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Abstract
We present two algorithms determining all the complete and simplicial fans admit-
ting a fixed non-degenerate set of vectors V as generators of their 1-skeleton. The 
interplay of the two algorithms allows us to discerning if the associated toric vari-
eties admit a projective embedding, in principle for any values of dimension and 
Picard number. The first algorithm is slower than the second one, but it computes all 
complete and simplicial fans supported by V and lead us to formulate a topological-
combinatoric conjecture about the definition of a fan. On the other hand, we adapt 
the Sturmfels’ arguments on the Gröbner fan of toric ideals to our complete case; we 
give a characterization of the Gröbner region and show an explicit correspondence 
between Gröbner cones and chambers of the secondary fan. A homogenization pro-
cedure of the toric ideal associated to V allows us to employing GFAN and related 
software in producing our second algorithm. The latter turns out to be much faster 
than the former, although it can compute only the projective fans supported by V. 
We provide examples and a list of open problems. In particular we give examples 
of rationally parametrized families of ℚ-factorial complete toric varieties behaving 
in opposite way with respect to the dimensional jump of the nef cone over a special 
fibre.
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1 Introduction

The main purpose of the study here presented is producing two implemented 
algorithms aimed to determining all the complete and simplicial fans, admitting a 
fixed non-degenerate set of vectors as generators of their 1-skeleton. In particular 
their interplay allows us to discerning if the associated toric varieties admit a pro-
jective embedding, that is ample divisors, in particular for higher values ( ≥ 4 ) of 
dimension and Picard number.

In fact, it is well known that a complete toric variety may not be projective. 
This cannot happen for toric varieties of dimension ≤ 2 [19, § 8, Prop. 8.1], but 
for higher dimension it has been shown by several examples, the first of which 
was given by Demazure [5]. Kleinschmidt and Sturmfels [15] proved that, for 
Picard number (in the following also called the rank) r ≤ 3 , smooth and complete 
toric varieties are projective in every dimension, that is they have to admit ample 
divisors. This result cannot be extended to higher values of the rank, as shown 
by a famous example given by Oda [20, p. 84], who presented a smooth com-
plete 3-dimensional toric variety X of rank r = 4 , whose nef cone has dimension 
2: therefore X admits non-trivial numerically effective classes (among which the 
anti-canonical one) but does not admit any ample class.

When dropping the smoothness hypothesis, Kleinschmidt–Sturmfels bound 
does no longer hold even for ℚ-factorial singularities: a counterexample has been 
given by Berchtold and Hausen [2, Ex.  10.2] who provided a ℚ-factorial com-
plete 3-dimensional toric variety X of rank r = 3 whose nef cone is 1-dimensional 
and generated by the anti-canonical class. This example is actually a divisorial 
contraction of the Oda’s example, as it can be obtained by suppressing a fan gen-
erator. As the Oda’s one, the Berchtold–Hausen example is still a sharp counter-
example, as ℚ-factorial complete toric varieties of rank r ≤ 2 turn out to be pro-
jective in any dimension, as recently proved in [24] by the authors of the present 
paper.

In the literature, further examples of non-projective complete toric varieties 
are known. In particular Fujino and Payne [7] provided an example of a smooth 
toric threefold of rank r = 5 without any non-trivial numerically effective divi-
sor, that is, whose nef cone is trivial, and showed that such a phenomenon cannot 
happen, in the smooth -dimensional case, when r ≤ 4 . Moreover an example of a 
ℚ-factorial complete 3-dimensional toric variety, of rank r = 3 , whose nef cone 
is trivial has been recently given by the authors [24, § 3], showing that in the ℚ
-factorial setup that bound reduces to giving r ≤ 2 , when actually the involved 
varieties have to be projective and so admitting even ample divisors. Again, the 
last example turns out to be a divisorial contraction of the Fujino–Payne one. 
Moreover it has been obtained by slightly deforming, in a sense better described 
in the final Sect. 8.4, the Berchtold–Hausen example, so breaking up its symme-
try in such a way that the two non-projective varieties sharing the same nef cone 
generated by the anti-canonical class deform, on the one hand to a projective vari-
ety and on the other one to a still worse non-projective one, no more admitting 
even non-trivial nef divisors.
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This fact reveals two interesting evidences.
The first one is that many known examples of complete and non-projective toric 

varieties are intimately related, showing that, morally, they turn out to be an ad hoc 
variation of the classical Oda’s example. We believe this happens because it is very 
difficult constructing example of this kind for higher values of dimension and rank 
and maintaining low values of those parameters forces us to work in a too narrow 
environment.

The second evidence is that we find a gap in the theory, when we try to explain 
how non-projective varieties arise among complete toric varieties: is it true that a 
general complete toric variety is projective? What is the precise meaning of the 
word “general” in the previous question? Why slightly deforming the secondary fan, 
e.g. by moving a ray of the effective cone, generated by the classes of effective divi-
sors, non-projective varieties can appear and disappear? As stimulating examples in 
Sect. 8.4 we present two families, over ℚ , of complete ℚ-factorial toric varieties, the 
first admitting a projective general fibre with a non-projective special fibre and the 
second admitting general fibre without any non trivial nef divisor and a special fibre 
whose anticanonical class generates the nef cone. These examples seem to be rep-
resentative of apparently opposite phenomena calling for a more general theoretic 
explanation we are not able to give in this moment.

Both these evidences requires a huge multitude of examples to consider and 
study, in particular for higher values of dimension and rank, so highlighting the need 
of a computer-aided approach to this kind of problems.

In the literature there are algorithms computing projective fans (i.e. regular trian-
gulations) but also algorithm computing all kind of triangulations (see for example 
[3, 4, 12] ) In this paper we propose two algorithms calculating complete ℚ-factorial 
fans over a set of vectors.

The first one, described in Sect. 3, computes projective and non projective fans. 
Although it is quite inefficient, it is theoretically interesting as leading us to the top-
ological-combinatoric Conjecture 2, about the definition of a fan. We performed a 
Maple implementation of this algorithm, making it compatible with packages like 
Convex by Franz [6] and MDSpackage by Keicher and Hausen [8]. These con-
nections reveal to be quite useful for several applications. The first one in computing 
movable and nef cones associated to the computed fans and so detecting if the asso-
ciated toric variety is projective or not. The second one to study possible embedded 
Mori Dream spaces.

The second algorithm uses Gröbner bases of toric ideals, and the fact, established 
by Sturmfels [26, Prop. 8.15], that the Gröbner fan of a toric ideal refines the sec-
ondary fan associated with the corresponding configuration of vectors. Whilst most 
of the literature on this subject deals with homogeneous toric ideals, here we focus 
our attention on toric ideals arising from a complete configuration; these ideals can-
not be homogeneous. We describe the Gröbner region and translate the problem of 
calculating fans in a problem of linear programming, as done in [27] in the homoge-
neous case. It turns out a surjective map (Corollary 1) from a set of initial ideals of 
the toric ideal and the set of simplicial projective fans having as 1-skeleton the rays 
generated by all the vectors in the configuration. This correspondence in general is 
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not injective, but initial ideals associated to the same fan result to have the same 
radical.

The above theoretical results, mainly concentrated in §  5, are probably the most 
original contribution of the research here presented, and allow us to formulate, in 
Sect. 6, an algorithm which determines all projective complete simplicial fans with a 
given 1-skeleton, based on the computation of the Gröbner fan of the associated toric 
ideal. For the latter purpose, we exploit the existing software for finding the Gröbner 
fan of toric ideals such as TiGERS or CATS (incorporated in GFAN) (see [11, 13, 14]). 
This software works with homogeneous ideals and in Sect. 6.2 we explain how to adapt 
it to our situation by taking as input the homogeneized ideal and modifying the output 
in a suitable way. The algorithm produced in this way turns out to be much more effi-
cient than that presented in Sect. 3. Sect. 7 is devoted to present some examples. Sect. 8 
points out some open problems and directions for future work.

2  Preliminaries and notation

Let A ∈ �(d,m;ℤ) be a d × m integer matrix (along the paper, d will be replaced by 
either r (the Picard number) or n (the dimension), depending on the situation). Then

We denote by supp(�) the support {i | ui ≠ 0} of a vector � ∈ ℝm . For a monomial �� 
we set supp(��) = supp(�).

For every vector � ∈ ℤm we write � = �+ − �− where �+, �− ∈ ℕm have disjoint 
support (we assume, here and elsewhere in the paper, that 0 belongs to the set of natural 
numbers ℕ ). We denote by g� the binomial ��+ − ��

−.
For a subset X of ℝn the relative interior, Relint (X) , is the interior of X inside the 

affine span of X.
In the following V = (�1,… , �m) is a n × m complete CF-fan matrix (see the follow-

ing Definition 1), Q is a Gale dual matrix of V (see the following Sect. 4.1); it has order 
r × m , where r + n = m.0

We shall denote ⟨�1,… , �h⟩ the cone spanned by the vectors �1,… , �h . If A is a 
matrix, then ⟨A⟩ denotes the cone spanned by the columns of A.0

If M is a module over a ring R, we shall denote by M∨ its dual module: 
M∨ = Hom R(M,R).

If � is a cone in a real vector space � , �∗ denotes its dual cone:

Lr(A) ⊆ ℤm denotes the sublattice spanned by the rows of A;

Lc(A) ⊆ ℤd denotes the sublattice spanned by the columns of A;

Vr(A) ⊆ ℝm denotes the subspace spanned by the rows of A;

Vc(A) ⊆ ℝd denotes the subspace spanned by the columns of A;

AI , A
I ∀ I ⊆ {1,… ,m} the former is the submatrix of A given by

the columns indexed by Iand the latter is the submatrix of

A whose columns are indexed by the complementary

subset {1,… ,m}�I;

�∗ = {f ∈ �
∨ | f (�) ≥ 0 for every � ∈ �}.
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� is a field of characteristic 0.

3  F‑matrices

An n-dimensional ℚ-factorial complete toric variety X = X(Σ) of rank r is the 
toric variety defined by an n-dimensional simplicial and complete fan Σ such that 
|Σ(1)| = m = n + r.

In particular the rank r coincides with the Picard number i.e. r = rk (Pic (X)).
Given such a fan Σ , it gives rise to a matrix V whose columns are integral vectors 

generating the rays of the 1-skeleton Σ(1).
The matrix V will be called a fan matrix of Σ.
Fan matrices motivate the following definition (see [22] for any further detail).

Definition 1 A (reduced) F-matrix is a n × m matrix V with integer entries, satisfy-
ing the conditions: 

a. rk (V) = n;
b. all the columns of V are non zero;
c. if � is a column of V, then V does not contain another column of the form �� where 

𝜆 > 0 is a real number.
d. V is F-complete: the cone generated by its columns is ℝn;
e. the gcd of the elements of every columns is 1

A CF-matrix is a F-matrix satisfying the further requirement 

f. Lc(V) = ℤn.

Let V = (�1,… , �m) be a n × m F-matrix. Let SF(V) be the set of all simplicial and 
complete fans whose 1-skeleton is given by all the rays generated by the columns of V. 
For any choice Σ ∈ SF(V) we get a ℚ-factorial complete toric variety X = X(Σ).

X(Σ) is called a poly weighted projective space (PWS) if V is a CF-matrix.

Theorem  1 [23, Theorem  2.2] Every ℚ-factorial complete toric variety X = X(Σ) 
admits a canonical finite abelian covering

unramified in codimension 1, such that Y(Σ̂) is a PWS.

The fans associated to the two varieties have the same combinatoric structure, in the 
sense that they involve the same sets of indices of columns in the corresponding fan 
matrices.

Y(Σ̂) ↠ X(Σ),
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4  The “cercafan”algorithm for calculating SF(V) and the pseudofan 
conjecture

Let V = (�1,… , �m) be a n × m F-matrix. Then SF(V) can be computed by the fol-
lowing steps. 

1. Compute the set M of minimal n-dimensional cones generated by the columns of 
V, i.e. the simplicial cones not contaning other columns of V than those generating 
their extremal rays.

2. Compute the set F  of facets (that is, (n − 1)-dimensional faces) of cones in M 
and for each f ∈ F  a normal vector �f  (the positive side of f).

3. for every f ∈ F  compute 

4. Starting from the collection 

 eliminate in all possible ways cones from M+
f
 and M−

f
 until for every f ∈ F  

either |M+
f
| = |M−

f
| = 0 or |M+

f
| = |M−

f
| = 1.

5. Put C =
⋃

f M
+
f
∪
⋃

f M
−
f
.

6. Verify that 
◦

� ∩
◦

�= � for every �, � ∈ C ; in this case C = Σ(n) for a complete 
simplicial fan Σ.

Conjecture 1 Step (6) is unnecessary.

More precisely we can define a pseudofan as a collection

of simplicial cones on the columns of V satisfying:

• C ⊆ M i.e. every �i is a minimal maximal cone.
• The set of vertices of cones in C is the whole set of columns of V;
• Every facet f of some �i ∈ C is shared by unique other �j ∈ C lying on the 

opposite side of f.
• (maybe) C is minimal with these properties.

Then the pseudofan conjecture can be stated as:

Conjecture 2 Every pseudofan is a fan in SF(V).

M
+
f
= {� ∈ M | f is a facet of � and � lies on the positive side of f }

M
−
f
= {� ∈ M | f is a facet of � and � lies on the negative side of f }

{(f ,M+
f
,M−

f
) | f ∈ F}

C = {�1,… , �t}
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The conjecture is trivial in dimension 2. Although we would not able to prove it in 
dimension ≥ 3 , it is supported by a huge number of examples up to dimension 5 and 
rank 4.

5  Gale duality and secondary fan

Although its theoretical interest, the “cercafan ”algorithm is not very efficient and is in 
practice unusable as the size and number of vectors grow. The following of this paper 
will be devoted to present a second algorithm, based on the theory of Gröbner bases 
of toric ideals, computing the projective fans in SF(V) , for a given F-matrix V. A fun-
damental tool for this construction is Gale duality that we briefly recall in this section.

5.1  The Gale dual matrix of V

Let V be a n × m F-matrix. If we think V as a linear application from ℤm to ℤn then 
ker(V) is a lattice in ℤm , of rank r ∶= m − n and without cotorsion.

We shall denote Q = G(V) the Gale dual matrix of V: an integral r × (n + r) matrix 
Q whose rows are a ℤ-basis of ker(V) ; the matrix Q is well-defined up to left multi-
plication by GLr(ℤ) and can be characterized by the following universal property [22, 
§3.1]:

F-completeness implies that the span of the rows of Q contain a strictly positive vec-
tor, so that Q can be chosen non-negative.

Notice that G(V) = G(V̂) where V̂ is the CF-matrix associated to the 1-covering.

5.2  Gale duality

Recall notation introduced in Sect. 1.
Submatrices of Q and V correspond each other via the natural isomorphism

5.3  Bunches and the secondary fan

The Gale dual analogue of a fan is a bunch of cones (see [2]).
In our situation we can identify a bunch of cones with a family Ω of simplicial cones 

on the columns of Q satisfying

A bunch Ω is projective if 
⋂

�∈Ω � (the chamber) is full-dimensional.

if A ∈ �r(ℤ) is such that A ⋅ VT = 0 then A = � ⋅ Q for somematrix � ∈ �r(ℤ).

ℤ
m−k∕Lc(Q

I)
∼

⟶ Lc(V)∕Lc(VI), |I| = k.

◦

� ∩
◦

�≠ � for every �, � ∈ Ω.
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The set of chambers gives rise to the r-skeleton of a polyhedral fan (the sec-
ondary fan) with support ⟨Q⟩.

If I ⊆ {1,… ,m} and |I| = r then the correspondence ⟨QI⟩ ↦ ⟨VI⟩ induces a 
bijection between bunches and fans and in particular between

where B(Q) = {Ω | for i = 1,… ,m there is � ∈ Ω such that 𝜎 ⊆ ⟨Q{i}⟩} . It induces 
a bijection

between projective fans and associated bunches.

Remark 1 We implemented the cercafan algorithm in Maple, making it compatible 
with packages like Convex [6] and MDSpackage [8]. Then one can quickly deter-
mine, for each computed fan, if it is projective, by checking if the intersection of all 
the cones in the bunch (i.e. the nef cone) is full dimensional or not. Moreover both 
nef and movable cones are quickly computable and one can also obtain useful infor-
mation about possible embedded Mori Dream spaces.

6  The toric ideal

In this section we shall associate to every F-matrix V a toric ideal in a suitable 
polynomial ring, and investigate the properties of its Gröbner fan, which provides 
the structure of the initial ideals. Whilst most of the literature on this subject 
deals with homogeneous toric ideals, ideals associated to F-matrices cannot be 
homogeneous, due to the F-completeness requirement in Definition 1 d). We shall 
describe the Gröbner region and translate the problem of calculating fans in a 
problem of linear programming, as done in [27] in the homogeneous case.

Let � be a field of characteristic 0 and V = (�1,… , �m) be an F-matrix; it 
defines a ring homomorphism:

The toric ideal of V, denoted as IV , is the kernel of the map �.
The following facts on IV (see [26] ) are well-known

• IV = I
V̂.

• IV is generated by binomials g� = ��
+

− ��
− , with � = �+ − �− ∈ Lr(Q) , and 

�+, �− ∈ ℕm have disjoint support.
• For every term order ⪯ the reduced Gröbner basis of IV with respect to ⪯ con-

sists of a finite set of binomials of the form g�.

(1)

� ∶ �[x1,… , xm] ⟶�[t±1
1
,… t±1

n
]

xj ⟼��j
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Remark 2 Completeness is equivalent to the fact that for i = 1,… ,m there is a bino-
mial ��+ − 1 in IV such that i ∈ supp(�+) . In particular every Gröbner basis for IV 
contains a binomial �� − 1 where � is a non negative vector in Lr(Q) . This fact has 
been applied in order to compute non negative vectors in lattices (see [21]).

For every � ∈ ℕm , the fiber F(�) of � is defined as

It is noteworthy to remark that fibers are infinite sets in the complete case.
We shall make use of the following technical result:

Proposition 1 Let f =
∑

i∈I �i�
�i ∈ �[�] be a polynomial and write f = f1 +⋯ + fk 

where each summand fi is the sum of all monomials of f whose exponent vectors lie 
in the same fiber. Then f ∈ IV if and only if fi ∈ IV for i = 1,… , k.

Proof Obviously, f ∈ IV if every fi lies in IV . Conversely, suppose that f ∈ IV . Then 
we can write f =

∑
j∈J �jg�j =

∑
j∈J �j(�

�+
j − �

�−
j ) where F(�+

j
) = F(�−

j
) . Then each 

fi is in turn a sum of some summands of the form �jg�j , so that fi ∈ IV .   ◻

For � ∈ ℝn we define

(In the above formula, both � and � are thought of as “column”vectors, in order for 
matrix multiplication to be defined). By the completeness of V we know that for 
every � , P� is a strictly convex polyhedron of dimension r. Moreover if � ∈ ℤn then 
P� ∩ ℤm = F(�) for every � ∈ ℕm such that V� = �.

Remark 3 Notice that many notation introduced in the present section depend 
implicitly on the choice of a fixed F-matrix V, as, for instance, for the fiber F  and 
the polyhedron P� and the following cone W . Anyway, we prefer to keep a lighter 
notation without explicitly expressing V.

Let � ∈ ℝm and consider the linear map

For � ∈ ℝn put

Proposition 2 W� does not depend on � ∈ ℝn.

Proof Let � ∈ W� and suppose ��(�) ≥ K ∈ ℝ , for any � ∈ P� . Let �� ∈ ℝn and 
choose by completeness �0 ∈ ℝm

≥0
 such that V�0 = � − �� . Let � ∈ P�� then

F(�) = (Lr(Q) + �) ∩ ℕ
m.

P� = {� ∈ ℝ
m | V� = �, � ≥ �}.

�� ∶ ℝ
m
≥0

⟶ℝ

� ⟼�T�

W� = {� ∈ ℝ
m | �� is lower bounded on P�}
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so that � ∈ W�� .   ◻

Let

By the previous proposition, for every � ∈ ℝn we have W� = W where

Proposition 3 W is a polyhedral convex cone, containing ℝm
≥0

.

Proof If �,�� ∈ W then there exists K ∈ ℝ such that �T�,�′T� ≥ K for every 
� ∈ P� . Then for �,� ≥ 0 and � ∈ P�

so that �� + ��� ∈ W , and W is a polyhedral convex cone.
The second assertion is obvious, since P� ⊆ ℝm

≥0
 .   ◻

Proposition 4 W is dual to the cone U:

Proof Obviously U∗ ⊆ W . Conversely suppose � ∈ W and �T� < 0 for some 
� ∈ U . Then lim�→+∞ �T (��) = −∞ , so that �� is not lower bounded, a contradic-
tion. Therefore W ⊆ U

∗ .   ◻

The next propositions give further characterizations of the cone W which will be 
useful in the following:

Proposition 5 
The proof is an immediate consequence of the following variant of Farkas’ 

Lemma applied with A = VT , by observing that U = {� ∈ ℝm | V� = �, � ≥ �}.

Proposition 6 [25, Corollary 7.1e, p. 89] Let A be a m × n real matrix and � ∈ ℝm 
be a column vector. Then the system A� ≤ � of linear inequalities has a solution 
� ∈ ℝn if and only if �T� ≥ 0 for each column vector � ≥ � in ℝm such that AT� = �.

Proposition 7 W = Q−1(⟨Q⟩).

Proof We firstly show that Q−1(⟨Q⟩) ⊆ W . Let � ∈ Q−1(⟨Q⟩) . Then Q(�) ∈ ⟨Q⟩ , 
so that there esists �� ∈ ℝm

≥0
 such that Q(�) = Q(��) . This in turn implies 

��(�) = �T (� + �0 − �0) = �T (� + �0) − �T�0 ≥ K − �T�0

(2)U = P� = ker(V) ∩ℝ
m
≥0

= Vr(Q) ∩ℝ
m
≥0
.

(3)W = W� = {� | �� is lower bounded on U}

(�� + ���)T� ≥ (� + �)K

W = U
∗ = {� ∈ ℝ

m | �T� ≥ 0,∀� ∈ U}.

W = {� ∈ ℝ
m | ∃� ∈ ℝ

n such that VT� ≤ �}.
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that there exists � ∈ Lr(V) such that � = �� + � . If � ∈ U = Vr(Q) ∩ℝm
≥0

 then 
�T� = (��)T� + �T� ≥ 0 , because (��)T� ≥ 0 and �T� = 0 . Then � ∈ U

∗ = W.
Conversely, let � ∈ Q−1(⟨Q⟩)∗ , so that

Then � ∈ Vr(Q) ; indeed if � ∈ Vr(V) then Q� = 0 so that, ±� ∈ Q−1(⟨Q⟩) ; then (4) 
implies that ±�T� ≥ 0 , so that �T� = 0 . Moreover � ∈ ℝm

≥0
 ; indeed every element 

�i in the canonical basis of ℝm lies in Q−1(⟨Q⟩) , so that (4) implies that ui ≥ 0 for 
i = 1,… ,m . Therefore we have shown that (Q−1(⟨Q⟩))∗ ⊆ Vr(Q) ∩ℝm

≥0
= U ; by the 

properties of the dual cone this implies W = U
∗ ⊆ (Q−1(⟨Q⟩))∗∗ = Q−1(⟨Q⟩)) .   ◻

6.1  The Gröbner fan

To every � ∈ ℝm , we can associate a relation ⪯� on ℕm , defined by

Let � be any field, and � = x1,… , xm . For a polynomial f =
∑

� c��
� ∈ �[�] 

the inital term in�(f ) of f w.r.t. � is defined as the sum of all terms c��� in f such 
that ��(�) is maximal. If I is an ideal in �[�] , the initial ideal of I w.r.t. � is then 
in�(I) = {in�(f ) | f ∈ I} . If in�(I) is monomial, then � is said generic for I. It is 
well-known [26, Cor. 1.10 and Prop. 1.11] that the set of initial ideals in⪯(I) of I 
determined by term orders ⪯ coincide with the set of inital ideals in�(I) of I associ-
ated to generic weight vectors � ∈ ℝm

≥0
.

When � ∉ ℝm
≥0

 , ⪯� cannot be refined to be a term order; however it is still pos-
sible that, for some ideal I, in�(I) is also the initial ideal of I with respect to some 
term order.

Therefore we introduce the following:

Definition 2 Let I ⊆ �[�] be an ideal. A monomial ideal J is an initial ideal of I if 
J = in⪯(I) for some term order ⪯.

Proposition 8 Let � ∈ ℝm be generic; if in�(IV ) is an initial ideal of IV then � ∈ W.

Proof Suppose that in�(IV ) is an initial ideal of IV ; then by definition there is a term 
order ⪯ such that in�(IV ) = in⪯(IV ) . Let � ∈ Lr(Q) ∩ℝm

≥0
 ; then �� − 1 ∈ IV and thus 

�� ∈ in⪯(IV ) = in�(IV ) . Then �� ⪰� 1 so that �T� ≥ 0 . Notice that by (2) the cone U 
is generated by Lr(Q) ∩ℝm

≥0
 . This shows that � ∈ U

∗ = W , by Proposition 4.   ◻

Two vectors in W determine the same initial ideal of IV when they represent lin-
early (i.e. numerically) equivalent divisors; this is established by the following

Proposition 9 Choose �1,�2 ∈ W . If Q�1 = Q�2 then in�1
(IV ) = in�2

(IV ).

(4)�T� ≥ 0 for every � such that Q� ∈ ⟨Q⟩.

�1 ⪯� �2 if ��(�1) ≤ ��(�2).



472 M. Rossi, L. Terracini 

1 3

Proof We can write �2 = �1 + � , with � ∈ ker(Q) . Then �T
1
� = �T

2
� holds for 

every � ∈ Lr(Q) , so that in�1
(g�) = in�2

(g�) . Then the result follows because IV is 
generated by binomials g� for � ∈ Lr(Q) .   ◻

The converse of Proposition 8 is also true. In order to establish it we need some 
preliminary results.

Lemma 1 Let � ∈ ℕm,� ∈ W . Then ⪯� refines the standard partial order ≤ on 
F(�) ; that is

Proof If �1 ≤ �2 then �2 = �1 + � for some � ∈ ℝm
≥0

∩ Lr(Q) ⊆ U . Since � ∈ W , 
then �T � ≥ 0 by Proposition 4, so that �T�1 ≤ �T�2 .   ◻

Let us recall the following well known result:

Lemma 2 (Dickson Lemma, [9] Theorem 2.1.1) Every totally unordered subset of 
ℕm is finite.

Lemma 3 Let � ∈ W be generic. For every � ∈ ℕm the fiber F(�) has a (unique) 
minimum with respect to ⪯�.

Proof By Proposition 2 and formula (3), �� is lower bounded on F(�) . Therefore 
the set

is not empty. Assume that S contains two distinct elements �1 ≠ �2 . Then 
��1 − ��2 ∈ IV and ��(�1) = ��(�2) , so that ��1 − ��2 ∈ in�(IV ) . Since � is generic, 
in�(IV ) is monomial; thus ��1 , ��2 ∈ in�(IV ) . Since ��1 ∉ IV , by Proposition 1 there 
exists �0 ∈ F(�) such that 𝜑�(�0) < 𝜑�(�1) , contrarily to the fact that �1 ∈ S . Then 
S contains a single element.   ◻

For a generic � ∈ W define

and let M � be the subset of Min � consisting of the minimal elements with respect 
to ≤ . By Dickson’s Lemma, M � is a finite set.

Lemma 4 If � ∈ M � and �0 is the minimum of F(�) w.r.t. ⪯� , then 
supp(�) ∩ supp(�0) = �.

Proof Assume that j ∈ supp(�) ∩ supp(�0) , let �j be the vector having 1 at place 
j and 0 elsewhere and put �� = � − �j , ��0 = �0 − �j . Then ��

0
⪯� �� < � and 

�1 ≤ �2 ⇒ �1 ⪯� �2, for every �1, �2 ∈ F(�).

S ∶= {� ∈ F(�) | �� attains its mimimum at �}

Min � = {� ∈ ℕ
m | � is the minimum of F(�) w.r.t. ⪯�}

Min � = ℕ
m ⧵ Min �
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�� − ��
0
= � − �0 , so that �′ and �′

0
 lie in the same fiber. Therefore �� ∈ Min � and � 

is not minimal.   ◻

Lemma 5 Let � ∈ W be generic. Then the following equality of ideals holds:

Proof The second equality is trivial, so we prove the first one. For � ∈ Min � , 
let �0 be the minimum of F(�) with respect to ⪯� . Then � − �0 ∈ Lr(Q) , and 
supp(�) ∩ supp(�0) = � by Lemma 4. Then by definition �� − ��0 ∈ IV , so that 
x� ∈ in⪯�

(IV ) . Therefore the inclusion (x� | � ∈ Min �) ⊆ in�(IV ) is shown. If it 
were not an equality, in�(IV ) would contain a monomial ��0 for some �0 ∈ Min � . 
Therefore it would exist a polynomial f ∈ IV such that in⪯�

(f ) = ��0 ; by Proposition 
1 we can assume that all monomials appearing in f lie in the same fiber, and since 
�0 is the minimum of its fiber f must be a single term: f = ���0 for some � ∈ � . But 
�(��0) is a monomial in �[�±1] , so it cannot be zero.   ◻

With the notation above, let M � = {�1,… , �s} ; for every i let �i be the mini-
mum of F(�i) with respect to ⪯� , and define �i = �i −�i . Notice that, by Lemma 
4, �i and �i have disjoint support, so that �i = �+

i
 and �i = �−

i
 , and g�i = ��i − ��i . 

Put B� = {�1,… , �s} and G� = {g�i | i = 1,… , s} ⊆ IV.

Lemma 6 (Farkas Lemma,[28] Proposition 1.7) Let U be a d × m real matrix, and 
� ∈ ℝd . Then one and only one of the following holds:

• there exists a vector � ∈ ℝm with U� ≤ �,
• there exists a vector � ∈ ℝd with � ≥ 0 , �TU = 0 and �T� < 0.

Proposition 10 Let � ∈ W ; then there is � ∈ ℝm
≥0

 such that in⪯�
(IV ) = in⪯�

(IV ).

Proof Let B be the s × m matrix having rows �1,… , �s and let U be the (m + s) × m 
matrix defined by

where Im is the square identity matrix of order m. We firstly show that there exists 
� ∈ ℝm

≥0
 such that � ⋅ �i > 0 for every i = 1,… , s . Suppose the contrary. Then there 

does not exist � ∈ ℝm such that (−U)� ≤ � where � = (−1,… ,−1)T . There exists 
� ∈ ℝm+s such that � ≥ 0 , � ≠ � and �TU = � . Write � = (u∗

1
,… , u∗

m
, u1,… , us) . 

Then for j = 1,… ,m

which implies

in�(IV ) = (�� | � ∈ Min �) = (�� | � ∈ M �)

U =

(
Im
B

)

u∗
j
+ u1b1j +…+ usbsj = 0
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It follows that

By Lemma 1 this implies that 
∑s

i=1
ui�i ⪯� 0 . On the other hand by definition we 

have �i ≻� � and u1,… , us are not all zero, therefore 
∑s

i=1
ui�i ≻� � , a contradition.

It follows that in�(IV ) ⊆ in�(IV ) . If this inclusion was not an equality then by 
Lemma 5in�(IV ) should contain some element � in Min� and so the whole fiber 
F(�) , contradicting Lemma 5 itself.   ◻

By collecting Proposition 8 and Lemma 10 we obtain the following

Theorem 2 Let � ∈ ℝm be generic; then in�(IV ) is an initial ideal of IV if and only 
if � ∈ W.

Theorem 2 asserts that W is the Gröbner region of IV , in the sense of[18]. It 
is the support of the Gröbner fan of IV , whose construction we sketch briefly in 
the following. Two weight vectors �1,�2 ∈ W are said equivalent modulo IV if 
in�1

(IV ) = in�2
(IV ) . Equivalence classes form relatively open polyhedral cones in 

ℝm , whose closures are said Gröbner cones. For � ∈ W let C[�] be the smallest 
Gröbner cone containing � . Then � is generic if and only if C[�] is full-dimen-
sional. The Gröbner fan of IV is the collection of Gröbner cones C[�] , for � ∈ W.

6.2  The Gröbner fan and the secondary fan

Obviously � + kerQ ⊆ C[�] for every � ∈ W , so that we can consider the image 
fan via Q of the Gröbner fan in ℝr.

In this way the Gröbner cone and the secondary fan both live in ℝr and they 
have the same support ⟨Q⟩ , by Proposition 7.

The following is a crucial result by Sturmfels:

Theorem 3 [26, Proposition 8.15] The Gröbner fan refines the secondary fan.

By restricting the support of both the Gröbner fan and the secondary fan to 
Mov (Q) =

⋂m

i=1
⟨Q{i}⟩ we get, in the light of (1), the following result

Corollary 1 There is a surjective computable map

Proof We follow the argument proving [26, Proposition 8.15]. Given an initial ideal 
I  for IV the corresponding fan can be computed as

u1b1j +…+ usbsj ≤ � forj = 1,… ,m.

u1�1 +…+ us�s ≤ �, with u1,… , us ≥ 0, not all zero.

{
Initial ideals of IV not containing a power of xi,∀i = 1,… ,m

}
↠ PSF(V).
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Then we see that for i = 1,… ,m

Conversely, from Σ we can recover the radical 
√
I  as the Stanley-Reisner ideal Δ(Θ) 

of the simplicial complex Θ associated to Σ:

This shows that the correspondence I ↦ ΣI is surjective.  ◻

In general the correspondence I ↦ ΣI  is not injective; see Example 7.1 below. 
It is shown in [26, Corollary 8.9] that I  is radical if and only if ΣI  gives rise to 
a smooth toric variety i.e. all cones in ΣI(n) have normalized volume 1. It fol-
lows that the correspondence is injective when V is unimodular (see [26, Remark 
8.10], taking into account that V is a CF-matrix, so that its maximal minors are 
coprime).

7  Calculating PSF(V)

Corollary 1 provides an algorithm for computing the set PSF(V) for any F-matrix 
V:

7.1  The “G‑cercafan” algorithm

1. Compute the toric ideal IV.
2. Compute the Gröbner fan of IV.
3. For any full-dimensional Gröbner cone C[�] in the Gröbner fan, compute the 

initial ideal I� = in�(IV );
4. Eliminate those initial ideals containing a power of some Xi.
5. For the remaining initial ideals I  , compute the fan ΣI  defined in the proof of 

Corollary 1.
6. Remove duplicate fans (if any).

Remark 4 Steps (2) and (3) may be englobed: in fact the software we used produces 
directly the initial ideals without making use of weight vectors.

ΣI = {⟨VI⟩ � I ⊆ {1,…m} and supp(�) ∩ I ≠ � for some monomial � ∈ I}

= {⟨VJ⟩ � J ⊆ {1,…m} and supp(�) ⊈ J for every monomial � ∈ I}

⟨�i⟩ ∈ ΣI(1) ⇔ supp (�) ⊈ {i} for every monomial � ∈ I

⇔ I does not contain a power of xi.

Θ = {J ⊆ {1,… ,m} � ⟨VJ⟩ ∈ Σ}√
I = Δ(Θ) = (

�
i∈I

xi � I ∈ {1,… ,m} and I ∉ Θ}.
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7.2  Exploiting the existing software

Initial ideals can be determined by software computing the Gröbner fan of toric ideals, 
such as TiGERS [10] or CATS [14] (incorporatd in GFAN [13]); we mainly used the 
last one.

As well explained in [11], the general idea is starting with an arbitrary term order 
and generate successively all the initial ideals by going across “facet binomials ” in 
the corresponding Gröbner bases (flips).

There are two main strategies: for small size inputs, an exhaustive search is pos-
sible. When the latter is impracticable, a “Gröbner walk” can be implemented, pro-
gressively producing new Gröbner cones and consequently new fans.

This software always requires homogeneous toric ideals as input. Since toric ide-
als associated to F-matrices are never homogeneous, we adapted it to our situation 
by the following procedure:

• Homogenize IV by adding an auxiliary variable xm+1 , getting a homogeneous 
toric ideal HIV.

• Compute the set of initial ideals of HIV.
• Eliminate those initial ideals containing a power of xm+1.
• Dehomogenize the remaining initial ideals with respect to xm+1
• For any monomial ideal so obtained, pick up a minimal set of generators.

It is possible to show that this procedure is correct, i.e. it produces the Gröbner fan 
for IV.

In conclusion, we get an algorithm which is much more efficient than “cercafan”; 
however it presents two main disadvantages:

• the same fan is computed many times;
• non-projective fans are not seen by Gröbner methods.

8  Some examples

8.1  An example of proper refinement

Let n = 4, r = 3 and

The toric ideal is

SF(V) contains three fans, and all of them are projective.

Q =

⎛⎜⎜⎝

1 1 0 0 2 0 0

0 0 1 1 2 0 0

0 0 0 0 1 1 1

⎞⎟⎟⎠
, V = G(Q) =

⎛⎜⎜⎜⎝

1 1 0 2 − 1 0 1

0 2 0 2 − 1 0 1

0 0 1 − 1 0 0 0

0 0 0 0 0 1 − 1

⎞⎟⎟⎟⎠

IV = (x1x2 − x3x4, x5x6x7 − 1, x3x4x5 − x6x7, x
2
6
x2
7
− x3x4).
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There are six reduced Grobner bases. Every chamber in the secondary fan con-
sists of two Gröbner cones. For example the following are two Gröbner bases whose 
initial ideals have the same radical:

8.2  A non‑projective fan

Let us consider the well-known Berchtold–Hausen example [2, Ex.  10.2], whose 
weight and fan matrices can be presented as follows

Figure  1 represents a section of the effective cone QBH ∶= ⟨QBH⟩ ⊂ ℝ3 with the 
standard simplex in ℝ3 , well describing the secondary fan.

The toric ideal is

GB1 = (x1x2 − x3x4, x3x4x5 − x6x7, x5x6x7 − 1, x2
6
x2
7
− x3x4)

In1 = (x1x2, x3x4x5, x5x6x7, x
2
6
x2
7
)

GB2 = (x1x2 − x3x4, x6x7 − x3x4x5, x3x4x
2
5
− 1)

In2 = (x1x2, x6x7, x3x4x
2
5
)

QBH =

⎛⎜⎜⎝

1 1 0 0 1 0

0 1 1 1 0 0

0 0 0 1 1 1

⎞⎟⎟⎠
VBH = G

�
QBH

�
=

⎛⎜⎜⎝

1 0 0 0 − 1 1

0 1 0 − 1 − 1 2

0 0 1 − 1 0 1

⎞⎟⎟⎠

Fig. 1  The section, by the standard simplex in ℝ3 , of the effective cone QBH ∶= ⟨QBH⟩ and the movable 
cone Mov (VBH) in [2, Ex. 10.2]
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SF(VBH) contains eight fans, but GFAN returns only six inital ideals having dif-
ferent radicals: there are two non-projective fans. The six chambers enumerated in 
Fig. 1 give nef cones of the associated projective varieties. The two non-projective 
varieties shares the same nef cone, given by the intersection of all the six chambers 
and generated by the anti-canonical class.

9  Open problems

9.1  Recovering the initial ideal from the fan

For fans in PSF(V) whose inverse image, by the map in Corollary 1, is a single-
ton, it is possible to recover, from the fan, a set of generators of the initial ideal, by 
choosing, in a universal Gröbner basis UV for IV , those binomials having a mono-
mial support in the fan and considering, in each of them, the complementary mono-
mial. This procedure can be performed also when the inverse image contains more 
than one initial ideal, or even when the fan is not projective. Of course, in the latter 
case, the obtained monomial ideal will not be an initial ideal of IV . However one can 
ask if it may be in some way significant and providing some interesting informations 
about the original fan. Anyway, this question seems to be related to the more general 
one: are non projective fans be detectable by algebraic methods?

9.2  The irrelevant ideal and Alexander duality

When passing from the initial ideal to the fan via the map of Corollary 1, one loses 
the information given by exponents in the generators of the ideal. This happens 
because the fan is only determined by the radical of the initial ideal, and in general 
initial ideals of IV are not radical. Recall that the irrelevant ideal of a toric variety 
is the reduced monomial ideal having a minimal generator for each maximal cone 
in the fan, namely the product of the variables not indexed by elements of the list 
corresponding to the maximal cone. For complete ℚ-factorial toric variety, the irrel-
evant ideal is the Alexander dual of the Stanley-Reisner ideal of the fan. In [16, 17], 
Miller provides a construction of Alexander duality for monomial ideals which may 
also be not radical. It would be interesting to study Alexander duals of initial ideals 
of IV in the non-radical case, and investigate which kind of information they carry 
on about the geometry of the corresponding toric varieties.

9.3  The state polyhedron

It is well-known that, for homogeneous toric ideals, the Gröbner region coincides 
with the whole ℝm , so that the Gröbner fan results to be polytopal and initial ide-
als can be recovered as vertices in the state polytope associated to IV (see [26, 
Chapter 2]). Of course in our case the Gröbner fan is not polytopal, since fibers 

IVBH
= (x1x5 − x3x4, x2x3 − x5x6, x1x2 − x4x6, x4x5x6 − 1, x1x

2
5
x6 − x3).
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are infinite sets. Nevertheless, the Minkowski sum of Gröbner fibers give rise to 
a poyhedron see [1, Sects. 2–4], the state polyhedron of IV , whose normal fan 
coincides with the Gröbner fan of IV . The lower boundary of the state polyhedron 
should be the analog of the state polytope in the complete case. We intend to 
deepen this investigation in a future work.

9.4  Deforming the secondary fan

Consider the Berchtold–Hausen example presented in the previous Sect.  7.2 
and move slightly a generator of the movable cone Mov (VBH) , e.g. �4 , to a near 
rational vector still belonging to the cone generated by the nearest generators of 
the effective cone ⟨QBH⟩ , that is ⟨�3, �6⟩ . This produces a deformation of the sec-
ondary fan represented in Fig. 2 by choosing, e.g.,

that is

(5)�4 ∶=

⎛
⎜⎜⎝

0

1

2

⎞
⎟⎟⎠

Fig. 2  The section, by the standard simplex in ℝ3 , of the effective cone Q = ⟨Q⟩ and the movable cone 
Mov (V) , in the example studied in Sect. 8.4
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This example has been extensively studied by the authors in [24, §  3], where we 
listed all the 8 fans in SF(V) and in SF(VBH) , by running the Cercafan algorithm, 
implemented as a Maple routine. Fans in SF(V) are exactly the same of those in 
SF(VBH) after replacing �6 = (1 , 2 , 1)T with �6 = (1 , 3 , 2)T . In particular the 6 
projective varieties assigned by chambers from 1 to 6 in Fig. 1 remain projective 
and assigned by chambers in Fig. 2 admitting the same number. Moreover the 2 non-
projective fans in SF(VBH) sharing the same nef cone given by ⟨(1 , 1 , 1)T⟩ , and 
represented by the barycenter of the triangle in Fig. 1, give rise to a new projective 
fan represented by chamber 7 in Fig. 2 and to a non-projective one, whose associ-
ated toric variety has trivial nef cone.

The just described situation, determined by the particular choice (5), is actu-
ally the generic situation when �4 runs over all possible rational vectors in the 
open cone Relint ⟨�3, �6⟩ . Such a variation is given by

determining the following variations of weight and fan matrices:

Considering only the 7-th chamber, gives rise to a family X7
⟶ ℚ of complete and 

ℚ-factorial toric varieties whose generic fibre X7
p∕q

 is projective and admitting a spe-
cial non projective fibre X7

1
.

On the other hand, considering the 8-th chamber gives rise to a family 
X

8
⟶ ℚ of never projective, complete, ℚ-factorial toric varieties, whose generic 

fibre X8
p∕q

 does not admit any non-trivial nef divisor and admitting a special fibre 
X8
1
 endowed with a non trivial nef divisor (in the present example represented by 

the anti-canonical one).
Finally chambers from 1 to 6 give rise to 6 families Xi

⟶ B of projective ℚ
-factorial toric varieties.

We believe these are interesting phenomena which should often appear in stud-
ying toric deformations of toric varieties, but we are not aware of any theoretical 
explanation clarifying the described situation. An implementation of algorithms 

Q ∶=

⎛
⎜⎜⎝

1 1 0 0 1 0

0 1 1 1 0 0

0 0 0 2 1 1

⎞
⎟⎟⎠
, V = G(Q) =

⎛
⎜⎜⎝

1 0 0 0 − 1 1

0 1 0 − 1 − 1 3

0 0 1 − 1 0 2

⎞
⎟⎟⎠
.

∀ p, q ∈ ℕ ⧵ {0} ∶ (p, q) = 1 �4 =

⎛⎜⎜⎝

0

q

p

⎞⎟⎟⎠
∈ Relint

�
0 0

1 0

0 1

�

Qp∕q ∶=

⎛
⎜⎜⎝

1 1 0 0 1 0

0 1 1 q 0 0

0 0 0 p 1 1

⎞
⎟⎟⎠

Vp∕q = G(Qp∕q) =

⎛⎜⎜⎝

1 0 0 0 − 1 1

0 1 q − 1 − 1 − 1 p + 1

0 0 q − 1 0 p

⎞⎟⎟⎠
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here presented can certainly produce a number of evidences over which trying to 
understand something more.
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