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Abstract

Lechuga and Murillo showed that a non-oriented, simple, connected, finite graph G
is k-colourable if and only if a certain pure Sullivan algebra associated to G and k is
not elliptic. In this paper, we extend this result to simplicial complexes by means of
several notions of colourings of these objects.

1 Introduction

Graph Theory and Rational Homotopy Theory were first related by Lechuga and
Murillo in a celebrated paper [15] (see also [16]) where they show that a non-ori-
ented, simple, connected, finite graph can be k-coloured, k > 2, if and only if a cer-
tain Sullivan algebra associated to the graph is not elliptic. They also provide a link
between Rational Homotopy Theory and algorithmic complexity by proving that the
problem of graph colourability can be reduced in polynomial time to the problem of
determining the ellipticity of a certain Sullivan algebra. Hence, since the former is
an NP-complete problem, the latter is an NP-hard problem.

This interplay between Graph Theory and Rational Homotopy Theory has been
proven fruitful: recently, Costoya and Viruel were able to use this interaction to
solve a question of realisability of groups [4, 5], and applications of these results to
further problems were subsequently found [2, 3].

The aim of this work is to extend the result of Lechuga and Murillo from graphs
to (finite) simplicial complexes by considering eleven notions of colourability for
these objects, many of which can be found in the literature. We refer to these colour-
ings as €-colouring, fori = 1,2, ..., 11 (see Definitions 2.1, 2.4, 2.6, and 3.3), and
prove the following two results:

Theorem 1.1 For any k>2, any i=1,2,...,11, and any connected simpli-
cial complex X, which is assumed to be strongly connected and homogeneous for
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i=28,9,10,11, there exists a pure Sullivan algebra ./\/l;;(X) which is not elliptic if
and only if X is € -k-colourable.

Theorem 1.2 For i€ {1,7,8,9,10,11} and k > 3, or for i € {4,5,6} and k > 4,
determining if a connected simplicial complex is C-k-colourable is an NP-hard
problem.

We point out that closely related problems have been studied in [6, 8, 14].

As for the necessary background, we assume that the reader is familiar with
basics of algorithmic complexity and Rational Homotopy Theory, for which [12]
and [9] are, respectively, excellent references. In particular, concerning algo-
rithmic complexity we will use that the problems of total-k-colourability, & > 4,
edge-k-colourability, k > 3, and k-colourability, k > 3, are NP-complete [13, 17,
18].

Regarding Rational Homotopy Theory, we just recall that a (simply connected)
Sullivan algebra, denoted (AW, d), is a commutative differential graded algebra,
which is free as an algebra generated by the (simply connected) graded rational
vector space W, and where the differential d is decomposable. A Sullivan algebra
is elliptic if both W and H*(AW, d) are finite dimensional, and pure if dAW®" =0
and dW°d c AWeven,

We now recall the fundamental construction in [15] associated to any k > 2
and any non-oriented, simple, connected, finite graph G = (V, E), where V and E
respectively denote the sets of vertices and edges of G. Consider the pure Sulli-
van algebra S, (G) = (AWg, d) where

Wg‘fz" =(x,|veV), |x]|=2, dx)=0,

VVZ;CI[‘Sl = (y(u,v) | (u, V) € E>’ |y(u,v)| =2k - 3v d(y(u,v)) = 25{:|xﬁ_lx€_1-

For this construction, the following holds:

Theorem 1.3 ([15, Theorem 3]) The graph G is k-colourable if and only if the Sul-
livan algebra S,(G) is not elliptic.

To relate this result with algorithmic complexity it is convenient to keep in mind
that a graph G = (V, E) is usually encoded by its adjacency matrix A = (ay); ey in
which a; = 1if (i,j) € E and a; = 0 otherwise. In binary, the codification of this
matrix has length log, n + n?, where n is the number of vertices of G.

Throughout this paper, every considered simplicial complex X is assumed to be
finite. The dimension of a simplex ¢ € X, denoted dimo, is its cardinality minus
one. The dimension of X, denoted dim X, is the dimension of any of its largest
simplices. Given s > 0, we denote the set of simplices of X of dimension s by
X*. In particular, X0 is the set of vertices of X, which is often denoted by V. The
s-skeleton of X is the subsimplicial complex of X spanned by X*, and we denote
it by X©. Note that XV is trivially identified to a non-oriented, simple graph, and
we say that X is connected if X1V is a connected graph.
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2 Models for colourings of connected simplicial complexes

In the spirit of Theorem 1.3, we will associate to finite, connected simplicial com-
plexes precise pure Sullivan algebras whose ellipticity encode different notions of
colouring of simplicial complexes.

2.1 Colourings arising from hypergraphs

Recall that a hypergraph is a pair H = (V, E) formed by a non-empty set of ver-
tices V and a set of hyperedges E, each of them being a non-empty subset of
V. Two vertices are adjacent if they belong to a common hyperedge. An hyper-
edge e is incident to a vertex v if v € e. Two hyperedges e and ¢’ are adjacent if
ene # @. The hypergraph H is connected if given any two vertices u,v € V there
is a sequence of hyperedges e, e,, ..., e, such thatu € e, v € ¢, and ¢, is adjacent
toe,, fori=1,2,...,n—1

A vertex k-colouring of a hypergraph H = (V,E), see [I, §3.1], is a map
@ V- {1,2,...,k} such that for any hyperedge e of more than one vertex
|@(e)| > 1. Namely, at least two vertices of e have different colours. Moreover, if
for any e € E and any two different vertices u,v € e we have that p(u) # @(v), we
say that @ is a strong vertex k-colouring.

On the other hand, [1, §3.2.5] a hyperedge colouring for H is a map
@ E— {1,2,...,k} such that g(e) # @(¢') for any pair of different but adjoint
hyperedges e and ¢'.

Finally, [7], a total colouring of Hisamap @ : VUE — {1,2,...,k} such that
any pair formed by either two adjacent vertices, two adjacent hyperedges or an
hyperedge and any of its incident vertices have different images through ¢.

Trivially, a simplicial complex X can be regarded as a hypergraph H = (V, E)
where V = X% and E = X. Hence, the above notions of colourability automatically
translate to the following definition. Note that a vertex k-colouring of a simplicial
complex is always a strong vertex k-colouring.

Definition 2.1 Let X be a simplicial complex.

(1) A vertex k-colouring of X (€ -k-colouring) isamap ¢ : V — {1,2,...,k} such
thatifo € X and u,v € o, u # v, then p(u) # ).

(2) A face k-colouring of X (€,-k-colouring) isamap ¢ : X — {1,2,...,k} such
that (o) # @(7) whenevero # 7,0 N7 # .

(3) A total k-colouring of X (€5-k-colouring) isamap ¢ : X = {1,2,...,k} such
that @(u) # @(v) for any u,v € V with {u, v} € X, and @(o) # @(r) for any pair
of different simplices o, 7 with non-empty intersection.

Note that a total k-colouring yields both a vertex k-colouring and a face k-col-
ouring. We prove:
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Proposition 2.2 For any simplicial complex X and any i = 1,2,3, there is a pure
Sullivan algebra M (X) which is not elliptic if and only if X is € -k-colourable.

Proof Associated to X consider G, = X' the graph given by its 1-skeleton. On the
other hand, let G, be the graph whose vertex set is the set of simplices of X and
whose edges are pairs of distinct simplices with a common face. Finally, let G; be
the graph whose vertex set is again the set of simplices of X and whose edges are
also pairs of distinct simplices with non-empty intersection, together with pairs of
vertices giving raise to a 1-simplex. Observe that G,, G, and G; are respectively the
2-section graph, intersection graph and total graph of the hypergraph given by X
(see [1, 7).

It is then clear from Definition 2.1 that a €-k-colouring of X is precisely a k-col-
ouring of G;, i = 1,2, 3. Furthermore, the graphs G,, G, and G5 are connected as
a consequence of X being connected. To finish, define M;'{(X) = S,(G;) and apply
Theorem 1.3. O

2.2 Colourings of simplicial complexes

The colourings in §2.1 are originally defined for hypergraphs, thus they do not take
consideration of the additional structure of simplicial complexes. For that reason, we
introduce the following:

Definition 2.3 Let X be a simplicial complex.

(1) Anascending k-colouring of X indimrisamap @ : X" — {1,2, ..., k} such that
ife, 7 €X’,0 Ut € X! then @(0) # (7).

(2) Adescending k-colouring of Xindimrisamape : X" — {1,2, ..., k}such that
ife, 7 €X’,ont e X!, then p(c) # p(7).

We denote the respective chromatic numbers by y,(X) and y/(X).
An ascending k-colouring of X in dim r is a colouring of the graph

G.X) = (X".{(c,)|cuT X)), 1)
whereas a descending k-colouring of X in dim r is a colouring of
GX) = (X" {(c.1)|onzeX}), )

called the rth exchange graph of X (see [10]). However, Theorem 1.3 cannot be used
to model the colourings in Definition 2.1 using these graphs, as they may not be
connected. We treat this issue in Sect. 3.

Instead, in this section we use the ascending and descending colourings to intro-
duce new colourings which we can model in the spirit of Proposition 2.2.

Definition 2.4 Let X be a simplicial complex.
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(1) A complete ascending k-colouring of X (G,-k-colouring) is a map
@ X - {1,2,...,k} such that, for any r,s € {0, 1, ...,dimX}, if 0,7 € X",
cuUreX* orife € X',r € X%, r+#s, then p(c) # (7).

(2) A complete descending k-colouring of X (Cs-k-colouring) is a map
@ :X—-{1,2,...,k} such that, for any r,s€{0,1,...,dimX}, if
o, 7€X,onteX L orifo € X",t € X’,r#s, then p(o) # (7).

3 Amap e : X — {1,2,...,k} is a full k-colouring of X (C¢-k-colouring) if
foro,7 € X suchthate Cc 7, oro,7 € X°, cur € X!, or for 1 <r <dimX,
6,7 €X",6nt e X!, we have that p(c) # @(7).

Let G, =(V|,E,) and G, = (V,,G,) be two graphs. Recall that the sum
of G, and G, is a graph G =G, +G, with vertex set V, LV, and edges
E,UE,U{(u,v) |ueV,,veV,} The sum of any two graphs is connected. Also
recall that the union of G, and G, is the graph G, U G, with vertex set V; UV, and
edges E; UE,.

Proposition 2.5 For any simplicial complex X and any i = 4,5, 6, there is a pure
Sullivan algebra M (X) which is not elliptic if and only if X is € -k-colourable.

Proof First, note that a complete ascending (resp. descending) k-colouring of X is
an ascending (resp. descending) k-colouring of X in dim r when restricted to X".
Furthermore, simplices of different dimensions receive different colours. It becomes
clear that if we define

G, = Gy(X) + G(X) + -+ + Gy x(X),
Gs =Gy (X)+ G|(X) + - + G, (X)),

X admits a complete ascending (resp. descending) k-colouring if and only if the con-
nected graph G, (resp. Gs) is k-colourable.

Regarding the full k-colouring, let I denote the strict inclusion graph of X, that is,
a graph with vertex set X and where (o, 7) is an edge if and only if either ¢ C 7 or
7 C o. Define a graph

Ge=1U (GyX)UG,X)u - UG, (X))

Then G is connected since [ is so. Furth_ermore, X is full-k-colourable if and only
if G4 is k-colourable. To finish, define M;{(X) = S,(G)),i=4,5,6, and apply Theo-
rem 1.3. O

We model one last colouring in this section. In [8] the authors introduce the fol-
lowing, more relaxed definition of vertex colouring:

Definition 2.6 Let k,s > 1and let X be a simplicial complex. A (k, s)-colouring of
X (C4-(k, s)-colouring) isamap f : V — {1,2,...,k} such that, for every o € X and
foralll <t <k, |onf (1| < s.Let chr*(X) denote the least integer k such that X is
(k, s)-colourable.
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A Sullivan algebra whose ellipticity codifies the (k, s)-colourability of a simpli-
cial complex had already been obtained in [6]. However, we can use the work in [14]
to provide a different construction of one such algebra:

Proposition 2.7 For any simplicial complex X there exists a pure Sullivan algebra
/\/lZ (X)) which is not elliptic if and only if X is €;-(k, s)-colourable.

Proof In [14, Theorem 2] the authors show that

. _ . 1
chr'(X) = pemin chr' (Gy(P)),
where BCP'(X) is a set of partitions of the vertex set of X and G,(P) is a 1-dimen-
sional simplicial complex associated to one such partition P, see [14, Definition 3].
It quickly follows that when regarding Gy(P) as a graph, chr' (Gy(P)) = x(Go(P)).
Furthermore, G, (P) is connected for every P € BCP*(X). Define

M) (X) = ® Si(Go(P)).

PeBCP*(X)

Let us show that ./\/17 ((X) is the desired algebra.

Recall that the tensor product of Sullivan algebras is not elliptic if and only if
at least one of the factors is not elliptic. Therefore, if MZ!S(X) is not elliptic, there
exists P € BCP'(X) such that Sk(GO(P)) is not elliptic. Then by Theorem 1.3 G,(P)
is k-colourable, so ;((GO(P)) = chr' (Gy(P)) < k, thus X is (k, s)-colourable. Recip-
rocally, if M (X) is elliptic, then Sk(GO(P)) is elliptic for every P € BCP*(X).
Therefore, GO(P) is not k-colourable, meaning that y(G,(P)) = chr' (Gy(P)) > k,
for every P € BCP®. Therefore, X is not (k, s)-colourable. O

3 Models for colourings of strongly connected homogeneous
simplicial complexes

As mentioned in Sect. 2.2, the colourings in Definition 2.3 cannot be immediately
modelled since the graphs that encode them, G,(X) [see (1)] and and G/(X) [see (2)],
are not necessarily connected. In this section we further restrict the class of simpli-
cial complexes that we are considering as to be able to model these colourings.

Recall that a simplicial complex X of dimension dim X = n is strongly connected
if for any two n-dimensional simplices o, 7 there exist {6, = 0,0,,...,0, =7} C X"
such thato;_; No; € X1 fori=1,2,...,k. Equivalently, X is strongly connected if
and only if G dim(x) is connected. On the other hand, X is homogeneous if every vertex
is contained in an n-dimensional simplex. Then, if X is homogeneous and strongly
connected, so is X®, for 0 < k < n. Therefore:

Proposition 3.1 For any n-dimensional strongly connected homogeneous simpli-
cial complex X, G.(X) and G;(X) are connected, for0 <r <nand0 < s < n.
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Proof The connectivity of G/(X), for 0 <s <n is an immediate consequence
of the strong connectivity of X©. Let us prove the connectivity of G,(X),
0<r<n. Take o,7 € X". Since X is homogeneous, we can find 7,7 e xt!
such that 6 C & and 7 C 7. Then, since X"+ is strongly connected, we can find
{60=6,6),...,6, =7} C X! such that 6;,=6,,nG, €X’, i=1,2,....k It is
now immediate to check that oo, ... 0,7 is a path in G,(X) joining ¢ and 7. O

An immediate application of Theorem 1.3 yields the following result:

Proposition 3.2 For any n-dimensional strongly connected homogeneous simpli-
cial complex X and for 0 < r < n (resp. for 0 < s < n), there exists a Sullivan alge-
bra M (X, r) (resp. /\/l,'((X, s)) which is not elliptic if and only if X admits an ascend-
ing k-colouring in dim r (resp. a descending k-colouring in dim s).

We now introduce the last collection of colourings.
Definition 3.3 We say thatamap¢ : X - {1,2,...,k}is:

e amaximal ascending k-colouring (C¢-k-colouring) if for every 0 < r < dim X the
restriction ¢y, is an ascending k-colouring in dim r for X.

e a maximal descending k-colouring (€q4-k-colouring) if for every 0 < s < dimX
the restriction ¢y is a descending k-colouring in dim s for X.

e a minimal ascending k-colouring (€ y-k-colouring) if there exists 0 < r < dimX
such that ¢y, is an ascending k-colouring in dim r for X.

e aminimal descending k-colouring (€, -k-colouring) if there exists 0 < s < dim X
such that @y, is a descending k-colouring in dim s for X.

The respective chromatic numbers are denoted y,,.(X), x!
e

Let G, =(V,,E;) and G,=(V,,G,) be two graphs. The carte-
sian product G,O0G, is a graph with vertex set V; XV, and edge set
{((ul, uy), (vl,vz)) | u, = v, and (u,,v,) € E; or (u;,v;) € E; and u, = vz}. Note
that y(G,0G,) = max {)((Gl), )((Gz)} (see [11, Theorem 26.1]). Furthermore, the
cartesian product of connected graphs is connected ([11, Corollary 5.3]). Then:

(X)’ )./min(X) and

Proposition 3.4 For any simplicial complex X and any i = 8,9, 10, 11, there is a
pure Sullivan algebra M (X) which is not elliptic if and only if X is € -k-colourable.

Proof Note that any map X4mX — (1,2, ..  k} (resp. X = {1,2,....k}) is an
ascending colouring in dimension dim(X) (resp. a descending colouring in dimen-
sion 0). Then, ygme)(X) = ;((’)(X) = 1. It follows immediately from Definition 3.3

that y,,x(X) = maxo., cgimx { £, (X)} and that y/ (X) = max,<gimx{ ¥, (X)}. Con-
sider the graphs

Gg = Gy(X)OG,(X)0 -+ 0G,_(X), Gy = G,(X)0G,X)O -+ OG! (X).
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Then, since y(G.(X)) = xX) and x(G./(X)) = x/(X), we deduce that
X (Gg) = YmaxX) and y(Gy) = ;(I’n (X, so X admits a maximal ascending (resp.
descending) k-colouring if an only if Gg (resp. Gy) is k-colourable. Furthermore,
both G5 and G, are connected as a consequence of Proposition 3.1. Therefore, for
i = 8,9 it suffices to define M;;(X) = S.(G;) and apply Theorem 1.3.

We now consider the minimal colourings. It follows from Definition 3.3 that
minX) = ming, gy {4, (X)} and that y’. (X) = ming_ i x {1/ (X)}. By a rea-
soning analogous to that of Proposition 2.7, the desired algebras are

ML) =85, (Go(X)) ® $(G1(X)) & = ® S (G, (X)),
M X0 =8 (G1(X)) ® Si(GH(X)) ® - ® 8, (G, (X)).

The result follows. O

Theorem 1.1 now follows immediately from Propositions 2.2, 2.5, 2.7 and 3.4.

4 Algorithmic complexity of simplicial complex colourings

If G is a graph, it can be regarded as a simplicial complex X(G) whose 0-simplices
and 1-simplices are, respectively, the vertices and edges of G. Such a simplicial
complex can be encoded using an adjacency matrix, so its codification has the same
length as that of G.

In this section we show that the (edge, total) colourability of a graph G is equiv-
alent to the €,-colourability of X(G) for certain indices i. As a consequence, we
immediately deduce Theorem 1.2.

Remark 4.1 1t is immediate that the k-colourability of a graph G is equivalent both
to the € -k-colourability and the €-(k, 1)-colourability of X(G). Similarly, the total
k-colourability of G is equivalent to the €¢-k-colourability of X(G).

Proposition 4.2 The k-colourability of a graph G is equivalent both to the €,-
(k + 1)-colourability and the € -k-colourability, i = 8,10, of X = X(G).

Proof We begin with the € -colourability. Let y : V — {1,2,...,k} be a k-colour-
ing of G. Then, the map ¢ : X — {1,2, ...,k + 1} defined by

_ [ w(o), ifo € X",
(o) = { k+1,ifo €X',

is a € -(k + 1)-colouring of X. Reciprocally, if ¢ : X = {1,2,...,k+1}is a €,
-(k + 1)-colouring of X, we may assume that at least one 1-simplex receives
image k+ 1, so k+1 ¢ @(X°). The map v : X° =V = {1,2,...,k} taking v to
w(v) = @({v})is a k-colouring of G.

We now consider the €,-k-colourability, i = 8, 10. First, if y : V — {1,2, ...k}
is a k-colouring of G, X admits a € -k-colouring defined by
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_Jw(o), ifc e X0,
¢(e) = { k,  ifoeX'.

Reciprocally, if ¢ : X — {1,2,...,k}is a €-k-colouring of X, i = 8, 10, the restric-
tiony = @y : X®=V — {1,2,...,k}is a k-colouring of G. O

Proposition 4.3 The edge k-colourability of a graph G is equivalent both to the €
-(k + 1)-colourability and the € -k-colourability, i = 9,11, of X = X(G).

Proof We begin with the €s-(k + 1)-colourability. If y : E — {1,2,...,k}is an edge
k-colouring of G, the map ¢ : X(G) =X — {1,2, ...,k + 1} defined by

_ [ wlo), ife eX!,
vlo) = { k+1,ifo € X0,

is a Cs-(k + 1)-colouring of X. Reciprocally, if ¢ : X = {1,2,...,k+ 1} is a Cs
(k + 1)-colouring of X, we may suppose that at least one 0-simplex receives image
k+1, thus k+ 1 & @(X"). Then, the map y = @1 : X' = E - {1,2,....k} is an
edge k-colouring of G.

We continue with the €;-k-colourability, i =9,11. If w : E = {1,2,...,k} is an
edge k-colouring of G, X admits a €;-k-colouring ¢ : X — {1,2, ..., k} defined by

_ | w(o), if o € X',
q’(")‘{k, if o € X°.

Reciprocally, if ¢ : X — {1,2,...,k} is a €;-k-colouring of X, i =9, 11, the restric-
tiony = @i : X'=E - {1,2,...,k}is an edge k-colouring of G. O

Finally, Theorem 1.2 follows immediately from Remark 4.1, Propositions 4.2,
4.3 and the algorithmic complexity of the problem of (edge, total) k-colourability of
graphs.
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