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Abstract
The notion of stationary equilibrium is one of the most crucial solution concepts in
stochastic games. However, a stochastic game can have multiple stationary equilibria,
some of which may be unstable or counterintuitive. As a refinement of stationary equi-
librium, we extend the concept of perfect equilibrium in strategic games to stochastic
games and formulate the notion of perfect stationary equilibrium (PeSE). To further
promote its applications, we develop a differentiable homotopy method to compute
such an equilibrium. We incorporate vanishing logarithmic barrier terms into the pay-
off functions, thereby constituting a logarithmic-barrier stochastic game. As a result
of this barrier game, we attain a continuously differentiable homotopy system. To
reduce the number of variables in the homotopy system, we eliminate the Bellman
equations through a replacement of variables and derive an equivalent system. We use
the equivalent system to establish the existence of a smooth path, which starts from an
arbitrary total mixed strategy profile and ends at a PeSE. Extensive numerical exper-
iments, including relevant applications like dynamic oligopoly models and dynamic
legislative voting, further affirm the effectiveness and efficiency of the method.
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1 Introduction

Stochastic games, dating back to the seminal paper by Shapley (1953), serve as a
powerful mechanism for strategic interaction analysis in a dynamic environment with
conflicts of interests. Stochastic games model the dynamic interaction between a finite
number of players. A stochastic game consists of a sequence of stages, where the rel-
evant part of the history at the beginning of each stage is summarized by a commonly
known state variable. More explicitly, at the beginning of the first stage, the players are
in some given initial state. They take their actions simultaneously and independently.
Subsequently, they get their instantaneous payoffs, and each player is informed of the
others’ actions at this stage. The game then moves to the next stage. Based on the pre-
vious state and action profile, a new state is selected, potentially in a probabilistic way.
This process is repeated over an infinite number of stages. A stochastic game therefore
consists of a series of stochastically generated stage games. Extensive applications of
stochastic games can be found in the literature such as Chatterjee et al. (1993), Amir
et al. (2003), Goldlücke and Kranz (2018), Manea (2018), and Okada (2023) and the
references therein.

Subgame perfect equilibrium in stationary strategies (SSPE) is one of the essential
solution concepts in stochastic games.A stationary strategyonlydepends on the current
state rather than the entire history of states and strategy profiles. A stationary strategy
thereby satisfies the reasonable principle of “letting bygones be bygones” (Maskin
and Tirole 2001; Herings and Peeters 2004). The existence of SSPEs was discussed in
Fink (1964), Takahashi (1964), and Sobel (1971), which provided a solid theoretical
foundation for the development of stochastic games. He (2022) proved that an SSPE
exists for stochastic gameswith discontinuous payoffs under the condition that a player
can identify another action at the current stage with the payoff not muchworse than her
current one. The computation of SSPEs has been substantially studied in the literature
as well. Herings and Peeters (2004) developed the first globally convergent method
to compute SSPEs. To do so, they extended the linear tracing procedure of Harsanyi
(1975) from strategic games to stochastic games. Since then, there has been more and
more interest in the computation of SSPEs, witnessing the development of a Gaussian
iterative method in Doraszelski and Pakes (2007), a piecewise smooth homotopy
method in Govindan and Wilson (2009), a logit homotopy path-following method
in Eibelshäuser and Poensgen (2019), an arbitrary starting linear tracing procedure in
Li and Dang (2020), and an interior-point homotopy method in Dang et al. (2022).

The notion of SSPE is based on the assumption that the decision-makers are ratio-
nal and never make mistakes. As pointed out in Selten (1975) and Myerson (1978), a
strategic game can have multiple Nash equilibria, some of which may be unstable and
inconsistent with our intuitive notions about a reasonable outcome of the game. To
eliminate some of these counterintuitive Nash equilibria, Selten (1975) introduced a
refinement of Nash equilibrium called perfect equilibrium and proved the existence of
perfect equilibria in normal-form games. In an extensive-form game, a perfect equilib-
rium is robust against the introduction of mistakes by which every player chooses each
action with a small strictly positive probability. The equivalence between the perfect
equilibria in an extensive-form game with perfect recall and its corresponding agent
normal-form game was established in Selten (1975) as well. For the class of extensive
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two-person games with perfect recall, van den Elzen and Talman (1991) presented a
complementary pivoting algorithm that traces a piecewise linear path, thereby induc-
ing a normal-form perfect equilibrium if the starting vector is a completely mixed
strategy profile. Aiming at the same problem, von Stengel et al. (2002) developed a
much more efficient method that is based on the sequence form. This method was
proven to be tractable for larger-scale games.

For similar reasons as in strategic games, a stochastic game can have a vast mul-
tiplicity of SSPEs, many of which are unreasonable. However, due to the extremely
complicated structure of stochastic games, studies on the refinement of SSPEs are
scarce, and their computation has been neglected so far in the literature. proposed the
concept of Markov Trembling Hand Perfect Equilibrium (MTHPE) to get rid of some
counterintuitive equilibria and proved the existence of MTHPE for dynamic voting
games. In this paper, we extend Selten’s perfectness concept for strategic games to
stochastic games and formulate the notion of perfect stationary equilibrium (PeSE),
which is defined as the limit of SSPEs for a sequence of perturbed stochastic games.1

A PeSE extends the notion of perfect equilibrium for extensive-form games to the
class of stochastic games.

Computational tools play an important role in the application of stochastic games,
but the computation of PeSEs has not been addressed in the literature so far. An obvious
idea would be as follows: Compute an SSPE using the existing methods and then
determine whether this SSPE satisfies the perfectness criterion. Unfortunately, such
an approach was proven to be an NP-hard problem by Hansen et al. (2010). Another
idea to find a PeSE is to straightforward follow its definition and compute the limit
of equilibrium points for a sequence of perturbed stochastic games. Nevertheless, the
efficiencyof this approachverymuchdepends on the sequence andunderlyingmethods
for computing the equilibrium points, whichmay lead to a huge computational burden,
especially when the problem is large. It was illustrated in Dang et al. (2022) that the
equilibrium system of stochastic games can be rewritten as a mixed complementarity
problem (MCP) and solved by a widely used software package for MCPs—the PATH
solver, which employs Newton method.2 However, the PATH solver fails to compute
PeSEs as it is not designed to compute equilibria of suitably perturbed problems and
then take limits of such equilibria.

It has been shown in the literature that homotopy methods have a compelling per-
formance in solving fixed points problems. Moreover, these methods have been shown
to be effective in the computation of perfect equilibria for strategic games. Chen and
Dang (2019) developed a simplicial homotopy method to approximate perfect equi-
libria for small-scale strategic games. Later, a differentiable homotopy method was
developed in Chen and Dang (2021) to compute perfect equilibria for larger-scale
strategic games. The latter homotopy follows a smooth path of solutions and shows a
performance which is both very stable and efficient.

Inspired by the above successes,we aim to design a differentiable homotopymethod
to compute PeSEs for stochastic games. To accomplish this objective, we exploit a

1 Note that a Nash equilibrium in stationary strategies of the perturbed game is a subgame perfect equilib-
rium and so is the limit of a sequence of such equilibria.
2 Interest readers are referred to Dirkse and Ferris (1995) for more details about the path solver.
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continuously differentiable function θ : [0, 1] → [0, 1] of the homotopy variable
t ∈ [0, 1] which remains zero as long as t is not larger than a given positive number
ζ0/2. With this function, we incorporate a logarithmic barrier term into the original
stochastic game and formulate a logarithmic-barrier stochastic game, which continu-
ously deforms a trivial game to the perturbed stochastic game of interest as t varies
from one to ζ0/2. As t descends further from ζ0/2 to zero, the perturbations vanish
and the perturbed stochastic games eventually reduce to the unperturbed stochastic
game of interest at t = 0. A well-chosen transformation of variables addresses the
inherent conflict between the interiority requirement of differentiable homotopies and
the perfectness criterion. As a result, we establish an everywhere smooth homotopy
path, which starts from an arbitrarily chosen totally mixed strategy profile and ends at
a perfect stationary equilibrium for the stochastic game of interest.

We call the resulting method a logarithmic-barrier differentiable homotopy (LB-
DH) method. The employment of the logarithmic-barrier term in the method restricts
the path to the interior of the strategy space before θ(t) vanishes, which is inspired by
interior-point methods and expected to significantly enhance the numerical efficiency.
For numerical comparisons, we develop a convex-quadratic-penalty differentiable
homotopy (CQP-DH) method, which is a direct stochastic extension of the method
developed in Chen and Dang (2021) for strategic games and can be regarded as an
exterior-point differentiable homotopy method. We have implemented the LB-DH
and CQP-DH methods to solve extensive randomly generated stochastic games. To
further elicit the effectiveness of the LB-DH method for selecting a particular SSPE
satisfying the perfectness criterion, we have also compared the LB-DH method with
two powerful homotopy methods for computing SSPEs—the IPM developed in Dang
et al. (2022) and the stochastic linear tracing procedure (SLTP) studied in Herings
and Peeters (2004) and Li and Dang (2020). Moreover, we have exploited the LB-DH
method to solve several applications like dynamic oligopoly models with entry and
exit and dynamic legislative bargaining games. Numerical results further confirm the
effectiveness and efficiency of the LB-DH method.

The remainder of the paper is organized as follows. In Sect. 2, we discuss stochastic
games and define the concept of perfect stationary equilibrium (PeSE). In Sect. 3, we
develop the LB-DH method to compute PeSEs and prove the global convergence of
the method. For numerical comparisons, we present the CQP-DH method in Sect. 4.
Extensive numerical results are reported in Sect. 5. The paper is concluded in Sect. 6.

2 Stationary equilibria and perfectness

2.1 Stationary equilibria in stochastic games

To further elicit the criterion of perfectness, we briefly review the notions of stochastic
games and subgame perfect equilibria in stationary strategies (SSPE) in this subsec-
tion.3 A finite discounted stochastic game with infinitely many stages is given by

3 This subsection present a brief review and some details are omitted. Interested readers are referred to
Dang et al. (2022) for more details about stochastic games and stationary equilibria.
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� = 〈N ,�, {Siω}(i,ω)∈N×�, {ui }i∈N , π, δ〉,

where

• N = {1, 2, . . . , n} is the set of players.
• � = {ω1, ω2, . . . , ωd} is the set of states.
• Siω = {siω j : j ∈ Mi

ω} is the set of actions for player i ∈ N in state ω ∈ � with

Mi
ω = {1, 2, . . . ,mi

ω}.
• Sω = ∏n

i=1 S
i
ω is the set of action profiles in state ω ∈ �.

• ui : D → R is a real-valued function, describing the instantaneous payoff function
of player i ∈ N , where D = {(ω, sω) : ω ∈ �, sω ∈ Sω}.

• For any state ω ∈ � and any action profile sω ∈ Sω,

π(ω, sω) = (π(ω1 : ω, sω), π(ω2 : ω, sω), . . . , π(ωd : ω, sω)) ∈ R
d ,

where, for k = 1, . . . , d, π(ωk : ω, sω) is the probability that the system jumps to
state ωk ∈ � when the current state is ω ∈ � and the action profile is sω. It holds
that

∑d
k=1 π(ωk : ω, sω) = 1.

• 	(s) ∈ R
d×d is a matrix with row k equal to the row vector π(ωk, sωk ), that is,

	(s) = (π(ωk, sωk ))ωk∈�.
• δ is the discount factor with 0 < δ < 1, which is used to discount future instanta-
neous payoffs.

For i ∈ N and ω ∈ �, by taking the mixed extension of the action space Siω, each
player i ∈ N uses amixed strategy xiω = (xiω1, . . . , x

i
ωmi

ω
), where xiω j is the probability

assigned to action siω j ∈ Siω. We denote by Xi
ω = {xiω ∈ R

mi
ω+ : ∑

j∈Mi
ω
xiω j = 1}

the set of all mixed strategies for player i in state ω. Let Xi = ∏
ω∈� Xi

ω and X =∏
i∈N Xi

ω. Let m = ∑
i∈N

∑
ω∈� mi

ω denote the total number of actions over players
and states.

We restrict ourselves to stationary strategies in this paper.Given a stationary strategy
profile x ∈ X , we let μi

ω(x) denote the total expected payoff for player i starting from
state ω. Then, a standard argument as for instance in Li and Dang (2020) shows that
μi := μi (x) = (μi

ω(x) : ω ∈ �) is the unique solution to the following linear system,

μi
ω = ui (ω, xω) + δ

∑

ω̄∈�

π(ω̄ : ω, xω)μi
ω̄, ω ∈ �, (1)

which is the so-called Bellman equation. To simplify our notation, we define

ϕi (ω, siω j , x
−i
ω , μi ) = ui (ω, siω j , x

−i
ω ) + δ

∑

ω̄∈�

π(ω̄ : ω, siω j , x
−i
ω )μi

ω̄. (2)

Clearly, μi
ω = ∑

j∈Mi
ω
xiω jϕ

i (ω, siω j , x
−i
ω , μi ) := ϕi (ω, xω, μi ). It was proved in

Li and Dang (2020) that if (x, λ, μ) is a solution to (3), then x is an SSPE of �.
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Conversely, any SSPE x of � corresponds with a unique solution (x, λ, μ) to (3).

ϕi (ω, siω j , x
−i
ω , μi ) + λiω j − μi

ω = 0, j ∈ Mi
ω, ω ∈ �, i ∈ N ,

xiω j ≥ 0, λiω j ≥ 0, λiω j x
i
ω j = 0, j ∈ Mi

ω, ω ∈ �, i ∈ N ,
∑

j∈Mi
ω

xiω j − 1 = 0, ω ∈ �, i ∈ N .
(3)

2.2 Perfectness

As mentioned in Sect. 1, some SSPEs of a stochastic game may be counterintuitive.
Let us present an example to illustrate (Osborne and Rubinstein 1994).

Example 1 Consider a stochastic game with N = {1, 2}, � = {ω1, ω2}. For i = 1, 2,
Siω1

= {siω11
, siω12

, siω13
} and Siω2

= {siω21
}. The payoff matrices are given by

ω1 s2ω11
s2ω12

s2ω13
s1ω11

(0, 0) (0, 0) (0, 0)

s1ω12
(0, 0) (1, 1) (2, 0)

s1ω13
(0, 0) (0, 2) (2, 2)

and
ω2 s2ω21

s1ω21
(0, 0)

.

The transition probabilities are given by π(ω̄ : ω, sω) = 0.5, for any ω̄, ω ∈ �.
As shown in the matrices above, the stochastic game in this example has three

SSPEs, (s1ω11
, s2ω11

, s1ω21
, s2ω21

), (s1ω12
, s2ω12

, s1ω21
, s2ω21

), and (s1ω13
, s2ω13

, s1ω21
, s2ω21

).
Nonetheless, the SSPEs corresponding to the top-left and bottom-right cells are
unattractive, since both the first and the last actions for both players are dominated by
their second action. Indeed, if players tremble and play all their actions with strictly
positive probability, then their second action yields a strictly higher payoff than both
their first and their last action. Therefore, only (s1ω12

, s2ω12
, s1ω21

, s2ω21
) survives as a

reasonable SSPE.

To address the above issue and eliminate some less plausible SSPEs, we extend the
perfectness criterion for strategic games to stochastic games and formulate the notion
of perfect stationary equilibrium, which is a strict refinement of SSPE.

Definition 1 For ε > 0, a totally mixed strategy profile x ∈ X is an ε-perfect station-
ary equilibrium of � if for allω ∈ �, i ∈ N and j, k ∈ Mi

ω, ϕi (ω, siω j , x
−i
ω , μi (x)) <

ϕi (ω, siωk, x
−i
ω , μi (x)) implies xiω j ≤ ε. A strategy profile x∗ ∈ X is a perfect sta-

tionary equilibrium (PeSE) if there is a convergent sequence of εk-perfect stationary
equilibria, x(εk), k = 1, 2, . . ., such that limk→∞ x(εk) = x∗ and limk→∞ εk = 0.

To establish the existence of a PeSE, we first define a perturbed stochastic game
�(ε) where all players choose each action with probability greater than or equal to ε.

More formally, we have that

�(ε) = 〈N ,�, {Xi
ω(ε)}(i,ω)∈N×�, {ui }i∈N , π, δ〉,
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where Xi
ω(ε) = {xiω ∈ Xi

ω : for all j ∈ Mi
ω, xiω j ≥ ε}. For notational convenience,

we define X(ε) = ∏
i∈N

∏
ω∈� Xi

ω(ε). Notice that �(0) = �. We establish the
following theorem.

Theorem 1 Each SSPE of �(ε) is an ε-perfect stationary equilibrium of �.

Proof In �(ε), for any strategy profile x̂ ∈ X(ε), the optimal strategy of player i ∈ N
in state ω can be found as a solution to the following linear optimization problem,

max
xiω∈Xi

ω

∑

j∈Mi
ω

xiω jϕ
i (ω, siω j , x̂

−i
ω , μ̂i )

s.t. xiω j ≥ ε, j ∈ Mi
ω,

∑

j∈Mi
ω

xiω j = 1.

(4)

From a similar discussion as for the original game�, we obtain the equilibrium system
for �(ε) as follows:

ϕi (ω, siω j , x
−i
ω , μi ) + λiω j − β i

ω = 0, j ∈ Mi
ω, ω ∈ �, i ∈ N ,

xiω j ≥ ε, λiω j ≥ 0, λiω j (x
i
ω j − ε) = 0, j ∈ Mi

ω, ω ∈ �, i ∈ N ,

∑

j∈Mi
ω

xiω j − 1 = 0, ω ∈ �, i ∈ N ,

μi
ω − ϕi (ω, xω, μi ) = 0, ω ∈ �, i ∈ N .

(5)

Any x ∈ R
m satisfying system (5) is an SSPE of the perturbed stochastic game

�(ε). Suppose that ϕi (ω, siω j , x
−i
ω , μi ) < ϕi (ω, siωk, x

−i
ω , μi ). From the first group of

equations of system (5), we know that λiω j > λiωk . From the condition that λiωk ≥ 0,

we have that λiω j is strictly positive. It follows from the second group of equations in

(5) that xiω j = ε, which shows that x is an ε-perfect stationary equilibrium of �. This
completes the proof. 
�

The existence of stationary equilibria of �(ε) implies the existence of ε-perfect
equilibria of � by virtue of Theorem 1. Together with Definition 1, which defines a
PeSE as a limit of a sequence of ε-perfect stationary equilibria of �, this ensures the
existence of PeSEs for the stochastic game �. We obtain the following corollary.

Corollary 1 The game � has a PeSE.

In the next section, we exploit system (5) to develop an effective differentiable
homotopy method, called the logarithmic barrier differentiable homotopy (LB-DH)
method, and compute a PeSE for the stochastic game �. With a homotopy variable t ∈
[0, 1], we formulate a continuously differentiable homotopy system, whose solution
set contains an everywhere smooth path starting from an arbitrary interior point x0

at t = 1. As t varies from a given positive number ζ0/2 ∈ (0, 1) to zero, the path
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Fig. 1 A differentiable homotopy path

provides a series of ε(t)-perfect stationary equilibria for �. As t approaches zero, ε(t)
also goes to zero and according to Definition 1 the path eventually reaches a PeSE of
�. Figure 1 illustrates how the homotopy works.

3 A logarithmic barrier differentiable homotopymethod

As illustrated in the previous section, the homotopy variable t will descend from
one to zero and generate an ε(t)-perfect stationary equilibrium for � when t is
sufficiently small. Moreover, it holds that limt→0 ε(t) = 0. It is therefore conve-
nient to let ε(t) = tη0 in problem (4) with η0 a given positive number satisfying
0 < η0 < 1/maxω∈�,i∈N mi

ω. Then system (5) becomes

ϕi (ω, siω j , x
−i
ω , μi ) + λiω j − β i

ω = 0, j ∈ Mi
ω, ω ∈ �, i ∈ N ,

xiω j ≥ tη0, λiω j ≥ 0, λiω j (x
i
ω j − tη0) = 0, j ∈ Mi

ω, ω ∈ �, i ∈ N ,

∑

j∈Mi
ω

xiω j − 1 = 0, ω ∈ �, i ∈ N ,

μi
ω − ϕi (ω, xω, μi ) = 0, ω ∈ �, i ∈ N .

(6)
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Now we want to eliminate the group of Bellman equations μi
ω − ϕi (ω, xω, μi ) = 0.

It is obvious that the system (6) is equivalent to the following system,

ϕi (ω, siω j , x
−i
ω , μi ) + λiω j − (νiω + tη0

∑

k∈Mi
ω

λiωk) = 0,

j ∈ Mi
ω, ω ∈ �, i ∈ N ,

xiω j ≥ tη0, λiω j ≥ 0, λiω j (x
i
ω j − tη0) = 0, j ∈ Mi

ω, ω ∈ �, i ∈ N ,

∑

j∈Mi
ω

xiω j − 1 = 0, ω ∈ �, i ∈ N ,

μi
ω − ϕi (ω, xω, μi ) = 0, ω ∈ �, i ∈ N .

(7)

Multiplying the first group of equations by xiω j and summing over j ∈ Mi
ω in system

(7), we have that νiω = ϕi (ω, xω, μi ), which implies that νiω = μi
ω. Consequently,

system (6) is equivalent to the following system,

ϕi (ω, siω j , x
−i
ω , μi ) + λiω j − μi

ω − tη0
∑

k∈Mi
ω

λiωk = 0,

j ∈ Mi
ω, ω ∈ �, i ∈ N ,

xiω j ≥ tη0, λiω j ≥ 0, λiω j (x
i
ω j − tη0) = 0, j ∈ Mi

ω, ω ∈ �, i ∈ N ,

∑

j∈Mi
ω

xiω j − 1 = 0, ω ∈ �, i ∈ N .

(8)

Clearly, the perturbed stochastic game�(t) coincideswith the original stochastic game
of interest � at t = 0.

Let

Xi
ω(t) = {xiω ∈ Xi

ω : for every j ∈ Mi
ω, xiω j ≥ tη0}

and X(t) = ∏
i∈N

∏
ω∈� Xi

ω(t). Clearly, the relative interior of X(t) is non-empty.
For further development, we make use of the following continuously differentiable
function θ : [0, 1] → [0, 1],

θ(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, if t ≤ ζ0/2,

1

4

(2t − 1)2

1 − ζ0
+ 1

2
(2t − 1) + 1

4
(1 − ζ0), if ζ0/2 < t ≤ 1 − ζ0/2,

2t − 1, otherwise,

(9)

where ζ0 ∈ (0, 1). Obviously, θ(1) = 1 and θ(t) remains equal to zero as soon as t is
smaller than the given small positive number ζ0/2.4

4 The formulation of the continuously differentiable function θ is not uniquely determined. We compared
several possible formulations and find that the one proposed here achieves the highest numerical efficiency.
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For i ∈ N , let μi = (μi
ω : ω ∈ �) be the unique solution to the linear system

μi
ω = (1 − θ(t))ϕi (ω, xω, μi ) + θ(t)(1 − η0m

i
ω), ω ∈ �. (10)

Clearly, when θ(t) = 0, (10) reduces to the Bellman equation (1). We use the function
θ to incorporate a logarithmic barrier term into the objective function of the problem
(4) and define an artificial stochastic game, in which for any strategy profile x̂ ∈ X ,
each player i ∈ N in state ω ∈ � solves the following strictly convex optimization
problem,

max
xiω∈Xi

ω(t)
(1 − θ(t))

∑

j∈Mi
ω

xiω jϕ
i (ω, siω j , x̂

−i
ω , μ̂i ) − 1

2

∑

j∈Mi
ω

(xiω j − x̂ iω j )
2

+θ(t)
∑

j∈Mi
ω

(x0,iω j − η0)ln(xiω j − tη0)

s.t.
∑

j∈Mi
ω

xiω j − 1 = 0,

(11)

where x0 ∈ Int(X(1)) is an arbitrarily given totally mixed strategy profile. The loga-
rithmic term ln(xiω j − tη0) enforces that xiω j > tη0, that is, x is an interior point of
the perturbed strategy space X(t) before θ(t) vanishes. Note that the quadratic term
−(1/2)

∑
j∈Mi

ω
(xiω j − x̂ iω j )

2 in the objective function assures the strict concavity of

the problem for any t ∈ [0, 1].5 The optimality conditions of the problem (11) are
given by

(1 − θ(t))ϕi (ω, siω j , x̂
−i
ω , μ̂i ) + λiω j − β i

ω − (xiω j − x̂ iω j ) = 0, j ∈ Mi
ω,

λiω j (x
i
ω j − tη0) − θ(t)(x0,iω j − η0) = 0, λiω j ≥ 0, xiω j ≥ tη0, j ∈ Mi

ω,

∑

j∈Mi
ω

xiω j − 1 = 0.

(12)

An application of the one-shot deviation principle together with x̂ = x yields the
equilibrium system for the artificial stochastic game,

(1 − θ(t))ϕi (ω, siω j , x
−i
ω , μi ) + λiω j − β i

ω = 0, j ∈ Mi
ω, ω ∈ �, i ∈ N ,

λiω j (x
i
ω j − tη0) − θ(t)(x0,iω j − η0) = 0, λiω j ≥ 0, xiω j ≥ tη0,

j ∈ Mi
ω, ω ∈ �, i ∈ N ,

∑

j∈Mi
ω

xiω j − 1 = 0, ω ∈ �, i ∈ N ,

μi
ω = (1 − θ(t))ϕi (ω, xω, μi ) + θ(t)(1 − η0mi

ω), ω ∈ �, i ∈ N .

(13)

5 With the extra term −(1/2)
∑

j∈Mi
ω
(xi

ω j − x̂ i
ω j )

2, the mapping from the strategy space to the optimal

solution set of the optimization problem (11) is a point-to-point continuous mapping. This extra term
vanishes at a fixed point x = x̂ in the equilibrium system.
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Like before, we eliminate the Bellman equation in homotopy system (13). Replacing
β i

ω by νiω + tη0
∑

k∈Mi
ω

λiωk in system (13), we have

(1 − θ(t))ϕi (ω, siω j , x
−i
ω , μi ) + λiω j − (νiω + tη0

∑

k∈Mi
ω

λiωk) = 0,

j ∈ Mi
ω, ω ∈ �, i ∈ N ,

λiω j (x
i
ω j − tη0) − θ(t)(x0,iω j − η0) = 0, λiω j ≥ 0, xiω j ≥ tη0,

j ∈ Mi
ω, ω ∈ �, i ∈ N ,

∑

j∈Mi
ω

xiω j − 1 = 0, ω ∈ �, i ∈ N ,

μi
ω = (1 − θ(t))ϕi (ω, xω, μi ) + θ(t)(1 − η0mi

ω), ω ∈ �, i ∈ N .

Multiplying the first group of equations by xiω j and summing over j in the system
above, one obtains that

νiω = (1 − θ(t))ϕi (ω, xω, μi ) + θ(t)(1 − η0m
i
ω).

That is, νiω = μi
ω. The equilibrium system (13) is therefore equivalent to the following

system,

(1 − θ(t))ϕi (ω, siω j , x
−i
ω , μi ) + λiω j − μi

ω

−tη0
∑

k∈Mi
ω

λiωk = 0, j ∈ Mi
ω, ω ∈ �, i ∈ N ,

λiω j (x
i
ω j − tη0) − θ(t)(x0,iω j − η0) = 0, j ∈ Mi

ω, ω ∈ �, i ∈ N ,

λiω j ≥ 0, xiω j ≥ tη0, j ∈ Mi
ω, ω ∈ �, i ∈ N ,

∑

j∈Mi
ω

xiω j − 1 = 0, ω ∈ �, i ∈ N ,

(14)

which is a continuously differentiable system in (x, λ, μ, t) ∈ X ×R
m ×R

nd ×[0, 1].
The elimination of the Bellman equation in the homotopy system has two advantages.
On the one hand, it significantly reduces the number of variables. On the other hand,
it substantially alleviates the non-linearity of the homotopy function. Therefore, it
can improve the numerical efficiency of the proposed method. This improvement in
efficiency becomes clear in the numerical part.

We observe from the second group of equations in system (14) that when t ∈
(ζ0/2, 1], θ(t) > 0 and λiω j (x

i
ω j − tη0) = θ(t)(x0,iω j − η0) > 0, which indicates that

the solutions to the system (14) always stay in the interior of the feasible set, that is,
x ∈ Int(X(t)) and λ ∈ R

m++. Note that when t ≤ ζ0/2, θ(t) becomes equal to zero
and the system (14) becomes identical to the equilibrium system (8) for the perturbed
stochastic game �(t). We show that the set of solutions to system (14) identifies a
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series of tη0-perfect stationary equilibria as t varies from η0 to zero and yields a PeSE
of � at t = 0.

The next lemma states that our system has a unique starting point at t = 1.

Lemma 1 At t = 1, the system (14) has a unique solution.

Proof Let t = 1. It follows that θ(t) = 1, so system (14) reduces to

λiω j − μi
ω − η0

∑

k∈Mi
ω

λiωk = 0, j ∈ Mi
ω, ω ∈ �, i ∈ N ,

λiω j (x
i
ω j − η0) − (x0,iω j − η0) = 0, λiω j ≥ 0, xiω j ≥ η0, j ∈ Mi

ω, ω ∈ �, i ∈ N ,

∑

j∈Mi
ω

xiω j − 1 = 0, ω ∈ �, i ∈ N .

(15)

It follows from (10) that μi
ω = 1− η0mi

ω. Then the first group of equations becomes

λiω j − 1 + η0m
i
ω − η0

∑

k∈Mi
ω

λiωk = 0, j ∈ Mi
ω, ω ∈ �, i ∈ N .

Summing over j in the system above, one obtains that
∑

k∈Mi
ω

λiωk = mi
ω. By substi-

tuting the expressions for μi
ω and

∑
k∈Mi

ω
λiωk in the first group of equations in (14),

we find that, for all i ∈ N , ω ∈ �, j ∈ Mi
ω, λiω j = 1. Substituting λiω j = 1 into the

second group of equations, we have that, for all i ∈ N , ω ∈ �, j ∈ Mi
ω, xiω j = x0,iω j .
�

Let σ i
ω : X×[0, 1] → Xi

ω be the unique solution to the strictly convex optimization
problem (11) and let φ : X × [0, 1] → X be the product of σ i

ω over all i ∈ N and
ω ∈ �, so φ(x, t) satisfies the optimality conditions of problem (11) for all players
in all states. The function φ is obviously a continuous mapping on X × [0, 1]. For
what comes next, we need the following fixed point theorem (Browder 1960; Herings
2000).

Theorem 2 (Browder’s fixedpoint theorem)Let S be anon-empty, compact and convex
subset of Rm and let f : S × [0, 1] → S be a continuous function. Then the set
F = {(x, t) ∈ S × [0, 1] : f (x, t) = x} contains a connected set Fc such that
Fc ⋂

(S × {0}) �= ∅ and Fc ⋂
(S × {1}) �= ∅.

We denote by P̃−1 the set of all (x, t) ∈ X×[0, 1] satisfying system (14). It follows
from Brouwer’s fixed point theorem that, for every t ∈ [0, 1], φ(·, t) has a fixed point
in the non-empty compact convex set X . Clearly, as x̂ = x at a fixed point, the two
systems (12) and (14) have precisely the same solutions and therefore P̃−1 can be
rewritten as

P̃−1 = {(x, t) ∈ X × [0, 1] : x = φ(x, t)}.
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Then, a direct application of Browder’s fixed point theorem results in the following
corollary.

Corollary 2 The set P̃−1 contains a connected component that intersects both sets
X × {0} and X × {1}.
Corollary 2 assures the global convergence of the LB-DHmethod. Since all equations
in system (14) are polynomial, P̃−1 is a semi-algebraic set. Hence, the component in
this corollary is actually path-connected. That is, any two points in the component can
be joined by a path (Schanuel et al. 1991). This establishes the following corollary.

Corollary 3 The set P̃−1 contains a path-connected component that intersects both
sets X × {0} and X × {1}.

To design an effective and efficient method for computing a PeSE for the original
stochastic game �, we need to construct an everywhere smooth path, where some
regularity conditions are required to hold. Recall that when t ∈ (ζ0/2, 1], θ(t) >

0, and it is possible to verify that zero is a regular value of (14). However, when
t ∈ [0, ζ0/2], this regularity disappears, and a natural conflict occurs between the
interior requirement of differentiable homotopies and the perfectness criterion. More
specifically, when t ∈ [0, ζ0/2], θ(t) = 0, and the second group of equations to
system (14) becomes a group of complementarity constraints, which are needed to
establish ε-perfectness. Precisely because of these constraints, the Jacobian matrix of
the equilibrium system (14) may become singular. To address this conflict, we make
the following transformation of variables.6 For i ∈ N , ω ∈ �, and j ∈ Mi

ω, we write
xiω j and λiω j as functions of a new variable ziω j and the homotopy variable t ,

xiω j (z, t) = tη0 +
(
qiω j (z, t) + ziω j

2

)κ

, j ∈ Mi
ω, ω ∈ �, i ∈ N ,

λiω j (z, t) =
(
qiω j (z, t) − ziω j

2

)κ

, j ∈ Mi
ω, ω ∈ �, i ∈ N ,

(16)

where

qiω j (z, t) =
√

(ziω j )
2 + 4(θ(t)(x0,iω j − η0))1/κ

and κ > 2. This ensures the differentiability of system (16). The definitions in (16)
guarantee that the second group of equations in system (14) automatically hold. By
substituting (16) into system (14), one obtains the following system,

(1 − θ(t))ϕi (ω, siω j , x
−i
ω (z, t), μi ) + λiω j (z, t) − μi

ω

−tη0
∑

k∈Mi
ω

λiωk(z, t) = 0, j ∈ Mi
ω, ω ∈ �, i ∈ N ,

∑

j∈Mi
ω

xiω j (z, t) − 1 = 0, ω ∈ �, i ∈ N .

(17)

6 Related transformations of variables have been frequently used in the literature such as Herings and
Peeters (2001), Herings and Schmedders (2006), and Chen and Dang (2021).
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For any t ∈ [0, 1], let p(z, μ, t) denote the left-hand side of system (17). The set of
solutions to system (17) is given by

P−1 = {(z, μ, t) ∈ R
m × R

nd × [0, 1] : p(z, μ, t) = 0}.

The next lemma demonstrates that zero is a regular value of the homotopy system (17)
at the starting level t = 1.

Lemma 2 At t = 1, system (17) has a unique solution. Moreover, zero is a regular
value of p on R

m × R
nd × {1}.

Proof At t = 1, the unique solution to system (14) pins down a unique value of
ziω j for any i ∈ N , ω ∈ �, and j ∈ Mi

ω, which is strictly positive and given

by (x0,iω j − η0)
1/κ − 1. We prove in “Appendix II” that the Jacobian matrix of p at

(z, μ, 1) ∈ R
m × R

nd × {1} such that p(z, μ, 1) = 0 is of full rank. Therefore, zero
is a regular value of p on Rm × R

nd × {1}. 
�
The following theorem provides conditions such that the set of solutions to system (17)
contains a smooth path leading to a perfect stationary equilibrium of the stochastic
game �.

Theorem 3 Suppose zero is a regular value of p on Rm × R
nd × (0, 1). Then P−1 ∩

R
m × R

nd × (0, 1] is a smooth one-dimensional manifold with boundary. Moreover,
P−1 connects the unique solution at t = 1 to a perfect stationary equilibrium of the
stochastic game � at t = 0.

Proof We first prove that the variables z and μ are uniquely determined for a given
value of x . From the first group of equations in system (16), for any i ∈ N , ω ∈ �,

and j ∈ Mi
ω, xiω j (z, t) is a strictly increasing function of ziω j , since the derivative of

xiω j with respect to ziω j is positive. That is, any given xiω j determines a unique value

of ziω j . The second group of equations in (16) pins down a unique value of λ
i
ω j for any

value of ziω j . Next, the first group of equations in (17) determines μi
ω uniquely given

any value of ziω j . All the above results together with the compactness of the strategy

space X lead to the compactness of the solution set P−1. From a discussion similar
to the one preceding Corollary 3, we find that P−1 has a path-connected component
that intersects both sets Rm × R

nd × {1} and R
m × R

nd × {0}. We have proved in
Lemma 1 that system (14) has a unique solution at t = 1. Therefore, system (17)
also has a unique solution at t = 1. Lemma 2 and the assumption that “zero is a
regular value of p on Rm × R

nd × (0, 1)” ensure that P−1 ∩ R
m × R

nd × (0, 1] is a
smooth one-dimensional manifold with boundary. The path-connected component in
P−1 which starts from the unique point on the level of t = 1 and ends at a point on the
level of t = 0. We derive from Definition 1 and Theorem 1 that the first point reached
by the path at t = 0 is a perfect stationary equilibrium of the stochastic game �. 
�

Now we want to get rid of the assumption that “zero is a regular value of p on
R
m × R

nd × (0, 1)” in Theorem 3. A general approach is to add a perturbation term
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−t(1− t)γ to system (17), where γ ∈ R
m with ‖γ ‖ sufficiently small. In this way we

obtain a slightly modified homotopy system,

(1 − θ(t))ϕi (ω, siω j , x
−i
ω (z, t), μi ) + λiω j (z, t) − μi

ω

−tη0
∑

k∈Mi
ω

λiωk(z, t) − t(1 − t)γ i
ω j = 0, j ∈ Mi

ω, ω ∈ �, i ∈ N ,

∑

j∈Mi
ω

xiω j (z, t) − 1 = 0, ω ∈ �, i ∈ N .

(18)

Clearly, the two systems (17) and (18) are identical when t = 1 or t = 0.7 Let
p(z, μ, t;γ ) denote the left-hand side of system (18). For any fixed γ ∈ R

m , we let
pγ (z, μ, t) = p(z, μ, t;γ ) and denote the set of solutions to system (18) by

P−1
γ = {(z, μ, t) ∈ R

m × R
nd × [0, 1] : pγ (z, μ, t) = 0}.

Clearly, p(z, μ, t;γ ) is continuously differentiable and

lim‖γ ‖→0
p(z, μ, t;γ ) = p(z, μ, t;0) = p0(z, μ, t) = p(z, μ, t).

The set P−1
γ also contains a path-connected component connecting the unique starting

point at t = 1 to an SSPE at t = 0. For a generic choice of γ, the regularity condition
of Theorem 3 is satisfied and we obtain the following theorem.

Theorem 4 For a generic choice of γ ∈ R
m, P−1

γ ∩ R
m×R

nd×(0, 1] is a smooth one-
dimensional manifold with boundary. Moreover, P−1

γ connects the unique solution at
t = 1 to an SSPE of the stochastic game � at t = 0.

Proof Using the same argument as before, one can show that P−1
γ contains a path-

connected component that intersects both sets Rm ×R
nd × {1} and Rm ×R

nd × {0}.
At both t = 0 and t = 1, the perturbation term t(1 − t)γ vanishes and pγ (z, μ, t) =
p(z, μ, t). Any point in P−1

γ with t = 0 is therefore an SSPE of �. It has been proved
in Lemma 2 that the solution to p(z, μ, 1) = 0 is unique and that 0 is a regular value
of p on R

m × R
nd × {1}. Hence, the path-connected component in P−1

γ intersecting
t = 1 also starts from this unique solution. We prove in “Appendix III” that zero is
a regular value of p(z, μ, t;γ ) on R

m × R
nd × (0, 1) × R

m . From the well-known
transversality theorem, together with the result of Lemma 2, we obtain that zero is also
a regular value of pγ (z, μ, t) onRm ×R

nd × (0, 1] for almost all γ ∈ R
m .8 It follows

that for almost all γ ∈ R
m, P−1

γ ∩ R
m × R

nd × (0, 1] is a smooth one-dimensional
manifold with boundary. 
�

Thus far, we have proved that the solution set to (18) contains an everywhere smooth
path starting at t = 1. If system (18) would resume to system (17) when t ≤ ζ0, then

7 The perturbation term is used to generically rule out degeneracies and is always set to zero in numerical
implementations.
8 The transversality theorem is presented in “Appendix I”.
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this path yields a sequence of tη0-perfect stationary equilibria for �, which has a
PeSE as its limit for t → 0. Nonetheless, the perturbation term −t(1 − t)γ will not
completely vanish before t is equal to zero, which yields a concern that the end point
of the path is not a perfect stationary equilibrium. Theorem 5 addresses this concern.

For every t ∈ (0, 1], we define �t = {(z, μ, t ′) ∈ P−1 : t ′ = t} and, for every
γ ∈ R

m , �γ,t = {(z, μ, t ′) ∈ P−1
γ : t ′ = t}. For every t ∈ (0, 1], for every

ιγ,t ∈ �γ,t , the distance between the point ιγ,t and the set �t is denoted by

d(ιγ,t , �t ) = min
ιt∈�t

‖ιt − ιγ,t‖.

With the above notations, we present Theorem 5.

Theorem 5 For every t ∈ (0, 1], for any ε > 0, there exists a δ0 > 0 such that, for
every γ ∈ R

m with ‖γ ‖ < δ0, for every ιγ,t ∈ �γ,t , d(ιγ,t , �t ) < ε.

Proof Let t ∈ (0, 1]. We prove the theorem by contradiction. Suppose there exists an
ε0 > 0, and a convergent sequence {γ k}k∈N with limk→∞ γ k = 0 and a sequence
{ιγ k ,t }k∈N in �γ k ,t such that, for every k ∈ N, d(ιγ k ,t , �t ) ≥ ε0. Since the sequence
{ιγ k ,t }k∈N is bounded, without loss of generality, one can assume it is convergent with
the limit, say, ι∗t . It follows from the continuity of p that

0 = lim
k→∞ p(ιγ k ,t ; γ k) = p(ι∗t ; 0),

so ι∗t ∈ �t . We therefore have

0 < ε ≤ lim
k→∞ d(ιγ k ,t , �t ) = d(ι∗t , �t ) = 0,

a contradiction. This completes the proof. 
�
Theorem 5 confirms that for every t ∈ (0, 1], the perturbed path in P−1

γ is arbitrarily
close to the path in P−1 that leads to a PeSE for the stochastic game of interest. There-
fore, the perturbed path in P−1

γ leads to an approximate perfect stationary equilibrium
for the original stochastic game �. With the above results, we establish the following
corollary.

Corollary 4 For a generic choice of γ ∈ R
m with ‖γ ‖ sufficiently small, there exists

an everywhere smooth path in P−1
γ , which starts from an arbitrary point at t = 1 and

provides an approximate perfect stationary equilibrium for the stochastic game � as
t approaches zero.

4 A convex quadratic penalty homotopymethod

For numerical comparisons, we develop a convex-quadratic-penalty differentiable
homotopy (CQP-DH)method in this section. Let the perturbed strategy space X(t) and
continuously differentiable function θ(t) be defined as in Sect. 3. For any stationary
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strategy profile x̂ ∈ X(t), we incorporate with θ(t) a convex quadratic penalty term
into the perturbed stochastic game and construct an artificial penalty stochastic game,
in which any player i ∈ N solves the following optimization problem in state ω ∈ �.

maxxiω∈Xi
ω

(1 − θ(t))
∑

j∈Mi
ω

xiω jϕ
i (ω, siω j , x̂

−i
ω , μ̂i )

−θ(t)

2

∑

j∈Mi
ω

(xiω j − x0,iω j )
2 − 1

2

∑

j∈Mi
ω

(xiω j − x̂ iω j )
2

s.t. xiω j ≥ tη0, j ∈ Mi
ω

∑

j∈Mi
ω

xiω j − 1 = 0,

(19)

where x0 ∈ Int(X(1)) is an arbitrarily given totally mixed strategy profile, and μ̂i =
(μ̂i

ω : ω ∈ �) is the unique solution to the linear system

μ̂i
ω = (1 − θ(t))ϕi (ω, x̂ω, μ̂i ) − θ(t)

∑

j∈Mi
ω

x̂ iω j (x̂
i
ω j − x0,iω j ), ω ∈ �. (20)

Then, from a similar discussion as in Sect. 3, one can formulate the equilibrium system
for this stochastic game with quadratic penalty terms, which is given by

(1 − θ(t))ϕi (ω, siω j , x
−i
ω , μi ) − θ(t)(xiω j − x0,iω j ) + λiω j

−μi
ω − tη0

∑

k∈Mi
ω

λiωk = 0, j ∈ Mi
ω, ω ∈ �, i ∈ N ,

xiω j ≥ tη0, λiω j ≥ 0, λiω j (x
i
ω j − tη0) = 0, j ∈ Mi

ω, ω ∈ �, i ∈ N ,

∑

j∈Mi
ω

xiω j − 1 = 0, ω ∈ �, i ∈ N .

(21)

Lemma 3 At t = 1, the system (21) has a unique solution.

Proof When t = 1, θ(t) = 1 and the system (21) reduces to

−(xiω j − x0,iω j ) + λiω j − μi
ω − η0

∑

k∈Mi
ω

λiωk = 0, j ∈ Mi
ω, ω ∈ �, i ∈ N ,

xiω j ≥ η0, λiω j ≥ 0, λiω j (x
i
ω j − η0) = 0, j ∈ Mi

ω, ω ∈ �, i ∈ N ,

∑

j∈Mi
ω

xiω j − 1 = 0, ω ∈ �, i ∈ N .

(22)
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Let i ∈ N and ω ∈ �. We take the sum over j ∈ Mi
ω in the first group of equations

in (22) to obtain that

∑

j∈Mi
ω

λiω j − mi
ωμi

ω − η0mi
ω

∑

k∈Mi
ω

λiωk = 0,

which can be reorganized as

μi
ω =

(
1

mi
ω

− η0

) ∑

j∈Mi
ω

λiω j .

Substituting the above equation into the first group of equations in (22), we find that

xiω j − x0,iω j = λiω j − 1

mi
ω

∑

k∈Mi
ω

λiωk, j ∈ Mi
ω, i ∈ N , ω ∈ �. (23)

Next we prove that for all j ∈ Mi
ω, λ

i
ω j = 0. Suppose that, for some j ∈ Mi

ω, λiω j > 0.

We define M
i
ω = { j ∈ Mi

ω : λiω j > 0} and denote the cardinality of M
i
ω by mi

ω. It

follows from the second group of equations in (22) that xiω j = η0 for all j ∈ M
i
ω.

From the choice of η0,we find thatmi
ω < mi

ω. Since x
0 ∈ Int(X(1)), x0,iω j > η0. Then,

we derive from Eq. (23) that, for any j ∈ M
i
ω,

0 > λiω j − 1

mi
ω

∑

k∈Mi
ω

λiωk = λiω j − 1

mi
ω

∑

k∈Mi
ω

λiωk .

Summing over j ∈ M
i
ω in the above group of inequalities, we have that

0 >

(

1 − mi
ω

mi
ω

)
∑

j∈Mi
ω

λiω j > 0,

a contradiction. Therefore, λiω j = 0 for any j ∈ Mi
ω. Then we have that xiω j = x0,iω j

and μi
ω = 0. 
�

Lemma 3 shows that the continuously differentiable system (21) has a unique
solution at t = 1. Note that when t is not larger than the positive number ζ0/2, θ(t) is
equal to zero and the homotopy system (21) reduces to the equilibrium system (8) for
the perturbed stochastic game �(t). At t = 0, the system (21) becomes identical to the
equilibrium system (3) for the original stochastic game �. Next, we prove that there
exists a path-connected component in the set of solutions to the homotopy system
(21), which intersects both the level t = 1 and the level t = 0. We denote by H̃−1 the
set of all (x, t) ∈ X × [0, 1] satisfying the equilibrium system (21). From a similar
discussion as in the LB-DH method, we attain the following theorem.
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Theorem 6 The set H̃−1 contains a path-connected component that intersects both
X × {0} and X × {1}.

Theorem 6 ensures the global convergence of the CQP-DH method. For numerical
implementation, we further need to construct an everywhere smooth path leading to a
PeSE. That is, onemust eliminate the complementarity conditions λiω j (x

i
ω j −tη0) = 0

bymaking an appropriate transformation of variables in the system (21). For any i ∈ N ,
ω ∈ � and yiω j ∈ R

m , let

λiω j (y) = max {0,−yiω j }� and xiω j (y, t) = tη0 + max {0, yiω j }�, (24)

where � > 2.9 Moreover, we formulate the following CQP-DH homotopy system,

(1 − θ(t))ϕi (ω, siω j , x
−i
ω (y, t), μi ) − θ(t)(xiω j (y, t) − x0,iω j ) + λiω j (y)

−μi
ω − tη0

∑

k∈Mi
ω

λiωk(y) − t(1 − t)αi
ω j = 0, j ∈ Mi

ω, ω ∈ �, i ∈ N ,

∑

j∈Mi
ω

xiω j (y, t) − 1 = 0, ω ∈ �, i ∈ N ,

(25)

where α ∈ R
m is a small perturbation. Let h(y, μ, t;α) denote the left-hand side of the

system (25), which is clearly a continuously differentiable function. The system (25)
has a unique starting point at the level of t = 1. For any α ∈ R

m , let hα(y, μ, t) =
h(y, μ, t;α) and let the solution set to the system (25) be denoted by H−1

α . It follows
from the two systems (24) and (25) that y and μ are uniquely determined for any
given x . Therefore, H−1

α contains a path-connected component that intersects both
R
m × R

nd × {1} and Rm × R
nd × {0}. The following theorem verifies that this path-

connected component forms an everywhere smooth path, which eventually leads to a
perfect stationary equilibrium for �.

Theorem 7 For a generic choice of α ∈ R
m with ‖α‖ sufficiently small, there exists

a smooth path in H−1
α , which starts from an arbitrary point at t = 1 and ends at an

approximate perfect stationary equilibrium for the stochastic game � as t approaches
zero.

Proof It has been proved in “Appendix IV” that zero is a regular value of h(y, μ, t;α)

on Rm ×R
nd × (0, 1] ×R

m . From the transversality theorem, for almost all α ∈ R
m ,

zero is also a regular value of hα(y, μ, t). Moreover, we derive from a highly similar
discussion as the proof of Theorem 5 that, when ‖α‖ is sufficiently small, the smooth
path contained in the set H−1

α leads to an approximate perfect stationary equilibrium
for � as t approaches zero. 
�

9 The reason for choosing � > 2 is the use of the transversality theorem in the following analysis, which
requires the homotopy function to be at least second-order continuously differentiable.
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5 Numerical performance

In this section, we apply the proposed LB-DH method to solve various numeri-
cal examples, including several well-known stochastic games, randomly generated
stochastic games, an application to dynamic legislative bargaining, and a dynamic
oligopoly model with entry and exit. A predictor–corrector method has been adopted
for numerically tracing the generated homotopy paths (Allgower and Georg 2012;
Chen and Dang 2021; Eaves and Schmedders 1999). In our implementation, we set
η0 = 1/(maxi∈N ,ω∈� mi

ω + 5), ζ0 = 10−5, κ = 3, and δ = 0.95. To reveal the
effectiveness of the LB-DH method for selecting a PeSE, we have exploited the IPM
and an arbitrary starting SLTP proposed in Li and Dang (2020) to solve several well-
known examples. In this section, we have plot the development of the homotopy paths
for several stochastic games to illustrate how the methods work. To demonstrate the
numerical efficiency of the LB-DH method, we have also implemented the CQP-DH
method and compared its computation time with that of the LB-DH method. All the
methods are coded in MatLab (R2019a).

5.1 Several well-known stochastic games

We test the numerical effectiveness of the LB-DH method for computing a PeSE
in Example 1. Recall that the stochastic game in Example 1 has three SSPEs,
(s1ω11

, s2ω11
, s1ω21

, s2ω21
), (s1ω12

, s2ω12
, s1ω21

, s2ω21
) and (s1ω13

, s2ω13
, s1ω21

, s2ω21
), and only

(s1ω12
, s2ω12

, s1ω21
, s2ω21

) is a PeSE. By applying the LB-DH method to this example,
we find the unique PeSE. The method starts from a totally mixed strategy profile,
(x0,1ω11

, x0,1ω12
, x0,1ω13

, x0,2ω11
, x0,2ω12

, x0,2ω13
, x0,1ω21

, x0,2ω21
) = (0.2, 0.5, 0.3, 0.2, 0.5, 0.3, 1, 1).

The development of different variables and the number of iterations is plotted in
Fig. 2.

Fig. 2 The development of different variables in iterations
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Fig. 3 Numerical comparisons

5.1.1 Comparisons with the IPM

In the sequel, we apply both the LB-DH and the IPM method to Examples 2 and 3
and plot the development of the homotopy paths generated by these methods.

Example 2 N = {1, 2} and � ∈ {ω1, ω2}. For i = 1, 2, Siω1
= {siω11

, siω12
} and

Siω2
= {siω21

}. The payoff matrices for the players are given by

ω1 s2ω11
s2ω12

s1ω11
(0, 0) (0,−1)

s1ω12
(0, 0) (−1,−1)

,
ω2 s2ω21
s1ω21

(1, 1)
.

The transition probability is π(ω̄ : ω, sω) = 0.5, for any ω̄, ω ∈ �.10

There are infinitelymanySSPEs in this stochastic game, but only (s1ω11
, s2ω11

, s1ω21
, s2ω21

)

is a PeSE. Both methods start from the same mixed strategy profile, (x0,1ω11
, x0,1ω12

, x0,2ω11
,

x0,2ω12
, x0,1ω21

, x0,2ω21
) = (0.2, 0.8, 0.2, 0.8, 1, 1). The development of the different vari-

ables in stateω1 can be found in Fig. 3. It is easy to observe fromFig. 3 that IPM leads to
anSSPE that is not perfect, (x1ω11

, x1ω12
, x2ω11

, x2ω12
, x1ω21

, x2ω21
) = (0.6, 0.4, 1, 0, 1, 1).

The LB-DHmethod successfully finds the unique PeSE (x1ω11
, x1ω12

, x2ω11
, x2ω12

, x1ω21
,

x2ω21
) = (1, 0, 1, 0, 1, 1).

10 The game in this example is derived from the stochastic extension of a normal-form game in Mertens
(1989).
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Fig. 4 Numerical comparisons

Example 3 We have N = {1, 2}, � = {ω1, ω2}, S1ω1
= {s1ω11

, s1ω12
, s1ω13

}, S2ω1
=

{s2ω11
, s2ω12

, s2ω13
}, S1ω2

= {s1ω21
}, and S2ω2

= {s2ω21
}. The payoff matrices are given by

ω1 s2ω11
s2ω12

s2ω13
s1ω11

(1, 1) (0, 0) (1, 1)
s1ω12

(0, 0) (0, 0) (0, 10)
s1ω13

(1, 1) (5, 0) (1, 1)

and
ω2 s2ω21
s1ω21

(0, 0)
.

The transition probability is π(ω̄ : ω, sω) = 0.5, for any ω̄, ω ∈ �.11

There are infinitely many SSPEs in this stochastic game, which include all mix-
tures between the first and third actions for both players in state ω1. Nevertheless,
only (s1ω13

, s2ω13
, s1ω21

, s2ω21
) is a PeSE. Both methods start from the same point,

(x0,1ω11
, x0,1ω12

, x0,1ω13
, x0,2ω11

, x0,2ω12
, x0,2ω13

, x0,1ω21
, x0,2ω21

) = (0.6, 0.2, 0.2, 0.6, 0.2, 0.2, 1, 1).

The development of x1ω11
, x1ω12

, and x1ω13
is plotted in Fig. 4. It can be seen from

Fig. 4 that IPM fails to find the PeSE while the LB-DH method is successful in doing
so.

The above examples illustrate the effectivenss of the LB-DH method for finding
a PeSE. As we know, the starting point matters greatly for the development of the
homotopy path and, in fact, different starting points may lead to different ending
points. To further ensure the rigor of the results in the above experiments and confirm
the effectiveness of the LB-DH method, we have repeatedly run both methods with
various randomly generated starting strategy profiles x0 and report the success rate of
the methods in Tables 1, 2, where “S” (or “F”) means the method succeeds (or fails)
to compute a PeSE. It follows from the numerical results that the LB-DH method has
achieved a 100% success rate in computing PeSEs regardless of the starting point,
while the IPM might reach any possible SSPE and therefore fails to find a PeSE for
stochastic games with a large number of SSPEs.

11 The game in this example is derived from an extension of a normal-form game in McKelvey and Palfrey
(1995).
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Table 1 Numerical performance
in Example 2 Test

(
x0,1ω11

, x0,1ω12
, x0,2ω11

, x0,2ω12

)
LB-DH IPM

1 (0.4826, 0.5174, 0.2528, 0.7472) S F

2 (0.6935, 0.3065, 0.6449, 0.3551) S F

3 (0.4621, 0.5379, 0.4752, 0.5248) S F

4 (0.4833, 0.5167, 0.4878, 0.5122) S F

5 (0.2757, 0.7243, 0.5145, 0.4855) S F

6 (0.6382, 0.3618, 0.2376, 0.7624) S F

7 (0.5962, 0.4038, 0.5800, 0.4200) S F

8 (0.1879, 0.8121, 0.6156, 0.3844) S F

9 (0.7977, 0.2023, 0.7686, 0.2314) S F

10 (0.5718, 0.4282, 0.2728, 0.7272) S F

Table 2 Numerical performance in Example 3

Test
(
x0,1ω11

, x0,1ω12
, x0,1ω13

, x0,2ω11
, x0,2ω12

, x0,2ω13

)
LB-DH IPM

1 (0.3874, 0.1816, 0.4310, 0.3253, 0.3564, 0.3183) S F

2 (0.4710, 0.2215, 0.3075, 0.4007, 0.3225, 0.2768) S F

3 (0.3309, 0.3033, 0.3033, 0.2059, 0.4541, 0.3400) S F

4 (0.4962, 0.1755, 0.3283, 0.2304, 0.4058, 0.3638) S F

5 (0.2609, 0.4470, 0.2921, 0.3404, 0.3966, 0.2630) S F

6 (0.5994, 0.2026, 0.1980, 0.3566, 0.4141, 0.2293) S F

7 (0.2896, 0.3760, 0.3344, 0.3686, 0.3912, 0.2402) S F

8 (0.3442, 0.3450, 0.3108, 0.3622, 0.4638, 0.1740) S F

9 (0.2407, 0.4949, 0.2644, 0.3800, 0.1734, 0.4466) S F

10 (0.1823, 0.3916, 0.4261, 0.3255, 0.2752, 0.3993) S F

5.1.2 Comparisons with the SLTP

Recall that the SLTP, extending a reasoning process in Harsanyi and Selten (1988) to
the class of stochastic games, is a well-known effective approach to solve for an SSPE
in stochastic games. However, the SSPE obtained by the SLTP cannot be guaranteed
to be perfect. To further affirm this advantage of the LB-DHmethod over the SLTP, we
have implemented both methods to solve the following example and compared their
numerical performance for computing a PeSE.

Example 4 N = {1, 2, 3} and � ∈ {ω1, ω2}. For i = 1, 2, 3, Siω1
= {siω11

, siω12
} and

Siω2
= {siω21

}. The payoff matrices for the players are given by

ω1 s2ω11
s2ω12

s1ω11
(1, 1, 1) (1, 0, 1)

s1ω12
(1, 1, 1) (0, 0, 1)
s3ω11

,

ω1 s2ω11
s2ω12

s1ω11
(1, 1, 0) (0, 0, 0)

s1ω12
(0, 1, 0) (1, 0, 0)
s3ω12

,

ω2 s2ω21
s1ω21

(0, 0, 0)
s3ω21

.
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Fig. 5 The changes of different variables in the iterations for both methods

The transition probability is π(ω̄ : ω, sω) = 0.5, for any ω̄, ω ∈ �.
Clearly, a strategy profile (x1ω11

, s2ω11
, s3ω11

, s1ω21
, s2ω21

, s3ω21
) for any x1ω11

∈ [0, 1]
is an SSPE, which indicates that the stochastic game has infinitely many SSPEs.
However, (s1ω11

, s2ω11
, s3ω11

, s1ω21
, s2ω21

, s3ω21
) is the unique PeSE for this game, that is,

every player implements her first action.
First, we have run the LB-DH and SLTP methods with the same starting point,

(x0,1ω11
, x0,1ω12

, x0,2ω11
, x0,2ω12

, x0,3ω11
, x0,3ω12

, x0,1ω21
x0,2ω21

, x0,3ω21
)

= (0.2, 0.8, 0.7, 0.3, 0.2, 0.8, 1, 1, 1).

Experimental results show that both methods find the unique PeSE. Next, we change
the starting point to (0.2, 0.8, 0.3, 0.7, 0.2, 0.8, 1, 1, 1). Starting from the new given
point, SLTP leads to the SSPE

(x1ω11, x
1
ω12, x

2
ω11, x

2
ω12, x

3
ω11, x

3
ω12, x

1
ω21x

2
ω21, x

3
ω21) = (0, 1, 1, 0, 1, 0, 1, 1, 1),

which is not perfect. Still, the LB-DHmethod finds the unique PeSE. The development
of the different variables in the various iterations for both methods are plotted in Fig. 5.

Example 4 illustrates that the effectiveness of the SLTP for computing a perfect
stationary equilibrium is sensitive to the starting point and cannot be guaranteed.
Nevertheless, the LB-DH method always approaches a PeSE, which confirms the
theoretical convergence of the proposed method numerically.

5.2 Randomly generated stochastic games

In addition to the above examples, we have generated extensive randomly generated
stochastic games for varying n, d, andm0, wherem0 denotes the number of actions for
each player in each state. Payoffs are uniformly chosen from the interval [−10, 10] and
set to be zerowith probability “pd0”,where “pd0” is a randomvalue in [0, 0.8]. Clearly,
“pd0”measures the sparseness of the payoffmatrix; that is, a larger value of “pd0” leads
to a sparser payoff matrix. For numerical comparisons, we have run the LB-DH and
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CQP-DHmethods to compute PeSEs for the randomly generated games.12 Moreover,
to verify that the LB-DH method gains from eliminating the Bellman equation (1),
we have tested the efficiency of the LB-DH method without eliminating the Bellman
equation (LB-DH-NR). Each experiment with the same triple of (n, d,m0) has been
run ten times.

5.2.1 Comparisons with the CQP-DHmethod

We let n be equal to 2, 3, and 4. For any given n, we take d and m0 from 2 to 5, which
induces several groups of stochastic games with different scales. The LB-DH and
CQP-DH methods are used to solve those games, and the results are reported in Table
3, where “AVER” is the average computation time (in seconds) for each triple, “MAX”
is the maximal computation time (in seconds), “MIN”is the minimal computation time
(in seconds), “STDEV” is the standard deviation in the computation time, and “Ratio”

equals
AVER of LB-DH

AVER of CQP-DH
, which we set in bold if it is smaller than one.

From the last column of Table 3, it can be seen that the percentage ratio of the
computation time of the LB-DH and CQP-DHmethods is around 10%, which implies
that the LB-DHmethod significantly outperforms the CQP-DHmethod. The standard
deviations of computation time show that the LB-DH method is much more stable
than the CQP-DH method.

5.2.2 Comparisons with the LB-DH-NR

This section focuses on large-scale stochastic games, which are difficult to solve with
the CQP-DH method in a reasonable time. The LB-DH and LB-DH-NR have been
implemented to compute PeSEs for these games, where the homotopy system for the
LB-DH-NR is given by

(1 − θ(t))ϕi (ω, siω j , x
−i
ω (z, t), μi ) + λiω j (z, t) − β i

ω = 0,
j ∈ Mi

ω, ω ∈ �, i ∈ N ,
∑

j∈Mi
ω

xiω j (z, t) − 1 = 0, ω ∈ �, i ∈ N ,

μi
ω = (1 − θ(t))ϕi (ω, xω(z, t), μi ) + θ(t)(1 − η0mi

ω) ω ∈ �, i ∈ N ,

(26)

with x(z, t) and λ(z, t) the same as in (16). We report the average computation time
(in seconds) in Table 4. The improvement in efficiency brought by the elimination is

also shown in Table 4, which reads as “ImRatio”=1 − AVER of LB-DH

AVER of LB-DH-NR
. We make

this column bold to highlight the improvement of the numerical efficiency brought by
this elimination.

12 To shuffle the deck even more against us and illustrate the numerical efficiency of the LB-DH method,
we have implemented the CQP-DH method with � = 2 in numerical experiments, which on average leads
to shorter computational times than the case with � > 2.
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Table 4 Average computation
time and comparisons

LB-DH LB-DH-NR ImRatio (%)

n = 3/(d,m0)

(3, 7) 149.58 179.25 16.55

(4, 6) 472.45 558.02 15.33

(5, 5) 299.36 371.59 19.43

(6, 6) 901.96 1181.59 23.66

(7, 3) 426.56 606.57 29.67

(7, 7) 4820.88 7240.56 33.41

n = 4/(d,m0)

(3, 7) 769.48 871.32 11.69

(4, 6) 711.73 1055.56 32.57

(4, 7) 1470.76 2237.81 34.27

(5, 5) 1379.07 1978.78 30.31

(6, 5) 2045.60 2878.29 28.93

(7, 4) 2384.97 2920.30 18.33

n = 5/(d,m0)

(3, 6) 2639.46 3674.06 28.16

(4, 5) 1585.87 1981.08 19.94

(5, 4) 2368.15 3281.12 27.82

(6, 3) 1553.67 2041.08 23.88

n = 6/(d,m0)

(3, 5) 2101.86 2732.08 23.06

(4, 4) 2209.21 2736.01 19.25

(5, 3) 2259.47 2746.82 17.74

n = 7/(d,m0)

(3, 4) 2033.90 2552.62 20.26

(4, 3) 1462.38 1804.41 18.95

(4, 4) 6018.24 7570.19 20.50

Table 4 confirms the effectiveness of the LB-DH method to compute PeSEs for
stochastic games with scales up to n = 7, d = 7, and m0 = 7. It can be seen that
the average computation time increases in n, d, and m0. The last column of Table 4
affirms that the elimination of the Bellman equation enhances the numerical efficiency
of the LB-DH method. Moreover, among the three parameters n, d, and m0, n is the
most influential factor for the computational cost, which aligns with the observations
made for the computation of SSPEs in Herings and Peeters (2004) and Li and Dang
(2020).

5.3 An application to voting problems

Consider a voting model carried out by three voters for two options. In any stage t ,
the voters simultaneously and independently vote, a or b. If they choose the same
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Fig. 6 Development of t and xω1 in the various iterations

option, the voting ends, and this option will be implemented in the subsequent stages.
Otherwise, the voters pay a voting fee in stage t and start a new round of voting
in stage t + 1. This voting problem can be formulated into a stochastic game with
infinitely many stages. More specifically, N = {1, 2, 3} and � = {ω1, ω2, ω3}, where
ω1 = {a new round of voting starts}. The states ω2 and ω3 correspond to the states
in which the voting has ended, where ω2 = {ahas been implemented} and ω3 =
{bhas been implemented}. In ω1, the voters have two actions, which read as: siω11

=
{vote fora} and siω12

= {vote forb}with i = 1, 2, 3. Moreover, the payoff matrices are
given by

ω1 s2ω11
s2ω12

s1ω11
(1, 1, 1) (−1,−1,−1)

s1ω12
(−1,−1,−1) (−1,−1,−1)

s3ω11

,

ω2 s2ω21
s1ω21

(1, 1, 1)
s3ω21

,

ω1 s2ω11
s2ω12

s1ω11
(−1,−1,−1) (−1,−1,−1)

s1ω12
(−1,−1,−1) (−1,−1,−1)

s3ω12

,

ω3 s2ω31
s1ω31

(0, 0, 0)
s3ω31

.

If the current state is ω1 and unanimity is not achieved, the system will jump to ω1
with probability 1. Otherwise, the system will jump to ω2 or ω3 with probability 1.
Furthermore, states ω2 and ω3 are absorbing. That is, once the system reaches states
ω2 or ω3, it will never leave them.

The strategy profile with all individuals voting for a in the state ω1 is the unique
PeSE in this game. However, there exists an SSPE with all individuals voting for b
which is not perfect. Starting from a randomly generated strategy profile, the LB-DH
method finds the unique PeSE, where (x1ω11

, x2ω11
, x3ω11

) = (1, 1, 1). The development
of the different variables along the homotopy path is plotted in Fig. 6.
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5.4 An application to dynamic legislative bargaining

To illustrate the importance of selecting a perfect stationary equilibrium, we present an
example from the literature on dynamic legislative bargaining in this section (Gomes
and Jehiel 2005; Duggan and Kalandrakis 2012; Eraslan et al. 2022). Consider n
legislators, who bargain over the policy of investing in technology to reduce CO2
emissions. The state variable in the related stochastic economy corresponds to the
state of the climate. A proposal passes if a sufficiently large coalition of legislators
chooses to accept the policy and fails otherwise. If decision making is governed by
a quotum q ∈ [0, N ], then for a proposal to pass, the coalition has to belong to the
collection {C ⊆ N : |C | ≥ q}, where N is the set of all legislators. Among quota
rules, the majority rule is one of the most common voting rules in practice, that is,
{C ⊆ N : |C | > n

2 }.
To model this situation, we consider a stochastic game with three players and

six states, that is, ω1 = {great}, ω2 = {good}, ω3 = {medium}, ω4 = {passable},
ω5 = {bad}, and ω6 = {terrible}. Each player in each state has two choices, invest or
not invest. State transitions occur with probabilities depending on the strategy profile
in the current period and the payoffs of the legislators in each period rely on the current
state of the climate. More specifically, if the investment proposal is accepted, which
happens whenever two or three legislators opt for invest, the climate will go up one
state with a probability of 1/2 and remain in the current state with probability 1/2 in
the next period. If the proposal is rejected, which happens when none or only of the
legislators wants to invest, the climate will go down one state with probability 1/2 and
remain with probability 1/2. For simplicity, we assume that if the current state is ω1
and the policy is accepted, or, if the current state is ω6 and the policy is rejected, the
state will remain in the next period. The utilities of the legislators are generated as
follows: first we randomly generate the utilities of each legislator in the worst climate
state ω6, then we obtain the utilities for the state ω5 by adding a randomly generated
positive number to those utilities in ω6 . . . , and we continue in this way to obtain the
utilities of each legislator in each state. Moreover, the cost of investment is the same
for all legislators and normalized to 1.

There exists a plethora of stationary equilibria, many of which are unappealing.
For instance, any strategy profile where in each state all legislators are in favor or all
legislators are against is a stationary equilibrium. Indeed, with a unilateral deviation,
there are still two players against or still two players in favor, and the voting outcome
would not change when majority rule is in place. This generates 64 stationary equilib-
ria, irrespective of the actual utilities of the legislators. To rule out such unappealing
equilibria, we apply the LB-DH method to this problem and plot the development of
the probabilities of choosing the “invest” action for each legislator in each state along
the homotopy path in Fig. 7.

From the numerical results, we see that the LB-DH method does not end up at
stationary equilibria which are not perfect and successfully finds the PeSE, where
all the legislators accept the investment policy in each state. Keeping those utilities
unchanged, we randomly generate several new starting points and implement the LB-
DHmethod repeatedly. For those utilities, the paths will always lead to the same PeSE.
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Fig. 7 Development of the investment strategies in different climate states in the various iterations

Moreover, we randomly generate another sets of utilities for the legislators using the
same way as before and compute the equilibria for the new problems by exploiting the
LB-DH method. The results illustrate that the obtained equilibria are always in pure
strategies and that investment is least likely in stateω1. The reason for this phenomenon
is that the current climate is good enough and the legislators cannot benefit much from
the investment. This is also the state where consensus among the legislators is least
likely.

5.5 An application to a dynamic oligopoly model with entry and exit

In this example, we present a dynamic oligopoly model with entry and exit, based on
Herings et al. (2005).13 Suppose that n firms produce homogeneous goods to serve a
market with a linear demand curve, so with firm j ∈ N producing quantity q j , leading
to a total production quantity equal to Q := ∑

j∈N q j and market price p = a − bQ.
Firms have constant marginal costs of production equal to c. Firms interact during
infinitely many periods. In each period, a firm currently in the market decides about
a production quantity and about whether or not to remain in the market, whereas
firms out of the market decide whether or not to enter. Firms are forward looking and
maximize discounted expected profits.

This problem can be modeled as a stochastic game with n players and 2n states,
which correspond to all possible industry structures, i.e., which firms are active in the
current period. For any state ω, when there are k firms active in the market, it is easy to

verify that each of them optimally produces qiω = a − c

k + 1
b, resulting in instantaneous

13 This dynamic IO problemwas also discussed in Ericson and Pakes (1995), Doraszelski and Satterthwaite
(2010) and Abbring et al. (2018).
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Fig. 8 Development of the strategies in state ω1 : (o, o), ω2 : (o, i), ω3 : (i, o), and ω4 : (i, i) in the
homotopy path

payoff uiω = (a − c)2

(k + 1)2b
. Inactive firms do not produce and obtain nothing. We can

therefore model an active firm i in any state ω as having two actions, Siω = {i, o}, that
is, either be in (active in) or out of (inactive in) the market next period.

Closed-form solutions for the two-firm case were studied in Herings et al. (2005)
and revealed the possibility of an alternating monopoly as an equilibrium outcome. In
states where both firms are active, each of them leaves the market with a probability
strictly in between 0 and 1. In states where no firm is active, each of them enters with
a probability strictly in between 0 and 1. In states where exactly one firm is active, the
active firm leaves and the inactive firm enters.

In this section, we first consider the problem presented in Herings et al. (2005) with
n = 2, that is, the set of players N = {1, 2} and state space � = {ω1, ω2, ω3, ω4},
where ω1 = (o, o), ω2 = (o, i), ω3 = {i, o}, and ω4 = (i, i). In each period, the
action profile chosen by the players yields the industry structure in the next period.
The discount factor is set to be 0.95. Without loss of generality, we normalize a, b,
and c such that (a−c)2/b = 1.With the above settings, in each period, any active firm
gets a profit of 1/4 when only this firm is active in the market and gets 1/9 when both
firms are in the market. We apply the LB-DH method to this problem. Starting from a
randomly generated point, the path generated by our method leads to a PeSE, where
both firms always choose to be active in the market. In each state, the development of
the mixed strategies for each firm in the various iterations is plotted in Fig. 8, and the
total expected profits of both firms by coordinating on this equilibrium in each state
are reported in Table 5.

To verify the capability of the LB-DH method to find multiple equilibria, we start
the method from a different starting point and eventually find another PeSE, which
corresponds to the “alternating monopoly equilibrium”—when both firms are active
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Table 5 Total expected profits of
both firms in each state

Total profits ω1 ω2 ω3 ω4

Firm 1 2.1111 2.1111 2.3611 2.2222

Firm 2 2.1111 2.3611 2.1111 2.2222

Fig. 9 Development of the strategies in all states in the homotopy path

Table 6 Total expected profits of
both firms in each state

Total profits ω1 ω2 ω3 ω4

Firm 1 2.3055 2.4359 2.5641 2.4166

Firm 2 2.3055 2.5641 2.4359 2.4166

or inactive in the current period, they will become active in the next period with
probability 0.9306; when only one of the firms is active in the current period, the
active firm will be inactive in the next period, whereas the inactive firm will be active
for sure one period later, indicating that the market displays an alternating monopoly.
We plot the development of the probabilities of choosing “in” and “out” actions for
each firm in each state in Fig. 9 and report the total expected profits of both firms in
this equilibrium in Table 6.

Additionally, we change the starting point of the LB-DH method again and obtain
one more equilibrium. In this equilibrium, in state ω1, firm 1 will be active with
probability 0.7305 and firm 2 will be active for sure in the next period; in state ω2,
the inactive firm will become active for sure while the active firm will turn to be
inactive with probability very close to 1 in the next period; in state ω3, the inactive
firm will become active for sure while the active firm will remain to be active with
probability 0.1579 one period later; in state ω4, firm 1 will remain to be active in the
next period, whereas firm 2 will become inactive with a small probability of 0.0825.
The transitions between any two states are illustrated graphically in Fig. 10, where we
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Fig. 10 State transitions in
market structure

Table 7 Total expected profits of
both firms in each state

Total profits ω1 ω2 ω3 ω4

Firm 1 2.3029 2.4241 2.5529 2.4241

Firm 2 2.1466 2.3611 2.2222 2.2222

depict the states by the coalitions which are active (like “(1,2)” indicates the state with
both firms being active, and “none” means the state ω1—no firm chooses to be active)
and indicate by arrows how one moves from one state to another under the equilibrium
strategy profile. The total expected profits for the firms in this equilibrium are reported
in Table 7. Furthermore, by changing the starting point, the LB-DHmethod is capable
to find multiple equilibria for stochastic games.

Next we analyze the more complex scenario with n = 3. We therefore consider a
player set N = {1, 2, 3} and state space � = {ω1, ω2, . . . , ω8}, where ω1 = (o, o, o),
ω2 = (o, o, i), . . ., ω8 = (i, i, i). As before, we take the discount factor equal to 0.95
and normalize (a − c)2/b = 1. In each period, an active firm gets a profit of 1/4 when
only this firm is active in the market; when there are two firms in the market, they both
get profits of 1/9; when all three firms are active, each of them gets a profit of 1/16.
To illustrate the efficiency of the LB-DH method, we compare it to the SLTP method
for solving this game. By starting both methods from the same randomly generated
point, we obtain the PeSE, where all firms are active in the next period whatever the
current state is.

The LB-DH method turns out to be much more efficient than the SLTP method
both in terms of number of iterations and computation time. More specifically, it takes
SLTP 62 iterations and 48.19 s to find the PeSE, while the LB-DH method only needs
52 iterations and 25.98 s to find the same equilibrium. The development of the distance
to the PeSE for both methods is plotted in Fig. 11.

Table 8 shows the total expected profits to the firms by coordinating on this equi-
librium for each possible initial state.
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Fig. 11 Development of the distance to a PeSE in the various iterations and computation time

Table 8 Total expected profits of both firms in each state

Total profits ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8

Firm 1 1.1875 1.1875 1.1875 1.4375 1.1875 1.2986 1.2986 1.2500

Firm 2 1.1875 1.1875 1.4375 1.1875 1.2986 1.1875 1.2986 1.2500

Firm 3 1.1875 1.4375 1.1875 1.1875 1.2986 1.2986 1.1875 1.2500

6 Conclusions and future research

In this paper, we have extended the concept of perfect equilibrium for strategic games
to stochastic games and formulated the notion of perfect stationary equilibrium (PeSE),
which can effectively eliminate some counterintuitive stationary equilibria in stochas-
tic games. To find such an equilibrium, we have developed a logarithmic-barrier
differentiable homotopy (LB-DH) method. The basic idea of the method is incorpo-
rating a logarithmic-barrier term into the objective functions of the original stochastic
game and constituting a logarithmic-barrier stochastic game. We have been able to
eliminate the Bellman equations in our homotopy system, which significantly reduces
the number of variables in the equilibrium system of the logarithmic-barrier game.We
have proved that the set of solutions to the resulting system contains a differentiable
homotopy path, which starts from an arbitrary given point and ends at a PeSE for the
stochastic game of interest.

In numerical experiments, we have applied the LB-DHmethod to extensive stochas-
tic games. To elicit the effectiveness of the LB-DH method for selecting a particular
SSPE satisfying the perfectness criterion, we have implemented our method and two
well-known homotopymethods—the IPM and the SLTP, to solve the stochastic games
with multiple SSPEs and a unique PeSE. Experimental results illustrate that the IPM
and the SLTPmay end at a non-perfect SSPEwhile the LB-DHmethod always leads to
the unique PeSE. To illustrate the numerical efficiency of the LB-DHmethod, we have
compared it with the stochastic extension of an existing method, called the convex-
quadratic-penalty homotopy (CQP-DH) method, on extensive randomly generated
stochastic games. Numerical results show that the LB-DH method significantly out-
performs the CQP-DH method in terms of computation time. We have also confirmed
by numerical comparisons that the LB-DH method benefits from the elimination of
the Bellman equations. Furthermore, we have used our method to shed new light on
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several important economic applications: dynamic legislative bargaining and dynamic
oligopoly with entry and exit. The perspective of the proposed method creates some
opportunities to investigate several other refinements of stationary equilibria, such as
proper stationary equilibria and perfect d-proper stationary equilibria.
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Appendix I

Theorem 8 (Transversality Theorem, Mas-Colell (1989)) Let f : S × R
l → R

s be
Cr , where S ⊂ R

n is an open set and r ≥ 1+max{0, n− s}. If zero is a regular value
of f , then zero is a regular value of f (·, w) : S → R

s for almost all w ∈ R
l .

Appendix II

This appendix shows that the Jacobian matrix of p at (z, μ, 1) ∈ R
m × R

nd × {1}
such that p(z, μ, 1) = 0 is of full rank. This result is used in the proof of Lemma 2.
At t = 1, system (17) reduces to

λiω j (z, 1) − μi
ω − η0

∑

k∈Mi
ω

λiωk(z, 1) = 0, j ∈ Mi
ω, ω ∈ �, i ∈ N ,

∑

j∈Mi
ω

xiω j (z, 1) − 1 = 0, ω ∈ �, i ∈ N .
(27)

The Jacobian matrix of p at the starting point (z, μ, 1) reads as

J p(z, μ, 1) =
(
A0 −diag(emi

ω
)

B0 0

)

∈ R
(m+nd)×(m+nd),
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where emi
ω

∈ R
mi

ω is a column vector with all elements equal to one and A0 =
diag(Ci

ω : ω ∈ �, i ∈ N ) ∈ R
m×m is a block diagonal matrix with

Ci
ω =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(1 − η0)
∂λiω1(z, 1)

∂ziω1
−η0

∂λiω2(z, 1)

∂ziω2
· · · −η0

∂λi
ωmi

ω
(z, 1)

∂zi
ωmi

ω

−η0
∂λiω1(z, 1)

∂ziω1
(1 − η0)

∂λiω2(z, 1)

∂ziω2
· · · −η0

∂λi
ωmi

ω
(z, 1)

∂zi
ωmi

ω

...
...

. . .
...

−η0
∂λiω1(z, 1)

∂ziω1
−η0

∂λiω2(z, 1)

∂ziω2
· · · (1 − η0)

∂λi
ωmi

ω
(z, 1)

∂zi
ωmi

ω

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Moreover,

B0 = ∂x(z, t)

∂z
= diag(∂xiω) ∈ R

nd×m

with

∂xiω = (
∂xiω j

∂ziω j

) j∈Mi
ω

∈ R
1×mi

ω .

Now we prove that Ci
ω is of full rank. Suppose there exists a vector v ∈ R

mi
ω such that

Ci
ωv = 0. That is,

(1 − η0)
∂λiω1(z, 1)

∂ziω1
v1 − η0

∂λiω2(z, 1)

∂ziω2
v2 − . . . − η0

∂λi
ωmi

ω
(z, 1)

∂zi
ωmi

ω

vmi
ω

= 0,

−η0
∂λiω1(z, 1)

∂ziω1
v1 + (1 − η0)

∂λiω2(z, 1)

∂ziω2
v2 − . . . − η0

∂λi
ωmi

ω
(z, 1)

∂zi
ωmi

ω

vmi
ω

= 0,

...

−η0
∂λiω1(z, 1)

∂ziω1
v1 − η0

∂λiω2(z, 1)

∂ziω2
v2 . . . + (1 − η0)

∂λi
ωmi

ω
(z, 1)

∂zi
ωmi

ω

vmi
ω

= 0.

(28)

Summing all the equations in the system above, we have that

(1 − mi
ωη0)

⎛

⎝
∂λiω1(z, 1)

∂ziω1
v1 + ∂λiω2(z, 1)

∂ziω2
v2 + · · · +

∂λi
ωmi

ω
(z, 1)

∂zi
ωmi

ω

vmi
ω

⎞

⎠ = 0.
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Recall that η0 < 1/maxω∈�,i∈N mi
ω. Therefore it holds for all i ∈ N and ω ∈ � that

1 − mi
ωη0 > 0. It follows that

∂λiω1(z, 1)

∂ziω1
v1 + ∂λiω2(z, 1)

∂ziω2
v2 + · · · +

∂λi
ωmi

ω
(z, 1)

∂zi
ωmi

ω

vmi
ω

= 0.

Multiplying both sides of the above equation by η0 and adding the result to the first
equation in system (28), we obtain that

∂λiω1(z, 1)

∂ziω1
v1 = 0.

Similarly, one can prove that for any j ∈ Mi
ω,

∂λiω j (z, 1)

∂ziω j

v j = 0.

At the starting point ziω j = (x0,iω j − η0)
1/κ − 1 it holds that

∂λiω j (z, 1)

∂ziω j

= κ

2
(

ziω j

ziω j + 2
− 1),

which is obviously negative. Consequently, v = 0, which implies that Ci
ω is of full

rank. Hence, A0 is also of full rank.
Next, at the starting point ziω j = (x0,iω j − η0)

1/κ − 1, it holds that

∂xiω j (z, 1)

∂ziω j

= κ
ziω j + 1

ziω j + 2
,

which is strictly positive. Therefore, B0 is clearly of full row rank.
By applying standard row operations to the Jacobian matrix J p(z, μ, 1), one trans-

forms this Jacobian matrix to the following matrix,

(
A0 −diag(emi

ω
)

0 B0A
−1
0 diag(emi

ω
)

)

.

Since B0 and A
−1
0 diag(emi

ω
) are bothdiagonalmatrices, it follows that B0A

−1
0 diag(emi

ω
)

is a diagonal matrix. We now compute the diagonal element corresponding to i ∈ N
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and ω ∈ �, which is equal to ∂xiω(Ci
ω)−1emi

ω
. We define

v = 1

1 − mi
ωη0

⎛

⎜
⎜
⎜
⎜
⎝

1
∂λiω1(z,1)

∂ziω j

, . . . ,
1

∂λi
ωmi

ω
(z,1)

∂zi
ωmi

ω

⎞

⎟
⎟
⎟
⎟
⎠

�

,

a strictly negative column vector in Rmi
ω . It holds that Ci

ωv = emi
ω
, so our designated

diagonal element is equal to

∂xiω(Ci
ω)−1emi

ω
= ∂xiω(Ci

ω)−1Ci
ωv = ∂xiωv,

the product of a strictly positive and a strictly negative vector, so a strictly negative
number. It follows that B0A

−1
0 diag(emi

ω
) is of full rank. As a result, J p(z, μ, 1) is of

full rank.

Appendix III

We prove in this appendix that the Jacobian matrix of p has full row rank if t ∈ (0, 1).
This result is used in the proof of Theorem 4. When t ∈ (0, 1), the Jacobian matrix of
p(z, μ, t;γ ) reads as

J p(z, μ, t;γ ) =

⎛

⎜
⎜
⎝

∂ p1
∂z

∂ p1
∂μ

∂ p1
∂t

−t(1 − t)Im

B0 0
∂ p2
∂t

0

⎞

⎟
⎟
⎠ ∈ R

(m+nd)×(2m+nd+1),

where p1 and p2 represent the first and second groups of equations in system (18),
respectively. The matrix B0 has been defined in Appendix II and has full row rank.
Obviously,−t(1− t)Im is of full rank. It follows immediately that the Jacobian matrix
J p(z, μ, t;γ ) has full row rank and Rank[J p(z, μ, t;γ )] = m + nd. This together
with Lemma 2 establishes that zero is a regular value of p onRm ×R

nd × (0, 1]×R
m .

Appendix IV

We prove in this appendix that zero is a regular value of h onRm ×R
nd × (0, 1]×R

m .
This result is used in the proof of Theorem 7.
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First, let us consider the case that t = 1. System (25) becomes

−(xiω j (y, 1) − x0,iω j ) + λiω j (y) − μi
ω − η0

∑

j∈Mi
ω

λiω j (y) = 0, j ∈ Mi
ω, ω ∈ �, i ∈ N ,

∑

j∈Mi
ω

xiω j (y, 1) − 1 = 0, ω ∈ �, i ∈ N .

(29)

We evaluate the Jacobian matrix of h at a point (y, μ, 1) ∈ R
m ×R

nd × {1} such that
h(y, μ, 1) = 0. The matrix is given by

Jh(y, μ, 1) =
(

A −diag(emi
ω
)

B 0

)

∈ R
(m+nd)×(m+nd),

where emi
ω

∈ R
mi

ω is a column vector with all elements equal to one, so diag(emi
ω
) ∈

R
m×nd , and A = � · diag(Di

ω : ω ∈ �, i ∈ N ) ∈ R
m×m is a block diagonal matrix

with

Di
ω =

⎛

⎜
⎜
⎜
⎜
⎝

−ξ iω1 − (1 − η0) f
i
ω1 η0 f

i
ω2 · · · η0 f

i
ωmi

ω

η0 f
i
ω1 −ξ iω2 − (1 − η0) f

i
ω2 · · · η0 f

i
ωmi

ω

.

.

.
.
.
.

. . .
.
.
.

η0 f
i
ω1 η0 f

i
ω2 · · · −ξ i

ωmi
ω

− (1 − η0) f
i
ωmi

ω

⎞

⎟
⎟
⎟
⎟
⎠

,

where ξ iω j = max{0, yiω j }�−1 and f iω j = max{0,−yiω j }�−1. Moreover, it holds that

B = �·diag(ξ iω�
) ∈ R

nd×m ,where ξ iω = (ξ iω j ) j∈Mi
ω
is a columnvectorwith dimension

mi
ω.
Since h(y, μ, 1) = 0, it holds that, for every i ∈ N , for every ω ∈ �, for every

j ∈ Mi
ω, y

i
ω j = (x0,iω j − η0)

1/� > 0, so the matrix A is a full-rank diagonal matrix and
the matrix B is of full row rank. By row operations, the Jacobian matrix Jh(y, μ, 1)
can be transformed to

(
A −diag(emi

ω
)

0 BA−1diag(emi
ω
)

)

The matrix BA−1diag(emi
ω
) ∈ R

nd×nd is a diagonal matrix with rank nd. Therefore,
the Jacobian matrix Jh(y, μ, 1) is of full rank, which shows that zero is a regular
value of h(y, μ, 1).

Next, we consider the case that t ∈ (0, 1). We evaluate the Jacobian matrix of h at
a point (y, μ, t;α) ∈ R

m ×R
nd × (0, 1)×R

m such that h(y, μ, t;α) = 0. It is given
by

Jh(y, μ, t;α) =
(
E1 E2 E3 t(1 − t)Im
B 0 η0e 0

)

∈ R
(m+nd)×(2m+nd+1),

123



P. Li et al.

where B is defined as above and e ∈ R
nd . The matrices E1 ∈ R

m×m , E2 ∈ R
m×nd ,

and E3 ∈ R
m×1 are the derivatives of the first group of equations with respect to y,

μ, and t , respectively. Clearly, t(1− t)Im is of rull rank m when t ∈ (0, 1). It follows
from the previous discussion that B is of full row rank nd. It follows that the rank of
the Jacobian matrix Jh(y, μ, t;α) is (m+nd). Therefore, Jh(y, μ, t;α) is of full row
rank. This completes the proof.
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