probably depends on the embedding of the subalgebra in �[x]. But maybe 
this is not the case if we restrict ourselves by finite codimension only.

There are potential applications to important mathematical problems. We believe 
that the spectrum will prove to be a useful tool when comparing subalgebras.

We also hope to find some applications in cryptography because we have two 
essentially different ways to describe subalgebras.

f (�, �) = f (� , �)

af �
x
(�, �) + bf �

y
(�, �) = 0

b(xy2 − y)�
y
(0, �) = −b ≠ 0.

y = F(x, xy, xy2 − y).
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