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Abstract

In Beelen and Montanucci (Finite Fields Appl 52:10-29, 2018) and Giulietti and
Korchméaros (Math Ann 343:229-245, 2009), Weierstrass semigroups at points of
the Giulietti-Korchmaros curve X’ were investigated and the sets of minimal genera-
tors were determined for all points in X(F.) and X(F,) \ X(F.). This paper com-
pletes their work by settling the remaining cases, that is, for points in X([Fq)\/'\,’([qu).
As an application to AG codes, we determine the dimensions and the lengths of
duals of one-point codes from a point in X([Fq7)\X([Fq) and we give a bound on the
Feng-Rao minimum distance d,g,. For ¢ = 3 we provide a table that also reports
the exact values of d . As a further application we construct quantum codes from
[F,~rational points of the GK-curve.

Keywords Algebraic curves - AG codes - AG quantum codes - Weierstrass
semigroups

1 Introduction

Algebraic geometric methods have largely been used for the construction of
error-correcting linear codes from algebraic curves. The essential idea going back
to Goppa’s work (see [10] and [11]) is that a linear code can be obtained from
an algebraic curve X’ defined over a finite field |, by evaluating certain rational
functions whose poles are prescribed by a given [ -rational divisor G at some
F,-rational divisor D whose support is disjoint from that of G. These codes are
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called functional (or evaluation) codes. The dual of such a code can also be
obtained by using Goppa’s idea, taking residues of differential forms rather than
rational functions. They are called differential AG codes. Actually, any linear
code is an AG code; see [19].

AG codes are proven to have good performances provided that X, G and D
are carefully chosen in an appropriate way. In particular, AG codes with bet-
ter parameters can arise from curves which have many [ -rational points, espe-
cially from maximal curves which are curves defined over F, with g square whose
number of F -rational points X(F,) attains the Hasse-Weil upper bound, namely
| XEDI =g+ 1+ 29\/_, where g is the genus of X'; for AG codes from maximal
curves see for instance [6, 13, 17, 18]. Regarding the choice of the two divisors
D and G, the latter is typically taken to be a multiple mP of a single point P of
degree one. Such codes are known as one-point codes, and have been extensively
investigated; see for instance [5, 8, 15, 21, 24].

An important ingredient for the construction of one-point AG codes is the
Weierstrass semigroup H(P) of X at P, whose elements are the non-negative
integers k for which there exists a rational function on & having pole divisor
kP. Indeed, the knowledge of this semigroup allows to obtain useful informa-
tion on the parameters of functional and differential codes. Although the struc-
ture of H(P) is not always the same for every point P of X, it is known that this
holds true for all but a finite number of points P € X'. A point for which the
Weierstrass semigroup is not the typical one is a called a Weierstrass point. If
G(P) := N\H(P) denotes the set of gaps at P, it is well known that the size of
G(P) equals the genus g of X for every P € X’; see [22, Theorem 1.6.8].

Several papers have been dedicated to the construction of AG codes from
the GK curves; see [1, 2, 4, 7]. The GK-curves are [qu,—maximal curves due to
Giulietti and Korchmaros, which provided the first family of maximal curves
that are not subcovers of the Hermitian curve [9]. The Weierstrass semigroup is
known at any [qu—rational point of the GK curve X, see [9], as well as at any
point in X([qu,)\X([qu), see [3]. In the latter paper, see Result 7, the authors also
deal with Weierstrass semigroups at points in X(F,)\AX(F), showing that the
Weierstrass points of the GK curve are exactly its F-rational points. However
the problem of determining the generators of a Weierstrass semigroup H(P) with
P € X(F)\X(F,) has remained open. In the present paper we solve this prob-
lem. Therefore the Weierstrass semigroups at the points of the GK curve are com-
pletely determined.

Let S =S, US,, with

S, ={@+i@-+iqd" - -¢Hi=0,....q—1, j=0,....g—1},
S, ={@-1+i@-p+j¢*—¢*-11]i=0,....q—-1, j=0,....,q-2}.

Then, our main result is the following theorem.
Theorem 1 Let X be the GK curve over F, and let P € X([I_:q)\X([qu,). Then if g > 2,

S is a minimal set of generators for the Weierstrass semigroup H(P). For q = 2, the
minimal set of generators for H(P) is {7,8,12,13,18}.
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This theorem together with the already quoted previous results provide a com-
plete description of the Weierstrass semigroups at any point of the GK-curve.

Theorem 2 Let X be the GK curve over F, and P be a point of X. Then one of the
following occurs, where e(H(P)) denotes the number of generators of H(P).

- PEXF,), HP)=(q’ - ¢* + 4.4, ¢° + 1) and e(H(P)) = 3;

- PeXE\XFL), HP) =(4* =g+ 1. + 1.8 +il¢" =4’ = +q-1) 1 i=0,....¢= 1)
and e(H(P)) = q + 2;

— q>2,P e XF)\XFy), HP) = (S) and e(H(P)) = 2¢* — g;

- q=2,Pe XF)\XFy). HP) = (7,8,12,13,18) and e(H(P)) = 5,

The above results are then applied to the construction of AG codes and quantum
codes from an [Fq7—rational point of the GK curve. More in detail, Sect. 4 is devoted
to the construction of dual codes of one-point AG codes. We investigate their param-
eters and we provide explicit tables in the case g = 3. In Sect. 5, by applying the
CSS construction to the codes constructed in Sect. 4, we exhibit families of quantum
codes. Also in this case, explicit tables are provided.

2 Background on numerical semigroups and on the GK-curve
2.1 Numerical semigroups

A subset H of N, containing 0, which is closed under sums and which has finite
complement is called a numerical semigroup. The main reference for the theory
of numerical semigroups is [20]. Associated to H there are several invariants,
parameters and subsets, the most important being the genus g(H) and the gapset
G(H) = N)\H. The genus is the cardinality of the gapset, which, by definition, is
finite.

For a nonempty subset A = {q,,...,a,} of N;, (A) denotes the smallest subset
of N, containing A, 0 and closed under addition; clearly (A) = Nya; + -+ + Nya,,.
For a numerical semigroup H, the minimal system of generators {4, ...,h,} is the
smallest subset of H such that H = (h, ..., h,), and its cardinality e(H) is called the
embedding dimension of H.

Definition 1 For a numerical semigroup H and n € H\ {0}, the Apéry set of n is
Ap(H,n) :={x€H|x—n¢& H}.

A strong connection between the Apéry set and the genus is given by the follow-
ing result.

Result 3 [20, Lemma 2.4, Proposition 2.12] Let H be a numerical semigroup and n
a nonzero element of H. Then |Ap(H,n)| = n and
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g(H)=l Z x_n;l. )

M cAp(H,n)

2.2 Weierstrass semigroups and AG codes

For a curve X, we adopt the usual notation and terminology. In particular, F,(X) and
X(F,) denote the field of F -rational functions on X and the set of [ -rational points
of X, respectively, and Div(X) denotes the set of divisors of X, where a divisor
D € Div(&) is a formal sum n,P, + -+ +n,P,, with P, € X, n; € Z and P; # P; if
i # j. The support Supp (D) of the divisor D is the set of points P; such that n; # 0,
while deg(D) = Y, n; is the degree of D. The divisor D is F_-rational if n; # 0 implies
P; € X(F,). For a function f* € F (&), (f), (f) and (f), are the divisor of £, its divisor of
zeroes and its divisor of poles, respectively. The Weierstrass semigroup H(P) at P € X
is

HP) :={neNy | I € F(X), () =nP} ={py =0<p; <py <}
The Riemann-Roch space associated with an [ -rational divisor D is
LD) :={feXF) : (/)+D=0}u{0}

and its vector space dimension over [Fq is Z(D).

Fix a set of pairwise distinct [Fq-rational points {P,--,Py}, and let
D = P, + --- + Py. Take another divisor G whose support is disjoint from the support
of D. The AG code C(D, G) is the (linear) subspace of [F;V which is defined as the image
of the evaluation map ev : L(G) — [,:;v given by ev(f) = (f(P)),f(P,), ....f(Py)). In
particular C(D, G) has length N. Moreover, if N > deg(G) then ev is an embedding
and Z(G) equals the dimension of C(D, G). The minimum distance d of C(D, G),
usually depends on the choice of D and G. A lower bound for d is d* = N — deg(G),
where d* is called the Goppa designed minimum distance of C(D, G). Furthermore, if
deg(G) > 2g — 2 then k = deg(G) — ¢ + 1 by the Riemann--Roch Theorem; see [12,
Theorem 2.65].

The dual code C+(D, G) can be obtained in a similar way from the F,(X)-vector
space (X&) of differential forms over X'. With w € (&), there is associated the divi-
sor (w) of X, and for an [Fq-rational divisor D,

QD) ={we 2X) : (w)>D}u{0}

is a F,-vector space of rational differential forms over X. Then the code C1(D, G)
coincides with the (linear) subspace of FY which is the image of the vec-
tor space (G — D) under the linear map res, : (G- D)+~ [F[’]V given by
resp(w) = (resP] (w),..., resPN(a))), where respi(a)) is the residue of w at P;. In par-
ticular, C-(D, G) is an AG code with dimension k* = N — k and minimum distance
d*t > deg(G) —2g + 2.
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In the case where G = aP, @ € N, P € X([Fq), the AG code C (D, G) is referred to
as one-point AG code. For a Weierstrass semigroup H(P) = {p, =0 < p; < p, < =}
and an integer £ > 0, the Feng—Rao function is

v = HGDENG & pitpy=pepi)l.
Consider
C,(P)= C*(P| + P, + - + Py, p,P),
with P, Py, ..., Py pairwise distint points in X(F,). The number
dorp(C,(P)) :=min{v,, : m > ¢}

is a lower bound for the minimum distance d(C,(P)) of the code C,(P) which is
called the order bound or the Feng—Rao designed minimum distance of C,(P); see
[12, Theorem 4.13].

For the following result see [12, Theorem 5.24].

Result 4 d,,,(C,(P))>¢ +1—g. Equality holds if ¢>2c—g—1 with
c=max{meZ . m—1¢&H(P)}.

2.3 The GK curve

Let g be a prime power and K = [I_:q. The Giulietti-Korchméaros (GK) curve X is the
first example of a F c-maximal curve which is covered by the Hermitian curve over
F ¢ only for g = 2; see [9]. The GK curve &’ is a non-singular curve, viewed as curve

q
of PG(3, K), defined by the affine equations

Yot = X7 + X,
Zr-at = yq —y. @)

It has genus g(X) = %(q5 —2¢° +¢*) and as many as ¢° — ¢° + ¢° + 1 F -rational
points. From Eq. (2), the GK curve is a Galois extension (in fact a Kummer exten-
sion) of the Hermitian curve 1, over [, given by the affine equation Yot = X9+ X.
The automorphism group Aut(X) of X' is also defined over Fy. It has order
@@ +1)(@*-1)g>*—g+1) and contains a normal subgroup isomorphic to
SUG3, g).

The set of F-rational points of X splits into two orbits O = X(F,.) and
0, = X(F,;s)\X(F,2) under the action of Aut(X). The orbit O, is non-tame and has
size ¢° + 1, whereas O, is tame of size ¢>(¢> + 1)(¢*> — 1). Furthermore, these are the
only short orbits of Aut(X), and Aut(X) acts on O, as PGU (3, ¢) in its doubly transi-
tive permutation representation; see [9, Theorem 7]. As it is known, the structure of
Weierstrass semigroups is invariant under the action of automorphism groups; see
[22, Lemma 3.5.2].

In Sect. 4 we will construct AG codes from [ ;-rational points of the GK curve.
In order to compute the number of those points the following results will be useful.
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Result 5 [16, Propositions 1 and 2] Let X be a curve defined over F,. Then the fol-
lowing holds.

1. ifXis [Fq-maximal and n is odd, then X is [Fqn-maximal;
2. if X isFpr-maximal, then | X(F,)| = ¢" + 1.

As the Hermitian curve H, is [F-maximal, the following corollary of Result 5
holds.

Result 6 [f d is odd, the number of F-rational points of the Hermitian curve H,, is
d
q*+ 1

Proposition 1 |X(F,)| = ¢’ + 1.

Proof Observe that @ -1 =g+ D)=@ - 1=+ - D@ —qg+1).¢*—g+1)
=(g—-1,4>—q+1)=1, and hence g> — g+ 1 and ¢’ — 1 are coprime. Therefore,
the equation X7+ = ¢, withc € [Fq7, has exactly one solution. This shows that the
number of [F-rational points of X" equals the number of [ -rational points of the
Hermitian curve H,. Therefore the claim follows by Result 6. O

In [3] the Weierstrass semigroup H(P) for P € X(ﬁq)\)(([l:q(,) was studied. In par-
ticular, the authors showed that H(P) is the same for every P € X(ﬂ:q)\X([Fqﬁ), and
computed explicitly the set of gaps G(P) = Ny \H(P).

Result 7 [3, Theorem 4.10] Let P be a point of X with P € X(ﬁq)\?((ﬂ:qﬁ). Then the
set of gaps at P is

q-2
G(P) = {ig’ + kq +m(q* + D)+ Y (n(s + Dg?)
s=1
1| ijkm, . n,_y >0, 3)
q-2
j<q-1 andi+j+k+mg+ Y (n((s+1)g—s)<q -2}

s=1

Each element of G(P) admits a unique representation as in (3), i.e. each element of
G(P) is uniquely identified by the tuple of coefficients (i,j,k,m,ny, ..., n, ). Fur-
thermore the set G(P) is the disjoint union of the sets G, G,, G5, where

— G, is the subset of G(P) corresponding to the coefficients (i,0,k,m,0,...,0).
Moreover, from (3),0 <m < g—1;

— G, is the subset of G(P) corresponding to the coefficients (i,j, k,m,0, ..., 0) such
thatl <j<qg-1L,k<g-land j+m<q-—1,

— Gy is the subset of G(P) corresponding to the coefficients (i, ], k,0, ... ,n,, ...,0)
suchthatl <s<q-2,n,=landi+k+(s+1)g>¢* — 1.
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Result 8 [3, Observation 4.4] For a point P € X(F)\X(F), max(m € Z : m— 1
m—1¢HP)) =29 —q¢*+2.

3 Proof of Theorem 1

For g =2 the claim is already known; see [3, Example 4.12]. Therefore, assume
g > 2 and let T denote the semigroup generated by S. To show T' = H(P) it is enough
to prove that 7 C H(P) and that T and H(P) have the same genus. For this purpose,
some properties of the following subsets of T are useful.

Ap, =la(@ -D+i@ -+jq" - —¢)a=2,....g— 1,
i=0,...,g-1, j=0,...,a-2};

Apyy =@ +i@ - +id - — ) |
i=0,...,g-1, j=0,....,q—-1};

Apyy i ={(@ - D+i@ -+ - =D |
i=0,...,g-1, j=0,...,q-2};

Ap, 1=(Apy \{q’}) UAP,

Aps =@ +@ - 1+i@ - +iqd* - — D) |
ij=0,...,q—1, j#0}

Apy ={@ +al@ - D+il@ - +jq* - — )|
i=0,...,g—-1,
j=2,...,g—-1, a=2,...,j}

Proposition 2 The sets Ap,, Ap, |, Ap,,, Aps, and Ap, are pairwise disjoint.

Proof Let x,;; denote the element of Ap, corresponding to the choices of the param-

eters a, i, j, that is

x=alg - D +iq -9 +iq" —q — ).

We use an analogous notation for the elements of Ap, ;, Ap,,, Ap; and Ap,.

- Ap;NAp,, is empty since no element of Ap, is divisible by g. The same argu-
ment also shows that Ap, | N Ap,,, Ap, | N Ap; and Ap, | N Ap, are empty.
— Letx,;; € Apand x;; € Apy,. If x,;; = x;; then
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aqg -V +ilg -9 +ijq" — ¢ - %)

- - 4
=@ -D+iq@ -9 +iq* —q*-1). @

Reducing Eq. (4) modulo g we obtain a = j + 1. Substituting a =]__'+ 1in (4) and
dividing by ¢ it is readily seen (again reducing modulo g) that i = i. Thus Eq. (4)
now reads

I =a=-1)=jg—q-1),

whence j =, a contradiction since j <a—2=j— L.

— Letx,;; € Apyand x;; € Aps. If x,;; = x;; then
al@ =D+’ -9 +jq' -’ - ¢
=20~ 1+Uq - +ja' - — g,
that modulo ¢ yields a = 1, a contradiction with a > 2.

— Letx,;; €Ap and x;;; € Ap,. If x,;; = x5 then

a,i,j a,i,j a,ij

al@ -D+ig -9 +jq' -4~ ¢
=¢ +alg’ - D+iq’ -9 +jq* - ¢ - ¢,
that modulo ¢ yields a = a. Therefore
(@ -+id' - - = +iq -9 +iq" - ¢ =),
whence i = i follows. Thus
=== +jq" -4 -,

whence j > j, a contradiction with j <a—-2=a-2<j—2.
— Ap,, NAp; is empty since for every element x of Aps, x — (¢> — 1) is divisible
by g, whereas this fails for any element of Ap, ,.
Let x;; € Ap,, and x,;; € Ap,. If x;; = X, ;5 then

a,ij a,ij

@ -D+i@-9+jq* -4 -1

- = = (5)
=¢ +alg - D+ - +iq* - - ¢,
whence reducing modulo ¢ yields j = a — 1. Now Equation (6) reads
iq° =~ D+j¢ -7 -9~ =iq" =D +]d -~ -9 ©6)

and hence i = i. Therefore
- -D=0+jqd -4 -9

and j > j, a contradiction with j=a -1 <j— 1.
— Ap;NAp, is empty since for every element x of Ap;, x+ 1 is divisible by g,
but this fails for any element of Ap,.
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Proposition 3 The cardinalities of the sets Ap,Ap,,Aps,Ap, are as follows

1) |Apy| = |Apyl = q(qg — 1)(q = 2)/2;
(i) |Ap)l=¢*+qlg—1)—1;
(iil) |Ap;| = q(qg = 1);
(iv) 1Al =4

Proof From the definition of Ap,, Ap, , Ap,, Ap;, and Ap,, a straightforward com-
putation shows that different choices of the parameters lead to different elements in
the corresponding set.

We provide here the proof for the case Ap,. Analogous computations can be
applied to the other cases. Let x,y € Ap,, so

x=al@ -D+ilq -9 +jq* —q — g%
and
y=alg - D) +iq — ) +iq" —a — g,

with  aae€f{2,...,q-1}, ii€{0,...,q—1}, and je€{0,...,a-2},
j€1{0,...,a—2). Assume that x =y holds. Then a=a (mod ¢), and since
a,a € {2,...,q— 1}, we obtain a = a. Therefore

i@ —+iq' - —aH=iq -9 +iq* -7 -,
whence
P -D+j@ - - =id* - D +jq - ¢* - 9.

By applying the same argument as above, we obtain i = i. Finally, this implies j = j,
and so the claim follows. |

Proposition 4 If x € A then x — ¢° & H(P).

Proof For each element x in A, we exhibit a representation of x — ¢° as in (3). The
claim trivially holds for x = 0. Moreover,

(a) ifx € Ap,then

x-¢=al@-D+ig-9+i¢' - - - ¢
=(@a+i+jg—j-2¢ +@q—j-D@+@-i-Dg+g—a—1+1,

wherea € {2,...,q—1},i €{0,...,g—1}and j € {0, ...,a — 2}. Therefore
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a+i+jg—j—22>0
q—j—120
) g—i—-1>0

0<g—-a-1<¢g-1
(a+it+jg—j=2)+qlg—j-1)-(q—-j-2)+(@-i-D+
+g—a-1)=¢*-2.

\

Therefore x — ¢> & H(P) by (3).
(b) ifx € Ap,;\{¢’} then
x—q =g - +iq' - — ) -
=(i+jg—j—-D@+@q—j- D@ +D+@q—i-Dg+j+1;

wherei € {0,...,g—1}and j € {0,...,q — 1}. Since x # ¢°, (i,j) # (0,0) and

i+jg—j—120
g—j—-120
g—i—120
0<j<qg-1
i+jg—j—1+qlg—j—-D+@-i-D+j=¢ -2
Therefore x — ¢> & H(P) by (3).
(c) if x € Ap,, then
x—q =g’ - +jiq" - - 1) -1 ®
=(i+jg= D¢ +(@=j=D@+ D+ Qq—i-Dg+1;
where i € {0,...,¢q—1} and j€ {0,...,g—2}. Now if (i,j) = (0,0) then
x = ¢*> — 1and hence x — ¢°> & H(P). Therefore (i, ) # (0, 0) is assumed. Then

i+jg—1>0

g—j—22>0

2q—i—1>0
i+jg—1+q(qg-j-2D)+Qq—-i-1)=¢*-2.

Therefore x — ¢° & H(P) by (3).
(d) if x € Apsthen

=@ =¢-1+iq -9 +jq'—a — g%
=(+jg-D@ +@—j—- D@+ D+(@—-i-Dg+j—1+1;

wherei € {0,...,g—1}and j € {1,...,q — 1}. Therefore
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i+jg—j=0
g—j—120
g—i—-1>0

0<j-1<qg-1
i+jg—j+a(g—j—-D+@-i-D+j-1=¢*-2.

Therefore x — ¢> & H(P) by (3).
(e) if x € Ap, then

x—¢ =alg-D+iqd -9+iqd* -7 - )
=(i+jg—j+a-1q
+g-j-D@+D+@g-i-Dg+j-—a+l;
wherei € {0,...,g—1},j€{2,...,g—1}and a € {2,...,j}. Therefore
i+jg—j+a—-120
g—j—-120
g—i—1>0

0<j-a<qg-1
itjg—j+a-1+qlq—j—D+(@—-i-D+j—a=q¢*-2.

Therefore x — ¢° & H(P) by (3).
We use Proposition 4 to prove the following lemma.
Lemma 1 The semigroup T is contained in H(P).

Proof Since T = (S), it suffices to show that S = S, U S, C H(P). We carry out the
computation for the case x € §; = Ap, ;. Analogous computation can be done for
the other elements in S, = Ap, ,. Take x € §;. Then

X=q¢+iq - +iq' - ¢ =),
forsome 0 <i<g—1land0 <j < g — 1. It may be observed that
x=(+jg=)g +@=j= DG+ D+(g—i=-Dg+j+1.

We assume on the contrary x € G(P). Taking into account Result 7 we distinguish
three cases according to either x € G|, or x € G,, or x € G,

— Case x€G,. There exist non-negative integers #m,i,k such that
i+k+mg<q*>—2and
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640
(+jqg=Dg +(@=j— D@+ D+(@g—i-Dg+j+1
=i +m(g* + 1)+ kg + 1. ©)
Equation (9) modulo q yields
m=-1 (mod g),

whence m = g — 1. Hence

(+jqa=Ng’ +(q—j— g’ +(q—i- g =iq’ +ing’ +kq,

and, dividing by g,

(+jg=Da" +@—j=Da+qg—i-1=ig"+ (g~ g +k,
(10

that is
(i+jg—)Da* —jg+q—i—1=ig*+k.

Equation (10) modulo g now yields
k=-i—1 (mod g).
Moreover i + k +inqg < g* — 2, givesk+i < q—2and hencek =g —i— 1.
Substituting in Eq. (10) we obtain
(+jq—Na —jq = iq’.
Again dividing by g and reducing shows j =0 (mod g), whence j = 0. There-

fore i = i, and a contradiction arises fromk +i < g — 2.
— Case x € G,. There exist non-negative integers 7, i, k and j such that

and

(i+jqg—Ng +(@q—-j—-D@+D+(@—i-Dg+j+1 an

=ig +m@+ D +kg+j+1.
_ Then, reducing modulo ¢, Eq. (11) yields j+m=-1 (modgq). As
j+m<qg—1,wehave j+m=q—land (11) reads

(+ig—D@ +(q—j-D(@+D+(@—i-Dg+j+1
=i +mg* +kg+m+j+1,

that is
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(i+jqg=Da+(q=j—Dg+q—i—1=ig" +ing+Fk (12)
Again, k < ¢ — 1and Eq. (12) modulo g imply k = g — i — 1. Thus
(i+jg—pg+(q—j—1)=ig+m, (13)
whence /i = g — j — land j = j. Finally, i = i + jg — j and
itk+j+mg=i+jg—j+q—i—1
+jt+@@=j-Dg=q"~-1>¢" -2,

a contradiction.
— Case x € G;. There exist non-negative integers s, i, k and j such that

i+j+k+(G+1)g—s<qg>-2
and

(i+ig—D@ +(@q—j-D@+D+(@—i—Dg+j+1

_ L 14)
=iq3+(s+l)q2+kq+j+l. (

Note that in particular j < s must hold. On the other hand, Eq. (14) modulo ¢
yields j = ¢ — 1 > s, a contradiction.
O
Proposition 5 A = Ap(H(P), ¢°) = Ap(T, ¢°).

Proof 1t is readily seen that each element of A is a linear combination of elements of
S. Therefore A C T and by Propositions 3 and 4 we get A = Ap(H(P), ¢*). Moreover,
from Lemma 1 we have T C H(P) so each gap of H(P) is also a gap T, whence the
claim follows. O

Now Result 3 and Proposition 5 show that T and H(P) have the same genus.
Furthermore, since 7T is contained in H(P), T = (S) = H(P). Finally, since
S = Ap, U {¢*}, Proposition 3 yields |S| = e(H(P)) = 2¢*> — q. This ends the proof
of Theorem 1.

4 AG codes from [ ~rational points of the GK curve
In this section we construct a family of AG codes from [F-rational points of the

GK curve. For g = 3 the parameters of the codes obtained are reported in the
table below.
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We keep our notation in Sect. 2.2. In particular, for a point P € X[F )\ X(F)),
H(P) = {0 = p, < p, < ...} denotes the Weierstrass semigroup at P and C,(P) stands
for the dual code C,(P) = C+(D, p,P), where

D=3 0

QeXF1)\(P)

is a divisor supported at all F ;-rational points of X but P. From the Feng—Rao lower
bound on the minimum distance of C,(P), we have that C,(P) is an [n, k, d] ; linear
code, withn=¢q’, k=n— ¢ and

d 2 max{dppp(C,(P)),d"}, 15)

where d* = deg(G) — 2g + 2 denotes the designed minimum distance of C,(P). We
remark that the Feng—Rao lower bound can be computed only in terms of the Weier-
strass semigroup H(P), that we explicitly described in Theorem 1.

As a consequence of Results 4 and 8 the following result follows.

Proposition 6 For every ¢ > 3¢ —2q* + 3, dppp(C,(P)) = ¢ + 1 — g.

Remark 1 Proposition 6 also shows that if ¢ >3g—2¢*>+3, then
dorp(C,(P)) = d*. Indeed, let ¢ =3g—-2¢*>+3+r for some r>0. Then
£=¢g+1+(2g—2¢°+2+7r)>g+ 1. Since Pg+1 = 2¢ and Result 8 yields that
2g — ¢* + 1is the largest gap in H(P), we have

pr=28+Q8-2¢" +r+2)=4¢—-2¢" +r+2.
Hence Proposition 6 yields
dorp(C,(P) =€ +1—-g=29-2¢"+4+r=p, —2g+2=d".

In the remaining cases # < 3¢ — 2¢*> + 3 and the Feng—-Rao minimum distance may
provide an improvement on the designed minimum distance d*.

For g = 3 the parameters of the codes C,(P) are reported in the table below. These
codes have length n = 2187, whereas their dimension k and their Feng—Rao mini-
mum distance d g, varies. We limit ourselves to the cases where dpp(C, (P)) > d*
and by Remark 1 this can only happen when # < 3g — 2¢* + 3. As the table shows,
the Feng—Rao minimum distance is strictly greater than the designed minimum dis-
tance d*, for all those cases apart from a small number of exceptions.

n k pe dorp k P dorp k Pe dorp
2187 2185 26 2 2184 27 2 2183 50 2
2187 2182 51 2 2181 52 2 2180 53 2
2187 2179 54 2 2178 72 2 2177 74 2
2187 2176 75 2 2175 76 2 2174 77 2
2187 2173 78 2 2172 79 2 2171 80 2
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n k pe dorp k P dorp k Pe dorp
2187 2170 81 2 2169 96 2 2168 97 2
2187 2167 98 2 2166 99 2 2165 100 2
2187 2164 101 2 2163 102 2 2162 103 2
2187 2161 104 2 2160 105 2 2159 106 2
2187 2158 107 2 2157 108 2 2156 117 2
2187 2155 120 2 2154 121 2 2153 122 2
2187 2152 123 2 2151 124 2 2150 125 2
2187 2149 126 2 2148 127 2 2147 128 2
2187 2146 129 2 2145 130 2 2144 131 2
2187 2143 132 2 2142 133 2 2141 134 2
2187 2140 135 2 2139 141 2 2138 143 2
2187 2137 144 2 2136 145 2 2135 146 2
2187 2134 147 2 2133 148 2 2132 149 2
2187 2131 150 2 2130 151 2 2129 152 2
2187 2128 153 2 2127 154 2 2126 155 2
2187 2125 156 2 2124 157 2 2123 158 2
n k Pr dorp k Pr dorp k P dorp
2187 2122 159 2 2121 160 2 2120 161 2
2187 2119 162 2 2118 165 6 2117 167 8
2187 2116 168 8 2115 169 8 2114 170 8
2187 2113 171 8 2112 172 8 2111 173 8
2187 2110 174 8 2109 175 8 2108 176 8
2187 2107 177 8 2106 178 8 2105 179 8
2187 2104 180 8 2103 181 8 2102 182 8
2187 2101 183 8 2100 184 8 2099 185 8
2187 2098 186 8 2097 187 8 2096 188 8
2187 2095 189 8 2094 191 11 2093 192 14
2187 2092 193 19 2091 194 19 2090 195 19
2187 2089 196 19 2088 197 19 2087 198 19
2187 2086 199 19 2085 200 19 2084 201 19
2187 2083 202 19 2082 203 19 2081 204 19
2187 2080 205 19 2079 206 19 2078 207 19
2187 2077 208 19 2076 209 19 2075 210 19
2187 2074 211 19 2073 212 19 2072 213 19
2187 2071 214 19 2068 217 28 2067 218 34
2187 2066 219 38 2065 220 43 2064 221 43
2187 2063 222 43 2062 223 43 2061 224 43
2187 2060 225 43 2059 226 43 2058 227 43
2187 2057 228 43 2056 229 43 2055 230 43
2187 2054 231 43 2053 232 43 2052 233 43
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n k pe dorp k P dorp k Pe dorp
2187 2051 234 43 2050 235 43 2049 236 43
2187 2048 237 43 2047 238 43 2041 244 54
n k Pr dorp k Pr dorp k Pr dorp
2187 2040 245 59 2039 246 62 2038 247 65
2187 2037 248 65 2036 249 65 2035 250 65
2187 2034 251 65 2033 252 65 2032 253 65
2187 2031 254 65 2030 255 65 2029 256 65
2187 2028 257 65 2027 258 65 2026 259 65
2187 2025 260 65 2023 262 67 2014 271 80
2187 2013 272 84 2012 273 86 2011 274 90
2187 2010 275 92 2009 276 92 2008 271 92
2187 2007 278 92 2006 279 92 2005 280 92

We point out that many other linear codes can be obtained from the above table
by using the following propagation rules; see [23, Exercise 7].

Result9 Ifan|n,k, d]q linear code exists, then:

(1) for every non-negative integer s < d, an[n,k,d — s] q linear code exists;
(i) for every non-negative integer s < k, an[n,k — s, d]q linear code exists;
(iii) for every non-negative integer s < k, an[n — s,k — s,d] q linear code exists;
(iv) for every non-negative integer s < min{n — k — 1,d}, an[n — s, k,d — s] q linear
code exists.

5 Quantum codes from [ -rational points of the GK curve

It is known that quantum codes can be constructed from (classical) linear codes
by using the so-called CSS construction; see [14, Lemma 2.5]. Our aim is to show
how the CSS-construction applies to one-point AG codes on the GK curve.

As before g is a prime power. Let H = (C9)®" = CY ® --- @ CY be a ¢"-dimen-
sional Hilbert space. Then the g-ary quantum code C of length n and dimension
k are the g*-dimensional Hilbert subspace of H. Such quantum codes are denoted
by [[n, k, d]]q, where d is the minimum distance. As in the ordinary case, C can
correct up to [dzij errors. Moreover, the quantum version of the Singleton bound
states that for a [[n, k, d]],-quantum code, 2d + k < 2 + n holds. Again, by analogy
with the ordinary case, the quantum Singleton defect and the relativg: quantum
Singleton defect are defined to be 6, :=n—k—2d+2 and 4, := 7Q, respec-
tively. We recall [14, Lemma 2.5].
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Lemma 2 (CSS construction) Let C, and C, be linear codes with parameters
[n,ky,d,], and[n, ky, d,], respectively, and assume that C; C C,. Then there exists a
[[n, k, — ki, d]]q—quantum code with

d = min{w(c) | ¢ € (C,\C)) U(CT\C7)}.

We apply the CSS construction to the dual codes C,(P) constructed in Sect. 4. We
keep the same notation as in Sect. 4. For two non-gaps p,, p,,, € H(P), with s > 1,
letC; = C,,(P) and C, = C,(P) be the codes constructed in Sect. 4. Then C,; C C,.
Also, if k; denotes the dimension of C;, then

k2=q7_hf and K =q7_hf+s=q7_ht’_s’

where A; is the number of those non-gaps at P that do not exceed i. The CSS con-
struction now provides a [[n, s, d]] g-quantum code with n = ¢’ and

d = min{w(c) | ¢ € (C,\Cpr1) U(CD, ppy PINCD, psP))}.
It may be noted that
d > min{d,,p(C,),d; }, (16)
where d, is the minimum distance of C(D, p,_ P).

Theorem 10 For every ¢ € [3g —2¢°> +3,q" — gl and s € [1,q" — 2] there exists
allq’,s, d]]q7—quantum codewithd > ¢ + 1 —g.

Proof Since ¢3>3q-24+3, Proposition 6 applies and q,,,C,)=¢+1-g. Also,
Pres=8—1+C+s, whence 4 >¢ —deg(o, ,P)=¢ ~p,0 24 ~¢~s—g+1.  Since
s < q' —2¢, then dppp(C,) < d, and the claim follows from (16). O

For # € [3g — 2¢*> + 3,9” — gland s = ¢’ — 2¢, Theorem 10 proves the existence
of [[47, s, d]]~quantum codes whose relative quantum Singleton defect 4, is upper
bounded as follows,

g —s=2d+2 2/ -2d+2 <2g_q5—2q3+q2

A <
¢ q q q q

b}

and therefore it goes to 0 as g goes to infinity.

For ¢ =3 and # ranging in g, ...,3g — 2¢* + 2 the following table reports the
parameters of quantum codes which are the first non-trivial cases in which Theo-
rem 10 does not apply.

n K d> K d> s d> K d>
2187 1989 1 1987 2 1985 3 1983

2187 1981 5 1979 6 1977 7 1975 8
2187 1973 9 1971 10 1969 11 1967 12
2187 1965 13 1963 14 1961 15 1959 16
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n K d> K d> s d> K d>
2187 1957 17 1955 18 1953 19 1951 20
2187 1949 21 1947 22 1945 23 1943 24
2187 1941 25 1939 26 1937 27 1935 28
2187 1933 29 1931 30 1929 31 1927 32
2187 1925 33 1923 34 1921 35 1919 36
2187 1917 37 1915 38 1913 39 1911 40
2187 1909 41 1907 42 1905 43 1903 44
2187 1901 45 1899 46 1897 47 1895 48
2187 1893 49 1891 50 1889 51 1887 52
2187 1885 53 1883 54 1881 55 1879 56
2187 1877 57 1875 58 1873 59 1871 60
2187 1869 61 1867 62 1865 63 1863 64
2187 1861 65 1859 66 1857 67 1855 68
2187 1853 69 1851 70 1849 71 1847 72
2187 1845 73 1843 74 1841 75 1839 76
2187 1837 77 1835 78 1833 79 1831 80
2187 1829 81 1827 82 1825 83 1823 84
n s d> K d> s d> s d>
2187 1821 85 1819 86 1817 87 1815 88
2187 1813 89 1811 90 1809 91 1807 92
2187 1805 93 1803 94 1801 95 1799 96
2187 1797 97 1795 98 1793 99 1791 100
2187 1789 101 1787 102 1785 103 1783 104
2187 1781 105 1779 106 1777 107 1775 108
2187 1773 109 1771 110 1769 111 1767 112
2187 1765 113 1763 114 1761 115 1759 116
2187 1757 117 1755 118 1753 119 1751 120
2187 1749 121 1747 122 1745 123 1743 124
2187 1741 125 1739 126 1737 127 1735 128
2187 1733 129 1731 130 1729 131 1727 132
2187 1725 133 1723 134 1721 135 1719 136
2187 1717 137 1715 138 1713 139 1711 140
2187 1709 141 1707 142 1705 143 1703 144
2187 1701 145 1699 146 1697 147 1695 148
2187 1693 149 1691 150 1689 151 1687 152
2187 1685 153 1683 154 1681 155 1679 156
2187 1677 157 1675 158 1673 159 1671 160
2187 1669 161 1667 162 1665 163 1663 164
2187 1661 165 1659 166 1657 167 1655 168
2187 1653 169 1651 170 1649 171 1647 172
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n K d> K d> K d> s d>
2187 1645 173 1643 174 1641 175 1639 176
2187 1637 177 1635 178 1633 179 1631 180
2187 1629 181 1627 182 1625 183

We end this section with the construction of a second family of quantum codes
arising from the GK curve. Our construction is based on a generalization of Lemma
2 given in [14, Theorem 3.1].

Lemma 3 (General t-point construction) Let ) be an absolutely irreducible non-
singular curve over [, of genus g containing n + t distinct | -rational points for some
n,t > 0. Foreveryi=1,...,t, let a;, b; be positive integers such that a; < b; and that

2g—2<zl:ai<zt:bi<n.
i=1 i=1

Then there exists a [[n,k,d]l,-quantum code with k = Z;zl b, — Z;zl
d>min{n—Y_ b,Y:_ a—(2g—2)}

a; and

Lemma 3 applied to the set of Fr-rational points of the GK curve gives the fol-
lowing result.

Proposition 7 Let a,b € N, such that
@ -2 +¢*-2<a<b<q.
Then there exists a quantum code with parameters[[q’,b — a, d]]q7, where

d>min{q’ —b, a— (¢’ - 2¢° + ¢* = 2)}.
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