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Abstract
Governments and multilateral organisations often attempt to influence multi-sided
violent conflicts by supporting or undermining one of the conflicting parties. We
investigate the (intended and unintended) consequences of strengthening or weaken-
ing an agent in a multi-sided conflict. Using a conflict network based on Franke and
Öztürk (J Public Econ 126:104–113, 2015), we study how changing the strength of
otherwise symmetric agents creates knock-on effects throughout the network. Increas-
ing or decreasing an agent’s strength has the same unintended consequences. Changes
in the strength of an agent induce a relocation of conflict investments: Distant con-
flicts are carried out more fiercely. In line with previous results, asymmetry reduces
aggregate conflict investments. In the case of bipartite networks, with two conflicting
tacit groups with aligned interests, agents in the group of the (now) strong or weak
agent face more intense conflicts. Furthermore, in conflicts where the (now strong or
weak) agent is not involved, the probabilities of winning remain unchanged compared
to the symmetric case.
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1 Introduction

In wars and military struggles throughout history, parties have typically been involved
in more than one conflict at a time (Huntington 2000; Maoz 2010). The arrangement
of conflicts among the involved parties relative to each other-the conflict network-
induces interdependencies between conflicts. This, in turn, might lead to the escalation
or de-escalation of violence since altering aspects of one conflict influences seemingly
unrelated conflicts. How do such knock-on effects influence the intensity of conflict
in remote conflicts? What impact do these effects have on the intensity across all
connected conflicts?

Understanding the knock-on effects of asymmetric military strength between rivals
in networks is critical, not only for predicting outcomes but also for designing and
implementing policies to pacify conflict-ridden regions. This becomes clear in the
context of multi-sided civil wars, where third-party interventions aimed at putting an
end to the overall conflict (Linke and Raleigh 2016; König et al. 2017; Silve and
Verdier 2018; Aidt et al. 2019), as was the case for the Colombian conflict or the Great
War of Africa.1 For almost 15 years, the US government tried to end a long-standing
multi-sided conflict between the Colombian government, several drug cartels, and
various left-wing guerillas by providing funds and training to the Colombian military
(Acemoglu et al. 2013),2 Similarly, several members of the United Nations imposed
targeted sanctions, such as arms embargoes,3 in the context of the Great War of Africa
with the objective of de-escalating the conflict in this region.4 While the intention was
to de-escalate the Colombian and African conflict, there exists suggestive empirical
evidence of a conflict escalation in the years after these interventions (Tierney 2005;
Dube and Vargas 2013; König et al. 2017). Understanding the strategic responses to
the support towards one agent can, thus, help avoid such unintended future outcomes.
To understand the importance of the resulting difference in military strengths in such
confrontations, a theoretical analysis of the effects of asymmetries in multi-sided
conflicts is necessary.

This paper aims to shed light on the effects of exogenous strength asymmetries
between agents on equilibrium behaviour in conflict networks. Introducing asymme-
tries between agents induces knock-on effects through the connections in the network.
Firstly, we investigate how asymmetry in model parameters associated with strength
is related to asymmetry in conflict intensity across conflicts. Secondly, we examine

1 There are other examples where third parties tried to influence outcomes in multi-sided conflicts. Before
themore recent developments, changing the conflict to a bilateral interstate war, theUkrainian CivilWarwas
such an example. Russia aimed to influence the outcome of the conflict between the Ukrainian government
and several rebel groups by providing them with funds. Another example is the training camps provided
to several left-wing guerrilla fighters by the Soviet Union after the 1966 Tricontinental Conference in La
Havana.
2 In 1999, this initiative, called the “Plan Colombia” was created under Bill Clinton’s administration during
a broader effort to fight narco-trafficking groups across the globe.
3 We thank the anonymous refereewho suggested the example of arms embargoes tomotivate theweakening
of an agent.
4 Following its attainment of independence from Belgium in 1960, the Democratic Republic of the Congo
faced a large-scale conflict involving the official government, three insurgent factions, aswell as a consortium
of 14 foreign armed entities, including ethnically diverse groups from Rwanda and Uganda.
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the resulting changes in aggregate levels of conflict investments and, thus, the overall
conflict intensity in the network. Following our examples of the Colombian Civil War
or the Great War of Africa, we ask under which circumstances a stronger or weaker
military force induces an escalation in seemingly unrelated conflicts and a change in
overall conflict intensity. Can we expect the military to increase its conflict invest-
ments against the others? Or will it fight less vigorously? More importantly, how do
the other, unchanged agents react? Do their strategic incentives become more aligned,
so they tacitly direct conflict investments towards the stronger or weaker agent,5 or
are their efforts redirected against each other?

We focus on two types of asymmetries in our model. The first one is related to
the incentives to win a particular conflict-i.e., the prize valuations.6 In the Colombian
conflict, the value of controlling rural areas (winning conflicts) changed drastically
for the Colombian government with the US interventions, as resources coming from
the US were tied to dismantling drug production. The second is in terms of the power
to affect the conflict outcome-i.e., the effectiveness of conflict investments. This is
related to the evolution of warfare technology throughout history. In the Great War
of Africa, the imposition of sanctions in the form of arms embargoes changed the
warfare technologies available to different groups embedded in conflicts, decreasing
the lethality of weapons used.7

To investigate the effects of these two types of asymmetries, we extend the model
of conflict networks introduced by Franke and Öztürk (2015), (from here on FO)
along two dimensions while maintaining sufficient tractability. Using a lottery contest
success function, we show that a finite number of locally unique and interior Nash
Equilibria always exists. We discuss when this extends to global uniqueness. Due to
the agents’ asymmetry in terms of valuations of winning a conflict, it is not possible
to use previous results of n-player concave games (Rosen 1965; Goodman 1980) to
guarantee the existence of a unique Nash equilibrium for all choices of valuations
and effectiveness parameters.8 Thus, we contribute to this literature by providing
an alternative method to establish the existence and local uniqueness of the Nash
equilibrium based on the Implicit Function Theorem. It implies that the solutions
around any unique equilibrium are a smooth function from parameters into the set of
actions. Thus, it conveniently also allows the study of strength asymmetries around
the symmetric equilibrium as local comparative statics. The analysis of the equilibria
described by this function is our main objective.

Modelling conflicts on networks is a growing stream of research (see Dziubiński
et al. 2016, for a recent review). To study the local interdependencies of conflicts

5 This is different from models studying the explicit formation of alliances such as Konrad and Kovenock
(2009), Bloch (2012) or Ke et al. (2015).
6 We follow Esteban and Ray (2011) approach by considering an agent to be stronger (weaker) if their
prize valuation is higher (lower) than in the symmetric setting. This interpretation relies on the fact that a
higher valuation is equivalent to a relatively lower marginal cost in that specific conflict.
7 Providing foreign aid to an underdog can alter the effectiveness of weapons used in a conflict and balance
conflict as well. As an example, through Operation Cyclone, the United States supplied financial resources
and weapons to the Afghan Mujahideen, which affected the lethality of their warfare technology against
the Soviet Union.
8 An alternative approach for the case of homogeneous valuations within conflicts is to show that under
fictitious play, conflict investments converge to a Nash unique equilibrium (Ewerhart and Valkanova 2020).
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among symmetric agents, FO introduce a model of conflict networks, where identical
agents are involved inmultiple bilateral Tullock (1980) conflicts. Agents decide simul-
taneously how much to invest in each conflict to affect their probability of winning an
exogenous prize. The opportunity costs of investing in a given conflict depend on the
overall investments made by agents in all their other conflicts. FO provide an existence
and uniqueness result of the equilibrium strategies in their setting. They also provide a
closed-form characterisation of the equilibrium for two important classes of network
topologies (d-regular and complete bipartite networks).

We show that compared to FO’s symmetric setting as a baseline for d-regular and
complete bipartite networks, the increase or decrease of one agent’s strength in an
otherwise strength-symmetric network could exacerbate the conflict intensity in all
conflicts where strength is still symmetric. Overall conflict intensity decreases after
any change in one agent’s effectiveness, irrespective of whether that change made
that agent stronger or weaker than this agent’s rivals. Conflict intensity increases
(decreases) following an increase (decrease) in one agent’s valuation for winning
against a specific opponent. In that case, the increase (decrease) in conflict investments
is driven by that stronger (weaker) agent. In fact, we show that the knock-on effect for
the remaining symmetric agents is qualitatively the same following a strengthening or
weakening of an agent due to the non-monotonicity of the best-response functions in
lottery contests (Tullock 1980).9 Our analysis of the probabilities of winning reveals
that an increase (decrease) in the strength of an agent increases (decreases) this agent’s
probability ofwinning. In remote conflicts, where the agent-now either strong orweak-
is not directly engaged, the probabilities of winning remain unaltered compared to the
symmetric setting. Notably, our findings can be interpreted in two distinct manners:
Firstly, they shed light on how changes from symmetry lead to a de-escalation in the
overall conflict network but a redirection of conflict investments to themore symmetric
agents. Secondly, however, they also inform us about how influencing an asymmetric
multi-sided conflict to becomemore symmetric affects individually optimal behaviour.
Here, behaviour changes in exactly the opposite way, leading to increased overall but
more evenly distributed conflict across the network.10

FO’s seminal contribution triggered subsequent studies looking at similar envi-
ronments. For example, König et al. (2017), Dziubiński et al. (2019), Bozbay and
Vesperoni (2018), and Matros and Rietzke (2024) each study a conflict on a network
with a single (univariate) choice. Jackson and Nei (2015), Hiller (2017), and Hure-
mović (2021), like us, study conflicts on networks with multivariate choices but focus
on endogenous network formation. We contribute to this growing field of conflict net-
works by exploring the effects of asymmetries between individual agents and across
all involved agents in the network. Using a variational inequality equivalence, Xu et al.
(2022) show the existence of a unique equilibrium in pure strategies on networks of
multilateral conflicts (i.e., each conflict can have more than two agents fighting each
other) if agents have a strictly increasing cost function.

9 The best responses’ non-monotonicity in the two-agent contests, as shown in Fig. 7, carries over to our
setting for each bilateral conflict. Appendix B revisits this property for the two-agent case.
10 We would like to thank one of the anonymous referees for highlighting this dual interpretation of our
results, which adds to the significance of our contribution.
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Their unique equilibrium is such that at least two agents invest positive amounts in
each conflict. Their characterisation, by construction, collapses to FO’s and ours when
only bilateral interactions are feasible. In this paper, we provide general comparative
static results for the class of networks studied by FO.11

Beyond the study of conflict networks, we also contribute to the mature literature of
multi-battle contests, which provides extensive and valuable insights into the strategic
aspects of conflict and war in various settings.12 Our model contributes to this liter-
ature by allowing for larger numbers of individuals embedded in complex bilateral
relationsmodelledwith networks.Moreover,we contribute to the study of asymmetries
between agents in such models. It has been documented that strengthening a single
competitor in an otherwise strength-symmetric n-player contest leads to a decrease
in aggregate conflict investments (i.e., “discouragement effect”). Seminal studies of
this phenomenon are Schotter and Weigelt (1992), Baik (1994), and Nti (1999) for
bilateral Tullock contests and Stein (2002) for n-player Tullock contests. There, the
increase of asymmetries leads to a decrease in the efforts exerted in the contest. More
recently, this result has been extended to all-pay-auctions (Fang et al. 2020).

We contribute to this strand of the economic literature by discussing whether
insights on lower conflict intensity in asymmetric two-agent conflicts (Baik 1994;
Cornes and Hartley 2005) carry over to more complex conflict settings as captured in
the type of model presented here.13 This also informs an important strand of the eco-
nomics literature on how to take advantage of the “discouragement effect” to level the
playing field as affirmative actions (e.g., Franke et al. 2013, 2014; Chowdhury et al.
2020). To the best of our knowledge, our paper is the first to extend these results to
the setting of conflict networks under complete information. It provides the first build-
ing block to better understand the effects of strength asymmetries more generally in
complex, seemingly chaotic conflict settings.

The remainder of the paper is structured as follows. Section2 provides the model
setup, and Sect. 3 explores its equilibrium properties. Using a set of selected examples,
Sect. 4 provides an intuition for the general results presented in Sect. 5. Section6
concludes. All proofs are provided in Appendix A.

2 Model setup

Let I = {1, . . . , n} be a finite set of agents with n ≥ 2, and let B ⊆ I2 (i.e., all ordered
pairs of agents) be the finite set of conflicts. Agents i and j have a bilateral conflict if
and only if (i j) ∈ B. The underlying conflict network G is represented by the graph

11 In the most recent version of Xu et al. (2022), some additional comparative statics examples are included
which also utilise the Implicit Function Theorem.
12 These include settings with symmetric agents (e.g., Myerson 1993; Roberson 2008; Hart 2008;
Olszewski and Siegel 2022); with asymmetric valuations across conflicts and/or agents (e.g., Kovenock
and Roberson 2008; Washburn 2013; Roberson and Kvasov 2012; Montero et al. 2016; Thomas 2018); as
well as with asymmetric agents (e.g., Friedman 1958; Robson 2005; Hortala-Vallve and Llorente-Saguer
2012; Macdonell and Mastronardi 2015; Kovenock and Rojo Arjona 2019; Kovenock and Roberson 2021).
See Konrad (2009) and Dechenaux et al. (2015) for comprehensive surveys of the contest literature.
13 For reference,we present themain insights fromBaik (1994)’s two-agent asymmetric setting inAppendix
B.
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associated with the ordered pair of disjoint sets (I, B). Let Pl
h be a path of length K

from Agent h to l defined as a sequence of conflicts (i1i2), (i2i3), . . . , (iK−1iK ) such
that (ik ik+1) ∈ B for each k ∈ {1, . . . , K − 1} with i1 = h and iK = l. We consider
networks that are connected (∀{h, l}: a path Pl

h exists), undirected (∀{i, j} : (i j) ∈
B ⇔ ( j i) ∈ B) and irreflexive (∀i : (i i) /∈ B), implying that there are no isolated clus-
ters of agents, each conflict is mutual, and agents cannot be enemies of themselves.14

Let Ni = { j ∈ I|(i j) ∈ B} denote the set of i’s rivals. The total number of rivals of i is
given by di = |Ni |. Consequently, the total number of conflicts in G is b = 1

2

∑
i∈I di .

As we are going to refer to them later, it is useful to define two prevalent, stable, and
well-studied network topologies in economics: d-regular and bipartite networks.15

Definition

• A graph G = (I, B) represents a d-regular network if and only if di = d >

1 ∀i ∈ I.
• A graph G = (I, B) with I = I1 ∪ I2 represents a bipartite network if and only
if B ⊆ I1 × I2. We call I1 and I2 groups with aligned interests (partitions) in
this type of network with sizes |I1| = I1 and |I2| = I2, respectively.

In each bilateral conflict, agents compete for a strictly positive and exogenous prize.
Agent i’s valuation of winning the prize against Agent j ∈ Ni is denoted vi j > 0.
This framework can accommodate constant-sum bilateral conflicts, when vi j = v j i ,
or non-constant-sum bilateral conflicts, when vi j �= v j i . Let vvv ∈ R

2b++ be a vector
that collects all valuations vi j for all i, j ∈ I and (i j) ∈ B. Each Agent i makes a
conflict investment xi j ∈ R+ to affect Agent i’s probability of winning the prize vi j

against Agent j ∈ Ni . We denote Agent i’s action by xi = (xi j ) j∈Ni ∈ R
di+ containing

all their conflict investments. Agent i’s probability pi j of winning against Agent j is
governed by a lottery contest success function (CSF) p(ai xi j , a j x ji ), where ai ≥ 1
captures how effectively Agent i’s investments increase pi j . Let ppp ∈ [0, 1]2b be a
vector that collects all winning probabilities and let aaa ∈ R

n++ be a vector collecting
all effectiveness parameters ai for i ∈ I.16 The CSF is increasing and concave in its
first argument and decreasing and convex in its second argument. Further, it does not
depend on any xlk with (lk) �= (i j).17 Finally, if both agents in a conflict do not make
any investments, the winner of that conflict is selected at random with probability 1

2 .
Specifically, in our game, the probability of Agent i winning the prize in the conflict
against Agent j is

14 In disconnected networks, our results apply to agents of each component independently.
15 These networks are also well-studied in more general non-zero-sum games. In conflict networks like
ours, Huremović (2021) shows that the only stable networks to either unilateral or bilateral deviations in
endogenous conflict network formation games are the d-regular and bipartite networks.
16 Without loss of generality, we can order the effectiveness parameters of all the agents such that a1 ≥
a2 ≥ .. ≥ an . Using this ordering, we can always normalise the effectiveness parameters of everyone by
comparing it with respect to Agent n such ai

an
≥ 1. This normalisation simplifies our analysis and is not

essential for most of our results (for our proofs, we mention when this would make a difference).
17 Skaperdas (1996) discusses the class of CSFs satisfying these properties. See also Corchón and Dahm
(2010).
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pi j = p(ai xi j , a j x ji ) = f (ai xi j )

f (ai xi j ) + f (a j x ji )
, (CSF)

where f (·) = g(·)+δ denotes the impact function for some arbitrarily small δ > 0,18

such that g(·) is a positive function of its argument, which has a positive but finite
slope and is at least twice continuously differentiable, with g(0) = 0.19 The costs of
all conflict investments are captured by the function C(Xi ), where Xi = ∑

j∈Ni
xi j

denotes the total amount of investments made by Agent i across all their conflicts.
The cost function is at least twice differentiable and strictly convex with C ′(0) = 0.20

Agent i’s opportunity costs of investments across conflicts depend on the curvature of
C(Xi ).

For each conflict (i j) ∈ B, Agent i’s expected revenue is πi j = pi jvi j . Agents are
risk-neutral expected payoff maximisers, and thus, their additively separable payoff
function is given by

�i (xi, x−i,G) =
∑

j∈Ni

πi j − C(Xi ).

Whenever the primitives in ourmodel are such thatai = 1 for all i ∈ I and vi j = v > 0
for all (i j) ∈ B, this environment collapses to the model in FO. For ease of notation,
throughout the remainder of the paper, let ωωω = (vvv,aaa) denote the combination of all
the valuations and effectiveness parameters with ωωω ∈ � ⊆ R

2b+n++ .21

3 Existence and local uniqueness (everywhere)

To use the Implicit Function Theorem (IFT) for our comparative statics, we show that
equilibrium existence extends to asymmetric parameters. Furthermore, as our com-
parative statics are discrete variations of the model’s primitives, we show that these
equilibria are locally unique.22 We outline themain steps for our proof of existence and
local uniqueness of strictly interior equilibrium strategies. For balanced parametri-
sations ωωω (i.e., ∀(i j) ∈ B : vi j = v j i ), we also show that FO’s global uniqueness

18 This way of defining the impact function avoids the discontinuity of the CSF at (0, 0). This formulation
was first proposed by Myerson and Wärneryd (2006) and was also used by FO. This approach has been
widely used in other important contributions to the contest literature using lottery contests success functions
(see Xu et al. 2022, for a comprehensive discussion of this approach).
19 The requirement of concavity for the CSF translates into the following condition on the impact function
f (.): f ′′(ai xi j )( f (ai xi j ) + f (a j x ji )) − 2 f ′(ai xi j )2 < 0.
20 These assumptions make the cost function strictly increasing for every Xi > 0. In fact, results do not
change as long as C ′(0) > 0 is arbitrarily small.
21 For consistency, wewill stick with the word ‘effectiveness’ throughout the paper. Alternatively, we could
refer to the latter collection of parameters as ‘population weights,’ as it is done in Esteban and Ray (2011).
22 Otherwise, we could obtain one of many comparative statics that imply various effects on behaviour.
Xu et al. (2022) show that for some particular class of cost function, multiplicity of equilibria occurs such
that there is at least one agent active (investing a strictly positive amount) in each conflict in each of the
equilibria. We focus on cost functions of the type proposed by FO to derive unique comparative statics.
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extends to a neighbourhood around such parameter choices. The complete proof can
be found in the appendix.

The maximisation problems of all agents depend on the network structure G and
are structurally identical. All rivals’ conflict investments are denoted x−i . Thus, every
Agent i faces the following di -dimensional maximisation problem

max
xi∈Rdi+

�i (xi , x−i ,G).

By defining the strategy space for each conflict investment as [0, M] for a sufficiently
large M ,23 our game is strategically equivalent to a continuous game with compact
strategy spaces and a finite set of agents with strictly concave payoff functions. These
characteristics allow us to establish equilibrium existence by using a standard fixed-
point argument. For local uniqueness and interiority, we make three observations.

Firstly, we prove the following lemma.

Lemma 1 There always exists a δ∗ > 0 such that ∀δ < δ∗ and ∀ (i j) ∈ B, an
investment of x̃i j = 0 is strictly dominated by some xi j ∈ [ε∗, M] for some arbitrarily
large and finite M > 0 and some small ε∗ > 0.

Non-interior conflict investments lead to the existence of a profitable deviation.24

As in FO, it is the properties of our CSF and the cost function that guarantee strict
interiority.

Secondly, the system of first-order conditions of Agent i’s maximisation is such
that25

Fi j = ai f ′(ai xi j ) f (a j x ji )
(
f (ai xi j ) + f (a j x ji )

)2 vi j − C ′(Xi ) = 0, ∀{i, j} ∈ I and (i j) ∈ B. (1)

We show that the Jacobian of F = (Fi j )(i j)∈B has a non-zero determinant every-
where. This allows us to use the Implicit Function Theorem (IFT) to show local

23 Define Mi > 0 for all i and all (i j) ∈ B such that

ai f (ai xi j ) f (a j x ji )
(
f (ai xi j ) + f (a j x ji )

)2 vi j < C ′(Mi ).

Then choose M = max{M1, ..., Mn}. Any finite number greater than M would work as well.
24 Whenever at least one agent invests nothing, marginal profits are large, and costs are close to zero for
that agent for investing a small amount. If an agent is the sole investor in a conflict, this agent always wants
to invest less to reduce costs. Investing M is not profitable either, as it is chosen such that marginal costs
outweigh marginal profits on every conflict of every agent.
25 Notice that the optimality condition is such that

∀i ∈ I and (i j) ∈ B : vi j ai
∂ pi j
∂xi j

= C ′(Xi ) ⇐⇒ v̄ai
∂ pi j
∂xi j

= v̄

vi j
C ′(Xi ).

Thus, if vi j �= v̄, and thus v̄
vi j

�= 1, we can consider the change in valuation vi j as a change in the unit cost

of the conflict investment for Agent i that is specific to conflict (i j). Therefore, Agent i is now stronger or
weaker than her rivals.
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uniqueness of each equilibrium and derive comparative statics. We establish finite-
ness of the number of equilibria since, in a compact strategy space, no sequence of
equilibria can converge to a locally unique equilibrium.

Third and finally, for global uniqueness, we modify the proof in FO for a neigh-
bourhood around their model, which is any balanced parametrisation in ours.

Proposition 1 (Existence, (local) Uniqueness and Interiority of Pure Strategies) A
finite number of locally unique, strictly interior, pure-strategy Nash equilibria exists
for any ωωω ∈ �. Around any Nash equilibrium x(ωωω), there exists a function x(ωωω) :
� → R

2b++, mapping any parameterωωω into a Nash equilibrium, which is at least twice
differentiable. Its derivative is given by

Dx (ωωω) = − [Dx F(x(ωωω);ωωω)]−1 DωωωF(x(ωωω);ωωω). (2)

For any balanced parametrisation, there exists an open neighbourhood U (ωωω), such
that the equilibrium is globally unique ∀ωωω ∈ U (ωωω).

Our approach, using the IFT, allows us to circumvent the lack of a closed-form
solution to themaximisation problem.26 Sincewe have established local uniqueness of
each Nash Equilibrium, we can rely on the fact that in close proximity to the respective
parameter choice, conflict investment changes are unique as well. Therefore, we may
seek to study Dx (ωωω) more closely. By applying discrete changes, we can characterise
the individual and aggregate change in equilibrium investmentswith respect to changes
in valuations and effectiveness parameters.

4 The effects of strength asymmetries: examples

To provide an intuition for our more general results, we illustrate the knock-on effects
induced by the network structure by selecting some commonly used functional forms
and simple networks. Our results and insights extend to more general setups and are
provided in the subsequent sections.

Consider a complete network G of four agents (i.e., a 3-regular connected network)
as depicted in Fig. 1 and let vi j = v̄ = 1000 for all (i j) ∈ B and ai = ā = 1 for all
i ∈ I. Consider the impact function f (x) = x that induces the following the CSF,27

p(xi j , x ji ) = ai xi j
ai xi j + a j x ji

.

Finally, let the cost function be given byC(Xi ) = 1
30 X

30
i . In this example, each Agent

i’s maximisation problem is given by

26 An earlier version of this paper (Cortes-Corrales and Gorny 2018) establishes more rigorously that such
a solution does not exist for non-trivial network structures.
27 We abstract from f (x) = g(x) + δ here for the sake of clarity. All figures presented in this section are
identical up to (and beyond) the third digit presented here for δ = 2.2204 × 10−16.
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Fig. 1 Symmetric Nash equilibrium for v̄ = 1000

max
xi∈R3+

�i (xi , x−i ,G) =
⎛

⎝
∑

j∈Ni

1000
ai xi j

ai xi j + a j x ji

⎞

⎠ − 1

30

⎛

⎝
∑

j∈Ni

xi j

⎞

⎠

30

.

With these specific parameters and functional forms, the unique Nash equilibrium
(x∗

1, . . . , x
∗
n) is characterised by the strategy x∗

i = (x∗
i j ) j∈Ni for every i where x∗

i j =
0.4156 for all j ∈ Ni . In equilibrium, each Agent i has an expected payoff of �i =
1500 with overall conflict investments of 4.992. This benchmark also allows for a
closer comparison to the numerical examples presented in Fig. 2 of FO regarding the
equilibrium strategies and overall conflict intensity. The order of magnitude is the
same.

Changes in valuations

Based on the example depicted in Fig. 1, we consider both an increase and a decrease
in the strength of Agent 1 in terms of Agent 1’s conflict valuation against Agent 4. We
start by inducing an increase in the valuation of Agent 1 for winning against Agent
4 from vi j = 1000 to ṽ14 = 10vi j , while all the other parameters remain unaffected.

The resulting relative changes in the equilibrium conflict investment (	i j = x̃∗
i j−x∗

i j
x∗
i j

)

are depicted in Fig. 2a.
In Fig. 2a, we observe, not surprisingly, that Agent 1 (the strong agent) increases the

conflict investment against Agent 4, as winning conflict (14) has become more prof-
itable. Due to the convexity of the cost function, the strong agent reduces the conflict
investments on all other conflicts. Now turn to Agent 4. This agent is discouraged and
reduces the conflict investment against Agent 1, who invests more than twice as much
in the conflict against Agent 4 than before. At the same time, Agent 4 increases con-
flict investments against Agents 2 and 3. Since Agents 2 and 3 receive lower conflict
investments from Agent 1, their investment profitability in the conflicts with Agent
1 is lower and relatively higher in all conflicts with the remaining agents, including
Agent 4. Conflict intensity thus relocates away from Agent 1’s conflicts toward the
weak agents’ conflicts. The new expected payoffs, after the tenfold increase of v14,
now are naturally unequal such that �1 = 8145, �2 = �3 = 1750 and �4 = 1239
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Fig. 2 Changes in the equilibrium strategies in a complete d-regular network due to changes in valuations

with overall conflict investments of 5.021. Notice that a change in the conflict between
Agents 1 and 4 ended up benefiting other agents by increasing their expected payoffs
by 250 units (17%), and the overall conflict intensity increased by 0.029 (0.6%). The
increase is entirely driven by Agent 1 since all other agents do not increase their sum
of conflict investments.

Alternatively, we could also consider a decrease in v14 as depicted in Fig. 2b. In this
case, Agent 1 decreases the conflict investment against Agent 4 as expected, while the
other agents qualitatively exhibit the same changes aswhenwe considered the increase
of v14. The only relevant difference is related to the magnitudes.28 These examples
already illustrate the basic interplay of forces driving our more general comparative
statics presented in Sect. 5.

Changes in investment effectiveness

Instead of changing the valuations from our symmetric benchmark, we now consider
a change (i.e., an increase or a decrease) in Agent 1’s effectiveness to influence the
probabilities of winning (i.e., a1). Notice that changes in valuations are battlefield-
specific, while changes in abilities are agent-specific. We start by considering an
increase from a1 = 1 to ã1 = 5a1 while all other parameters remain unchanged. The
resulting relative changes in the equilibrium conflict investments (i.e., 	i j ) due to the
increase in a1 are shown in Fig. 3a.

As all (now) weak agents are discouraged from fighting against the strong Agent
1, they reduce their conflict investments against Agent 1 and increase them against

28 As per Proposition 1, we can consider the parameter changes in U (ω̄). Note that this neighbourhood is
not necessarily symmetric around ω̄. In fact, for our example here, we can consider a ten-fold increase in
vi j , whereas we cannot consider a ten-fold decrease.
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Fig. 3 Changes in the equilibrium strategies in a complete d-regular network due to investment effectiveness

each other. Again, conflict investments move away from the strong agent towards the
remaining agents. The new expected payoffs after the increase of a1 are �1 = 2826
and �2 = �3 = �4 = 1058. In this case, Agent 1 increases the expected payoff by
442 per conflict, while the weak agents lose the same amount in their conflicts against
Agent 1. In this case, the overall conflict intensity (4.888) is lower than the benchmark
(4.992). Nonetheless, the effective conflict intensity (i.e.,

∑
i∈I ai

∑
j∈Ni

xi j ) went
up substantially to 9.63, given that the reduction in the conflict investment of Agent
1 (−5%) is overcompensated by an increase in Agent 1’s effectiveness (ã1 = 5a1).
This leads to ã1 x̃1 j = 5 · 0.3951 = 1.9755 for j = 2, 3, 4 (an increase of 375% in
the effective conflict investment). The difference from the previous case is that only
one attacked agent received increased effective conflict investments in each conflict.
In this case, this is true for every weak agent.

Alternatively, we could also consider a decrease in a1 as shown in Fig. 3b. In this
case, we observe the same qualitative patterns as those described in Fig. 3a when a1
was increased. The main difference is in the changes’ magnitude; a decrease of a1
triggers a stronger reaction for Agent 1’s investments than for the other agents.

This result also applies in the model’s general framework except for the invest-
ments of Agent 1. The knock-on effects are also relatively large since we changed the
effectiveness parameter by a large factor for a clearer exposition of our example. This,
in turn, also has a higher-order strategic effect on Agent 1’s investment choices. At
the symmetric equilibrium, our general results predict that Agent 1 does not change
the investments in any conflict after such a change in effectiveness, which is consis-
tent with the literature (we revisit the relevant result of the seminal paper: Baik 1994,
p.375, in Appendix B). Therefore, a positive or negative change in the effectiveness
of an agent triggers the same type of knock-on effects.
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Fig. 4 Changes in the equilibrium strategies in a bipartite network due to v14 = 1000 ⇒ ṽ14 = 10000

Effects in a bipartite network

In bipartite networks, agents are divided into two groups with aligned incentives (or
partitions), so conflicts only occur between agents from these different groups. These
networks are of specific interest as they lend themselves to the study of inter-group
conflict and alliance formation as documented in previous work done by Jackson and
Nei (2015) or König et al. (2017). In the context of civil wars, bipartite networks can
be observed when temporary agreements (informal alliances) between rebel groups
in terms of bilateral cease-of-fire periods are established. This was the case during
the Syrian War after the Arab Spring in 2011 when Islamic rebel factions agreed to
a cease of fire to focus attention against the secular regime (Gade et al. 2019). As
our benchmark for this example, we start with a bipartite network of four symmetric
agents with two groups of two agents with aligned incentives each. In this case, the
expected payoff of every agent is �i = 983, and their chances of winning a conflict
are 1

2 in each conflict. Similarly to our previous examples, considering both increases
or decreases in either conflict valuations or conflict effectiveness leads qualitatively to
the same first- and second-order effects as presented formally in Propositions 4 and 5.
Therefore, we exemplify the main second-order effects in bipartite networks with the
strengthening of an agent. Consider an increase of v14 as depicted in Fig. 4. Whereas
behavioural responses to a change in Agent 1’s v14 are similar to the ones mentioned
above, outcomes differ qualitatively for the other agents.

As in the first example, Agent 4 is discouraged by the almost doubled investment
of Agent 1 (it increased by 99%). Similarly, Agent 3 faces an 89% lower investment
fromAgent 1. Thus, the marginal payoff on the conflicts against Agent 1 is reduced for
Agents 3 and 4. Sincemarginal costs are the same for Agents 3 and 4 before the change
in v14, they increase their investments against Agent 2 and decrease their investments
against Agent 1. This time, from Agent 2’s perspective, compared to the example in
the complete network in Fig. 2a, there is no reduced investment from Agent 1 since
they are not engaged in a conflict. Payoffs are given by �1 = 6891 and �2 = 899,
�3 = 1411 and �4 = 817.29

29 The changes in the behaviour ofAgent 2 are lower than 1%so for ease of exposition they are approximated
to zero omitting the signs.
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It is a common observation in the literature on alliances (for examples, see Sánchez-
Pagés 2007; Konrad and Kovenock 2009; Kovenock and Roberson 2012; Bloch 2012)
that due to free-riding incentives, alliances can end up with lower chances of winning
than individual agents. In alliances, agents typicallymaximise the sumof their payoffs,
leading to a tension between individual and collective incentives. In turn, this results in
free-riding behaviour and lower individual payoffs in the alliance compared to agents
fending for themselves. The literature suggests that asymmetries within alliances can
exacerbate this problem (Esteban and Ray 1999). Even though the agents in our groups
of aligned interests do notmaximise the sumof their payoffs,we observe a qualitatively
similar outcome for Agent 2 in Group A. Whereas Agent 1’s payoff has increased
substantially as a result of increasing v14, we see that in bipartite networks, on average,
asymmetry can reduce the chances of winning for each group member. At symmetry,
Agents 1 and 2 can expect to win 50% of their conflicts (or win each conflict with a
probability of 50%). After introducing asymmetry in valuations, this number drops to
44%. Accordingly, the share of conflicts Agents 3 and 4 can expect to win increases
from 50% to 56%. Having an agent in the group who has a particular agenda for
investing most of their resources in a conflict with a specific opponent can thus be
detrimental to the other group members’ chances of winning. This is at odds with
findings in sequential “team” contests, where outcomes of past battles do not affect
the outcomes of subsequent battles (Fu et al. 2015). This shows that even when there
are groups with aligned interests in opposition to explicit alliances or teams that share
the winning payoff among themselves, similar outcomes are observed even when the
reasons for them are different.

Asymmetry in the effectiveness of one agent affects rivals in a non-selective way.
Thus, when increasing a1 in a bipartite network in the same way as in the previous
example, we see that Group B suffers. This is true both in terms of payoffs andwinning
probabilities.

The expected payoffs after the change in a1 are given by�1 = 1796 and�2 = 803,
�3 = 679 and �4 = 679. The strength of Agent 1 still hurts Agent 2, but it hurts
Agents 3 and 4 more. The expected share of conflicts won is 66% for Agents 1 and 2,
and thus only 34% for Agents 3 and 4.

5 The effects of strength asymmetries: results

For the general results, we denote S ⊆ I a clique of G with s agents if every pair of
Agents i and j in S is involved in a bilateral conflict-i.e. (i j) ∈ B for all {i, j} ∈ S
with s = |S|. We use the term effective conflict investment for ai xi j . Note that we
can derive the effects of asymmetries on conflict investments ignoring the reactions
of agents outside the clique using an intermediate result to our earlier propositions.
We show that effect sizes diminish with the length of a path originating at Agent i .
Thus, for a neighbourhood around any baseline parametrisation, any effects in the
clique dominate the effects in the remaining network in terms of their magnitude.
Consequently, the resulting changes in conflict investments from agents outside the
clique are negligible. As in the examples, it is important to note that even though effects
can be of second- or higher-order mathematically, all effects occur simultaneously.
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Denoting a k × 1 vector of ones with 111k , let ωωω = {(1112bv̄,111nā) | (v̄, ā) ∈ R
2+} be

our baseline parametrisation (FO’s framework)-the benchmark for our comparative
statics. In such a baseline parametrisation, all valuations and effectiveness parameters
are the same across agents and conflicts. For a given conflict network structure, we
denote ¯̄x = ( ¯̄x1, . . . , ¯̄xn) and x′ = (x′

1, . . . , x
′
n) the equilibrium profiles associated

with parametrisation ωωω and ωωω′, respectively.

5.1 Individual conflict investments

Starting from a baseline parametrisation ωωω, we consider a change (either positive or
negative) in some Agent i’s valuation for winning the conflict against some specific
rival j .

Proposition 2 Letωωω′ = (vvv′,111nā) be such that v′
i j = v̄+ε and vhl = v̄ ∀(hl) ∈ B such

that (hl) �= (i j). For every S in any d-regular conflict network G, ∃ε ∈ (−v̄, 0) and
∃ε̄ ∈ (0,∞) where ∀ε ∈ (ε, ε̄) such that ε �= 0, the equilibrium profile x′ associated
withωωω′ compares to the equilibrium profile ¯̄x associated withωωω in the following way:

• First-order effects: ∀k ∈ S such that k /∈ {i, j},
if ε > 0 then x ′

i j > xi j and x ′
ik < xik .

if ε < 0 then x ′
i j < xi j and x ′

ik > xik .

• Second-order effects: ∀k, j ∈ S such that i /∈ {k, j},
if ε �= 0 then x ′

k j > x jk and x ′
ki < xki .

The explicit derivation of D ¯̄x( ¯̄ωωω) (i.e., Eq. (2) evaluated at ¯̄ωωω) indicates that Agent i
increases (decreases) the conflict investment against Agent j and reduces (increases)
the investments in all other conflicts, following an increase (decrease) in vi j . The
consideration of second-order effects reveals that all other agents reduce investments
against Agent i and increase their investments against each other. Notice that the
second-order effects follow the same patterns independently of whether we are con-
sidering an increase or decrease of the particular conflict value. This is the behaviour
depicted in Fig. 2a and b. One might wonder about the width of the parameter range in
which Proposition 2 holds. Using numerical investigations of the examples presented
in Fig. 1, we find that for all values of v14 between 75 and 50,000 (that is, roughly
between a 13-fold decrease and a 50-fold increase), each equilibrium is in line with
Proposition 2.30

Qualitatively, this result is similar when we consider a change (positive or negative)
in the effectiveness ai of some Agent i . Effectiveness enters the CSF through the
impact functions, resulting in non-linear effects. Thus, we limit our analysis to impact
functions of type f (ai xi j ) = (cai xi j )r for some c > 0 and r ∈ (0, 2) to obtain the
following result.

30 Note that the numerical thresholds are bounded by the machine’s precision when applying a Newton–
Raphson algorithm rather than the proposition’s qualitative results. This is the case for all numerical
thresholds in the remainder of this section unless mentioned otherwise.
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Proposition 3 Let ωωω′ = (1112bv̄,a′a′a′) be such that a′
i = ā + ε and a j = ā ∀ j ∈ I

such that j �= i . For every S in any d-regular conflict network G and any μ > 0,
∃ε ∈ (−ā, 0) and ∃ε̄ ∈ (0,∞) where ∀ε ∈ (ε, ε̄) such that ε �= 0, the equilibrium
profile x′ associated with ωωω′ compares to the equilibrium profile ¯̄x associated with ωωω

in the following way:

• First-order effects: ∀k ∈ S such that k �= i ,

if ε �= 0 then
∣
∣x ′

ik − xik
∣
∣ < μ.

if ε �= 0 then x ′
ki < xki .

• Second-order effects: ∀k, j ∈ S such that i /∈ {k, j},
if ε �= 0 then x ′

k j > x jk .

With impact functions of the type considered here, D ¯̄x( ¯̄ωωω) implies that
∂xi j
∂ai

|ω= ¯̄ω =
0. Thus, at ¯̄ωωω, the effect of an increase in ai on the equilibrium investments of Agent i
is negligible. Yet, the effective investments of Agent i , ai xik , increase for all k ∈ S.31

Other agents again reduce their investments against Agent i and increase investments
against each other. This is the behaviour depicted in Fig. 3a. Using the examples in
Sect. 4 as a benchmark again, we numerically investigate the size of the neighbourhood
in which Proposition 3 holds. The behavioural prediction implied by Proposition 3
applies to efficiency values for a1 between 0.1 and 12 (i.e., between a ten-fold decrease
and a twelve-fold increase).

A particularly relevant type of network to study is the complete bipartite network
with two groups with aligned interests (two partitions).32 This type of structure has
been used repeatedly for the study of inter-group conflict and alliances (see, e.g., Fu
et al. 2015; Jackson and Nei 2015; König et al. 2017). As opposed to this literature,
we do not model explicit alliances or teams that maximise the sum of their payoffs
but use the notion of groups with aligned interests. This stems from the network
structure directing their conflict investments towards the same set of rivals (Ni = N j

for i, j ∈ I1) which resonates with the saying that “the enemy of my enemy is my
friend.” Following our previous results, we start by analysing the behavioural changes
due to an increase of vi j in such network structures.

Proposition 4 For every complete bipartite conflict network G with groups of equal
size |I1| = |I2|, let i ∈ I1 and ωωω′ = (vvv′,111nā) be such that v′

i j = v̄ + ε and
vql = v̄ ∀(ql) ∈ B such that (ql) �= (i j). Then, ∃ε ∈ (−v̄, 0) and ∃ε̄ ∈ (0,∞) where
∀ε ∈ (ε, ε̄) such that ε �= 0, the equilibrium profile x′ associated withωωω′ compares to
the equilibrium profile ¯̄x associated with ωωω in the following way:

(i) If ε > 0 (ε < 0), Agent i ∈ I1 increases (decreases) the conflict investments
against Agent j and decreases (increases) the conflict investments against all
other Agents k �= j ∈ I2.

31 The fact that a discrete change of a1 to (1+	a)a1 decreases x1k to (1−	x )x in the example is in line
with this result as long as (1+ 	a)(1+ 	x ) > 1. Due to the continuity of the solution function derived in
Proposition 1, this is guaranteed to hold in some, potentially small, neighbourhood aroundωωω. The example
illustrates that the results can even apply to an increase of a1 = 1 to a′

1 = 5 or to a decrease of a1 to a1 = 1
5 .

32 By construction, this network structure induces an even number of agents in the conflict network.
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(ii) All Agents h ∈ I1 for h �= i decrease the conflict investments against Agent j
and increase the conflict investments against all other Agents k ∈ I2 such that
k �= j ∈ I2 (i.e., x ′

h j < xhj and x ′
hk > xhk).

(iii) All Agents k ∈ I2 (including Agent j) decrease the conflict investments against
Agent i and increase the conflict investments against all Agents h ∈ I1 such that
h �= i (i.e., x ′

ki < xki and x ′
kh > xkh).

As in our early example presented in Fig. 4, Proposition 4 generally shows that
a higher vi j increases conflict investments against the other group members. Using
the parameters our our examples in Sect. 4, we numerically find that this proposition
holds for changes of vi j to values between 70 and almost up to 1150 (i.e., between
about a 14-fold decrease and a 1.15-fold increase). The same qualitative result holds
in general whenever we observe changes in the effectiveness of a specific agent.

Proposition 5 For every complete bipartite conflict network G with groups of equal
size |I1| = |I2|, let i ∈ I1 and ωωω′ = (1112bv̄,aaa′) be such that a′

i = ā + ε and
al = ā ∀l ∈ I such that l �= i . Then, for any μ > 0, ∃ε ∈ (−ā, 0) and ∃ε̄ ∈ (0,∞)

where ∀ε ∈ (ε, ε̄) such that ε �= 0, the equilibrium profile x′ associated with ωωω′
compares to the equilibrium profile ¯̄x associated with ωωω in the following way:

(i) Agent i ∈ I1 does not change the conflict investments by more than μ.
(ii) All Agents h �= i ∈ I1 decrease their conflict investments (i.e., x ′

hk < xhk ,
∀k ∈ I2).

(iii) All Agents k ∈ I2 decrease the conflict investments against Agent i and increase
the conflict investments against all Agents h ∈ I1 such that h �= i (i.e., x ′

ki < xki
and x ′

kh > xkh).

Asmentioned earlier, the behaviour of the (now) either strongorweak agent changes
marginally following a change in this agent’s effectiveness. This is not captured in
our examples, as we apply discrete changes to the parameters there. We did so to
gain a better intuition. Nonetheless, in both the examples and our propositions, the
introduction of asymmetries in amulti-sided conflictwith twogroups results in reduced
winning probabilities for the agents that are part of the (now) strong agent’s group.
Furthermore, based on our example depicted in Fig. 5, our proposition describes the
changes in numerical investigations for values of ai to values between 0.005 and 13
(i.e., between a 200-fold decrease and a 13-fold increase).

5.2 Aggregate conflict investments

In the earlier examples, we provided cases where aggregate conflict investments
changed after changing one agent’s strength. Furthermore, we establishedmore gener-
ally that such a changedecreases the conflict investments directed at this agent,whereas
investments among the other agents increase. Now,we compare those changes to deter-
mine the effects of strength asymmetries on the sum of investments made across the
network, that is, across conflicts and agents X = ∑

i∈I Xi and on the investments

made by all agents other than i , X−i = X − Xi . Let
¯̄X and X ′ be the aggregate

equilibrium conflict investments associated with ¯̄ωωω and ω′ω′ω′, respectively.
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Fig. 5 Changes in the equilibrium strategies in a bipartite network due to a1 = 1 ⇒ ã1 = 5

In canonicalmodels of n-player contests with a single indivisible prize, Stein (2002)
shows that strengthening a single competitor in an otherwise strength-symmetric n-
player contest, in terms of effectiveness, decreases the overall conflict investments
(i.e., X ). In fact, a similar observation can be made for conflict networks of the type
considered here.33 In fact, any change in effectiveness induces a decrease in aggregate
investments.

Proposition 6 Let ωωω′ = (1112bv̄,a′a′a′) be such that a′
i = ā + ε and a j = ā ∀ j �= i ∈ I.

In every d-regular conflict network ∃ε ∈ (−ā, 0) and ∃ε̄ ∈ (0,∞) where ∀ε ∈ (ε, ε̄)

such that ε �= 0, we have 	X−i < 0 where 	X−i = (X ′−i − ¯̄X−i ).

In the symmetric equilibrium, opponents’ investments coincide with the maximiser
of each agent’s best response. Thus, any change, whether an increase or decrease in an
opponent’s investment, leads to a reduction in own investment. There is one exception:
many opponents reduce their investments against some agent in a heterogeneous way.
In our example illustrated in Fig. 3a, the increase in Agent 1’s effective investments
was about 500%, while it was only an increase of 34% by the other agents. Thus, from
the perspective of, say, Agent 4, there is a massive drop in the marginal probability of
winning against Agent 1 but only a slight drop against Agent 2 or 3, respectively. The
subsequent reduction in investments against Agent 1 results in low marginal costs,
leading to an increase in investments against Agents 2 and 3, where Agent 4 is now
on the increasing side of the marginal expected payoff graphs. Thus, in any d-regular
network around a symmetric equilibrium, strength asymmetries decrease the aggregate
amount of conflict investments. Our earlier example in Fig. 3a, where ai increased by
a factor of 5, does indeed show that a reduction is even possible for fairly substantial
asymmetries. Making an agent either stronger or weaker to reduce overall conflict is
thus a sound strategy close to symmetry and possible even for a wider neighbourhood
of parameters. Furthermore, our example considers a complete network that is not
part of a larger network, whereas our propositions on changes in individual conflict

33 If we impose further restrictions on the degree of homogeneity (degree zero) of the CSFs, we can reach
qualitatively similar results to Stein (2002).
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investments apply to cliques within a larger network. Aswe have argued earlier, effects
in the clique dominate higher-order effects down any path from Agent i .

It is important to note that our proposition can also be read to be informative about
the change from asymmetry-e.g., increasing a weak agent’s ai to level it with the other
symmetric agents-to complete symmetry. In this case, the support of Agent i increases
the aggregate conflict investments, in line with Baik (1994). We can make a similar
statement in the case of asymmetries in valuations.

Proposition 7 Let ωωω′ = (v′v′v′,111nā) be such that v′
i j = ā + ε and vkl = v̄ ∀(kl) �=

(i j) ∈ B. In every d-regular conflict network ∃ε ∈ (−ā, 0) and ∃ε̄ ∈ (0,∞) where

∀ε ∈ (ε, ε̄) such that ε �= 0, we have 	X−i < 0, where 	X−i = (X ′−i − ¯̄X−i ).

An increase in vi j can lead to higher aggregate investments, but only due to the
increase in Agent i’s investment against Agent j . The sum of all other agents’ invest-
ments drops. We can thus summarise that the discouragement effect is predominant
in the type of conflict network considered here. Again, this proposition also implies
that a change from asymmetry (vi j �= v̄ = vqk ∀(qk) ∈ B such that q �= i or k �= i)
to symmetry, actually increases aggregate conflict investments.

All our results hold for connectednetworks like those described in themodel section.
Nonetheless, our results apply to each component independently for disconnected
networkswithmore than one component. For example, in a networkwith three separate
triads-three components with three agents connected to each other-our results describe
the effect of strength asymmetry on each triad on its own, as the behaviour of each
agent is independent of agents not connected by a path to them.

5.3 Payoffs and winning probabilities

We finally turn our attention to how the probabilities of winning are affected by the
type of asymmetries we consider in this paper. To allow this analysis, we focus on
impact functions of the type f (ax) = (kax)r for all k > 0 and r ∈ (0, 2) in the
remainder of this paper.34 We start by considering how changes in effectiveness affect
the probability of winning.

Proposition 8 Let ωωω′ = (1112bv̄,a′a′a′) be such that a′
i = ā + ε and a j = ā ∀ j ∈ I such

that j �= i . For every S in any d-regular conflict network and anyμ > 0, ∃ε ∈ (−ā, 0)
and ∃ε̄ ∈ (0,∞) where ∀ε ∈ (ε, ε̄) such that ε �= 0, the winning probabilities p′
in the equilibrium associated with ωωω′ compare to the winning probabilities ¯̄p in the
equilibrium associated with ωωω in the following way:

• If ε > 0: p′
ik > ¯̄pik , ∀k ∈ Ni .

• If ε < 0: p′
ik < ¯̄pik , ∀k ∈ Ni .

• ∀ε ∈ (ε, ε̄) and ∀k, q �= i such that (kq) ∈ B: p′
kq = ¯̄pqk = 1

2 .

Under the impact functions assumed here and as an intermediate step to the above
result, we show that Agent i does not change any conflict investments following a

34 Using k = 1, this is the impact function axiomatised by Skaperdas (1996).
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change in ai ; thus, Agent i’s effective conflict investments increase (decrease) with
no changes in costs.

Corollary 1 If ai increases (decreases), the payoff of Agent i increases (decreases).

We carry out the same analysis with regard to changes in the valuation as we have
done previously.

Proposition 9 Let ωωω′ = (vvv′,111nā) be such that v′
i j = v̄ + ε and vhl = v̄ ∀(hl) ∈ B

such that (hl) �= (i j). For every S in any d-regular conflict network ∃ε ∈ (−v̄, 0)
and ∃ε̄ ∈ (0,∞) where ∀ε ∈ (ε, ε̄) such that ε �= 0, the winning probabilities p′
in the equilibrium associated with ωωω′ compare to the winning probabilities ¯̄p in the
equilibrium associated with ωωω in the following way:

• If ε > 0: p′
i j > ¯̄pi j , p′

ik < ¯̄pik , and p′
jk > ¯̄p jk , ∀k ∈ Ni such that k �= j .

• If ε < 0: p′
i j < ¯̄pi j , pik > ¯̄pik , and p′

jk < ¯̄p jk , ∀k ∈ Ni such that k �= j .

• ∀ε ∈ (ε, ε̄) and ∀k, q �= i, j such that (kq) ∈ B: p′
kq = ¯̄pkq = 1

2 .

Here, the change in investments leads to both a change in winning probabilities and
costs. Only for an increase in strength canwe derive how these changes affect Agent i’s
overall payoff. To see this, consider the following argument. Agent i could stick to ¯̄xi
without a response from the other agents in the network (remember that their responses
were second-order effects originating from Agent i’s response to the change in vi j ).
This way, the winning probabilities would not change, but the rewards on conflict (i j)
would increase. If Agent i chooses another set of investments in equilibrium, it must
be a profitable deviation from this strategy.

Corollary 2 If vi j increases, the payoff of Agent i increases.

In the case of a decrease in vi j , such a profitable deviation from the symmet-
ric equilibrium strategy profile creates something we could call a substitution effect
on Agent i’s payoff. This substitution effect is certainly positive because otherwise,
Agent i could simply stick to the symmetric equilibrium strategy profile. However, the
reduction in vi j constitutes a negative income effect, as, leaving conflict investments
unchanged, a lower valuation in a conflict leads to a lower payoff. How these two
effects compare generally depends on the specific cost function and the parameter
values at symmetry.

6 Conclusion

We modelled multi-sided conflicts with a network of agents competing in lottery
contests. The agents can invest in their specific conflicts to affect their chance of win-
ning them. We find that an agent does not change their conflict investments if their
effectiveness changes, independently of the direction. Yet, since this affects effec-
tive conflict investments, such a change affects the optimal investments of all their
rivals. The change in the strength of an existing agent induces other agents to increase
their investments against each other while reducing investments against the targeted
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agent. Conflict intensity is thus relocated away from the changed agent and towards
the unchanged agents independently of whether the changed agent is now stronger
or weaker. For the winning probabilities, we found that an increase (decrease) in
an agent’s strength increases (decreases) this agent’s probabilities of winning. Fur-
thermore, in conflicts where the (now strong or weak) agent is not involved, the
probabilities of winning remain unchanged compared to the symmetric case. Our
findings offer a dual interpretation: they inform the analysis of the impact of asym-
metries but also how transforming an asymmetric multi-sided conflict into a more
symmetric one influences optimal behaviour.

Our results have implications for foreign policies that aim to support or hinder an
agent in otherwise balanced conflicts to influence conflict outcomes. Since distant
conflicts are affected, and conflict can escalate among the unchanged agents, our
analysis suggests that such policies can be ill-advised from a strategic vantage point. In
fact, according to König et al. (2017), utilising data from the GreatWar of Africa, arms
embargoes demonstrated the capability to decrease fighting activity within the targeted
group by 40–60% (first-order effect) while simultaneously leading to an increase in
conflict between non-targeted groups (second-order effects). This outcome aligns with
the cautious findings of studies regarding the effects of arms embargoes, similar to
Tierney (2005) and our results. Our findings bear relevance to the impact of foreign
combat support in civil wars. As highlighted by Sullivan and Karreth (2015), in a
bilateral conflict involving an incumbent and rebel groups, the influence of foreign aid
on the conflict’s outcome hinges on the initial strength levels of each party. Our results
echo these insights by considering a novel aspect of the conflict-the network structure.

While grand contests ormodels with only two agents are technically appealing tools
tomodel behaviour in conflict, their non-linear functional forms impede the analysis of
asymmetries in more complex settings. Our analysis is one of the first building blocks
in establishing results on asymmetries more broadly and in models that allow for more
complex interactions. Two such extensions come to mind. In models of endogenous
network formation, agents decide on whether they want to participate in a conflict
with another agent (see, e.g., Song and van der Schaar 2015). Our model can pro-
vide a theoretical foundation for the order in which conflicts are started by describing
how the expected benefits of initiating a conflict vary with asymmetries. That can
lead to a richer environment in which a discussion of Balancing or Bandwagoning in
International Relations is possible in a stylised model. In fact, our framework can be
used to extend the insights of Kimbrough et al. (2014) by studying how the network
structure, aside from the strength asymmetry, can promote the peaceful resolution of
conflicts. This would allow an analysis of peaceful outcomes beyond the mere absence
of conflict investment.

It is also worth keeping the broader optimal design question from a social plan-
ner’s perspective in mind. Answering this question is the next natural and important
step to continue the analysis of multi-sided conflicts, especially under asymmetries.
Our model contributes to this broader research agenda by laying the foundation for
analysing how strength relocation leads to a strategic relocation of conflict invest-
ments. Our model can be the building block of a two-stage game in which a social
planner chooses the optimal intervention first, and conflicting agents choose conflict
investments in the second stage. Our paper characterises the behaviour in this second
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stage, which is necessary for being able to address this broader question. Our results
show the richness of consequences that such interventions can have for distinct parts
of the network. Making one agent stronger or weaker reduces the conflict investments
that this specific agent is facing, as well as the aggregate conflict intensity across the
network. Still, some remote parts of the network can see a local-potentially unan-
ticipated and unintended-increase in conflict intensity. Since the objectives of social
planners differ (such as de-escalation, stabilisation, pacification, etc.), this remains an
open question for future studies to explore. It further remains an empirical exercise to
gauge the importance of this phenomenon in actual conflicts and across many relevant
domains, such as cybersecurity, criminal gangs, and informationwarfare, amongst oth-
ers. Historical examples of such interventions are numerous, and for the most recent
ones, data sets are available.
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by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
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A Proofs of propositions in themain text

Asanotational convention,weuse p1i j = ∂ pi j
∂(ai xi j )

, p2i j = ∂ pi j
∂(a j x ji )

, p12i j = ∂2 pi j
∂(ai xi j )∂(a j x ji )

,

p11i j = ∂2 pi j
∂(ai xi j )2

, and so on as short-hands for the derivatives of the CSF. Note that this

implies, for example,
∂ pi j
∂xi j

= ∂ pi j
∂(ai xi j )

∂(ai xi j )
∂xi j

= ai p1i j , due to our definition of conflict
investments and effective conflict investments.

A.1 Proof of proposition 1

The proof proceeds in five lemmas. First, we show that a pure strategy Nash Equilib-
rium exists for all ω ∈ �. Second, by means of contradiction, we show that every such
equilibriummust be bounded and strictly interior. Third, we show that the determinant
of the Jacobian of F = (Fi j )(i j)∈B is strictly positive for any equilibrium to apply
the IFT to conclude local uniqueness. Fourth, we use a result due to Rosen (1965),
according to which the equilibrium is globally unique if

σ(x, r) =
∑

i∈I
riπi , ri ≥ 0, (3)

is strictly diagonally concave for some ri > 0 for all i ∈ I. Goodman (1980) shows
that a sufficient condition for this to hold within our setting is that πi is concave in
xi , convex in x−i for all i ∈ I, and that σ(x, r) is concave in x. We show that this
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is true at any balanced parametrisation ω, and thus, the uniqueness result of Franke
and Öztürk (2015) carries over to our setting for such parameters. Due to the earlier
application of the IFT at all ω ∈ � including all possible ω, it follows that there exists
a neighbourhood around any equilibrium for which it is locally unique. The resulting
matrix of comparative statics in expression (2) is a direct result of the application of
the IFT and holds for any equilibrium.

Fifth and finally, to show finiteness of equilibrium points, we demonstrate that the
set of equilibria is compact. In this compact set, there cannot be any (infinite and
non-trivial) sequence of equilibria, as this would lead to a contradiction with local
uniqueness.

Lemma 2 A pure strategy Nash Equilibrium exists for all ω ∈ �.

Proof The game, with f (ai xi j ) = g(ai xi j ) + δ for some arbitrarily small δ > 0, is
a continuous game with a finite set of players. The set of strategies for each agent
and conflict investment is [0, M] and thus non-empty, convex and compact, and the
payoff functions are continuously differentiable. It suffices to show that these are
quasi-concave to apply Kakutani (1941)’s theorem to conclude existence.
Denote the Hessian on the payoff function of agent i with Hi . Using the Leibniz
formula for determinants, the general formula for det(Hi ) obtains as

det(Hi ) =
⎛

⎝
∏

j∈Ni

a2i p
11
i j vi j

⎞

⎠ − C ′′(Xi )

⎛

⎝
∑

j∈Ni

∏

l �= j

a2i p
11
il vil

⎞

⎠ . (4)

Since this determinant of Hi is positive whenever di is even and negative whenever
di is odd, and the signs of its principal minors are alternating,35 the claim follows as
this shows that Hi is negative definite. The payoff functions are concave and, thus,
quasi-concave. ��
Lemma 3 In any pure strategy Nash Equilibrium we have xi j ∈ [ε∗

i , Mi ] for some
finite Mi > 0 and some small ε∗

i > 0 for all i, j ∈ I.
Proof We need to verify three claims.

Claim A In every equilibrium, there exists a bound Mi for all i ∈ I such that for every
j ∈ Ni we have xi j < Mi .

Consider the highest possible revenue agent i can get from winning all of i’s con-
flicts,

Vi :=
∑

j∈Ni

vi j .

Agent i’s investment levels are thus bounded by Mi = C−1(Vi ), for otherwise, her
payoff would be negative, and not investing would result in a higher payoff.

35 These are obtained by removing the respective co-factors from the formula, deleting one negative factor
from both multiplications. This changes the sign of the entire expression, as the resulting matrix changes
from odd to even dimension or vice versa.
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Claim B Any strategy profile with xi j = x ji = 0 for any (i j) ∈ B can never be an
equilibrium.

Suppose by contradiction that it can.Agent i’smarginal payoff for these investments
is given by

δ

δ2
= 1

δ
.

Since her investment levels are bounded above by Mi , her highest marginal costs are
C ′(Mi ). We can thus always find a δ∗ > 0 such that for any δ ∈ (0, δ∗) we have

1

δ
> C ′(Mi ).

Thus, there is a profitable deviation. A contradiction.

Claim C Any strategy profile with xi j > 0 and x ji = 0 for any (i j) ∈ B can never be
a Nash Equilibrium.

Suppose not and assume x ji = 0. Let agent i’s strategy profile be given by xi =
(xi1, ..., xi j , ..., xidi ) with xi j > 0. For small δ > 0, the probability of winning for i is
close to 1. Now consider the alternative profile x′

i which is such that x
′
i j = xi j −ε > 0.

Costs have reduced and p′
i jvi j < pi jvi j . Still, there exists a δ∗∗ such that for any

δ ∈ (0, δ∗∗) we have p′
i jvi j −C(X ′

i ) > pi jvi j −C(Xi ), thus constituting a profitable
deviation. A contradiction. ��

We can thus find some εi for each agent, such that xi j > εi for all j ∈ Ni .

Lemma 4 For every ω ∈ � we have det(H) > 0.

Proof Aside from the diagonal blocks, H is a sparse matrix with only one (poten-
tially) non-zero element in each of the off-diagonal blocks (the cross-derivatives
aia j p21j i vi j and aia j p12i j v j i in the symmetric pairs of blocks). The determinant can thus
be expressed as the sum of the determinant of the diagonal matrix and the additional
possible permutations with the respective rows containing these non-zero elements.36

Each of these possible permutations that leaves a non-zero diagonal product is asso-
ciated with one or more conflicts.

Let the set of all permutations and their combinations be denoted Sn with typical
element φ. It contains all sets of additional row permutations that correspond to some
set of conflicts (i j) ∈ B.37 The signum function sgn(φ) is negative when |φ| is odd
and positive when |φ| is even, where |φ| is the number of permutations in φ. Using
the Leibniz formula for determinants, we get

det(H) =
∏

i∈I
det(Hi ) +

∑

φ∈Sn
sgn(φ)

∏

(i j)∈φ

−
(
aia j p

12
i j

)2
vi jv j i

∏

i∈I
det(Hi (φ))

36 For all other permutations, the summand to the determinant would vanish.
37 When rows i and j are swapped, this is counted as one permutation.
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=
∏

i∈I
det(Hi ) +

∑

φ∈Sn
sgn(φ)(−1)|φ| ∏

(i j)∈φ

(
aia j p

12
i j

)2
vi jv j i

∏

i∈I
det(Hi (φ))

=
∏

i∈I
det(Hi ) +

∑

φ∈Sn

∏

(i j)∈φ

(
aia j p

12
i j

)2
vi jv j i

∏

i∈I
det(Hi (φ)). (5)

We know that
∏

i∈I det(Hi ) > 0 as all Hi associated with an even number of conflicts
have det(Hi ) > 0 and all Hi associatedwith anoddnumber of conflicts have det(Hi ) <

0, due to negative definiteness. But since the total number of investment choices is
2b, there must be an even number of the latter type of Hi . Thus,

∏
i∈I det(Hi ) > 0 is

true.38

Whenever we delete a leading cofactor (some row j and column j) of any Hi , the
sign changes since two negative factors are deleted, but the number of elements in the
product changes from odd to even or vice versa. Since the considered permutations
always affect exactly two such Hessians, the sign of the last product in (5) cannot

change for any possible non-zero permutation. Since
(∏

(i j)∈φ aia j p12i j

)2
vi jv j i ≥ 0,

this shows that det(H) > 0 for all ω ∈ �. ��
Lemma 5 Every pure strategyNashEquilibrium is locally unique, and the comparative
statics at any such equilibrium are given by expression (2). Furthermore, for an open
neighbourhood around any balanced parametrisation, there exists a globally unique,
interior, pure-strategy Nash Equilibrium.

Proof The first sentence follows immediately from applying the Implicit Function
Theorem (IFT). Since det(H) > 0 and thus det(H) �= 0, and F being continuously
differentiable on R

4b+n , it implies that the solution at any equilibrium is locally con-
tinuous in its parameters and that the derivatives are given by expression (2).

For the second part, we apply the results byRosen (1965) andGoodman (1980) at an
arbitrary equilibrium for a balanced parametrisation. The individual payoff functions
are strictly concave in own strategies (Hi is negative definite for all x ∈ R

2b+ ) and
strictly convex in the strategies of others, as each payoff function for agent i is the
sum of convex CSFs in x−i . Function (3) for ri = r for all i ∈ I can be rewritten as

σ(x, r) =
∑

i∈I
rpi jvi j −

∑

i∈I
rC(Xi ) = r

∑

i∈I
pi jvi j − r

∑

i∈I
C(Xi )

= r
∑

(i j)∈B

(
pi jvi j + (1 − pi j )v j i

) − r
∑

i∈I
C(Xi )

= r
∑

(i j)∈B
v j i + r

∑

(i j)∈B
pi j (vi j − v j i ) − r

∑

i∈I
C(Xi )

= r
∑

(i j)∈B
v j i − r

∑

i∈I
C(Xi ),

where the last equality follows from the balance of conflict valuations (vi j = v j i for all
(i j) ∈ B) at any balanced parametrisation. Since the cost functions are strictly concave

38 This is quintessentially the “handshaking lemma.”
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for every x ∈ R
2b+ and the first term is a constant, this function is strictly concave.

Thus, any balanced parametrisation has a globally unique equilibrium. Applying the
IFT to any such equilibrium, using the above arguments about F and the determinant
of its Jacobian H , it follows that there exists a neighbourhood of parameters for which
a globally unique equilibrium exists. ��
Lemma 6 The number of pure strategy Nash Equilibria is finite.

Proof Conflict investments are bounded. Since this is true for every investment level
in every equilibrium, the set of equilibria is compact (closed and bounded in R

2b).
By means of contradiction, suppose the number of equilibria is infinite. We could
thus construct a (non-trivial) sequence of equilibria in this set. Since the sequence is
bounded, there exists a convergent subsequence, the limit of which lies in the set due to
compactness. Since we are operating in a metric space, ∀ε > 0, ∃ N (ε) s.th. ∀m, n >

N (ε), d(xm, xn) < ε. But since the limit point is a locally unique equilibrium-as it is
part of the set for which det(H) > 0-we would have found an isolated point that is
also a limit point. A contradiction. Thus, there cannot exist an infinite number of pure
strategy Nash Equilibria. ��

A.2 Proof of proposition 2

Assume a symmetric equilibrium, xi j = xs > 0 for all (i j) ∈ B and denote Xs =
dxs the total conflict investment of each agent in such an equilibrium. Consider the
condition equivalent to the FOCs in Equation (1) at such an equilibrium with any ωωω,

ā f ′(āxs)
4 f (āxs)

v̄ = C ′(dxs), ∀i, j ∈ I and (i j) ∈ B.

If xs → 0, the left-hand side is large since f ′(0) is strictly positive and f (0) = δ for
some arbitrarily small δ > 0. The right-hand side approaches zero. If xs → ∞, the
left-hand side approaches zero since f ′(·) is positive but bounded and f (āxs) → ∞.
The right-hand side approaches infinity. Since all involved functions are continuous,
there must exist a finite xs > 0 such that the above equality holds. The Jacobian of
this system contains the following elements,

∂Fi j
∂xi j

= a2i p
11
i j vi j − C ′′(Xi ) < 0

∂Fi j
∂x ji

= aia j p
12
i j vi j ≶ 0

∂Fi j
∂xiq

= −C ′′(Xi ) < 0

∂Fi j
∂xqi

= 0.

Due to Proposition 1, we know that this equilibrium is globally unique for a neigh-
bourhood around the baseline parametrisation. Since investments are symmetric in

123



How strength asymmetries shape multi-sided conflicts

each conflict, we have p12lq = 0 for all (lq) ∈ B.39 This results in a block-diagonal
matrix Dx (F) = diag(A1, A2, ..., An) with Ai = Bi + Ei where

Bi =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

zi1 0 · · · · · · 0
0 zi2 0 · · · 0
...

. . .

...
. . .

0 zi N

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

with zi j := a2i p
11
i j vi j and Ei = [e]ql = −C ′′(Xi ) for all (ql). Note that in the

equilibrium at any baseline parametrisation in a d-regular network, we have zi j =
zql = z = a2 p11i j v.

The inverse of this matrix can be obtained by applying the Sherman-Morrison
formula,

A−1
i = 1

z
I −

1
z2
E

1 − 1
z diC

′′(Xs)
.

In a more compact way, this is

A−1 = G = [g]l,q =
{

z−(d−1)C ′′(Xs )
z−dC ′′(Xs )

z−1 if l = q
C ′′(Xs )

z−dC ′′(Xs )
z−1 else.

The partial effects ∂x
∂ω

= − [Dx (F)]−1 Dω(F) are eventually given by

∂xi j
∂vi j

= − z − (d − 1)C ′′(Xs)

z − dC ′′(X)

p1

a p11v
> 0 (6)

∂xiq
∂vi j

= − C ′′(Xs)

z − dC ′′(Xs)

p1

a p11v
< 0 for q �= j (7)

∂xi j
∂ai

= − 1 + z

z − dC ′′(Xs)

(
p1

a2 p11
+ xs

a

)

� 0. (8)

Thus, at and close to ωωω, an increase in vi j leads Agent i to increase the conflict
investment against Agent j and to decrease the conflict investment against all Agents
q �= j . Conversely, a decrease in vi j leads Agent i to decrease the conflict investment
against Agent j and to increase the conflict investment against all Agents q �= j .
To consider a discrete change in vi j , we apply second-order Taylor approximations to
each type of investment. We denote each best response function as a nested function of
the strategies that constitute the shortest path through the graph to a nonzero derivative.

39 The cross-derivatives are given by p12lq = ai a j f
′(ai xi j ) f ′(a j x ji )( f (ai xi j )− f (a j x ji ))

( f (ai xi j )+ f (a j x ji ))3
.
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In a slight abuse of notation, let us denote agent i’s best response function on conflict
(i j) as xi j (x ji (v j i )).

Note that the change induced in a nested function f (g(x)) is less than that induced
in g(x), due to a change in x , whenever

|Df (g(x))g′(x)| < |g′(x)|
⇔ |Df (g(x))||g′(x)| < |g′(x)|
⇔ |Df (g(x))| < 1.

The changes we consider are either those affecting the rival in a conflict,
∂xi j
∂x ji

, which is
zero at any baseline parametrisation and close to zero near it, and those that affect the
decision in another conflict due to the cost function. We need the following lemma.

Lemma 7 At any symmetric pure strategy Nash Equilibrium, the derivative
∂xi j
∂xik

for

any i ∈ I and any j, k ∈ Ni is given by − C ′′(Xs )
(d−1)C ′′(Xs )−z .

Proof Fix some i ∈ I and some k ∈ Ni . Let F̃i = {Fil |l ∈ Ni ∧ l �= k}, ω̃ = {ω, xik}
and F̃ = {Fi ,

{
Fj | j ∈ I ∧ j �= i}}. The Hessian Dx (F̃) has the same structure

Dx (F). Thus, Ã−1 is the same as A−1 after deleting the principal minor associated
with xik . Thus, in addition to the partial effects mentioned before for all xkl such that

(kl) �= (ik), we obtain from ∂ x̃
∂ω̃

= −
[
Dx̃ (F̃)

]−1
Dω̃(F̃) for each j ∈ Ni such that

j �= k

∂xi j
∂xik

= −
[

−C ′′(Xs)
z − (d − 2)C ′′(Xs)

z − (d − 1)C ′′(Xs)
z−1 − (d − 2)

C ′′(Xs)2

z − (d − 1)C ′′(Xs)
z−1

]

= −
[

C ′′(Xs)

z − (d − 1)C ′′(Xs)
+ (d − 2)C ′′(Xs)2

z − (d − 1)C ′′(Xs)
z−1

− (d − 2)C ′′(Xs)2

z − (d − 1)C ′′(Xs)
z−1

]

= − C ′′(Xs)

(d − 1)C ′′(Xs) − z
.

��
Thus, we have

∣
∣
∣
∣
∂xi j
∂xik

∣
∣
∣
∣ =

∣
∣
∣
∣
∣

C ′′(Xi )

(d − 1)C ′′(Xi ) − a21 p
11vi j

∣
∣
∣
∣
∣
< 1.

This implies that any effect of a sufficiently small change in parameters from ω dimin-
ishes with increasing length of a path. Thus, for any effect of order k, there exists a
neighbourhood around ω such that the effect dominates any effects of order higher
than k.
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The attacked agent decreases investment against i and increases it against all other
agents k �= i, j ,

x ji (xi j (vi j ))=̃xs + 1

2

∂2x ji
(∂xi j )2

(
∂xi j
∂vi j

)2

(vi j − v)2 < xs

x jk(x ji (xi j (vi j )))=̃xs + 1

2

∂x jk
∂x ji

∂2x ji
(∂xi j )2

(
∂xi j
∂vi j

)2

(vi j − v)2 > xs .

The other weak agents k �= i, j also decrease their investments against i and increase
them against j and each other (for each k against all l �= k, i, j),

xki (xik(vi j ))=̃xs + 1

2

∂2xki
(∂xik)2

(
∂xik
∂vi j

)2

(vi j − v)2 < xs

xk j (xki (xik(vi j )))=̃xs + 1

2

∂xk j
∂xki

∂2xki
(∂xik)2

(
∂xik
∂vi j

)2

(vi j − v)2 > xs

xkl(xik(vi j ))=̃xs + 1

2

∂xkl
∂xki

∂2xki
(∂xik)2

(
∂xik
∂vi j

)2

(vi j − v)2 > xs .

Note, that the sign of (vi j − v)2 is independent of whether vi j > v or vi j < v. Thus,
the results for all Agents k, j �= i apply both to an increase and a decrease in vi j . ��

A.3 Proof of proposition 3

For this proof, let us denote agent i’s best response function on conflict (i j) as

xi j (a j x ji (a j )). Note that
∂xi j
∂ai

= 0 implies
∂(ai xi j )

∂ai
= ∂(ai xi j )

∂ai
+ xi j = xi j > 0.

According to the partial derivative in (8), atωωω, the derivative in ai is generally ambigu-
ous. Using a second-order Taylor approximation for a discrete step from ωωω, as in the
previous proof, we see that i gets attacked less by all j �= i ,

x ji (ai xi j (ai )) =xs + 1

2

∂2x ji
(∂ai xi j )2

(
∂ai xi j
∂ai

)2

(ai − a)2

=xs + 1

2

∂2x ji
(∂ai xi j )2

(xs)2(ai − a)2 < xs .

Similarly, it follows that all other agents j, k �= i increase their investments against
each other,

x jk(x ji (ai xi j (ai ))) = xs + ∂x jk
∂x ji

∂2x ji
(∂ai xi j )2

(xs)2(ai − a)2 > xs .

Note, that the sign of (ai − a)2 is independent of whether ai > a or ai < a. Thus, the
results for all agents apply both to an increase and a decrease in ai . ��
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Fig. 6 Path from Agent 1 to Agent 4 in a bipartite network

A.4 Proof of proposition 4

Consider the path in the network of four.
If Agent 3’s valuation of winning against Agent 4 v34 increases, there are two paths

of length 2 leading to Agent 1. One such path can be described by the nesting

x12(x21(x23(x32(v34)))), (9)

since we know from comparative statics that ∂x32
∂v34

is nonzero and in fact negative. The
other nesting is

x12(x14(x41(x43(x34(v34))))). (10)

For ease of notation, let us rewrite function (11) as

f (g(h(k(x)))) := x12(x21(x23(x32(v34)))). (11)

We will show that up to the fourth derivative of this function, all derivatives van-
ish. Then, we show that the fourth derivative is indeed negative. Applying the same
technique using Taylor approximations as in the previous results yields the proof.
The first derivative of this function w.r.t. x is given by

f ′g′h′k′(x) = 0,

since f ′ = h′ = 0 because f ′ = ∂x12
∂x21

= 0 and f ′ = ∂x23
∂x32

= 0.
The second derivative w.r.t. x is given by

f ′′ (g′)2 (h′)2 k′(x)2 + f ′g′′ (h′)2 k′(x)2 + f ′g′h′′k′(x)2 + f ′g′h′k′′(x) = 0,

again because because f ′ = ∂x12
∂x21

= 0 and h′ = ∂x23
∂x32

= 0.
The third derivative w.r.t. x is then given by

f ′′′ (g′)3 (h′)3 k′(x)3 + f ′′2g′g′′ (h′)3 k′(x)3 + f ′′ (g′)2 2h′h′′k′(x)3

+ f ′′ (g′)2 (h′)2 2k′(x)k′′(x)+
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f ′′g′g′′ (h′)3 k′(x)3 + f ′g′′′ (h′)3 k′(x)3 + f ′g′′2h′h′′k′(x)3

+ f ′g′′ (h′)2 2k′(x)k′′(x)+
f ′′ (g′)2 h′′h′k′(x)3 + f ′g′′h′h′′k′(x)3 + f ′g′h′′′k′(x)3 + f ′g′h′′2k′(x)k′′(x)

f ′′ (g′)2 (h′)2 k′(x)k′′(x) + f ′g′′ (h′)2 k′(x)k′′(x) + f ′g′h′′k′(x)k′′(x)
+ f ′g′h′k′′′(x) = 0.

We spare the reader from a sum with more than 64 elements by only considering
elements from that third derivative, which do neither contain f ′ nor h′ nor squares or
cubics of those derivatives in the product since taking a derivative of these would only
lead to elements containing f ′, h′ or both. This leaves us with

f ′′ (g′)2 2h′h′′k′(x)3 + f ′′ (g′)2 h′′h′k′(x)3 = 3 f ′′ (g′)2 h′h′′k′(x)3.

The derivative of this element is thus identical to the fourth derivative of the nested
function in Equation (11). It is given by

3 f ′′′ (g′)3 (h′)2 h′′k′(x)4 + 3 f ′′2g′g′′ (h′)2 h′′k′(x)4 + 3 f ′′ (g′)2 (h′′)2 k′(x)4

+ 3 f ′′ (g′)2 h′h′′′k′(x)4 + 3 f ′′ (g′)2 h′h′′3k′(x)2k′′(x) = 3 f ′′ (g′)2 (h′′)2 k′(x)4.

Plugging the original functions back in using Equation (11), we get

3
∂2x12

(∂x21)2

(
∂x21
∂x23

)2 (
∂2x23

(∂x32)2

)2 (
∂x32
∂v34

)4

< 0,

which is the only nonzero element that would show up in a fourth-order Taylor approx-
imation of x12(x21(x23(x32(v34)))) around the symmetric equilibrium.
Repeating these steps for (10), we get

3
∂x12
∂x14

∂2x14
(∂x41)2

(
∂x41
∂x43

)2 (
∂2x43

(∂x34)2

)2 (
∂x34
∂v34

)4

> 0.

The fourth-order Taylor approximation of x12(v34) would thus be40

x12(v34) ∼= x12(v̄) + 3

4!

(
∂2x12

(∂x21)2

(
∂x21
∂x23

)2 (
∂2x23

(∂x32)2

)2 (
∂x32
∂v34

)4

+∂x12
∂x14

∂2x14
(∂x41)2

(
∂x41
∂x43

)2 (
∂2x43

(∂x34)2

)2 (
∂x34
∂v34

)4
)

(v34 − v̄)4.

40 The cross-derivatives of the two nestings are neglected as they all originate from ∂x12
∂x21

, which is zero at
any symmetric equilibrium.
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Since (v34 − v̄)4 > 0, irrespective of whether we increase or decrease v34, the sign
of the resulting change is the same. Comparing the preceding two expressions in the
parentheses, we see that x12 increases if and only if

∣
∣
∣
∣
∣
3
∂x12
∂x14

∂2x14
(∂x41)2

(
∂x41
∂x43

)2 (
∂2x43

(∂x34)2

)2 (
∂x34
∂v34

)4
∣
∣
∣
∣
∣

>

∣
∣
∣
∣
∣
3

∂2x12
(∂x21)2

(
∂x21
∂x23

)2 (
∂2x23

(∂x32)2

)2 (
∂x32
∂v34

)4
∣
∣
∣
∣
∣
.

Since at symmetry we have
∂2xi j

(∂x ji)
2 = ∂2xlq

(∂xql)
2 and

∂xi j

(∂xiq)
2 = ∂2xlk

(∂xlh)2
for any

(i j), (ql), (iq), (lk), (lh) ∈ B, this reduces to

∣
∣
∣
∣
∣

∂x12
∂x14

(
∂x34
∂v34

)4
∣
∣
∣
∣
∣
>

∣
∣
∣
∣
∣

(
∂x32
∂v34

)4
∣
∣
∣
∣
∣
.

Using the explicit expressions from Proposition 1, this amounts to

∣
∣
∣
∣
∣
− C ′′(Xs)

(d − 1)C ′′(Xs) − z

(

− z − (d − 1)C ′′(Xs)

z − dC ′′(X)

p1

a p11v

)4
∣
∣
∣
∣
∣

>

∣
∣
∣
∣
∣

(

− C ′′(Xs)

z − dC ′′(Xs)

p1

a p11v

)4
∣
∣
∣
∣
∣

⇔
∣
∣
∣
∣
∣
C ′′(Xs)

(
z − (d − 1)C ′′(Xs)

)3

(z − dC ′′(X))4

∣
∣
∣
∣
∣

>

∣
∣
∣
∣
∣

(
C ′′(Xs)

z − dC ′′(Xs)

)4
∣
∣
∣
∣
∣

⇔
∣
∣
∣
(
z − (d − 1)C ′′(Xs)

)3
∣
∣
∣

>

∣
∣
∣C ′′(Xs)3

∣
∣
∣

⇔ max
{(
z − (d − 1)C ′′(Xs)

)3
,
(
(d − 1)C ′′(Xs) − z

)3
}

> max
{
−C ′′(Xs)3,C ′′(Xs)3

}

⇔ (d − 1)C ′′(Xs) − z > C ′′(Xs),

which is true. Thus, Agent 1 increases the investment against Agent 2 if v34 increases
by some discrete but small amount starting from symmetry. Mirroring this procedure,
we would arrive at the same condition for a decrease in x14 following a discrete but
small increase in v34.

Since the path length does not change when increasing the size of groups, the result
applies to any complete bipartite network with two groups of equal size. ��
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A.5 Proof of proposition 5

The effect on x12, resulting from a knock-on effect caused by an change in a3 is given
by the two terms

3
∂x12
∂x14

∂2x14
(∂x41)2

(
∂x41
∂x43

)2 (
∂2x43

(∂a3x34)2

)2 (
∂a3x34
∂a3

)4

> 0,

and

3
∂2x12

(∂x21)2

(
∂x21
∂x23

)2 (
∂2x23

(∂a3x32)2

)2 (
∂a3x32
∂a3

)4

< 0.

Thus, the fourth-order Taylor approximation of x12(a3) around ¯̄ω, is given by

x12(a3) ∼= x12(ā) + 3

4!

(
∂x12
∂x14

∂2x14
(∂x41)2

(
∂x41
∂x43

)2 (
∂2x43

(∂a3x34)2

)2 (
∂a3x34
∂a3

)4

+ ∂2x12
(∂x21)2

(
∂x21
∂x23

)2 (
∂2x23

(∂a3x32)2

)2 (
∂a3x32
∂a3

)4
)

(a3 − ā)4.

As in the previous proof, as (a3 − ā)4 > 0, irrespective of whether we increase or
decrease a3, the sign of the resulting change is the same. Comparing the summands
in the parentheses preceding (a3 − ā)4 > 0, we see that the negative effect is greater
in magnitude than the positive effect if and only if

∣
∣
∣
∣−

C ′′(Xs)

(d − 1)C ′′(Xs) − z

∣
∣
∣
∣ < 1,

which is true.
In this case, the change in parametera3 affects all conflicts ofAgent 3 symmetrically,

so the effect also applies to x14.

A.6 Proof of proposition 6

First, note that at any ω, in equilibrium, the partial first-order and second-order deriva-
tives of a conflict investment with respect to a direct rival’s (effective) investment are
the same in each conflict. Thus, the indices can be used interchangeably.
From Proposition 3, we know that for all m �= i with m ∈ S

	xmi = xmi (ai ) − xs = 1

2

∂2xmi

(∂ai xim)2

(
∂ai xim

∂ai

)2

(ai − a)2

= 1

2

∂2xmi

(∂xim)2
(xs)2(ai − a)2.
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This type of change (a direct rival of i reacting to i’s increased strength) occurs d
times.41 Similarly, all d agents m �= i change their behaviour towards their d − 1
rivals q �= i,m by

	xmq = xmq(ai ) − xmq(a) = 1

2

∂xmq

∂xmi

∂2xmi

(∂ai xim)2
(xs)2(ai − a)2.

Finally, agent i does not change conflict investments as previously shown. Thus, denot-
ing 	ai = ai − a, we have

	Xs =d

2

∂2xmi

(∂ai xim)2
(xs)2	a2i

+ d(d − 1)

2

∂xmq

∂xmi

∂2xmi

(∂ai xim)2
(xs)2	a2i .

After factorising, we see that

	Xs < 0 ⇔ d

2

∂2xmi

(∂xim)2
(xs)2	a2i

(

1 + (d − 1)
∂xmq

∂xmi

)

< 0.

Since ∂2xmi
(∂xim)2

< 0, these inequalities hold whenever

1 + (d − 1)
∂xmq

∂xmi

= 1 − (d − 1)
C ′′(Xs)

(d − 1)C(Xs) − a2 p11v
> 0

⇒ (d − 1)C ′′(Xs) − a2 p11v − (d − 1)C ′′(Xs) > 0

⇔ −a2 p11v > 0.

This is a true statement, as the CSF is strictly concave. Note that, as long as the change
in ai is such that Proposition 3 holds, this result is independent of the magnitude and
sign of 	ai . ��

A.7 Proof of proposition 7

Analogously to the previous proof, the total effect of an increase in vi j on aggregate
investments is thus given by

(
∂xi j
∂vi j

+ (d − 1)
∂xim
∂vi j

)

	vi j

︸ ︷︷ ︸
i ′s investment changes

41 We could restrict this result to the clique S only, which would imply that this change only occurs s times.
But since all agents connected to i are identical at ω, this change also applies to the d − s agents i and each
j ∈ S\{i} are connected to beyond S.
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+ 1

2

∂2x ji
(∂xi j )2

(
∂xi j
∂vi j

)2

	v2i j + (d − 1)

2

∂x jm
∂x ji

∂2x ji
(∂xi j )2

(
∂xi j
∂vi j

)2

	v2i j

︸ ︷︷ ︸
j ′s investment changes

+ d − 2

2

∂2xmi

(∂xim)2

(
∂xim
∂vi j

)2

	v2i j + (d − 1)(d − 2)

2

∂xmq

∂xmi

∂2xmi

(∂xim)2

(
∂xim
∂vi j

)2

	v2i j

︸ ︷︷ ︸
investment changes of all m �=i, j

.

(12)

The first row is positive.42 We see that the third row is d − 2 times the second row.
The second row is proportional to

1 + (d − 1)
∂x jm
∂x ji

,

which we know to be negative from the proof of Proposition 6. ��

A.8 Proof of proposition 8

The comparative static in (8) provides us with the change in xi j due to a unit increase
in ai . If this quantity is smaller than one, i.e.,

∣
∣
∣
∣
∂xi j
∂ai

∣
∣
∣
∣ =

∣
∣
∣
∣−

1 + z

z − dC ′′(Xs)

(
p1

a2 p11
+ xs

a

)∣
∣
∣
∣ < 1,

an increase in efficiencies increases the effective conflict investments ofAgent i .43 This
is true for all impact functions of the type f (ax) = (kax)r for k > 0 and r ∈ (0, 2).
To see this, note that for f (ax) = (kax)r at symmetry, i.e., a j x ji = ai xi j = āxs , we
have

p1 = f ′(ai xi j ) f (a j x ji )
(
f (ai xi j ) + f (a j x ji )

)2 = f ′(āxs)
4 f (āxs)

= r

4āxs

and

p11 = f ′′(ai xi j ) f (a j x ji )2 + f ′′(ai xi j ) f (ai xi j ) f (a j x ji ) − 2 f ′(ai xi j )2 f (a j x ji )
(
f (ai xi j ) + f (a j x ji )

)3

= f ′′(āxs) f (āxs) − f ′(āxs)2

4 f (āxs)2
= (r − 1)r(āxs)r−2(āxs)r − r2(āxs)2(r−1)

4(āxs)2r

= −r

4(āxs)2
.

42 Note that our proposition is only a statement about the second and third lines of this expression (i.e., all
agents other than i). We state the full sum here for completeness.
43 You could also think of this as conflict investments being inelastic to changes in efficiency.
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This implies p1

a2 p11
= − 4(xs )2

4āxs = − xs
ā and thus

∣
∣
∣
∣−

1 + z

z − dC ′′(Xs)

(
p1

a2 p11
+ xs

a

)∣
∣
∣
∣ = 0.

Therefore, under the assumed impact function, Agent i’s investments do not change
following a change in ai . Thus, Agent i’s effective investment changes in each conflict
with the same sign as the change in ai . Also, we established, more generally, that
all other agents reduce their investments against Agent i . However, this second-order
change is small relative to that of Agent i since we are close to the symmetric equi-
librium, where the slope of the best response functions of Agent i’s rivals is close to
zero. Since the CSF is increasing in own effective investment and decreasing in the
rivals’ effective investments, this means that all of Agent i’s winning probabilities on
all their conflicts in equilibrium change in the same direction as the change in ai .

Since the problem is the same from the perspective of all Agents k �= i , their change
in investments is identical.44 Thus, their increase in each conflict against all their rivals
other than Agent i is the same, keeping winning probabilities constant at 1

2 . ��

A.9 Proof of proposition 9

We know x ′
i j > ¯̄xi j and x ′

ik < ¯̄xik for all k ∈ Ni from Proposition 2. We have also
established that second-order effects originate from the best responses to these changes
in Agent i’s conflict investments. Close to symmetry, the slope of the best response
functions is zero, however. Thus, for small changes in xi j and xik for all k ∈ Ni , the
changes in x ji and xki for all k ∈ Ni are relatively small. Thus, x ′

i j > x ′
j i and x

′
ik < x ′

ki

for all k ∈ Ni , which in turn implies p′
i j > ¯̄pi j and p′

ik < ¯̄pik . For a decrease in vi j ,
the reverse argument holds.

To assess how p jk changes, we need to compare the changes in x jk and xk j . From
Proposition 3, we see that x ′

jk > x ′
k j if

1

2

∂x jk
∂x ji

∂2x ji
(
∂xi j

)2

(
∂xi j
∂vi j

)2

	vi j >
1

2

∂xk j
∂xki

∂2xki
(∂xik)2

(
∂xik
∂vi j

)2

	vi j

⇔
∣
∣
∣
∣
∂xi j
∂vi j

∣
∣
∣
∣ >

∣
∣
∣
∣
∂xik
∂vi j

∣
∣
∣
∣

⇔
∣
∣
∣
∣−

z − (d − 1)C ′′(Xs)

z − dC ′′(Xs)

p1

ā p11v̄

∣
∣
∣
∣ >

∣
∣
∣
∣−

C ′′(Xs)

z − dC ′′(Xs)

p1

ā p11v̄

∣
∣
∣
∣

⇔ (d − 1)C ′′(Xs) − z > C ′′(Xs).

44 More precisely, in case we had an asymmetric equilibrium with d ≥ 2, it must be asymmetric among
the agents other than Agent i , since we can pin down that agent’s response due to Proposition 3. This would
violate uniqueness, which we established close enough around any baseline parametrisation, however,
because Agents k �= i are identical and thus interchangeable.
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This holds for d ≥ 2. Thus, p′
jk > ¯̄p jk . The reverse argument holds for a decrease in

vi j .
If d ≥ 4 then ∃k, q �= i, j such that (kq) ∈ B. As in the previous proof, their

conflict investments must change by the same quantity in response to asymmetry.45

Thus, p′
kq = ¯̄pkq = 1

2 . ��

B Two-agent contest with a lottery contest success function

To draw parallels between existing models of asymmetries in contests and our model,
we revisit the framework and results of Baik (1994) here. This allows us to compare
the results when we either support or hinder one of the conflicting parties. Consider a
contest with two risk-neutral agents competing against each other to win a prize v = 1.
Following the notation fromBaik (1994), we define x1 and x2 as the conflict investment
levels selected by Agent 1 and Agent 2, respectively. These conflict investment levels
determine the probability of winning the prize. Let p(x1, x2) be the probability that
Agent 1 wins the prize, such that

p(x1, x2) = σh(x1)

σh(x1) + h(x2)
,

where the parameter σ > 1 represents the relative strength of Agent 1 against Agent
2. Exerting conflict investment is costly; each agent faces a cost of conflict investment
determined by a cost function c(xi ) = xi . For ease of exposition of the main insights
from Baik (1994), we consider the impact function h(x) = x . Then, our expected
payoffs for each agent are

π1 = σ x1
σ x1 + x2

− x1 for Agent 1 and

π2 = x2
σ x1 + x2

− x2 for Agent 2.

Each agent chooses a conflict investment level xi such that their corresponding
expected payoff is maximised. The first-order conditions obtain as

σ x2
(σ x1 + x2)2

!= 1 for Agent 1 and

σ x1
(σ x1 + x2)2

!= 1 for Agent 2.

Since the right-hand sides of these conditions are the same, this implies x1 = x2 in
equilibrium.46 By using these first-order conditions, we can also find the following

45 Again, the existence of an asymmetric equilibrium would imply multiplicity of equilibria, which we
ruled out earlier.
46 Note that this symmetry in equilibrium investments is independent of σ . This is a discrepancy to our
model that stems from the linear cost function used here for simplicity.
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Fig. 7 Best response functions in a two-agent contest

best response functions,

x1 =
√
x2
σ

− x2
σ

and x2 = √
σ x1 − σ x1

σ x1 = √
σ x2 − x2 and x2 = √

σ x1 − σ x1.

By taking a closer look at the best response functions when agents are either sym-
metric or asymmetric, we can observe some noticeable differences. Figure7 depicts
the best response functions when agents are symmetric in Panel (a) and when agents
are asymmetric in Panel (b). In Panel (a), we observe that both best response functions
intersect at the point where they attain their maximum value (i.e., the gradients are
equal to zero in equilibrium; see the dotted lines with arrows in Panel (a)). At that
point, both agents are best responding to each other, defining the Nash equilibrium
strategies. Now, if we introduce asymmetry by making Agent 1 stronger (i.e., σ = 2),
the best response functions do not intersect at their maximum anymore (i.e., the gra-
dients are not equal to zero in equilibrium; see the dotted arrows in Panel (b)). The
Nash equilibrium (x∗

1 , x
∗
2 ) efforts in this framework are

x∗
1 = x∗

2 = σ

(1 + σ)2
.

In the two-agent contest with a lottery contest success function, the aggregate effort is

X = x∗
1 + x∗

2 = 2σ

(1 + σ)2
where

∂X
∂σ

= 2(1 − σ 2)

(1 + σ)4
< 0 as σ > 1.

In this simple example, we observe that the introduction of asymmetries reduces the
conflict investment level in the Nash equilibrium when compared to the symmetric
case. This specific pattern was identified originally by Baik (1994) and has triggered
subsequent studies examining the robustness of this result (seeDechenaux et al. (2015),
for a comprehensive review from both a theoretical and experimental perspective).
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