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Abstract
Wepropose three cryptographic key exchange protocols in the octonion algebra. Using
the totient function, defined for integral octonions, we generalize the RSA public-key
cryptosystem to the octonion arithmetics. The two proposed symmetric cryptographic
key exchange protocols are based on the automorphism and the derivation of the
octonion algebra.
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1 Introduction

The development on non-commutative cryptography has its origin in the solutions
of the three famous problems in combinatorial group theory proposed by Dehn [1]
and Miller [2] . In 1954 Novikov constructed a finitely presented group for which
the conjugacy problem is unsolvable, [3]. In 1955, Novikov and Boone independently
showed that there are finite group presentations whose word problem is undecidable,
[4–8]. In [9] Wagner and Magyarik devised the first public-key protocol based on the
unsolvability of the word problem for finitely presented groups. A non-deterministic
public-key cryptosystem based on the conjugacy problem on braid group, similar to
the Diffie–Hellman key exchange system, was proposed in [10]. The most interesting
non-commutative key agreement cryptographic systems were proposed by Anshel,
Anshel and Goldfeld (AAG) in [11,12]. To construct a key agreement cryptographic
system the authors used the braid groups for which the best known algorithm to solve
the conjugacy problem requires at least exponential running time. A natural extension
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of the non-commutative cryptography is the cryptography on the non-associative alge-
braic structures. The earliest quasigroup-based public-key cryptosystemwas proposed
by Koscielny and Mullen, [13]. In [14] the AAG PKC was generalized to the non-
associative algebraic structures, called the left self-distributive (LD) systems, [15,16].
In [14] Kalka used the LD-systems to define the non-associative public-key crypto-
graphic protocol.

In this article we propose three cryptographic key exchange protocols based on the
octonion algebra, [17]. The first protocol is the generalization of the RSA algorithm to
the octonion arithmetic, [18]. The another two, symmetric cryptographic key exchange
protocols, are based on the automorphism and the derivation of the octonion algebra.

We denote by {ei }7i=0 the basis of the octonion algebra O. The multiplication of the
octonions can be described using the set of directed lines

L = {013, 045, 352, 346, 260, 241, 156}

in the Fano plane, [19]. Each line i jk ∈ L contains three points i, j, k which represents
three octonions with the multiplication ei e j = ek . For the octonion unit e7 = 1 the
multiplication in O can be defined by the following relations

ei e j = −δi, j e7 + εi jkek, i, j ∈ [0, 6],

where εi jk is an antisymmetric tensor such, that εi jk = 1 if i jk ∈ L and δi, j is the
Kronecker delta. The octonions O form the non-associative, normed division algebra,
[17]. The non-associativity of three elements x, y, z from O can be expressed by an
associator (x, y, z) = (xy)z − x(yz). It is linear in each of its three variables and
vanishes whenever two of its variables are equal, i.e., it is an alternating function,
[20]. By linearizing the alternative laws one can show that the associator is skew
symmetric, i.e., it changes the sign whenever two of its variables are interchanged.

Any element x ∈ O satisfies the minimal polynomial

x2 − 2 Re(x) x + N(x) = 0, (1)

where N(x) = ∑7
i=0 x

2
i is the norm of the octonion x and Re(x) = x7. The octonion

is integer when the trace tr(x) = 2Re(x) ∈ Z and N(x) ∈ Z. We denote by ei jkl
the octonion 1

2 (ei + e j + ek + el). On can easily check that the product of the two
integral octonions e0235 and e7235 is non-integral, i.e., tr(e0235 e7235) = − 3

2 . From
this follows, that the set of octonion integers does not form a ring, and it is necessary
to consider subrings of integers, called the orders, [21,22]. There are sixteen orders
of integral octonions containing O(Z), [17]. Among them there are seven isomorphic
maximal orders (called the octonion arithmetics). By a maximal order we mean an
order which is not contained in any other order. To construct a maximal closed under
multiplication set of integral octonions (the octionion arithmetic) we use two sets L0
and Q

L0 = {0137, 0457, 3527, 3467, 2607, 2417, 1567},
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Q = {2456, 6123, 4601, 5012, 1345, 3560, 0234},

where Q is the complements of the lines L on the Fano plane. If we interchange in L0
and Q the elements 0 and 7 we obtain the Coxeter–Dickson 0-sets (0-integers). The
0-integers are spanned by the following halving-sets of octonions, [17].

e0137, e0457, e3520, e3460, e2607, e2410, e1560,

e2456, e6123, e4671, e5712, e1345, e3567, e7234,Ω,∅,

where Ω is the set of Kleinian octonions generated by the element 1
2

∑7
i=0 ei , and the

empty set ∅ generated by
∑7

i=0 ei , called the Graves integers, i.e., the octonions of
the form x = ∑7

i=0 xi ei , xi ∈ Z. The underlined octonions are the generators of the
0-sets over the Gravesian integers. The octonion arithmetic generated by the 0-sets
we denote byO and call the integral octonions. Two octonions are congruent mod m
provided that their difference is m times an octonion integer [22,23].

x = y mod m ⇔ x − y = mz, m ∈ Z, x, y, z ∈ O.

The integral octonion x is invertible mod m if its norm N(x) is coprime to m, i.e.,
gcd(N(x),m) = 1. We denote by OI

m all invertible octonions mod m. The totient
function λ(x,m) for an (invertible) integral octonion x ∈ OI

m we define as

λ(x,m) = minλ{λ ∈ N : xλ − 1 = m y mod m,

x, y ∈ O, gcd(N(x),m) = 1}.

The totient function λ(x,m) can be defined equivalently by means of the λ̃(x,m)

function over arbitrary octonions from Om

λ̃(x,m) = min
λ

{λ ∈ N : xλ − x = m y mod m, x, y ∈ O}.

For invertible octonions x ∈ OI
m we have λ(x,m) = λ̃(x,m) − 1. The orbit of an

element a ∈ O under the adjoint action of the algebra O is the set

Orb(a,O) = {xax−1 : ∀x ∈ O}.

In the following lemma we prove, an important for further applications, property of
λ(x,m).

Lemma 1 The totient function is constant on the orbitOrb(x,OI
m) of the adjoint action

OI
m onto itself, i.e.,

λ(xax−1,m) = λ(a,m), a, x ∈ OI
m . (2)
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Proof From the alternativity of the associator it follows, that (a, x, a) = 0. Because
(x, y, z) = (x, y, Im(z)) then we have

(a, x, a−1) = 1

N(a)
(a, x, a∗) = − 1

N(a)
(Im(a), x, Im(a)) = 0.

The above formula means that (ax)a−1 = a(xa−1). From the polynomial equation
(1) it follows that (axa−1)2 = ax2a−1 and the formula (2). ��

In the next section, based on the property (2) of the totient function we define the
public-key agrement cryptographic protocol in the octonion arithmetic O.

2 The octonionic public-key cryptosystem

By k we denote an integral octonion OI
m with the known totient function λ(k,m). A

plain text for encryption we will represent by an integral octonion u = (u0, . . . , u7) ∈
OI

m . From Lemma 1 it follows, that any integral octonion of the form uku−1, where
u ∈ OI

m , has the same totient function λ(uku−1,m) = λ(k,m). We use k to enocde
the plain text u into the octonion uk = uku−1. Let e be a number from the interval
[1, λ(k,m)) that is coprime to λ(k,m), i.e., gcd(e, λ(k,m)) = 1 mod m. By d we
denote the number inverse to e mod λ(k,m), i.e., e · d = 1 mod λ(k,m). To encrypt
the encoded text in the octonion uk we calculate the expression C(uk) = uek mod m.
The decryption is the operation of taking the cipher text octonion C(uk) to the power
d mod m, i.e., uk = C(uk)d = ue·dk mod m. To encode the plain text u from uk ,
the recipient has to solve the linear equation uk = uku mod m in Om . In general,
a solution of this equation is not unique. To allow the recipient of the cipher C(uk)
uniquely recover the encrypted text one can attached to the cipher a hash value of the
encoded octonion or provide to the recipient three parameters which allow to solve the
equation uniquely. The general equation xa = bx mod m for the x variable, where
x, a, b ∈ Om and m ∈ N is equivalent to

xa = bx + my, x, y, a, b ∈ O, m ∈ N. (3)

Solution of the homogeneous equation

xa = bx, a, b, x ∈ O (4)

over the real octonion algebraO existswhenN(a) = N(b) and tr(a) = tr(b) (a7 = b7).
From the vanishing of the associator (xax−1, x, a) = 0 follows, that any solution x0
of (4) satisfies (b, x0, a) = 0 and that x0a is also a solution of (4). Let us take as the
solutions of (4) x1 = b̄ + ā − 2a7 and x1a, then the general solution of (4) we can
write as

x0 = λ1x1 + λ2x2, λ1, λ2 ∈ R, (5)
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where x2 = x1a = b̄ā −N(a). To solve the Eq. (4) we need to fix two parameters. To
obtain a unique solution of the congruence equation (3) we need to know three param-
eters. The recipient should obtain these three parameters from the sender. For example,
the first can be the parameter in u which is prescribed to ensure that gcd(N (u),m) = 1
and it is not a part of the encryption text. The next two parameters, can be obtained
by the recipient from the decrypted block of data from the previous encryption.

Below we give the exact definition of the octonion public-key cryptosystem (O-
PKC).

The public-key generation procedure

1. The user selects an integer m ≥ 0 and an integral octonion k ∈ OI
m with

the known totient function λ(k,m), i.e., kλ(k,m) = 1 mod m. For the selected
integer e ∈ [1, λ(k,m)] coprime to λ(k,m), the user calculates the integer
number d such, that e · d = 1 mod λ(k,m).

2. The user publishes the set {k, e,m} and the set {k, d,m} keeps private. The
two sets form a public and private cryptographic keys respectively.

The encryption–decryption procedure in O-PKC

1. The user A writes the plain text as an octonion u = (u0, . . . , u7) ∈ OI
mB

, and
calculates

ukB = ukBu
−1 mod mB,

where {kB, eB,mB} is the public key of the user B. The plain text encoded in
ukB the user A encrypts according to the formula

C(ukB ) = (ukB )eB mod mB

and sends C(ukB ) to B.
2. The user B decrypts the cipher text C(ukB ) by means of the formula

C(ukB )dB = ((ukB )eB )dB = ukB mod mB .

3. The user B decodes the plain text u by solving the linear congruence equation

xkB = ukB x mod mB .

The security of the octonionic public-key cryptosystem is based on the computa-
tional difficulty of factorization of the modulus m and difficulty of finding the values
of the totient function λ(k, p) for a large prime numbers. Let us assume that, the mod-
ulus m is a product of two prime numbers p, q and the norm N(k) of the octonion k
is coprime to m = pq, then the following formula is satisfied

kλ(k,p)λ(k,q) = 1 mod pq, p 
= q. (6)
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If the product λ(k, p)λ(k, q) has the lowest value, among all numbers satisfying (6),
then it is equal to the totient λ(k, pq). In general, the function λ(k, pq) satisfies the
inequalities

lcm(λ(k, p), λ(k, q)) ≤ λ(k, pq) ≤ λ(k, p)λ(k, q),

where lcm means the least common multiple. The above formula allows in a relatively
easy way to calculate λ(k, pq) having λ(k, p) and λ(k, q). Unfortunately, an effective
algorithm for determining the octonion totient function for a large prime modulus is
currently unknown. Partly, the problem can be solved by adopting to the octonion
algebra the quantum algorithm for finding the orders of a finite cyclic subgroups of
noncommutative group proposed by Mosca and Ekert in [24].

As an example of application of theO-PKCalgorithmweencrypt anddecrypt a plain
text represented by the Gravesian octonion u = (26, 27, 28, 29, 30, 31, 32, 3) ∈ OI

35
with the normN(u) = 9 mod 35. The octonion k = 1

2 (e0+e1+e3+e7)+(e2+2e4+
3e5+4e6)wewill use to encode the text u before encryption. Theminimal polynomial
of k is k2 = k−31whichmeans, that k is an integer octonionwith the norm N (k) = 31.
As the modulus we take m = 35. The totient function for k in OI

35 is λ(k, 35) = 48.
As the pair of public-private keys we select {k, e = 5,m = 35} and {k, d = 29,m =
35}. The encoded plain text is uk = uku−1 mod 35 = (31, 20, 34, 8, 19, 3, 26, 1

2 ).
The cipher text C(uk) is (uk)5 mod 35 = (24, 20, 6, 22, 26, 17, 19, 33). After the
decryptionC(uk)29 mod 35 the recipient obtains uk . For a given three fixed parameters
in u the recipient is able uniquely to recover the rest of them.

To determine the totient for the integral octonion we can use the ‘matrix representa-
tion’ of the octonion algebra. For the vector e = (e0, e1, . . . , e7) we define the matrix
M(ei ) ≡ Mi as the linear transformation of e under the left action of ei , i ∈ [0, 7],
Mie = ei e. The Mi matrices can be deduce from the following equations

M0e = (−e7, e3, e6,−e1, e5,−e4,−e2, e0),

M1e = (−e3,−e7, e4, e0,−e2, e6,−e5, e1),

M2e = (−e6,−e4,−e7, e5, e1,−e3, e0, e2),

M3e = (e1,−e0,−e5,−e7, e6, e2,−e4, e3),

M4e = (−e5, e2,−e1,−e6,−e7, e0, e3, e4),

M5e = (e4,−e6, e3,−e2,−e0,−e7, e1, e5),

M6e = (e2, e5,−e0, e4,−e3,−e1,−e7, e6).

The multiplication

Mi · Mj = MiGi, j M j ,

where

G5,6 = G1,6 = G1,5 = diag(1,−1, 1, 1, 1,−1,−1,−1),

G4,6 = G3,6 = G3,4 = diag(1, 1, 1,−1,−1, 1,−1,−1),
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G4,5 = G0,5 = G0,4 = diag(−1, 1, 1, 1,−1,−1, 1,−1),

G3,5 = G2,5 = G2,3 = diag(1, 1,−1,−1, 1,−1, 1,−1),

G2,6 = G0,6 = G0,2 = diag(−1, 1,−1, 1, 1, 1,−1,−1),

G2,4 = G1,4 = G1,2 = diag(1,−1,−1, 1,−1, 1, 1,−1),

G1,3 = G0,3 = G0,1 = diag(−1,−1, 1,−1, 1, 1, 1,−1)

defines the ‘matrix representation’ of the octonion algebra. The octonion algebra is
power associative which means, that to determine the totient for a given element
x ∈ Om we only need to calculate the M(x)λ mod m, where M(x) = ∑7

i=0 xi Mi and
M(x)λ is an ordinary matrix multiplication.

From the minimal polynomial equation (1) follows that arbitrary power of an octo-
nion x ∈ O is proportional to x , i.e.,

xn = Unx + Vn, n 
= 1,

where

Un = 1

2
√
x27 − N(x)2

((x7 +
√
x27 − N(x)2)n

−(x7 −
√
x27 − N(x)2)n), n > 0,

Vn = −N(x)2

2
√
x27 − N(x)2

((x7 +
√
x27 − N(x)2)n−1

−(x7 −
√
x27 − N(x)2)n−1), (7)

x7 = Re(x) and U−n = 1
N(x)n−1Un , V−n = 1

N(x)n Vn . The coefficients Un and Un we
obtained by solving the following recurrence equation

xn+2 − 2Re(x) xn+1 + N(x) xn = 0, x0 = 1.

One of the possible attacks on the totient function λ(k,m) there is an attempt to
solve the congruence equations kλ = Uλk + Vλ = 1 mod m or equivalently

{
Uλ(k7,N(k)) = 0 mod m,

Vλ(k7,N(k)) = 1 mod m,
(8)

whereUλ and Vλ are given in (7). To solve the equation (8) it is necessary to expand the
functions Uλ and Vλ in x7 and N (x) variables which makes such attack impractical.
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3 The symmetric key exchange algorithm on quaternion algebra

Thepositive definite bilinear form (x, y) = 1
2 tr(x ȳ) allows to define the orthogonality

in the octonion algebra O. Two octonions x , y are said to be orthogonal if (x, y) = 0.
The natural orthogonal decomposition of octonion algebra can be defined using the
Fano lines. The generators of the octonion algebra which lie on the Fano line form
a quaternion subalgebra D of O. The generators which lie in the completion of the
Fano line in the Fano plane form the orthogonal completion D⊥ of D. If we select an
element α from D⊥, then ∀x ∈ D (x, α) = 0 and any octonion can be written in the
form x + yα, where x, y ∈ D and α ∈ D⊥ ≡ Dα. A bijective mapping T of O onto
itself is defined to be an automorphism if

T (a + b) = T (a) + T (b),

T (a b) = T (a) T (b),

T (u) = v

for any a, b ∈ O and u, v units in O. Let T be an automorphism of octonion algebra
leaving the quaternion subalgebra D invariant, i.e., T (D) = D and T (D⊥) = D⊥.
For x + yα ∈ D

⊕
Dα and u = T |D, w = T |D⊥ we define T in the following way

T (x + yα) = u(x) + u(y)w(α).

For u(x) = cxc−1 and w(α) = dαd−1, x, c, d ∈ D we obtain

T (x + yα) = cxc−1 + (cyc−1)(dαd−1)

= cxc−1 + 1

N (d)
(d2cyc−1)α,

which is an automorphism of the octonion algebra, [20]. The transformation Tc,p =
cxc−1 + (pcyc−1)α, where N (p) = 1, satisfies the equation

Tc,p((x1 + y1α)(x2 + y2α)) = Tc,p(x1 + y1α)Tc,p(x2 + y2α), (9)

and has the multiplication property Tc1,p1Tc2,p2 = Tc1k1,p1c1 p2c−1
1
. We use the splitting

D
⊕

Dα of the octonion algebra to construct a symmetric cryptographic key on the
quaternion subalgebra D and then we extend the key to the completion D⊥.

The construction of the symmetric cryptographic key on the quaternion algebra D is
motivated by the AAG symmetric key exchange protocol, [25], in which instead of the
formula K = aba−1b−1 for the cryptographic key, where a, b are elements of a given
non-abelian group G, we use the formula K = a0bNa

−1
N b−1

0 , where a0, bN , aN , b0 ∈
D. To explain the main idea of the construction we begin with a trivial example. Let
the user A selects two sets of quaternions Sa = {a0, a1, a2}, Sv = {v1, v2} such, that
a2 = v1v2. Similarly, the user B selects Sb = {b0, b1, b2} and Su = {u1, u2} such,
that b2 = u1u2. The users exchange the sets Sv and Su . The user A calculates the
set Saua−1 = {a0u1a−1

1 , a1u2a
−1
2 } and sends it to B. Similarly, the user B calculates
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Sbvb−1 = {b0v1b−1
1 , b1v2b

−1
2 } and sends the set Sbvb−1 to A. Both users are able to

calculate the common key K = a0b2a
−1
2 b−1

0 . In this example, the man-in-the-middle
attack can easily recover the cryptographic key K because for a given quaternions
w1 = a0u1a

−1
1 , w2 = a1u2a

−1
2 from Saua−1 to recover the unknown variable a0 it’s

enough to solve the equation

a0u1u2 = w1w2a2.

For a known expression a2 = v1v2 this equation can be trivially solved. In the proposed
algorithm, we hide the variable a2 in order to make it difficult to find the element a0
and the key K . To do this, we introduce a graph G in the quaternion algebra and for
encryption we use paths between two fixed nodes (quaternions) that allow uniquely
define the shared cryptographic key.

By G = {E, Vx,y} we denote the graph with the set of directed edges E and the set
of nodes

Vx,y = {xi y j x−1
k }i,k∈[0,N ], j∈[1,N ′],

where xi , y j ∈ D. We define a directed path pa,v with the set of nodes

Va,v(p) = {aiv j a
−1
k }i, j,k ⊂ Vx,y |x=a,y=v

such, that the product of subsequent nodes on the path satisfies the equation

∏

aiv j a
−1
k ∈Va,v(p)

aiv j a
−1
k = a0(vi1 · · · viN ′ )a

−1
N = a0, (10)

which means, that aN = vi1 · · · viN ′ . The paths pa,v ⊂ G with the property (10) we
will use for definition of the cryptographic key exchange algorithm in the quaternion
subalgebra D.

The quaternion symmetric key exchange algorithm

1. The user A generates two sets of quaternions Sa = {ai : ai ∈ D}Ni=0 and

Sv = {vi : vi ∈ D}N ′
i=1. The set Sa is kept secret. The set Sv is sent to the

user B. The user A selects a path pA(a, v) in the graph G from the root node,
represented by the quaternion a0v1a

−1
i , to the leaf node akvN ′a−1

N . The path
is selected such, that the formula (10) is satisfied.
In a similar way, the user B generates the two sets Sb and Su of quaternions.
The set Sb is kept secret by B. The set Su is sent to the user A. The user B
selects a path pB(b, u) in the graph G from the root node b0u1b

−1
i to the leaf

node bkuN ′b−1
N . such, that the formula (10) is satisfied, i.e., bN = ui1 · · · uiN ′ .

2. The user A, based on the received set Su , calculates

Saua−1 = {aiu ja
−1
k : xi y j x−1

k ∈ Vx,y, xi = ai , y j = u j }
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and sends the set Saua−1 to B.
The user B calculates

Sbvb−1 = {biv j b
−1
k : xi y j x−1

k ∈ Vx,y, xi = bi , y j = v j }

and sends the set Sbvb−1 to A.
3. The user A uses the set Sbvb−1 to calculate the product of sequential vertices

of the path pA(b, v). In this way A obtains b0aNb
−1
N .

The user B, based on the set Saua−1 , calculates the product of sequential
vertices of the path pB(a, u). In this way B obtains a0bNa

−1
N .

4. The users A and B calculate kA = ((b0aNb
−1
N )a−1

0 )−1] ∈ D and kB =
(a0bNa

−1
N )b−1

0 ∈ D respectively. The shared cryptographic key of A and B is

ka,b = a0bNa
−1
N b−1

0 .

To recover the cryptographic key ka,b the man in the middle can try to find the quater-
nions a0, aN by solving the system of linear equations obtained from the set Saua−1 ,
i.e., {aiu j = w j ak}N ′

j=1, or recover the quaternion aN from the formula (10) by search-
ing the correct encryption path in the graph G. After the reduction, the man in the
middle can obtain the set of two equations

aiu = wai , i = 0, N .

The unique solution of these equations can be obtained from the formula (5) after
fixing two parameters in ai . Also, the attack on the cryptographic key by searching
the correct cryptographic path in a sufficiently complex graph G is not very effective.
It means that the quaternions aN , bN can be regarded as unknown variables.

For the two keys ka,b = a0bNa
−1
N b−1

0 , kc,d = c0dN ′c−1
N ′ d

−1
0 generated by the

quaternion symmetric key exchange algorithmwe define the symmetric octonion cryp-
tographic key as the automorphism

Kka,b,pc,d (x + yα) = ka,bxk
−1
a,b + (pc,dka,b yk

−1
a,b)α,

where pc,d = 1
N(kc,d )

k2c,d (N (pc,d) = 1) andα ∈ D⊥. The key Kka,b,pc,d can be applied
to encrypt a product of octonions by means of the formula (9). The multiplication
property of Kka,b,pc,d allows to compose the keys from several others keys.

Below, we apply defined the quaternion key exchange algorithm to generate the
cryptographic key using the graph G given on Fig. 1. In the graph there are four paths
between the root node x0y1x

−1
1 and the leaf node x4y7x

−1
5 which means that there are

four possible ways to choose the cryptographic key ka,b.

1. The user A generates two sets of quaternions Sa = {a0, a1, a2, a3, a4, a5}, Sv =
{v1, v2, v3, v4, v5, v6, v7} and selects the path

pA(a, v) = {a0v1a−1
1 , a1v2a

−1
2 , a2v4a

−1
3 , a3v5a

−1
4 , a4v7a

−1
5 }.

123



Symmetric and asymmetric cryptographic key exchange… 91

x1y2x
−1
2 x3y5x

−1
4

x0y1x
−1
1 x2y4x

−1
3 x4y7x

−1
5

x1y3x
−1
2 x3y6x

−1
4

Fig. 1 The graph G for generation of the cryptographic keys

From the relation (10) it follows that

(a0v1a
−1
1 )(a1v2a

−1
2 )(a2v4a

−1
3 )(a3v5a

−1
4 )(a4v7a

−1
5 ) = a0

and a5 = v1v2v4v5v7.
The user B generates two sets of quaternions Sb = {b0, b1, b2, b3, b4, b4}, Su =
{u1, u2, u3, u4, u5, u6, u7} and selects the path

pB(b, u) = {b0u1b−1
1 , b1u3b

−1
2 , b2u4b

−1
3 , b3u6b

−1
4 , b4u7b

−1
5 }.

From the relation (10) it follows that b5 = u1u3u4u6u7.
2. The user A calculates

Saua−1 = {a0u1a−1
1 , a1u2a

−1
2 , a1u3a

−1
2 , a2u4a

−1
3 , a3u5a

−1
4 , a3u6a

−1
4 , a4u7a

−1
5 }

and sends the set Saua−1 to B.
The user B calculates

Sbvb−1 = {b0v1b−1
1 , b1v2b

−1
2 , b1v3b

−1
2 , b2v4b

−1
3 , b3v5b

−1
4 , b3v6b

−1
4 , b4v7b

−1
5 }

and sends Sbvb−1 to A.
3. The user A calculates the product of sequential vertices in the path pA(b, v)

(b0v1b
−1
1 )(b1v2b

−1
2 )(b2v4b

−1
3 )(b3v5b

−1
4 )(b4v7b

−1
5 ) = b0a5b

−1
5

and calculates the key kA = ((b0a5b
−1
5 )a−1

0 )−1.
The user B calculates the product of sequential vertices in the path pB(a, u)

(a0u1a
−1
1 )(a1u3a

−1
2 )(a2u4a

−1
3 )(a3u6a

−1
4 )(a4u7a

−1
5 ) = a0b5a

−1
5

and calculates the key kB = (a0b5a
−1
5 )b−1

0 . The shared cryptographic key is
ka,b = a0b5a

−1
5 b−1

0 .

The security of the cryptographic key ka,b depends on the difficulty of finding the path
pA(b, v) or pB(b, u) in G. In the example there are four ways to choose the path.
In general, for increasing number of nodes in the graph the number of paths grows
exponentially.
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4 The derivation octonionic symmetric key exchange algorithm

A derivation is transformation with the property

D(ab) = D(a)b + aD(b). (11)

In an associative algebra any element x defines an inner derivation adx (y) = xy− yx .
In a non-associative algebra this formula usually does not satisfy (11). We define two
operations in octonion algebra Lx (a) = ax and Rx (a) = xa, a, x ∈ O. We note,
that these operations for a non-associative algebra have the following composition
rules Lx L y(a) = x(ya) and similarly for Rx Ry(a) = (ay)x . The transformation
Dx,y : O → O defined as

Dx,y(z) = [Lx , Ly](z) + [Lx , Ry](z) + [Rx , Ry](z),

is a derivation in the octonion algebra, [26]. The derivation Dx,y we write in the
standard form

Dx,y(z) = [[x, y], z] − 3(x, y, z), (12)

where (x, y, z) denotes the associator (xy)z−x(yz) and [x, y] = xy−yx . To construct
the symmetric key exchange algorithm on the octonion algebra we use the following
property of the derivation (12)

[Da,b, Dx,y] = DDa,b(x),y + Dx,Da,b(y). (13)

The basic idea that lies behind the construction of the algorithm is that for a given
monomial p(u) = u1 · · · uN in octonion algebra its derivative Dx,y(p(u)) can be
expressed by the elements ui and Dx,y(ui ). Let us assume that, the user A generates
two polynomials {pA,1(v), pA,2(v)} of v = (v1, . . . , vN ′) variables and the user B
two polynomials {pB,1(u), pB,2(u)} of u = (u1, . . . , uN ) variables. For a selected
values of v, ai = pA,i (v0), i = 1, 2, the user A calculates the derivative Da1,a2(ui )
of each octonion in the tuple u and sends it to the user B. Using the derivatives
Da1,a2(ui ) the user B is able to calculate Da1,a2(pB,1(u0)) and Da1,a2(pB,2(u0)). The
key K B

(a1,a2),(pB,1,pB,2)
= [Da1,a2 , DpB,1,pB,2 ] is determined by the user B using the

formula

K B
(a1,a2),(pB,1,pB,2)

= DDa1,a2 (pB,1),pB,2 + DpB,1,Da1,a2 (pB,2).

In a similar way, the user A using the derivatives Db1,b2(vi ), where bi = pB,i (u0),
i = 1, 2, is able to calculate Db1,b2(pA,1(v0)), Db1,b2(pA,2(v0)) and the key

K A
(b1,b2),(pA,1,pA,2)

= DDb1,b2 (pA,1),pA,2 + DpA,1,Db1,b2 (pA,2).
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Because both expressions differ by the sign the common cryptographic key is

K(a1,a2),(b1,b2) = −K A
(b1,b2),(pA,1,pA,2)

= K B
(a1,a2),(pB,1,pB,2)

.

Below, we give the exact definition of the symmetric key exchange cryptographic
algorithm based on the octonion derivation.

The octonionic symmetric key exchange algorithm

1. The user A selects three octonions v1, v2, w and two polynomials pA,i ,
i = 1, 2. For the selected otonions v1, v2 the user A calculates the secret
ai = pA,i (v1, v2), i = 1, 2. The imaginary parts of v1, v2, i.e., the set
Sv = {Im(v1), Im(v2)} and the octonion w the user A sends to B.
The user B selects two octonions u1, u2, two polynomials pB,i , i = 1, 2 and
calculates the secret bi = pB,i (u1, u2), i = 1, 2.
The set Su = {Im(u1), Im(u2)} is sent to A.

2. The user A calculates

Da1,a2(Su) = {Da1,a2(Im(u1)), Da1,a2(Im(u2))}

and sends the set Da1,a2(Su) to B.
The user B calculates

Db1,b2(Sv) = {Db1,b2(Im(v1)), Db1,b2(Im(v2))}

and sends the set Db1,b2(Sv) to A.
3. The user A calculates the derivation Db1,b2(pA,i (v1, v2)), i = 1, 2

Db1,b2(ai ) = p′
A,i (v1, v2, Db1,b2(v1), Db1,b2(v2))).

The user B calculates the derivation Da1,a2(pB,i (u1, u2)), i = 1, 2

Da1,a2(bi ) = p′
B,i (u1, u2, Da1,a2(u1), Da1,a2(u2))).

4. For the agreed octonion w ∈ Im(O), the user A calculates the key

K A
(b1,b2),(a1,a2)(w) = DDb1,b2 (a1),a2(w) + Da1,Db1,b2 (a2)(w), (14)

and B calculates

K B
(a1,a2),(b1,b2)(w) = DDa1,a2 (b1),b2(w) + Db1,Da1,a2 (b2)(w). (15)

The octonion

K (w) = −K A
(b1,b2),(a1,a2)(w) = K B

(a1,a2),(b1,b2)(w)

defines the common secret key.
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Let us show an example how this algorithms works.

1. The user A selects there octonions v1 = {2,−3, 0, 1,−2, 5,−1, 1}, v2 =
{5, 1, 2, 7, 4,−1, 0,−2}, w = {1, 2, 3,−1, 4,−2, 0, 0} and two polynomials

pA,1 = v1 + 11v2 + 3v1v2 − v1v2v1,

pA,2 = v1 + 6v2 + v2v1 − 5v2v1v2.

Next, the user A calculates two secret octonions ai = pA,i (v1, v2), i = 1, 2.
The set Sv = {Im(v1), Im(v2)}, where Im(v1) = {2,−3, 0, 1,−2, 5,−1, 0},
Im(v2) = {5, 1, 2, 7, 4,−1, 0, 0}} and the octonion w is sent to B.
The user B selects two octonions u1 = {3, 1, 7, 2,−4, 0, 5,−2}, u2 =
{−2,−5, 0, 1, 6,−1, 3,−3} and two polynomials

b1 = 3u1 + u2 + 3u1u2 − u1u2u1,

b2 = u1 − 2u2 − 5u2u1 + u2u1u2.

Next, the user B calculates two secret octonions bi = pB,i (u1, u2), i = 1, 2.
The set Su = {Im(u1), Im(u2)}, where Im(u1) = {3, 1, 7, 2,−4, 0, 5, 0},
Im(u2) = {−2,−5, 0, 1, 6,−1, 3, 0} is sent to A.

4. For the agreed octonionw, the user A calculates−K A
(b1,b2),(a1,a2)

(w) and the user

B calculates K B
(a1,a2),(b1,b2)

(w) according to the formulas (14), (15). The common
secret key is

K (w) = 8{5549509343115, 1850183670668,
−1020644923030,−2086176426557,−4111458908175,

−4085858645391, 338344436964}.

To recover the secret octonions a1 and a2 (b1, b2) based on the knowledge of u1, u2
and w1, w2 it is necessary to solve the set of equations Da1,a2(ui ) = wi , i = 1, 2. For
imaginary octonions this set of equations can be written in the form

(a1a2)ui + 3a1(a2ui ) = wi a1, a2, ui , wi ∈ Im(O). (16)

It consists of 12 equations with 14 unknown variables. Because, the key K (w) depends
also on the real parts of the octonions vi and ui , which are kept secret, to recover the
octonions a1 and a2 the man in middle should determine 16 parameters having only
the system of twelve equations (16).

5 Conclusion

We discussed three key exchange cryptographic protocols in the octonion algebra.
The proposed octonionic public-key cryptosystem is the generalization of the RSA
algorithm to the octonion arithmetics. We defined a totient function for an invertible,
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integral octonion k as the order of a multiplicative cyclic group mod m generated by
the element k. We proved, that any octonion uk which lies in the orbit of the element
k under the adjoint action of the octonion algebra has the same totient function. This
property of the totient function allows to encrypted and decrypted the elements from
the orbit by the same pair of the cryptographic keys {k, e,m} and {k, d,m}. The
disadvantage of proposed algorithm is that the recipient, to recover the cipher text,
must solve the congruence equation xu = wx mod m, which unique solution requires
knowledge of a three parameter of x . We also proposed two symmetric cryptographic
key exchange protocols based on the automorphism and the derivation of the octonion
algebra. We apply the quaternion symmetric key exchange algorithm to generate two
quaternionic cryptographic keys and used them to define the shared octonionic key
as an automorphism of the octonion algebra which leaves the quaternion subalgebra
invariant. To generate a cryptographic key by mens of the quaternion key exchange
algorithm it is necessary to select a path in a graph defined over the quaternion algebra.
Security of the proposed quaternion key exchange algorithm is based on the complexity
of the graph. The second symmetric key exchange protocol we defined using the
derivation mapping in the octonion algebra. By calculating the commutator of two
derivatives both sides of the data exchange can generate a common cryptographic key.
The future work will include detailed analysis of security aspects of the proposed
algorithms and creating models of attacks on the cryptographic keys defined in the
octonion algebra and in any non-associative algebraic structures.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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