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Abstract
We apply an algorithm from the wisdom-of-crowds literature to optimally combine
behavioral game theory models to more accurately predict strategic choice in one-
shot, simultaneous-move games. We find that the optimal weighted average of seven
behavioral game theory models predicts out-of-sample choice behavior significantly
better than any of the individual models. The crowd of behavioral game theory models
is wiser than any single one of them. Different strategic choice models complement
each other by capturing distinct patterns of behavior. The field of behavioral game
theory is enriched by having this diversity of models.

Keywords Dual accumulator model · Level-k reasoning · Model aggregation · Noisy
introspection · Strategic decision making

JEL Classification C72

1 Introduction

When people or businesses must make strategic decisions that interact with the deci-
sions made by other players or stakeholders—for example, setting prices against a
rival firm’s prices, decidingwhether to enter a newmarket, recruiting and incentivizing
workers, or negotiating strategic partnerships—they should use game theory. How-
ever, the traditional Nash equilibrium solution concept for simultaneous-move games,
based on the assumption of sophisticated, hyper-rational decision makers, poorly pre-
dicts actual behavior, especially in novel situations in which players lack experience
(i.e., initial play or one-shot games). How then can players anticipate or predict other
players’ strategic choices?
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Behavioral game theorymodels, based on the psychology of judgment and decision
making rather than perfect rationality, predict strategic behavior much more accu-
rately than Nash equilibrium (Camerer 2003). But there are many behavioral models
to choose from. The level-k reasoning model (Nagel 1995; Crawford et al. 2013) and
the related cognitive hierarchy model (Camerer et al. 2004) rely on the assumption
that people only perform a limited number of steps of iterative best-response reason-
ing. Logit quantal response equilibrium (McKelvey and Palfrey 1995) and the noisy
introspection model (Goeree and Holt 1999, 2004) rely on the assumption that people
occasionally err and choose suboptimal strategies, but costlier mistakes are less likely.
The dual accumulator model (Golman et al. 2020) relies on the assumption that people
stochastically sample (or consider) specific scenarios for their counterpart’s choice or
for their own choice and gradually develop a preference among their own strategies
and a belief about their counterpart’s anticipated strategy through a linked evidence-
accumulation process.1 Each of these models accounts for stylized facts about actual
choice behavior in one-shot simultaneous-move games. With so many models making
different predictions, what should a strategic analyst do?

A common approach in much of the behavioral game theory literature is to try
to select the model that performs best (Camerer et al. 2004; Wright and Leyton-
Brown 2017; Fudenberg and Liang 2019; Golman et al. 2020). However, research on
the wisdom of crowds in judgment and decision making and on ensemble methods
in machine learning suggests that we may obtain better behavioral predictions by
aggregating the predictions of these models instead of trying to select a single one
(Dietterich 2000; Davis-Stober et al. 2014). If little were known about the relative
performance of the models or their relationships with each other, simply averaging
their predictions might make sense. But we can do better.

We use a weighted average to optimally combine the predictions of the set of
behavioral game theory models. The optimal weighted average gives more weight to
models that aremore accurate and also gives less weight tomodels that aremore highly
correlated with each other (Winkler 1981; Davis-Stober et al. 2015). Accounting for
the models’ correlations is particularly important in this context because some of the
models are related variants of each other, and a simple average would be distorted
by including duplicate predictions, whereas the optimal weighted average aggregates
these predictions appropriately. The optimal weighted average based on the correla-
tions between forecasters (along with their variances) performs poorly in some other
applications because the weights are highly sensitive to estimation error in the covari-
ance matrix (Clemen and Winkler 1986; Winkler and Clemen 1992), but we use
sufficient data for the weighted average to be reliably accurate (Huang et al. 2024).

We use three existing datasets of m individuals playing a set of n one-shot matrix
games without feedback (Stahl and Wilson 1995; Külpmann and Kuzmics 2022),
which allows us to fit the models at the individual-subject level to account for subject-
level heterogeneity. We assess the performance of each model, and of the aggregate
weighted average of the models, by computing out-of-sample prediction error using
cross validation. Specifically, for each of the individual models, we fit the model to
each subject’s choices in n−1 of the games and then compute the mean squared error

1 Other-regarding preferences or risk aversion could be added to any of these models as well.
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(MSE) of the prediction for the remaining game, and then average this out-of-sample
MSE over them individuals and over the n repetitions with each game being held out.
To determine the optimal weights for the weighted average, we fit each model to each
subject’s choices in n − 2 of the games and compute the predictions on an (n − 1)th

game. Rotating through the out-of-sample predictions for these n − 1 games, we esti-
mate the covariance matrix of the models’ predictions and the covariance between
these predictions and the actual choices, and we apply Davis-Stober et al. (2015) for-
mula to obtain the weights. We then use these weights, and the models fit to each
subject’s choices in the same n − 1 games, to determine the aggregate prediction for
the final held-out game, and again we average the out-of-sampleMSE over them indi-
viduals and n repetitions through the held-out games. This process of cross validation
allows us to equitably compare the aggregate out-of-sample prediction error to the
individual models’ out-of-sample prediction errors, without encouraging overfitting,
even though the models differ in their flexibility and number of free parameters.

Consistently across the three datasets we find that the optimal weighted average of
behavioral game theory models predicts out-of-sample choice behavior significantly
better than any of the individual models. This tells us that different models of strategic
choice behavior complement each other, by capturing distinct patterns of behavior.
Rather than trying to identify the “right” (or best) model, we can make the best pre-
dictions by taking advantage of the collective wisdom of this crowd of models.

We gain additional insight by examining the average weights placed on each model
(across the n folds of cross validation). The optimal weighted average places about
half of its weight on the dual accumulator model, and also gives weight to the level-k
reasoning model, a second specification of level-k reasoning with tremble noise, the
cognitive hierarchy model, and the noisy introspection model. It gives no weight to
the logit quantal response equilibrium model (which is highly correlated with, but not
quite as accurate as, the noisy introspection model) or the Nash equilibrium prediction
(which predicts quite poorly). Giving the most weight to the dual accumulator model
makes sense because it is the most accurate individual model and it does not closely
align with any of the other models we consider. Giving weight to the level-kmodel, the
noisy level-k model, the cognitive hierarchy model, and the noisy introspection model
helps because they each pick up on other patterns of strategic choice. Specifically, the
levels-of-reasoning models may be capturing a particular pattern of limited iterated
reasoning, and the noisy introspection model may be capturing an intuitive form of
payoff sensitivity.

The approach we take here—leveraging the wisdom of crowds of predictive
models—can be applied to make better predictions, and to better understand the diver-
sity of theoretical models, for all kinds of decision making and human behavior. He et
al. (2022) use a similar technique to make better predictions about individual choice
under risk. This approach could just as well be applied to theories of intertemporal
choice, social preferences, or choice under ambiguity, too.
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2 Behavioral game theorymodels

Along with the Nash equilibrium model, we consider six additional models from the
behavioral game theory literature that can be applied to simultaneous-move games
played once without feedback: two specifications of level-k reasoning (with and with-
out tremble noise), the cognitive hierarchy model, logit quantal response equilibrium,
noisy introspection, and the dual accumulator model. Thesemodels capture qualitative
patterns of strategic choice behavior associated with bounded rationality, i.e., payoff
sensitivity (even while best responses remain fixed) and limited iterated reasoning
(e.g., in the p-beauty contest game or the traveler’s dilemma).2

Level-k reasoning proposes that people engage in k steps of best responding, where
k varies from person to person, but is typically small. Level-0 individuals are assumed
to choose (uniformly) randomly. Level-k individuals then choose best responses to
the level-(k − 1) choice, for k > 0. (If multiple best responses exist, we assume
that choice is uniformly random among them.) We fit the parameter k to individual
subject’s choices. In our specification with tremble noise, the prediction becomes a
convex combination of the level-k best response (with weight (1− ε) and the uniform
mixed strategy (with weight ε), where the weight ε is also an individual-level free
parameter.

The cognitive hierarchy model resembles level-k reasoning in that individuals
engage in a small number of steps of best responding, but in this model, individu-
als best respond to the mixture of strategies from everybody who engages in fewer
steps of reasoning. Themodel assumes that the number of steps of best responding that
people perform follows a Poisson distribution (when determining the mixed strategy
that each individual responds to).

In the logit quantal response equilibrium, an individual with “rationality” parameter
λ plays a mixed strategy ω1 while expecting his counterpart to play a mixed strategy
ω2, such that the probability of strategy si for the focal player is

ω1(si ) = eλu(si ;ω2)

∑
k e

λu(sk ;ω2)

and the belief about the probability of strategy s j for the counterpart is

ω2(s j ) = eλu(s j ;ω1)

∑
k e

λu(sk ;ω1)
.

That is, ω1 and ω2 are logit responses to each other. The rationality parameter governs
how noisy the logit response is—if λ = 0, it produces a uniform mixed strategy,
whereas for λ → ∞, it approaches a perfect best response. This parameter, λ, can be
fit at the subject level.

2 Cooperative behavior in the prisoner’s dilemma should be attributed to social preferences, not bounded
rationality. Models of social preferences can be evaluated in the absence of strategic uncertainty (e.g., in the
dictator game), and could then be integrated with any of the models of strategic thinking that we consider
here.

123



The collective wisdom of behavioral game theory

The noisy introspection model predicts a mixed strategy

ω = lim
n→∞ φμ(φτμ(. . . , φτ nμ(ω0))),

where φμ is the logit response function with rationality parameter λ = 1
μ
and ω0

is the uniform mixed strategy. The “error” parameter μ determines a baseline noisi-
ness of responses, and the “telescope” parameter τ > 1 determines how increasingly
noisy each successive higher-order belief is. Both of these parameters can be fit at the
individual subject level.

The dual accumulator model assumes that an individual alternately samples one
of his counterpart’s strategies or one of his own strategies to accumulate activation
for his own strategies or his counterpart’s strategies, respectively. The probability of
sampling the counterpart’s strategy s j at time step t is

p j = eλA2 j (t−1)
∑

k e
λA2k (t−1)

,

and if strategy s j is sampled, the activation for his own strategies becomes A1i (t) =
A1i (t − 1) + u(si ; s j ) for each strategy si . Similarly, the probability of sampling his
own strategy si at time step t is

pi = eλA1i (t)
∑

k e
λA1k (t)

,

and if strategy si is sampled, the activation for his counterpart’s strategies becomes
A2 j (t) = A2 j (t − 1) + u(s j ; si ) for each strategy s j . Activation for all strategies
is initially zero and then accumulates for T steps of sampling, at which point the
strategy with the highest activation is chosen. (If multiple strategies equally achieve
maximumactivation at time step T , then choice is uniformly randomamong them.)The
activation for the counterpart’s strategies does not directly influence the choice (given
the activation for one’s own strategies), but co-evolves with the sampling probabilities,
which then affect the activation for one’s own strategies. The “stochastic sampling”
parameter λ and the “time limit” parameter T are fit at the individual subject level.

Omittedmodels

We exclude models incorporating social preferences, such as team reasoning
(Bacharach 1999), as well as combinations of the included models with social-
preference models of altruism, reciprocity, fairness, or inequality-averse preferences
(Levine 1998; Fehr and Schmidt 1999; Bolton and Ockenfels 2000; Charness and
Rabin 2002; Falk and Fischbacher 2006). Incorporating social preferences would no
doubt improve the accuracy of all of our models. Nevertheless, social preferences can
be explored in more parsimonious settings that do not require players to engage with
complex strategic considerations (see Charness and Rabin 2002). For simplicity, we
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focus exclusively onmodels of strategic thinking here.We exclude models incorporat-
ing risk- and ambiguity-preferences (Goeree et al. 2003; Eichberger and Kelsey 2011;
Beggs 2021). For the same reason, we exclude set-valued solution concepts as well
(Goeree et al. 2005; Goeree and Louis 2021; Barberà et al. 2022). We also exclude
models intended to describe learning in games or long-run behavior after learning
has occurred, such as experience-weighted attraction (Camerer and Hua Ho 1999),
instance-based learning (Gonzalez et al. 2003), action-sampling equilibrium (Selten
and Chmura 2008), payoff-sampling equilibrium (Osborne and Rubinstein 1998), and
impulse-balance equilibrium (Selten and Chmura 2008). Repeated games that allow
for learning should be considered in future work, but for simplicity, we focus here on
one-shot interactions, in which players do not have the opportunity to learn. We hope
that a better understanding of initial play will inform models of learning and repeated
play.

3 Predictive accuracy

3.1 Data

We use three existing data sets reporting the behavior of individuals playing sets
of one-shot games without feedback. The first data set, reported by Stahl and Wilson
(1995), consists of the strategy choices of 48 subjects who each played a set of 12 3×3
symmetric games, including three games with unique mixed-strategy Nash equilibria
and nine games with unique pure-strategy symmetric equilibria, some (but not all)
of which being dominance solvable. The second data set, reported by Külpmann and
Kuzmics (2022), consists of the strategy choices of 147 subjects who each played a
set of 20 2 × 2 games of the hawk-dove and matching-pennies forms. The third data
set, also reported by Külpmann and Kuzmics (2022), consists of the strategy choices
of 166 subjects who each played a set of 20 3× 3 games, half of them of a hawk-dove
variety with an additional strategy available and half of them of a rock-paper-scissors
variety.3 In each dataset we know each individual subject’s choice in each game, so we
can fit the models at the individual-subject level. The Stahl and Wilson (1995) games
all have payoffs between 0 and 100, and the Külpmann and Kuzmics (2022) games
all have payoffs between 0 and 10, so we need not worry about normalizing payoffs
differently across games in the same dataset.

3.2 Out-of-sample mean squared error

We use out-of-sample mean squared error (MSE) to evaluate the predictive accuracy
of each model. For each game played by each subject, the MSE is 1

C

∑C
i=1(xi − yi )2,

where C is the number of strategies in each game, xi is the predicted probability
that the individual selects strategy si , and yi is an indicator variable for whether the
individual actually played strategy si . To determine the out-of-sample prediction that
a model makes for a particular subject playing a particular game, we first fit that model

3 All of the game payoffs are laid out in the original papers.
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to that subject’s choices in the other n − 1 games in that dataset by minimizing the
mean squared error averaged over these games. Additional details about our model
fitting procedure are provided in the SM appendix. For each model, we then average
the out-of-sample MSEs across all n games and m subjects in that dataset.

4 Model aggregation

We consider a weighted average of the seven models described above, with a 7 × 1
vector of non-negative weights w, such that 1Tw = 1, i.e., the weights sum to one.
If the weights were set with indicator variables for the most accurate model, then the
weighted average would simply agree with the most predictive model. Alternatively,
if the weights were all equal, w = 1

71, then the weighted average would simply be
the simple average, which works surprisingly well to extract the wisdom of a crowd
of forecasters. Davis-Stober et al. (2015) provide a system of equations to determine
the optimal weights that minimize MSE, given forecasters’ variances and correlations
(with each other and with the target variable). The optimal weighted averagew (in the
case of unbiased forecasters) is the solution to

[
�XX 1
1T 0

]

·
[
w
λ

]

=
[

σXy

1

]

(1)

with wι ≥ 0 for all ι, where �XX is the covariance matrix for the forecasters, σXy is
the vector of covariances between each forecaster and the target variable, and λ is a
real-valued unknown variable, i.e., a Lagrange multiplier (Davis-Stober et al. 2015).
To apply this formula to aggregate our models, we need to estimate the covariance
matrix for the models’ predictions.

For each game we determine the weighted average of the models by looking only
at the models’ predictions (and the actual data) from the other n − 1 games, to ensure
we are always comparing out-of-sample predictions. But within those n − 1 games,
we still seek out-of-sample predictions from each of the models to use to estimate the
covariancematrix for themodels. So, we perform another hold-one-out analysis within
this sample of n − 1 games. For each of these n − 1 games, we fit each model to each
subject’s choices in n − 2 of the games and then determine the model’s prediction
for the (n − 1)th game. We then compute the sample covariance matrix for these
out-of-sample predictions. We plug these values into Eq.1 to determine the weights
on each of the seven models. And we then generate the aggregate-model prediction
for each player in the held-out nth game by using this weighted average to combine
the predictions of the seven models, where, as before, each model’s parameters are
determined by fitting the models to that subject’s choices in the other n − 1 games.
Thus, the aggregate model makes out-of-sample predictions for each player in each
game. (Accordingly, the precise weights used in the aggregate model may vary from
game to game.) The overall MSE of the aggregate model is the MSE averaged across
all n games and m subjects in that dataset.
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5 Results

5.1 Correlation structure of the individual models

Before we assess the performance of the weighted average relative to the individual
models, we first consider the relationships between the individual models. Theweights
on the individual models depend not only on the accuracy of thesemodels (i.e., the size
of their out-of-sample MSEs for the games used to determine the optimal weights),
but also on the correlations between these models (i.e., the extent to which their errors
tend to be in the same direction as other models’ errors). Figure1 presents the average
correlation coefficients between every pair of individual models (across all folds of
cross validation) for each dataset. Naturally, the two specifications of level-k reasoning
and the cognitive hierarchy model are all highly correlated with each other. The logit
quantal response equilibrium and noisy introspection models are highly correlated
with each other in the two Külpmann and Kuzmics (2022) datasets as well. Some
of the correlations vary considerably between the datasets because each experiment
presented subjects with different games.

5.2 Accuracy of the individual models and the weighted average

Figure 2 shows the average out-of-sample MSE for each individual behavioral game
theory model (black circles) and for the optimal weighted average of these models
(red square) for each dataset. The data points shown in gray display the average
out-of-sample MSEs across the subjects for each of the games distinctly. Figure3
displays box plots showing the distribution of out-of-sample MSEs at the subject-
level (averaged across the games) for each dataset. In these figures we see that the
optimal weighted average has consistently lower out-of-sample MSEs than any of the
individualmodels. (The specific p-values frompaired t-tests are reported in Tables B1-
B6 in the Appendix, with p < .05 for all comparisons, except the comparison between
the weighted average and the dual accumulator model for MSEs across games in the
Külpmann and Kuzmics (2022) 2× 2 games dataset and the comparison between the
weighted average and the dual accumulator model for MSEs across subjects in the
Stahl and Wilson (1995) dataset.) The crowd of behavioral game theory models is
wiser than any single one of them. Having multiple models is not a problem forcing
us to make a difficult choice among them. Rather, the collection of models gives us a
way to describe a variety of patterns of strategic choice behavior and to make better
predictions.

5.3 Weights on the individual models

Figure 4 shows box plots of the weights placed on each model (across the n folds
of cross validation) when using the optimal weighted average. The dual accumulator
model gets about half of the weight (ranging from M = 46%, averaging across the
cross validation, in the Külpmann and Kuzmics (2022) 3 × 3 games to M = 74%
in the Külpmann and Kuzmics (2022) 2 × 2 games). It gets the most weight because
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Fig. 1 Average correlation coefficients between pairs of behavioral game theory models. Top left: Stahl and
Wilson (1995) 3 × 3 games. Top right: Külpmann and Kuzmics (2022) 2 × 2 games. Bottom: Külpmann
and Kuzmics (2022) 3 × 3 games (color figure online)

it is the most accurate individual model and it does not closely align with any of the
other models we consider. The optimal weighted average also places weight on the the
cognitive hierarchy model, the level-k reasoning model (for two of the datasets), the
noisy level-k reasoning model (for two of the datasets), and the noisy introspection
model (for two of the datasets). It gives no weight to the logit equilibrium model and
the Nash equilibrium model. The weights (or lack thereof) on these models cannot
be viewed in isolation. In both Külpmann and Kuzmics (2022) datasets the level-k
reasoningmodel and the cognitive hierarchymodel alwaysmake the same predictions,
so they share weight equally; but in the Stahl and Wilson (1995) dataset the level-k
reasoning model is similar to, but not quite as accurate as, the cognitive hierarchy
model and the noisy level-k model, so the pure level-k model does not get any weight
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for each individual behavioral game theory model and for the optimal weighted average. Top: Stahl and
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there. If the cognitive hierarchy model and the noisy level-k model were omitted from
the analysis, then the pure level-k model would get positive weight for this dataset as
well. The substantial weight placed on the noisy introspection model for the Stahl and
Wilson (1995) dataset is notable because the model appears to suffer from overfitting
in this setting. On its own, it actually performs worse in out-of-sample prediction for
this dataset than the complete ignorance model that always predicts a pure uniform
distribution. While this overfitting leads to poorly calibrated predictions and thus poor
performance on its own, the model still provides a valid signal and adds value when
combined with the other models.

The weights given to the individual models are fairly stable across the folds of the
cross validations (as shown in Fig. 4). Tables B10-B12 in the Appendix report the
weights for each fold of the cross validation. The robustness of the weighted average
can also be seen in the game-by-game MSEs reported in Tables B7-B9. While the
games vary in their predictability, the weighted average performs consistently well in
comparison to the individual models.

We also see in Tables B7-B9 that the weighted average outperforms a simple aver-
age of the models, which does not account for the accuracy of the individual models
or the correlations between them. One advantage of the optimal weighted average,
relative to the simple average of the models, is that the weighted average recognizes
the poor performance of the Nash equilibrium prediction and consequently gives it
no weight. Another advantage of the weighted average is that its performance is more
robust to the inclusion of additional models that are similar to other already-included
models. Including relatedmodels like the cognitive hierarchy and noisy level-kmodels
along with the pure level-k model effectively double or triple counts this class of mod-
els in the simple average, but the weighted average adjusts the weighting to maintain
robust overall performance. While the weights placed on the individual models are
highly sensitive to the set of models included in the analysis, the performance of the
weighted average is actually less sensitive to the choice of which models to include.
Other weighting methods, such as optimal weights under the assumption that errors
are unbiased and uncorrelated with true values (Lamberson and Page 2012), the con-
tribution weighted model (Budescu and Chen 2014), or stacking multiple weighting
methods (Huang et al. 2023), also adjust weights depending on the set of individual
models included in the analysis, and may perform similarly well or even better. Our
results demonstrate that there is room for the combination of behavioral game theory
models to outperform any single one of them.

6 Conclusion

We have applied an algorithm from the wisdom-of-crowds literature to the field
of behavioral game theory to more accurately predict strategic choice in one-shot,
simultaneous-move games. By optimally combining the predictions of various behav-
ioral game theory models, we can make better predictions than by using any single
model alone. The success of the aggregate prediction shows us that these different
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Fig. 4 Weights placed on each behavioral game theory model when using the optimal weighting method.
Box plots display the variation over the n folds of cross validation.Median weights reported here. Top: Stahl
and Wilson (1995) 3× 3 games. Middle: Külpmann and Kuzmics (2022) 2× 2 games. Bottom: Külpmann
and Kuzmics (2022) 3 × 3 games
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models are capturing distinct aspects of real, human strategic decision making. The
field of behavioral game theory is enriched by having this diversity of models.
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Appendix AModel fitting

TheNash equilibriummodel has no free parameters to fit, but does not always generate
a unique prediction.We select among the set of Nash equilibria by tracing the principal
branch of the logit quantal response equilibrium from the uniformly mixed strategy
to the limiting logit equilibrium, which is a standard (Nash) equilibrium selection
method (McKelvey and Palfrey 1995).4

For most of the behavioral models (all except the cognitive hierarchy model), we
minimize MSE between predicted and observed choices by searching over a uniform
grid of parameter values. For the cognitive hierarchy models, we iteratively estimate
the individual levels of reasoning and the distribution of levels in the population until
they converge.

For the specifications of level-k reasoning and the cognitive hierarchy model,
we search k ∈ {0, ..6}. For the specification of level-k with noise, we also search
ε ∈ {0, .01, . . . , 1}. For the logit quantal response equilibrium we search λ ∈
{0.1, 0.2, . . . , 10}. (We find the logit equilibrium by repeatedly computing logit
responses starting from a uniformmixed strategy, and stoppingwhen the average abso-
lute value of the difference in probabilities fromone step to the next is less than .01.This
procedure selects one primary equilibrium in games with multiple logit equilibria.)
For the noisy introspection model, we search μ ∈ {.001, .002, . . . , .01, .02, . . . , 10}
and τ ∈ {1, 1.1, . . . , 10, 11, . . . , 100, 110, . . . , 1000}. (Here too we compute logit
responses until the average absolute value of the difference in probabilities from
one step to the next is less than .01.) For the dual accumulator model, we search

4 The only games in our datasets withmultiple Nash equilibria are the hawk-dove games, where thismethod
effectively selects the symmetric Nash equilibrium of each game.
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λ ∈ {0, .01, . . . , 0.1, 0.2, . . . , 10} and T ∈ {1, 2, . . . , 50} when fitting the Stahl and
Wilson (1995) dataset and search λ ∈ {2−10, 2−9, . . . , 210} and T ∈ {1, 2, . . . , 30}
when fitting the Külpmann and Kuzmics (2022) datasets. (We computed the predicted
choice probabilities by simulating 10, 000 runs of the model.)
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