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Abstract
Lechuga and Murillo showed that a non-oriented, simple, connected, finite graph G 
is k-colourable if and only if a certain pure Sullivan algebra associated to G and k is 
not elliptic. In this paper, we extend this result to simplicial complexes by means of 
several notions of colourings of these objects.

1 Introduction

Graph Theory and Rational Homotopy Theory were first related by Lechuga and 
Murillo in a celebrated paper [15] (see also [16]) where they show that a non-ori-
ented, simple, connected, finite graph can be k-coloured, k ≥ 2 , if and only if a cer-
tain Sullivan algebra associated to the graph is not elliptic. They also provide a link 
between Rational Homotopy Theory and algorithmic complexity by proving that the 
problem of graph colourability can be reduced in polynomial time to the problem of 
determining the ellipticity of a certain Sullivan algebra. Hence, since the former is 
an NP-complete problem, the latter is an NP-hard problem.

This interplay between Graph Theory and Rational Homotopy Theory has been 
proven fruitful: recently, Costoya and Viruel were able to use this interaction to 
solve a question of realisability of groups [4, 5], and applications of these results to 
further problems were subsequently found [2, 3].

The aim of this work is to extend the result of Lechuga and Murillo from graphs 
to (finite) simplicial complexes by considering eleven notions of colourability for 
these objects, many of which can be found in the literature. We refer to these colour-
ings as ℭi-colouring, for i = 1, 2,… , 11 (see Definitions 2.1, 2.4, 2.6, and 3.3), and 
prove the following two results:

Theorem  1.1 For any k ≥ 2 , any i = 1, 2,… , 11 , and any connected simpli-
cial complex X, which is assumed to be strongly connected and homogeneous for 
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i = 8, 9, 10, 11 , there exists a pure Sullivan algebra Mi
k
(X) which is not elliptic if 

and only if X is ℭi-k-colourable.

Theorem  1.2 For i ∈ {1, 7, 8, 9, 10, 11} and k ≥ 3 , or for i ∈ {4, 5, 6} and k ≥ 4 , 
determining if a connected simplicial complex is ℭi-k-colourable is an NP-hard 
problem.

We point out that closely related problems have been studied in [6, 8, 14].
As for the necessary background, we assume that the reader is familiar with 

basics of algorithmic complexity and Rational Homotopy Theory, for which [12] 
and [9] are, respectively, excellent references. In particular, concerning algo-
rithmic complexity we will use that the problems of total-k-colourability, k ≥ 4 , 
edge-k-colourability, k ≥ 3 , and k-colourability, k ≥ 3 , are NP-complete [13, 17, 
18].

Regarding Rational Homotopy Theory, we just recall that a (simply connected) 
Sullivan algebra, denoted (ΛW, d) , is a commutative differential graded algebra, 
which is free as an algebra generated by the (simply connected) graded rational 
vector space W, and where the differential d is decomposable. A Sullivan algebra 
is elliptic if both W and H∗(ΛW, d) are finite dimensional, and pure if dWeven = 0 
and dWodd ⊂ ΛWeven.

We now recall the fundamental construction in [15] associated to any k ≥ 2 
and any non-oriented, simple, connected, finite graph G = (V ,E) , where V and E 
respectively denote the sets of vertices and edges of G. Consider the pure Sulli-
van algebra Sk(G) = (ΛWG,k, d) where

For this construction, the following holds:

Theorem 1.3 ([15, Theorem 3]) The graph G is k-colourable if and only if the Sul-
livan algebra Sk(G) is not elliptic.

To relate this result with algorithmic complexity it is convenient to keep in mind 
that a graph G = (V ,E) is usually encoded by its adjacency matrix A = (aij)i,j∈V in 
which aij = 1 if (i, j) ∈ E and aij = 0 otherwise. In binary, the codification of this 
matrix has length log2 n + n2 , where n is the number of vertices of G.

Throughout this paper, every considered simplicial complex X is assumed to be 
finite. The dimension of a simplex � ∈ X , denoted dim � , is its cardinality minus 
one. The dimension of X, denoted dimX , is the dimension of any of its largest 
simplices. Given s ≥ 0 , we denote the set of simplices of X of dimension s by 
Xs . In particular, X0 is the set of vertices of X, which is often denoted by V. The 
s-skeleton of X is the subsimplicial complex of X spanned by Xs , and we denote 
it by X(s) . Note that X(1) is trivially identified to a non-oriented, simple graph, and 
we say that X is connected if X(1) is a connected graph.

Weven
G,k

= ⟨xv ∣ v ∈ V⟩, �xv� = 2, d(xv) = 0,

Wodd
G,k

= ⟨y(u,v) ∣ (u, v) ∈ E⟩, �y(u,v)� = 2k − 3, d(y(u,v)) = Σk
l=1

xk−l
u

xl−1
v

.
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2  Models for colourings of connected simplicial complexes

In the spirit of Theorem 1.3, we will associate to finite, connected simplicial com-
plexes precise pure Sullivan algebras whose ellipticity encode different notions of 
colouring of simplicial complexes.

2.1  Colourings arising from hypergraphs

Recall that a hypergraph is a pair H = (V ,E) formed by a non-empty set of ver-
tices V and a set of hyperedges E, each of them being a non-empty subset of 
V. Two vertices are adjacent if they belong to a common hyperedge. An hyper-
edge e is incident to a vertex v if v ∈ e . Two hyperedges e and e′ are adjacent if 
e ∩ e� ≠ � . The hypergraph H is connected if given any two vertices u, v ∈ V  there 
is a sequence of hyperedges e1, e2,… , en such that u ∈ e1 , v ∈ en and ei is adjacent 
to ei+1 , for i = 1, 2,… , n − 1.

A vertex k-colouring of a hypergraph H = (V ,E) , see [1, §3.1], is a map 
� ∶ V → {1, 2,… , k} such that for any hyperedge e of more than one vertex 
|𝜑(e)| > 1 . Namely, at least two vertices of e have different colours. Moreover, if 
for any e ∈ E and any two different vertices u, v ∈ e we have that �(u) ≠ �(v) , we 
say that � is a strong vertex k-colouring.

On the other hand, [1, §3.2.5] a hyperedge colouring for H is a map 
� ∶ E → {1, 2,… , k} such that �(e) ≠ �(e�) for any pair of different but adjoint 
hyperedges e and e′.

Finally, [7], a total colouring of H is a map � ∶ V ∪ E → {1, 2,… , k} such that 
any pair formed by either two adjacent vertices, two adjacent hyperedges or an 
hyperedge and any of its incident vertices have different images through �.

Trivially, a simplicial complex X can be regarded as a hypergraph H = (V ,E) 
where V = X0 and E = X . Hence, the above notions of colourability automatically 
translate to the following definition. Note that a vertex k-colouring of a simplicial 
complex is always a strong vertex k-colouring.

Definition 2.1 Let X be a simplicial complex. 

(1) A vertex k-colouring of X ( ℭ1-k-colouring) is a map � ∶ V → {1, 2,… , k} such 
that if � ∈ X and u, v ∈ � , u ≠ v , then �(u) ≠ �(v).

(2) A face k-colouring of X ( ℭ2-k-colouring) is a map � ∶ X → {1, 2,… , k} such 
that �(�) ≠ �(�) whenever � ≠ � , � ∩ � ≠ �.

(3) A total k-colouring of X ( ℭ3-k-colouring) is a map � ∶ X → {1, 2,… , k} such 
that �(u) ≠ �(v) for any u, v ∈ V  with {u, v} ∈ X , and �(�) ≠ �(�) for any pair 
of different simplices �, � with non-empty intersection.

Note that a total k-colouring yields both a vertex k-colouring and a face k-col-
ouring. We prove:
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Proposition 2.2 For any simplicial complex X and any i = 1, 2, 3 , there is a pure 
Sullivan algebra Mi

k
(X) which is not elliptic if and only if X is ℭi-k-colourable.

Proof Associated to X consider G1 = X(1) the graph given by its 1-skeleton. On the 
other hand, let G2 be the graph whose vertex set is the set of simplices of X and 
whose edges are pairs of distinct simplices with a common face. Finally, let G3 be 
the graph whose vertex set is again the set of simplices of X and whose edges are 
also pairs of distinct simplices with non-empty intersection, together with pairs of 
vertices giving raise to a 1-simplex. Observe that G1 , G2 and G3 are respectively the 
2-section graph, intersection graph and total graph of the hypergraph given by X 
(see [1, 7]).

It is then clear from Definition 2.1 that a ℭi-k-colouring of X is precisely a k-col-
ouring of Gi , i = 1, 2, 3 . Furthermore, the graphs G1 , G2 and G3 are connected as 
a consequence of X being connected. To finish, define Mi

k
(X) = Sk(Gi) and apply 

Theorem 1.3.   ◻

2.2  Colourings of simplicial complexes

The colourings in §2.1 are originally defined for hypergraphs, thus they do not take 
consideration of the additional structure of simplicial complexes. For that reason, we 
introduce the following:

Definition 2.3 Let X be a simplicial complex. 

(1) An ascending k-colouring of X in dim r is a map � ∶ Xr
→ {1, 2,… , k} such that 

if �, � ∈ Xr , � ∪ � ∈ Xr+1 , then �(�) ≠ �(�).
(2) A descending k-colouring of X in dim r is a map � ∶ Xr

→ {1, 2,… , k} such that 
if �, � ∈ Xr , � ∩ � ∈ Xr−1 , then �(�) ≠ �(�).

We denote the respective chromatic numbers by �r(X) and � �
r
(X).

An ascending k-colouring of X in dim r is a colouring of the graph

whereas a descending k-colouring of X in dim r is a colouring of

called the rth exchange graph of X (see [10]). However, Theorem 1.3 cannot be used 
to model the colourings in Definition  2.1 using these graphs, as they may not be 
connected. We treat this issue in Sect. 3.

Instead, in this section we use the ascending and descending colourings to intro-
duce new colourings which we can model in the spirit of Proposition 2.2.

Definition 2.4 Let X be a simplicial complex. 

(1)Gr(X) =
(
Xr, {(�, �) ∣ � ∪ � ∈ Xr+1}

)
,

(2)G�
r
(X) =

(
Xr, {(�, �) ∣ � ∩ � ∈ Xr−1}

)
,
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(1) A complete ascending k-colouring of X ( ℭ4-k-colouring) is a map 
� ∶ X → {1, 2,… , k} such that, for any r, s ∈ {0, 1,… , dimX} , if �, � ∈ Xr , 
� ∪ � ∈ Xr+1 , or if � ∈ Xr , � ∈ Xs , r ≠ s , then �(�) ≠ �(�).

(2) A complete descending k-colouring of X ( ℭ5-k-colouring) is a map 
� ∶ X → {1, 2,… , k} such that ,  for  any r, s ∈ {0, 1,… , dimX} ,  i f 
�, � ∈ Xr, � ∩ � ∈ Xr−1 , or if � ∈ Xr, � ∈ Xs, r ≠ s , then �(�) ≠ �(�).

(3) A map � ∶ X → {1, 2,… , k} is a full k-colouring of X ( ℭ6-k-colouring) if 
for �, � ∈ X such that 𝜎 ⊂ 𝜏 , or �, � ∈ X0 , � ∪ � ∈ X1 , or for 1 ≤ r ≤ dimX , 
�, � ∈ Xr , � ∩ � ∈ Xr−1 , we have that �(�) ≠ �(�).

Let G1 = (V1,E1) and G2 = (V2,G2) be two graphs. Recall that the sum 
of G1 and G2 is a graph G = G1 + G2 with vertex set V1 ⊔ V2 and edges 
E1 ∪ E2 ∪ {(u, v) ∣ u ∈ V1, v ∈ V2} . The sum of any two graphs is connected. Also 
recall that the union of G1 and G2 is the graph G1 ∪ G2 with vertex set V1 ∪ V2 and 
edges E1 ∪ E2.

Proposition 2.5 For any simplicial complex X and any i = 4, 5, 6 , there is a pure 
Sullivan algebra Mi

k
(X) which is not elliptic if and only if X is ℭi-k-colourable.

Proof First, note that a complete ascending (resp. descending) k-colouring of X is 
an ascending (resp. descending) k-colouring of X in dim r when restricted to Xr . 
Furthermore, simplices of different dimensions receive different colours. It becomes 
clear that if we define

X admits a complete ascending (resp. descending) k-colouring if and only if the con-
nected graph G4 (resp. G5 ) is k-colourable.

Regarding the full k-colouring, let I denote the strict inclusion graph of X, that is, 
a graph with vertex set X and where (�, �) is an edge if and only if either 𝜎 ⊂ 𝜏 or 
𝜏 ⊂ 𝜎 . Define a graph

Then G6 is connected since I is so. Furthermore, X is full-k-colourable if and only 
if G6 is k-colourable. To finish, define Mi

k
(X) = Sk(Gi) , i = 4, 5, 6 , and apply Theo-

rem 1.3.   ◻

We model one last colouring in this section. In [8] the authors introduce the fol-
lowing, more relaxed definition of vertex colouring:

Definition 2.6 Let k, s ≥ 1 and let X be a simplicial complex. A (k, s)-colouring of 
X ( ℭ7-(k, s)-colouring) is a map f ∶ V → {1, 2,… , k} such that, for every � ∈ X and 
for all 1 ≤ t ≤ k , |� ∩ f −1(t)| ≤ s . Let chrs(X) denote the least integer k such that X is 
(k, s)-colourable.

G4 = G0(X) + G1(X) +⋯ + GdimX(X),

G5 = G�
0
(X) + G�

1
(X) +⋯ + G�

dimX
(X),

G6 = I ∪
(
G0(X) ⊔ G�

1
(X) ⊔⋯ ⊔ G�

dimX
(X)

)
.
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A Sullivan algebra whose ellipticity codifies the (k, s)-colourability of a simpli-
cial complex had already been obtained in [6]. However, we can use the work in [14] 
to provide a different construction of one such algebra:

Proposition 2.7 For any simplicial complex X there exists a pure Sullivan algebra 
M

7
k,s
(X) which is not elliptic if and only if X is ℭ7-(k, s)-colourable.

Proof In [14, Theorem 2] the authors show that

where BCPs
(X) is a set of partitions of the vertex set of X and G0(P) is a 1-dimen-

sional simplicial complex associated to one such partition P, see [14, Definition 3]. 
It quickly follows that when regarding G0(P) as a graph, chr1

(
G0(P)

)
= �

(
G0(P)

)
 . 

Furthermore, G0(P) is connected for every P ∈ BCPs(X) . Define

Let us show that M7
k,s
(X) is the desired algebra.

Recall that the tensor product of Sullivan algebras is not elliptic if and only if 
at least one of the factors is not elliptic. Therefore, if M7

k,s
(X) is not elliptic, there 

exists P ∈ BCPs(X) such that Sk
(
G0(P)

)
 is not elliptic. Then by Theorem  1.3 G0(P) 

is k-colourable, so �
(
G0(P)

)
= chr1

(
G0(P)

)
≤ k , thus X is (k, s)-colourable. Recip-

rocally, if M7
k,s
(X) is elliptic, then Sk

(
G0(P)

)
 is elliptic for every P ∈ BCPs(X) . 

Therefore, G0(P) is not k-colourable, meaning that 𝜒
(
G0(P)

)
= chr1

(
G0(P)

)
> k , 

for every P ∈ BCPs . Therefore, X is not (k, s)-colourable.   ◻

3  Models for colourings of strongly connected homogeneous 
simplicial complexes

As mentioned in Sect. 2.2, the colourings in Definition 2.3 cannot be immediately 
modelled since the graphs that encode them, Gr(X) [see (1)] and and G�

r
(X) [see (2)], 

are not necessarily connected. In this section we further restrict the class of simpli-
cial complexes that we are considering as to be able to model these colourings.

Recall that a simplicial complex X of dimension dimX = n is strongly connected 
if for any two n-dimensional simplices � , � there exist {𝜎0 = 𝜎, 𝜎1,… , 𝜎k = 𝜏} ⊂ Xn 
such that �i−1 ∩ �i ∈ Xn−1 , for i = 1, 2,… , k . Equivalently, X is strongly connected if 
and only if G�

dim(X)
 is connected. On the other hand, X is homogeneous if every vertex 

is contained in an n-dimensional simplex. Then, if X is homogeneous and strongly 
connected, so is X(k) , for 0 ≤ k ≤ n . Therefore:

Proposition 3.1 For any n-dimensional strongly connected homogeneous simpli-
cial complex X, Gr(X) and G�

s
(X) are connected, for 0 ≤ r < n and 0 < s ≤ n.

chr
s(X) = min

P∈BCPs(X)
chr

1
(
G0(P)

)
,

M
7

k,s
(X) =

⨂

P∈BCPs(X)

S
k

(
G0(P)

)
.
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Proof The connectivity of G�
s
(X) , for 0 < s ≤ n is an immediate consequence 

of the strong connectivity of X(s) . Let us prove the connectivity of Gr(X) , 
0 ≤ r < n . Take �, � ∈ Xr . Since X is homogeneous, we can find �̄�, 𝜏 ∈ Xr+1 
such that 𝜎 ⊂ �̄� and 𝜏 ⊂ 𝜏 . Then, since X(r+1) is strongly connected, we can find 
{�̄�0 = �̄�, �̄�1,… , �̄�k = 𝜏} ⊂ Xr+1 such that 𝜎i = �̄�i−1 ∩ �̄�i ∈ Xr , i = 1, 2,… , k . It is 
now immediate to check that ��1 … �k� is a path in Gr(X) joining � and � .   ◻

An immediate application of Theorem 1.3 yields the following result:

Proposition 3.2 For any n-dimensional strongly connected homogeneous simpli-
cial complex X and for 0 ≤ r < n (resp. for 0 < s ≤ n ), there exists a Sullivan alge-
bra Mk(X, r) (resp. M�

k
(X, s) ) which is not elliptic if and only if X admits an ascend-

ing k-colouring in dim r (resp. a descending k-colouring in dim s).

We now introduce the last collection of colourings.

Definition 3.3 We say that a map � ∶ X → {1, 2,… , k} is:

• a maximal ascending k-colouring ( ℭ8-k-colouring) if for every 0 ≤ r ≤ dimX the 
restriction �|Xr is an ascending k-colouring in dim r for X.

• a maximal descending k-colouring ( ℭ9-k-colouring) if for every 0 ≤ s ≤ dimX 
the restriction �|Xs is a descending k-colouring in dim s for X.

• a minimal ascending k-colouring ( ℭ10-k-colouring) if there exists 0 ≤ r < dimX 
such that �|Xr is an ascending k-colouring in dim r for X.

• a minimal descending k-colouring ( ℭ11-k-colouring) if there exists 0 < s ≤ dimX 
such that �|Xs is a descending k-colouring in dim s for X.

The respective chromatic numbers are denoted �max(X) , � �
max

(X) , �min(X) and 
� �
min

(X).
Let G1 = (V1,E1) and G2 = (V2,G2) be two graphs. The carte-

sian product G1◻G2 is a graph with vertex set V1 × V2 and edge set {(
(u1, u2), (v1, v2)

)
∣ u1 = v1 and (u2, v2) ∈ E2 or (u1, v1) ∈ E1 and u2 = v2

}
 . Note 

that �(G1◻G2) = max
{
�(G1),�(G2)

}
 (see [11, Theorem 26.1]). Furthermore, the 

cartesian product of connected graphs is connected ([11, Corollary 5.3]). Then:

Proposition 3.4 For any simplicial complex X and any i = 8, 9, 10, 11 , there is a 
pure Sullivan algebra Mi

k
(X) which is not elliptic if and only if X is ℭi-k-colourable.

Proof Note that any map Xdim(X)
→ {1, 2,… , k} (resp. X0

→ {1, 2,… , k} ) is an 
ascending colouring in dimension dim(X) (resp. a descending colouring in dimen-
sion 0). Then, �dim(X)(X) = � �

0
(X) = 1 . It follows immediately from Definition  3.3 

that 𝜒max(X) = max0≤r<dimX{𝜒r(X)} and that 𝜒 �
max

(X) = max0<s≤dimX{𝜒
�
s
(X)} . Con-

sider the graphs

G8 = G0(X)◻G1(X)◻⋯◻Gn−1(X), G9 = G�
1
(X)◻G�

2
(X)◻⋯◻G�

n
(X).
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Then, since �
(
Gr(X)

)
= �r(X) and �

(
G�

s
(X)

)
= � �

s
(X) , we deduce that 

�(G8) = �max(X) and �(G9) = � �
max

(X) , so X admits a maximal ascending (resp. 
descending) k-colouring if an only if G8 (resp. G9 ) is k-colourable. Furthermore, 
both G8 and G9 are connected as a consequence of Proposition 3.1. Therefore, for 
i = 8, 9 it suffices to define Mi

k
(X) = Sk(Gi) and apply Theorem 1.3.

We now consider the minimal colourings. It follows from Definition 3.3 that 
𝜒min(X) = min0≤r<dimX{𝜒r(X)} and that 𝜒 �

min
(X) = min0<s≤dimX{𝜒

�
r
(X)} . By a rea-

soning analogous to that of Proposition 2.7, the desired algebras are

The result follows.   ◻

Theorem 1.1 now follows immediately from Propositions 2.2, 2.5, 2.7 and 3.4.

4  Algorithmic complexity of simplicial complex colourings

If G is a graph, it can be regarded as a simplicial complex X(G) whose 0-simplices 
and 1-simplices are, respectively, the vertices and edges of G. Such a simplicial 
complex can be encoded using an adjacency matrix, so its codification has the same 
length as that of G.

In this section we show that the (edge, total) colourability of a graph G is equiv-
alent to the ℭi-colourability of X(G) for certain indices i. As a consequence, we 
immediately deduce Theorem 1.2.

Remark 4.1 It is immediate that the k-colourability of a graph G is equivalent both 
to the ℭ1-k-colourability and the ℭ7-(k, 1)-colourability of X(G). Similarly, the total 
k-colourability of G is equivalent to the ℭ6-k-colourability of X(G).

Proposition 4.2 The k-colourability of a graph G is equivalent both to the ℭ4-
(k + 1)-colourability and the ℭi-k-colourability, i = 8, 10 , of X = X(G).

Proof We begin with the ℭ4-colourability. Let � ∶ V → {1, 2,… , k} be a k-colour-
ing of G. Then, the map � ∶ X → {1, 2,… , k + 1} defined by

is a ℭ4-(k + 1)-colouring of X. Reciprocally, if � ∶ X → {1, 2,… , k + 1} is a ℭ4

-(k + 1)-colouring of X, we may assume that at least one 1-simplex receives 
image k + 1 , so k + 1 ∉ �(X0) . The map � ∶ X0 = V → {1, 2,… , k} taking v to 
�(v) = �({v}) is a k-colouring of G.

We now consider the ℭi-k-colourability, i = 8, 10 . First, if � ∶ V → {1, 2,… , k} 
is a k-colouring of G, X admits a ℭi-k-colouring defined by

M
10
k
(X) =Sk

(
G0(X)

)
⊗ Sk

(
G1(X)

)
⊗⋯⊗ Sk

(
Gn−1(X)

)
,

M
11
k
(X) =Sk

(
G�

1
(X)

)
⊗ Sk

(
G�

2
(X)

)
⊗⋯⊗ Sk

(
G�

n
(X)

)
.

�(�) =

{
�(�), if � ∈ X0,

k + 1, if � ∈ X1.
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Reciprocally, if � ∶ X → {1, 2,… , k} is a ℭi-k-colouring of X, i = 8, 10 , the restric-
tion � = �|X0 ∶ X0 = V → {1, 2,… , k} is a k-colouring of G.   ◻

Proposition 4.3 The edge k-colourability of a graph G is equivalent both to the ℭ5

-(k + 1)-colourability and the ℭi-k-colourability, i = 9, 11 , of X = X(G).

Proof We begin with the ℭ5-(k + 1)-colourability. If � ∶ E → {1, 2,… , k} is an edge 
k-colouring of G, the map � ∶ X(G) = X → {1, 2,… , k + 1} defined by

is a ℭ5-(k + 1)-colouring of X. Reciprocally, if � ∶ X → {1, 2,… , k + 1} is a ℭ5-
(k + 1)-colouring of X, we may suppose that at least one 0-simplex receives image 
k + 1 , thus k + 1 ∉ �(X1) . Then, the map � = �|X1 ∶ X1 = E → {1, 2,… , k} is an 
edge k-colouring of G.

We continue with the ℭi-k-colourability, i = 9, 11 . If � ∶ E → {1, 2,… , k} is an 
edge k-colouring of G, X admits a ℭi-k-colouring � ∶ X → {1, 2,… , k} defined by

Reciprocally, if � ∶ X → {1, 2,… , k} is a ℭi-k-colouring of X, i = 9, 11 , the restric-
tion � = �|X1 ∶ X1 = E → {1, 2,… , k} is an edge k-colouring of G.   ◻

Finally, Theorem  1.2 follows immediately from Remark  4.1, Propositions 4.2, 
4.3 and the algorithmic complexity of the problem of (edge, total) k-colourability of 
graphs.
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