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Abstract
We study a method for calculating the utility function from a candidate of a demand
function that is not differentiable, but is locally Lipschitz. Using thismethod,we obtain
two new necessary and sufficient conditions for a candidate of a demand function to
be a demand function. The first concerns the Slutsky matrix, and the second is the
existence of a concave solution to a partial differential equation. Moreover, we show
that the upper semi-continuous weak order that corresponds to the demand function
is unique, and that this weak order is represented by our calculated utility function.
We provide applications of these results to econometric theory. First, we show that,
under several requirements, if a sequence of demand functions converges to some
function with respect to the metric of compact convergence, then the limit is also a
demand function. Second, the space of demand functions that have uniform Lipschitz
constants on any compact set is compact under the above metric. Third, the mapping
from a demand function to the calculated utility function becomes continuous. We
also show a similar result on the topology of pointwise convergence.
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1 Introduction

In classical economics, measuring utility was important because the sum of utilities
was seen as themost important index for determining the goodness of the society. After
the latter half of the nineteenth century, it gradually became clear that this measuring
problemwas very difficult, and economics placed the greatest emphasis on analyses in
which utility need not be measured (the so-called axiomatic approach). However, once
Debreu (1974) had proved the Sonnenschein–Mantel–Debreu theorem, the limitations
of the axiomatic approach became clear. That is, we can determine almost no properties
of the economy without a specification of the utility functions.

Therefore, a method of estimating utility functions from data has become neces-
sary. However, an important problem arises here. Namely, the only data available for
estimating utility functions are those relating to the consumer’s purchase behavior, and
thus, only the demand function, not the utility function, can be directly estimated from
data. Because of this, the estimation method currently used is basically a method of
parameter estimation in which the demand function and the utility function are exoge-
nously assumed to correspond one-to-one through their parameters. This method is
known as calibration.

Our purpose is to construct a general theory that calculates the utility function from
an arbitrary demand function without such an exogenous assumption. This research
area is known as integrability theory. In this context, Hosoya (2017) developed a spe-
cific method for calculating the corresponding utility function from a given candidate
of the demand function. This previous paper also discussed how to handle cases in
which the demand function contains errors. Let us elaborate on this issue. To obtain the
demand function, we need to estimate it from the purchase behavior of the consumer,
as discussed above. The problem addressed by Hosoya (2017) is the following: if the
error in the demand function is small, is the corresponding error in the utility function
also small?

The problem is essentially that of continuity. In other words, it requires the property
that, when the demand function changes slightly, the corresponding utility function
also changes only slightly. The most important aspect of the continuity problem is the
topology. Because Hosoya (2017) assumed that the demand function is continuously
differentiable, the local C1 topology was used for the space of demand functions.
However, this result is problematic in many ways. The most significant problem is
that there are few econometric results that discuss the space of the demand function
with the local C1 topology. This is because there are very few estimation methods that
allow the error to converge to 0 with respect to the local C1 topology as the data size
increases. Therefore, even if good results are obtained with respect to this topology,
the results cannot be used in econometrics.

For the above reason, a weaker topology is needed. Common topologies used in
econometric theory for such problems are the topology of compact convergence and
the topology of pointwise convergence.However, using these topologiesmeans that the
space of continuously differentiable functions becomes not complete. We therefore
need to reproduce the results of Hosoya (2017) without assuming that the demand
function is differentiable. This is the research objective of the present paper.
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Non-smooth integrability theory

Weakening the assumption of differentiability to that of continuity, however, means
that we are confrontedwith the problem found byMas-Colell (1977). He demonstrated
the existence of a continuous demand function such that there are two corresponding
continuous utility functions representing different preference relations. Applying this
to our context means that, in the space of continuous demand functions, even if the
error of the demand function is 0, the estimated error of the utility function may not
be 0. This is highly undesirable.

Thus, as a compromise, we assume that the demand function is locally Lipschitz.
By Rademacher’s theorem, any locally Lipschitz function is differentiable almost
everywhere, and thus, for a locally Lipschitz candidate of the demand function, we
can define the Slutsky matrix almost everywhere. In this paper, we first use this result
to extend Theorem 1 of Hosoya (2017). Namely, when a candidate of the demand
function satisfiesWalras’ law and is locally Lipschitz, if its Slutskymatrix is symmetric
and negative semi-definite almost everywhere, then the corresponding utility function
can be constructed by solving a differential equation (Proposition 1). We present an
example of such a calculation where this method works effectively (Example 1).

This result has several important consequences. First, using this result, we can
obtain two conditions that are each necessary and sufficient for a candidate of the
demand function to be a demand function (Corollary 1). As was the case under con-
tinuous differentiability, the symmetry and negative semi-definiteness of the Slutsky
matrix “almost everywhere” constitute one necessary and sufficient condition. Amore
important necessary and sufficient condition is the existence of a unique global con-
cave solution to a specific partial differential equation with an arbitrary initial value
condition. This property is robust in terms of limit manipulation, i.e., it holds for the
limit of a sequence of functions satisfying it. Hence, it provides an important stepping
stone for the subsequent arguments in this paper.

The utility function corresponding to a demand function obtained by our method
is upper semi-continuous on the range of the demand function, and we guarantee the
uniqueness of the corresponding upper semi-continuous preference relation on the
same space. Outside of the range of the demand function, Hosoya (2020) derived a
construction method for an upper semi-continuous utility function and ensured the
uniqueness of the corresponding upper semi-continuous preference relation when the
range of the demand function is sufficiently wide. We present a slight variation of
this construction method and prove that, again, if the range of the demand function
is sufficiently wide, an upper semi-continuous utility function can be constructed
outside the range of the demand function and the corresponding upper semi-continuous
preference relation is unique (Corollary 2). Thus, it is not possible to obtain under
our assumptions the non-uniqueness examples that Mas-Colell (1977) obtained for
continuous demand functions.

With these results as the groundwork, we finally discuss themain focus of this study,
namely the continuity of the mapping from the demand function to the utility function.
As already mentioned, one of the typical topologies that can be given to the space of
demand functions is the topology corresponding to uniform convergence on compact
sets. In this space, even if a sequence of locally Lipschitz demand functions converges
to some function (which is not necessarily a demand function), it is not guaranteed that
the limit is locally Lipschitz. However, if the limit happens to be locally Lipschitz, we
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can show that the limit of a sequence of demand functions is still a demand function
(Theorem 1).

With this in mind, we construct a certain space of functions. Specifically, this is
the space of demand functions that satisfy Walras’ law and have a uniform Lipschitz
constant on any compact set. Using Theorem 1, we can prove the compactness of this
space (Corollary 3). That is, in this space, every sequence of demand functions has a
convergent subsequence whose limit is also a demand function.

For a unique derivation of the utility function, however, the range of the demand
function must be sufficiently wide, as discussed above. We have found an example
of a sequence of demand functions that satisfy all the assumptions of Corollary 3
and have a sufficiently wide range, yet the range in the limit is very small (Example
2). Therefore, an additional assumption is needed for the continuity result we desire.
Namely, the range of the function in the limitmust also be sufficientlywide. In addition,
when all functions satisfy the “C axiom” introduced by Hosoya (2017, 2020), then the
desired continuity proposition can be obtained (Theorem 2). That is, when a sequence
of demand functions converges to a demand function with respect to the topology
discussed above, then the corresponding sequence of utility functions also converges
to the corresponding utility function uniformly on any compact set consisting of strictly
positive consumption vectors.

Note that this result does not hold at the boundary: that is, when some commodity
can be zero,we can only derive amore naive result (Corollary 4).Actually,we construct
an example in which the sequence of values of the utility functions does not converge
to the value of the limit utility function at the boundary (Example 3).

By strengthening the C axiom, we can strengthen the result of Corollary 3 and
Theorem 2. We construct a new space of demand functions such that the C axiom is
uniformly imposed on the whole space. We can then show that this space is compact,
and furthermore, the mapping from this space to the space of the corresponding utility
functions is continuous (Corollary 5). This is our desired result.

These are all results for the topology of compact convergence. We derive the same
result as Corollary 5 for the topology of pointwise convergence. That is, if a sequence
of demand functions in the space treated in Corollary 5 converges to some function
pointwise, then this limit is also a demand function belonging in the same space,
and the corresponding sequence of utility functions converges uniformly to the utility
function corresponding to the limit demand function (Theorem 3). This is another
desired result.

The results in the second half of the paper are specifically constructed with a view
to discussing the consistency of estimation methods. An estimation method of the true
value x is said to be consistent if the estimated value xN converges in probability to x as
the data size N increases. To summarize our results, we can state the following: if the
estimation method for the demand function satisfies consistency, then the estimation
method for the utility function that is constructed by the given estimation method
for the demand function and the computational process in Proposition 1 also satisfies
consistency. We believe that this presents a new way of estimating utility functions for
econometric theory. In particular, this result can be applied to any estimation method,
whether parametric or non-parametric.
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The structure of this paper is as follows. First, Sect. 2 defines several terms in
consumer theory that are necessary for understanding this paper. Section3 introduces
a method of constructing the utility function. Section4 discusses the compactness
of the space and the continuity of the representation results. Section5 considers the
position of the present work in the context of related research and provides a list of
open problems. Section6 summarizes the conclusions of this study. Because many of
the theorems in this paper have long proofs, all proofs are placed in Sect. 7.

2 Notation and definitions

Throughout this paper, we use the following notation: R
N+ = {x ∈ R

N |xi ≥
0 for all i ∈ {1, . . . , N }}, and R

N++ = {x ∈ R
N |xi > 0 for all i ∈ {1, . . . , N }}.

The former set is called the nonnegative orthant and the latter set is called the positive
orthant. We write x ≥ y if x − y ∈ R

N+ and x � y if x − y ∈ R
N++. If N = 1, then

we omit N and simply write R+ and R++.
Fix n ≥ 2. Let � denote the consumption set. We assume that � = R

n+ unless
otherwise stated. A set A ⊂ �2 is called a binary relation on �.

For a binary relation A ⊂ �2, we say that it is

• complete if, for every (x, y) ∈ �2, either (x, y) ∈ A or (y, x) ∈ A,
• transitive if (x, y) ∈ A and (y, z) ∈ A imply (x, z) ∈ A,
• upper semi-continuous if, for every x ∈ �, the set U (x) = {y ∈ �|(y, x) ∈ A} is
closed,

• continuous if A is closed in �2,
• upper semi-continuous on B if, for every x ∈ B, the setUB(x) = {y ∈ B|(y, x) ∈

A} is closed with respect to the relative topology of B, and
• continuous on B if A ∩ B2 is closed in B2.

A binary relation � on � is called a weak order if it is complete and transitive. For
a weak order�, we write x � y instead of (x, y) ∈� and x �� y instead of (x, y) /∈�.
Moreover, we write x � y if x � y and y �� x , and x ∼ y if x � y and y � x .

Suppose that � is a weak order on �. If there exists a function u : � → R such
that

x � y ⇔ u(x) ≥ u(y),

then we say that u represents �, or u is a utility function of �.
Consider a function f : R

n++ × R++ → �. We call the following condition the
budget inequality:

p · f (p,m) ≤ m.

If the budget inequality holds for all (p,m) ∈ R
n++ ×R++, then we call f a candidate

of demand (CoD). Moreover, if

p · f (p,m) = m

for all (p,m) ∈ R
n++ × R++, then we say that this CoD f satisfies Walras’ law.
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Let � be a weak order on �. For each (p,m) ∈ R
n++ × R++, we define

�(p,m) = {x ∈ �|p · x ≤ m},

f �(p,m) = {x ∈ �(p,m)|x � y for all y ∈ �(p,m)}.
We call the set-valued function f � the demand relation of�, and if it is single-valued,
then we call f � the demand function of �. If u represents �, then f u denotes f �.
For a CoD f , if f = f �, then we say that f corresponds to � and � corresponds to
f . Of course, if f = f u , then we say that f corresponds to u and u corresponds to
f . We call a CoD f a demand function if f = f � for some weak order � on �.
Let f be a CoD. We say that f is income-Lipschitzian if for every compact subset

C ⊂ R
n++ × R++, there exists L > 0 such that if (p,m1), (p,m2) ∈ C , then

‖ f (p,m1) − f (p,m2)‖ ≤ L|m1 − m2|.
Moreover, we say that f is locally Lipschitz if for every compact subset C ⊂ R

n++ ×
R++, there exists L > 0 such that if (p1,m1), (p2,m2) ∈ C , then

‖ f (p,m1) − f (p,m2)‖ ≤ L‖(p1,m1) − (p2,m2)‖.
Obviously, every locally Lipschitz CoD is income-Lipschitzian, and it is known that
every continuously differentiable CoD is locally Lipschitz.

Suppose that f is a CoD that is differentiable at (p,m). Define

si j (p,m) = ∂ fi
∂ p j

(p,m) + ∂ fi
∂m

(p,m) f j (p,m),

and let S f (p,m) denote the n × n matrix whose (i, j)-th component is si j (p,m).
This matrix-valued function S f (p,m) is called the Slutsky matrix. An alternative
expression of this matrix is as follows:

S f (p,m) = Dp f (p,m) + Dm f (p,m) f T (p,m),

where f T (p,m) denotes the transpose of f (p,m). If f is locally Lipschitz, then by
Rademacher’s theorem, f is differentiable almost everywhere, and thus, the Slutsky
matrix is defined almost everywhere. We say that f satisfies (S) if S f (p,m) is sym-
metric almost everywhere, and satisfies (NSD) if S f (p,m) is negative semi-definite
almost everywhere.

For a CoD f , we define R( f ) as the range of f . That is,

R( f ) = {x ∈ �|x = f (p,m) for some (p,m) ∈ R
n++ × R++}.

Finally, suppose that f is a CoD such that R( f ) includes R
n++. Define

G f (x) =
{
p ∈ R

n++

∣∣∣∣∣
∑
i

pi = 1, f (p, p · x) = x

}
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for each x ∈ R
n++. This multi-valued function is called the inverse demand cor-

respondence of f . We say that f satisfies the C axiom if G f is compact-valued,
convex-valued, and upper hemi-continuous on R

n++.

3 Preliminary result: constructing a reverse calculationmethod

We first construct a rigorous and effective method for calculating a utility function
that corresponds to the given CoD.

Proposition 1 Suppose that f is a locally Lipschitz CoD that satisfiesWalras’ law, (S),
and (NSD). Fix p̄ � 0, and define u f , p̄(x) as follows. First, if x /∈ R( f ), then define
u f , p̄(x) = 0. Second, if x = f (p,m) for some (p,m), then consider the following
differential equation

ċ(t) = f ((1 − t)p + t p̄, c(t)) · ( p̄ − p), c(0) = m, (1)

and define u f , p̄(x) = c(1). Then, the following hold.

1. u f , p̄ is well-defined,1 and f = f u f , p̄ .
2. u f , p̄ is upper semi-continuous on R( f ).
3. If f = f � for some weak order � on � that is upper semi-continuous on R( f ),

then for every x, y ∈ R( f ),

x � y ⇔ u f , p̄(x) ≥ u f , p̄(y).

As a corollary, we obtain the following result.

Corollary 1 Suppose that f is a locally Lipschitz CoD that satisfies Walras’ law. Then,
the following four statements are equivalent.

(i) f = f � for some weak order � on �.
(ii) f = f u f , p̄ , where u f , p̄ is defined in Theorem 1.
(iii) f satisfies (S) and (NSD).
(iv) For every (p,m) ∈ R

n++ × R++, the partial differential equation

∇E(q) = f (q, E(q)), E(p) = m, (2)

has a unique concave solution defined on R
n++.

We present a few remarks on Proposition 1 and Corollary 1. In Hosoya (2017),
the same result as Proposition 1 was obtained for continuously differentiable CoDs.
Hosoya (2018) showed the same result for differentiable and locally Lipschitz CoDs.
Because every continuously differentiable CoD is locally Lipschitz, the latter result
is a pure extension of the former. In these previous theorems, the Slutsky matrix

1 That is, there uniquely exists a solution c(t) to (1) whose domain is [0, 1], and c(1) is independent of the
choice of (p,m) ∈ f −1(x).
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was assumed to be symmetric and negative semi-definite at every (p,m). In contrast,
our Proposition 1 only requires the symmetry and negative semi-definiteness of the
Slutsky matrix at almost every (p,m). Hence, Proposition 1 is a further pure extension
of Hosoya’s (2018) result. However, this weakening of the assumption significantly
increases the difficulty of the proof for the following two reasons. First, the term
f ((1− t)p+ t p̄, c(t)) appears in (1). However, the set A = {((1− t)p+ t p̄, c(t))|t ∈
[0, 1]} is a null set with respect to the Lebesgue measure. Hence, the Slutsky matrix
may be undefined at all points of A. This fact renders many techniques used in related
research inapplicable. Second, the classical techniques that derive such a result were
constructed by Hurwicz and Uzawa (1971). However, in Hurwicz–Uzawa’s proof, the
weak axiom of revealed preference was first derived (Lemma 5 in their paper), and
then the main result was proved using the weak axiom. Because the claim of the weak
axiom includes a strict inequality, this property vanishes under limit manipulation.
This indicates that the usual approximation approach would not work in the proof of
Proposition 1.

In Hosoya (2021), a similar result was obtained using several techniques based on
partial differential equations. The proof in Hosoya (2021) solved the above difficulties
by applying perturbation techniques to a partial differential equation, although this is
difficult to understand. In contrast, we construct the proof of Proposition 1 based on
knowledge of ordinary differential equations.

Statement (iv) of Corollary 1 is a new necessary and sufficient condition for a CoD
to be a demand function of some weak order. The strong axiom of revealed preference
is necessary and sufficient for a CoD to be a demand function (Richter 1966; Mas-
Colell et al. 1995), and recently it was shown that (S) and (NSD) are necessary and
sufficient for a continuously differentiable CoD satisfyingWalras’ law to be a demand
function (Hosoya 2017).Our condition (iv) is a new alternative necessary and sufficient
condition for a locally Lipschitz CoD satisfying Walras’ law to be a demand function.
Later, we discuss why this condition is crucial for the results presented in this paper.

Equation (2) is deeply related to the expenditure function. For a given weak order
� on � and x ∈ �, define

Ex (p) = inf{p · y|y � x}.

This function is called the expenditure function. Indeed, Ex coincides with the value
function of the following minimization problem:

min p · y
subject to y ∈ �,

y � x .

This is traditionally called the expenditure minimization problem in consumer theory.
The expenditure function is concave and continuous. Moreover, if f = f � and f is
continuous, and if x = f (p,m), then q �→ Ex (q) satisfies (2). This result is usually
called Shephard’s lemma (see Lemma 1 of Hosoya 2020). Therefore, condition (i)
implies condition (iv). It is obvious that condition (ii) implies condition (i), and it is
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easy to show that condition (iv) implies condition (iii). Finally, Proposition 1 claims
that condition (iii) implies condition (ii). This is the background logic to Corollary 1.

If f = f � and f is continuous and income-Lipschitzian, then we can easily show
that p �→ Ex (p) is the unique solution to (2), and u f , p̄(x) = Ex ( p̄) for all x ∈ R( f ).
If R( f ) includes R

n++ and is open in R
n+, then by applying a similar proof as that of

Theorem 1 in Hosoya (2020), we obtain the following result.

Corollary 2 Suppose that f is a locally Lipschitz CoD that satisfies Walras’ law, (S),
and (NSD). Moreover, suppose that R( f ) includes R

n++ and is relatively open in �.
Define

v f , p̄(x) =
{
u f , p̄(x) if x ∈ R

n++,

infε>0 sup{u f , p̄(y)|y ∈ R
n++, ‖y − x‖ < ε} if x /∈ R

n++.
(3)

Then, f = f v f , p̄ and v f , p̄ is upper semi-continuous. Moreover, the following hold.

(1) The function f satisfies the C axiom if and only if v f , p̄ is continuous on R
n++.

(2) If f = f � for some upper semi-continuous weak order �, then v f , p̄ represents
�. In particular, such a � must be unique.

(3) f = f � for some continuous weak order � if and only if v f , p̄ is continuous.

Example 1 Consider the following CoD:

f (p,m) =

⎧⎪⎨
⎪⎩
(

m
p1

, 0
)

if p22 ≥ 4p1m,(
p22
4p21

,
4p1m−p22
4p1 p2

)
otherwise.

This function satisfies all requirements of Proposition 1 but is not continuously dif-
ferentiable. Moreover, R( f ) = {(x1, x2) ∈ R

2+|x1 > 0}, and so this function also
satisfies all requirements of Corollary 2. Set p̄ = (1, 1), and choose any x ∈ R( f ).
Then, x = f (p,m) for some (p,m) ∈ R

2++ × R++. If necessary, we can replace p2
with min{2√p1m, p2}, and thus we can assume that p22 ≤ 4p1m. Moreover, again if
necessary, we can replace (p,m) with 1

p2
(p,m), and thus we can assume p2 = 1 and

4p1m ≥ 1. Let us try to solve (1) and determine u f , p̄(x) and v f , p̄(x).

First, define

f 1(q, w) =
(

w

q1
, 0

)
, f 2(q, w) =

(
q22
4q21

,
4q1w − q22

4q1q2

)
,

and consider
ċi (t) = f i ((1 − t)p + t p̄, ci (t)) · ( p̄ − p). (4)

To solve (4), we have that

c1(t) = c1(s)
p1 + t(1 − p1)

p1 + s(1 − p1)
,
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and because p2 = p̄2 = 1,

c2(t) = c2(s) − 1

4

[
1

p1 + t(1 − p1)
− 1

p1 + s(1 − p1)

]
.

In particular, if s = 0 and c2(0) = m, then

c2(t) = m − 1

4

[
1

p1 + t(1 − p1)
− 1

p1

]
.

Second, suppose that 4c2(1) ≥ 1, where c2(0) = m. By our initial assumption,
4p1c2(0) ≥ 1. Moreover, (p1 + t(1− p1))c2(t) is monotone in t .2 Therefore, c(t) =
c2(t) is a solution to (1) defined on [0, 1], and hence

c(1) = c2(1) = m + 1 − p1
4p1

.

The condition 4c2(1) = 4m + 1−p1
p1

≥ 1 is equivalent to

4p1m + 1 ≥ 2p1. (5)

Because

x1 = 1

4p21
, x2 = m − 1

4p1
,

we find that (5) is equivalent to

√
x1 + x2 ≥ 1

2
.

Moreover,

c(1) = √
x1 + x2 − 1

4
.

Therefore, we obtain

u f , p̄(x) = √
x1 + x2 − 1

4
,

if x1 > 0 and
√
x1 + x2 ≥ 1

2 .
Third, suppose that 4c2(1) < 1, where c2(0) = m. By the same argument as above,

this assumption is equivalent to

√
x1 + x2 <

1

2
.

If 1 ≥ p1, then (p1 + t(1 − p1))c2(t) is either increasing or constant, and hence
4p1m < 1, which contradicts our initial assumption. Thus, we have that 1 < p1. We

2 Recall that (p1 + t(1 − p1))c2(t) = (p1 + t(1 − p1))(m + 1/4p1) − 1/4.
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guess that c(t) = c2(t) on [0, t∗] and c(t) = c1(t) on [t∗, 1], where c(t∗) = c1(t∗) =
c2(t∗) and ċ1(t∗) = ċ2(t∗). Then,

c(t∗)(1 − p1)

p1 + t∗(1 − p1)
= ċ1(t

∗) = ċ2(t
∗) = 1 − p1

4(p1 + t∗(1 − p1))2
,

and thus,

c(t∗) = c1(t
∗) = c2(t

∗) = 1

4(p1 + t∗(1 − p1))
.

Then,

c2(t
∗) = m − 1

4

[
1

p1 + t∗(1 − p1)
− 1

p1

]
= 1

4(p1 + t∗(1 − p1))
,

and hence, we obtain

t∗ = p1
1 − p1

[
1 − 4p1m

4p1m + 1

]
.

Because 1 − p1 < 0 and 1 ≤ 4p1m, we have that t∗ ≥ 0. Moreover, because (p1 +
t(1− p1))c2(t) is decreasing on [0, 1], 4c2(1) < 1, and 4(p1+ t∗(1− p1))c2(t∗) = 1,
we have that t∗ < 1. Therefore, t∗ ∈ [0, 1]. Hence,

c(t) =
⎧⎨
⎩m − 1

4

[
1

p1+t(1−p1)
− 1

p1

]
if t ≤ t∗,

(p1+t(1−p1))
4(p1+t∗(1−p1))2

if t ≥ t∗.

We can check that this c(t) is actually the solution. In particular,

c(1) = 1

4(p1 + t∗(1 − p1))2
= 16p21 m

2 + 8p1m + 1

16p21
.

Because

x1 = 1

4p21
, x2 = m − 1

4p1
,

we have that
c(1) = (

√
x1 + x2)

2 = (
√
x1 + x2)

2.

Therefore, if x1 > 0 and
√
x1 + x2 < 1

2 , then

u f , p̄(x) = (
√
x1 + x2)

2.

In conclusion, we obtain

u f , p̄(x) =

⎧⎪⎨
⎪⎩

√
x1 + x2 − 1

4 if x1 > 0,
√
x1 + x2 ≥ 1

2 ,

(
√
x1 + x2)2 if x1 > 0,

√
x1 + x2 < 1

2 ,

0 if x1 = 0.
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Of course, in this case,

v f , p̄(x) =
{√

x1 + x2 − 1
4 if

√
x1 + x2 ≥ 1

2 ,

(
√
x1 + x2)2 if

√
x1 + x2 < 1

2 .

This completes our calculation.

4 Main result: continuity of calculation

We are now able to calculate a utility function u f , p̄ from a CoD f . However, in the real
world, we can only obtain finite data about f , and because f includes infinite data, we
cannot determine f rigorously. Hence, our CoD f must be considered as an estimated
value of the true demand function. In this view, we need a continuity result: that is, we
require that if f ′ is near to f , then u f ′, p̄ is also near to u f , p̄. If this condition is violated,
then we are confronted with a methodological difficulty—ensuring “consistency” for
the estimated utility function becomes hard.

We should explain this point in detail. Consider some estimation problem with the
true value x ∈ X . Suppose that there is a given estimation method, and for some data
with size N , let xN be the estimated value of x . Then, xN is a random variable on X .
This estimation method is said to be consistent if xN converges to x in probability as
N → ∞.

Suppose that there is an estimation method for the true demand function f , and fN
is an estimated value of f for some data set of size N . Suppose also that this estimation
method is consistent with respect to some topology on the space of demand functions.
For each fN , we can calculate the utility function u fN , p̄, and thus, u fN , p̄ can be treated
as an estimated value of the “true utility function” u f , p̄. Our question is as follows:
does u fN , p̄ converge to u f , p̄? If not, our estimation method violates the consistency
condition, and is thus not useful.

Hence, the continuity of u f , p̄ with respect to f is very important. In this regard,
we first show the following result.

Theorem 1 Suppose that ( f k) is a sequence of locally Lipschitz demand functions that
satisfy Walras’ law, and for every compact set C ⊂ R

n++ × R++, f k converges to a
CoD f uniformly on C as k → ∞. If f is locally Lipschitz, then f is also a demand
function.3

As a corollary, we obtain an important result. Let �ν = [ν−1, ν]n+1. Define a
metric

ρ( f , f ′) =
∞∑

ν=1

1

2ν
min

{
sup

(p,m)∈�ν

‖ f (p,m) − f ′(p,m)‖, 1
}

,

where f , f ′ are CoDs. We can easily show that ρ is a metric in the space of CoDs,
and a sequence ( f k) converges to f with respect to ρ if and only if, for every compact
set C ⊂ R

n++ × R++, ( f k) converges to f uniformly on C .

3 It is obvious that, under the assumption of this theorem, f satisfies Walras’ law.
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Suppose that L = (Lν) is a sequence of positive real numbers. Define FL as the
set of demand functions f that satisfy Walras’ law and the following inequality:

‖ f (p,m) − f (q, w)‖ ≤ Lν‖(p,m) − (q, w)‖

for all ν ∈ N and (p,m), (q, w) ∈ �ν .

Corollary 3 The space FL is compact with respect to the metric ρ.

To ensure the uniqueness of the upper semi-continuous weak order corresponding
to f , we need to use Corollary 2. Thus, an additional assumption is needed: that is,
R( f ) must include R

n++ and be open in R
n+. Suppose that ( f k) is a sequence on FL

that converges to f , and for every k, f k satisfies all requirements in Corollary 2. Does
f also satisfy the requirements of Corollary 2? Unfortunately, the following example
indicates that the answer is negative.

Example 2 Consider the class of CES utility functions:

uσ (x) = (xσ
1 + xσ

2 )
1
σ ,

where σ < 1 and σ �= 0. The corresponding demand function is

f σ
i (p,m) = p

−1
1−σ

i m

p
−σ
1−σ

1 + p
−σ
1−σ

2

.

We assume that σ < 0. To differentiate this function, for j �= i and (p,m) ∈ �ν , we
have that

∣∣∣∣∂ f σ
i

∂ pi
(p,m)

∣∣∣∣ = [(1 − σ)p
−2
1−σ

i + p
−2+σ
1−σ

i p
−σ
1−σ

j ]m
(1 − σ)(p

−σ
1−σ

1 + p
−σ
1−σ

2 )2
≤ ν5

2
,

∣∣∣∣∂ f σ
i

∂ p j
(p,m)

∣∣∣∣ = −σ p
−1
1−σ

i p
−1
1−σ

j m

(1 − σ)(p
−σ
1−σ

1 + p
−σ
1−σ

2 )2
≤ ν5

4
,

∣∣∣∣∂ f σ
i

∂m
(p,m)

∣∣∣∣ = p
−1
1−σ

i

p
−σ
1−σ

1 + p
−σ
1−σ

2

≤ ν2

2
.

Thus, if we define Lν = ν5, then f σ
i ∈ FL . Moreover, for every σ < 0, we have that

R( f σ ) = R
2++. However, f σ converges to a function f as σ → −∞ with respect to

the metric ρ, where

f1(p,m) = f2(p,m) = m

p1 + p2
,

and R( f ) = {(c, c)|c > 0}. This fact implies that the limit manipulation in FL may
shrink the range of the demand function.
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The above example shows that, for our purpose, an additional assumption is needed.
One of the easiest ways to solve this problem is to assume that the limit CoD f satisfies
all assumptions of Corollary 2. The result is as follows.

Theorem 2 Let ( f k) be a sequence of locally Lipschitz demand functions such that f k

satisfies Walras’ law for all k and it converges to a locally Lipschitz demand function
f with respect to ρ. Suppose that R( f k) includesR

n++ and f k satisfies the C axiom for
all k, and that f also satisfies these conditions. Then, for every compact set D ⊂ R

n++,

sup
x∈D

|u f k , p̄(x) − u f , p̄(x)| → 0

as k → ∞.

The definition of v f , p̄ in Corollary 2 only depends on the values of u f , p̄ on R
n++.

Hence, it seems to show that v f k , p̄ converges to v f , p̄ pointwise, where v f k , p̄ is as
defined in Corollary 2. However, there are several technical difficulties that mean we
cannot obtain such a result. Instead, we can show the following result.

Corollary 4 In addition to the assumptions of Theorem 2, suppose that R( f ) and all
R( f k) are relatively open in �. Then, lim supk→∞ v f k , p̄(x) ≤ v f , p̄(x) for every
x ∈ �.

Because v f k , p̄(x) ≥ 0 for every x ∈ �, if v f , p̄(x) = 0, then v f k , p̄(x) converges
to v f , p̄(x). However, if v f , p̄(x) > 0, whether v f k , p̄(x) converges to v f , p̄(x) or not
is unknown. Indeed, we have the following example in which limk→∞ v f k , p̄(x) �=
v f , p̄(x).

Example 3 Suppose that h : R++ → R++ is C∞, nondecreasing, and limc→0 h(c) =
0, limc→∞ h(c) = ∞. Choose any (x1, x2) ∈ R

2++, and consider the equation

(
x

1
1+ 1

c
1 + x

1
1+ 1

c
2

)1+ 1
c

= h(c).

By the same arguments as in the proof of Example 4 in Hosoya (2020), we can
show that there exists a unique solution c∗ > 0 to the above equation, and if we
define uh(x1, x2) = c∗, then uh is C∞, monotone, and strictly quasi-concave. If
(x1, x2) ∈ R

2+\R
2++, then we define

uh(x1, x2) = inf
ε>0

sup{uh(x ′
1, x

′
2)|(x ′

1, x
′
2) ∈ R

2++, ‖(x1, x2) − (x ′
1, x

′
2)‖ < ε}.

By the same arguments as in the proof of Corollary 2, we can show that uh is upper
semi-continuous on R

2+. Moreover, again by the same arguments as in the proof of

Example 4 in Hosoya (2020), we can show that f u
h
is also C∞, and R( f u

h
) = R

2++.
Furthermore, if h′ → h in the sense of C2, then we can easily show that uh

′ → uh
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with respect to the local C2 topology on R
n++, and by Proposition 2.7.2 of Mas-Colell

(1985), we have that f h
′ → f h with respect to the metric ρ.

Let h : R+ → R+ be a C∞ nondecreasing function such that h(0) = 0, h(1) =
h(2) = 1, h′(c) > 0 if c /∈ [1, 2], and limc→∞ h(c) = +∞. Additionally, let
η : R+ → R+ be a C∞ function such that η(c) ≡ 0 on [0, 1] and [4,+∞[, η(c) is
increasing on [1, 2], constant on [2, 3], decreasing on [3, 4], and maxc∈[1,4] |η′(c)| <

minc∈[3,4] h′(c). Define hk(c) = h(c) + k−1η(c). Then, hk → h with respect to the

C2 topology, and thus f h
k → f h with respect to ρ. Let p̄ = (1, 1). Then, we can

easily check that

v
f hk , p̄

(1, 0) = 1

2
,

for all k, and

v f h , p̄(1, 0) = 1√
2
,

which implies that limk→∞ v
f hk , p̄

(1, 0) �= v f h , p̄(1, 0).

We now present another completeness result. Choose a sequence M = (Mν) of
positive real numbers and define FL,M as the set of all f ∈ FL such that R( f )
includes R

n++, f satisfies the C axiom, and if x ∈]ν−1, ν[n , then for all p ∈ G f (x)
and i ∈ {1, . . . , n}, pi ≥ Mν .

Corollary 5 FL,M is compact under the metric ρ. Moreover, if ( f k) is a sequence on
FL,M that converges to f with respect to ρ, then for every compact set D ⊂ R

n++,

sup
x∈D

|u f k , p̄(x) − u f , p̄(x)| → 0

as k → ∞.

In Theorem 2, the C axiom is required. Corollary 2 states that if R( f ) is relatively
open in �, this axiom is equivalent to the continuity of v f , p̄ on R

n++. Indeed, the
requirement that R( f ) is relatively open in � is not used in the proof of this fact.
Therefore, under the assumptions of Theorem 2, the same proof shows that u f k , p̄ and
u f , p̄ are continuous on R

n++. We use the continuity of u f , p̄ on R
n++ in the proof of

Theorem 2; see Lemma 4. However, v f , p̄ is not necessarily continuous on � itself,
even if R( f ) is open; see Example 4 of Hosoya (2020).

If f is a demand function that is continuously differentiable on P ≡ f −1(Rn++)

and the rank of S f (p,m) is always n − 1 on P , then we can show that the inverse
demandcorrespondenceG f (x) is a single-valued continuously differentiable function,
and thus the C axiom is automatically satisfied. For a proof, see Proposition 1 of
Hosoya (2013). In this connection, if ( f k) is a sequence onFL such that every f k is
continuously differentiable and the rank of S f k (p,m) is always n−1 on ( f k)−1(Rn++),
then there exists a sequence M = (Mν) such that every f k is in FL,M if and only

if infk mini minx∈C G f k

i (x) > 0 for every compact set C ⊂ R
n++. This is another

sufficient condition for the limit function f of ( f k) to satisfy all requirements of
Theorem 2.
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Finally, we present a result for pointwise convergence. In many cases, the solution
function of a differential equation does not exhibit good behavior with respect to
pointwise convergence. However, in this case, the problem can be avoided using the
equicontinuity ofFL . Hence, the following theorem holds.

Theorem 3 Suppose that ( f k) is a sequence in FL that converges pointwise to f .
Then, f ∈ FL . In particular, if f k ∈ FL,M for all k, then f ∈ FL,M, and for every
compact set D ⊂ R

n++,

sup
x∈D

|u f k , p̄(x) − u f , p̄(x)| → 0

as k → ∞.

This result is unexpected in someways. Previous results in this context have usually
required a stronger topology in the space of demand functions to prove convergence
in some topology of the space of utility functions. For example, in Hosoya (2017),
convergence with respect to a uniform topology in the space of utility function could
only be proved if the C1 topology is equipped in the space of demand functions. In
Theorem 3, however, this relationship is reversed.

As a final note, we mention the closed convergence topology of weak orders. If the
shapes of utility functions are specified for some set of weak orders, then inmost cases,
the compact convergence of the utility function is equivalent to the convergence in the
closed convergence topology of the weak order. Hence, for example, it is quite easy
to derive the convergence result in the closed convergence topology from Theorems
2 and 3. In this connection, in econometric studies that use statistical models that
require a particular shape for the utility function, we can inversely derive the compact
convergence of their utility function from the convergence of corresponding orders
in the closed convergence topology. In this sense, the use of a specified shape of the
utility function is not a disadvantage for Theorems 2 and 3.

5 Discussion

5.1 Comparison with related literature

The history of integrability theory begins with Antonelli (1886). This theory aims to
calculate a utility function from the consumer’s purchase behavior. Hurwicz (1971)
classified this theory into two categories, indirect and direct. The indirect approach
involves deriving the inverse demand function from the purchase behavior and then
calculating a utility function by finding some function that satisfies Lagrange’s first-
order conditions for the inverse demand function. The direct approach derives the
demand function from the purchase behavior, solves Shephard’s lemma as a partial
differential equation to calculate the expenditure function, and then calculates the
utility function from this expenditure function. Antonelli (1886) used the indirect
approach, as did most of the classical results (Pareto 1906; Samuelson 1950; Katzner
1970; Debreu 1972). In contrast, Hurwicz and Uzawa (1971) obtained a classical
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result using the direct approach. Hosoya (2013) provides an example of the indirect
approach, while Hosoya (2017) is an example of the direct approach. Proposition 1 in
this paper is categorized as a direct approach.

To understand the position of this paper in integrability theory using the direct
approach, let us look at the classical result of Hurwicz–Uzawa. They showed that if
a CoD is differentiable and locally Lipschitz, satisfies Walras’ law, (S), (NSD), and
a condition called the “strong income-Lipschitzian” requirement, then it is a demand
function. Although they did not specify how to derive the utility function in their
theorem, the utility function that appears in their proof essentially coincides with our
u f , p̄. Following their paper, several studies attempted to remove the “strong income-
Lipschitzian” requirement, and Hosoya (2017, 2018) finally succeeded in doing so.

Let us explain the logic that allowed us to eliminate the strong income-Lipschitzian
requirement. In the proof of Hurwicz–Uzawa’s Theorem 2, this condition is only used
to derive the existence of the solution to the partial differential equation (2). In fact, the
necessary and sufficient condition for the existence of local solutions to (2) is (S),which
was proved in Theorem 10.9.4 of Dieudonne (1969). Hurwicz–Uzawa constructed a
similar proof to that ofNikliborc (1929) to show the existence of a global solution to (2),
in which the strong income-Lipschitzian condition and (S) were used. From this and
(NSD), they then proved the claim considered in Step 4 of the proof of our Proposition
1. Once the existence of global solutions to (2) and the statement in Step 4 have been
shown,we no longer require the differentiability of f to prove this theorem. In contrast,
Hosoya (2017) brought (NSD) to the proof of the existence of the global solution to (2)
and showed the existence of global solutions without the strong income-Lipschitzian
condition. This is why we can eliminate the strong income-Lipschitzian condition
from this theorem. Hosoya (2017) treated continuously differentiable CoDs, and later
this result was extended to differentiable and locally Lipschitz CoDs (Hosoya 2018).

The present paper removes even the requirement for differentiability and assumes
only locally Lipschitz conditions for CoDs. First, we explain why the removal of dif-
ferentiability is needed. Classical methods for estimating demand functions have been
studied for a long time (for example, Deaton (1986) contains a detailed description of
parameter estimation methods for demand functions). More recently, Blundell et al.
(2017) presented a method for estimating the demand function without parametriza-
tion. Obviously, such estimation methods must be verified to satisfy consistency. As
already mentioned, consistency means that the estimated value xN from a dataset of
size N converges to the true value x in probability as N → ∞. Therefore, it must be
confirmed that the estimated value fN of the demand function converges to the true
demand function f . However, because both fN and f are functions, the convergence
concept can make an important difference. As far as we know, in econometric theory,
either pointwise convergence or uniform convergence on compacta is used in most
research. However, the space of the differentiable demand functions is not closed in
both topologies.

In this connection, we are interested in whether our constructed utility function
u f , p̄ satisfies consistency. In other words, we argue whether u fN , p̄ converges to u f , p̄

if fN converges to f . Hosoya (2017) showed that if fN converges to f in the sense
of C1 on any compact set, then u fN , p̄ converges to u f , p̄ uniformly on any compact
set. However, as already mentioned, there is almost no estimation method in existing
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studies that treatsC1 convergence in the estimation of the demand function.Hence, this
result is not practical. Therefore, we want to consider the case in which fN converges
to f uniformly on any compact set. Then, the following problem arises. Because we
can choose our estimation method, we may be able to choose one that makes fN
differentiable. However, f is the limit of fN with respect to the uniform topology, and
thus, f is not necessarily differentiable. If u f , p̄ can only be defined on differentiable
functions, then, for nondifferentiable f , u f , p̄ cannot be defined in the first place, and
the convergence problem of u fN , p̄ becomes nonsensical.

Proposition 1 in this paper fundamentally resolves this problem. If we construct an
estimation method so that the estimated value fN is included inFL , then the limit f
is automatically a locally Lipschitz function. Thus, Proposition 1 can be applied, and
we can define u f , p̄. Furthermore, we have already confirmed in Theorems 1 and 2 that
the space of the demand functions we wish to use, such as FL and FL,M , is closed
with respect to uniform convergence,4 and thus, the possibility that the true value is
an inconvenient function can be eliminated at the construction stage of the estimation
method. Theorem 3 proves that the same holds for pointwise convergence.

These arguments onlymake sense if Proposition 1 can be verified. Therefore, Propo-
sition 1 is the crux of this study. However, the removal of differentiability poses two
difficulties in the proof of Proposition 1. First, as already mentioned, the Lebesgue
measure of the trajectory of ((1−t)p+t p̄, c(t)) in (1) is 0. By Rademacher’s theorem,
any locally Lipschitz function is differentiable almost everywhere. However, f may
be nondifferentiable at every point on the above trajectory, because this trajectory is a
null set. Even if it is differentiable, the Slutsky matrix may not have good properties.
This means that most of the tools used in integrability theory up to now cannot be
used as they are. This problem is solved by perturbing the solution to the differential
equation by the income (see Lemma 2 in the proof). Another difficulty arises in Step 4
of the proof of Proposition 1. This step claims that p · y > m. However, this inequality
is strong, and the simple perturbation technique can no longer be used in the proof,
because the strong inequality is replaced by a weak inequality through limit manip-
ulation. This can be solved by rigorous evaluation of the inequality of the perturbed
trajectory, but this evaluation is not straightforward (see the proof of Step 4).

Corollary 1 is derived from Proposition 1. This is one of the newest results in
integrability theory.As implied byHouthakker (1950) and shownbyUzawa (1960) and
Richter (1966), the strong axiom of revealed preference is a necessary and sufficient
condition for aCoD to be a demand function. For this result, no topological condition is
imposed on the CoD. If a CoD satisfiesWalras’ law and is continuously differentiable,
then (S)+(NSD) is a necessary and sufficient condition for it to be a demand function,
as shown by Hosoya (2017). Corollary 1 demonstrates that the same result holds
when the CoD is not differentiable, but only locally Lipschitz. The most important
thing about Corollary 1, however, is that it presents another necessary and sufficient
condition for a CoD to be a demand function, namely the existence of a concave global
solution to the partial differential equation (2).

To illustrate the importance of this result, we begin by recalling the strong axiom
of revealed preference. A CoD f satisfies the strong axiom of revealed preference

4 Actually, they are not only closed, but also compact. See Corollary 3.

123



Non-smooth integrability theory

if and only if, for every finite sequence x1, . . . , x
 such that xi = f (pi ,mi ) and
pi · xi+1 ≤ mi , p
 · x1 > m
. The problem is that there is a strong inequality in
this claim. Even if f k satisfies this condition, this strong inequality changes to a weak
inequality in the limit f , and thus, we cannot determinewhether f is actually a demand
function. This implies that the strong axiom of revealed preference cannot be used to
prove results such as Theorem 1.

A similar problem arises when we discuss this problem using conditions (S) and
(NSD). Even if f k converges to f with respect to the metric ρ, it is uncertain whether
the derivatives converge. Therefore, even if f k satisfies (S) and (NSD), f may violate
(S) or (NSD), and so we cannot prove that f is a demand function. If we change the
metric and use a stronger topology, we can show that (S) and (NSD) hold in the limit
f . In this case, however, it becomes difficult to find results in econometric theory
corresponding to such a topology. Therefore, these conditions are also undesirable.

Condition (iv) of Corollary 1 fundamentally resolves this problem. Indeed, in the
proof of Theorem 1, we confirm that f satisfies condition (iv). This property is not
broken by convergence with respect to ρ, which makes such a proof possible. Hence,
the remainder of our results depends on condition (iv).

Theorems 2 and 3 require the C axiom. This axiom was first discovered by Hosoya
(2017), and was therefore not used by Hosoya (2015) to show a result similar to
Theorem 2 in integrability theory using the indirect approach. Because G f (x) is
assumed to be a single-valued, continuously differentiable function in the indirect
approach, this axiom automatically holds. This is why the C axiom does not appear
in Hosoya (2015). The C axiom is known to be equivalent to another axiom called
the NLL axiom. In Theorem 2 of Hosoya (2020), it was shown that, for an income-
Lipschitzian demand function f that satisfies Walras’ law, f = f u for some function
u : � → R such that u is continuous on R

n++ if and only if f satisfies the C axiom.
In this paper, this result is required to prove Theorem 2 (see Lemma 4).

Finally, we make an important statement. Research on estimation methods for
demand functions can be separated into two types. The first type specifies the shape
of the corresponding utility function, whereas the second type does not specify any
particular shape. Of the research already mentioned, Deaton (1986) does not specify
the utility function, but Blundell et al. (2017) do to some extent. In this connection,
some readers may think that this study is not useful in research that specifies the shape
of the utility function. However, this is not the case because, even if the shape of the
utility function is assumed, the estimate of the utility function associated with the
demand function must represent the same order as our utility function u f , p̄. Hence, by
a consistency result for u f , p̄, we can almost automatically obtain a consistency result
for their utility function by the method in the last paragraph of the previous section.

5.2 Several open problems

In this paper, we have attempted to produce the desired results as far as possible.
However, there remain several problems that we cannot solve. Here, we describe a
few of them that we consider important.
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First, in Corollary 1, we proved the equivalence of conditions (i) and (iv) by
assuming that f is locally Lipschitz. Can this equivalence also be proved when f
is continuous and income-Lipschitzian? If so, then the income-Lipschitzian require-
ment would be sufficient for the proof of Theorem 1, which would mean that the result
of Theorem 1 could be discussed on a wider space than that of locally Lipschitz CoDs.
This would also strengthen Corollary 3 and Theorem 2.

Second, the question remains as to whether Corollary 4 can be strengthened. We
have only shown that lim supk→∞ v f k , p̄(x) ≤ v f , p̄(x), and found an example such
that the inequality becomes strong. However, this inequality could perhaps bemodified
to an equality under some weak additional assumptions. In particular, equality may
be guaranteed when x is an element of R( f ), or v f , p̄ is continuous at x . If we could
prove this, our result would be much better.

The third problem concerns whether the condition that R( f ) is an open set is
necessary in the first place. In the proof of Corollary 2, we show that v f , p̄ coincides
with the utility function defined in Hosoya (2020). For some technical reasons, it is
necessary that R( f ) is an open set to guarantee that f = f v f , p̄ . However, there is no
known counterexample of f such that R( f ) is not an open set and f �= f v f , p̄ . Perhaps
f = f v f , p̄ holds even when R( f ) is not an open set.
Fourth, there remains the task of identifying the conditions for v f , p̄ to be continuous.

Condition a. of Theorem 6 in Hurwicz and Uzawa (1971) is frequently used in this
context. This condition states that if p ≥ 0, p �= 0 and pi = 0 for some i , then for any
convergent sequence (pk) to p onR

n++ and any (q, w) ∈ R
n++, f (pk, v f ,pk ( f (q, w)))

is unbounded. However, when discussing this condition, Hurwicz–Uzawa restrict the
domain of the utility function to R( f ). Therefore, whether the continuity of v f , p̄

outside R( f ) can be guaranteed by this condition remains an open question.
Finally, although our paper only considers the classical consumer theory, there are

several new consumer theories treating nonlinear or stochastic budget inequality. See,
for example, Shiozawa (2016) for the former, and Allen et al. (2023) for the latter. Our
study does not provide a solution to the estimation problem in those theories, and it is
a future task.

6 Conclusion

In this study, we obtained a procedure for calculating a utility function from a given
locally Lipschitz CoD that satisfies Walras’ law. Using this procedure, we found two
necessary and sufficient conditions for a locally Lipschitz CoD that satisfies Walras’
law to be a demand function. Moreover, under the assumption that the range of this
CoD includes the positive orthant and is open in the consumption space, we obtained
the uniqueness result for the corresponding upper semi-continuous weak order to this
CoD, and derived an upper semi-continuous utility function that represents this weak
order.

Using these results, we proved a completeness result for the space of demand
functions. That is, we showed that if every sequence of demand functions that is
locally Lipschitz and satisfies Walras’ law converges to some function with respect
to the topology of compact convergence, then the limit function is also a demand
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function. From this result, we showed that the space of demand functions that has a
uniform Lipschitz constant on any compact set is compact under this topology.

Furthermore, we showed that if every function has a sufficiently wide range and
satisfies the C axiom, then our derived utility function is continuous with respect to the
demand function. Using this result, we showed that the space of demand functions that
has uniform local Lipschitz constants and uniformly satisfies the C axiom is compact,
and the mapping from the space of demand functions into the space of utility function
is continuous. We demonstrated that a similar result holds even when we use the
pointwise topology.

We also provided three examples. The first demonstrated that our calculation pro-
cedure for the utility function works well. The second example showed that the range
of the CoDmay shrink under limit manipulation. The third example demonstrated that
our continuity result may not hold in the corner of the consumption space. We think
that all examples are meaningful in this context.

Although there aremany open problems concerning this area of research,we believe
that the results in this paper are sufficiently strong andworthwhile for applied economic
research. In particular, we think that our results provide a foundation for applying
integrability theory in the field of econometric theory.

7 Proofs

7.1 Mathematical knowledge on Lipschitz analysis and differential equations

We repeatedly use Lipschitz analysis in the proofs of our theorems. However, the
Lipschitz property of the solution function (defined later) for differential equations is
not well known. Thus, we introduce several important properties in this subsection.

First, recall the definition of a locally Lipschitz function. Let f : U → R
N be

some function, where U ⊂ R
M is open. This function is said to be locally Lipschitz

if, for every compact set C ⊂ U , there exists L > 0 such that for every x, y ∈ C ,

‖ f (x) − f (y)‖ ≤ L‖x − y‖.

Because the following property is important, we present a proof in this subsection.

Fact 1 Let f : U → R
N , where U ⊂ R

M is open. Then, f is locally Lipschitz if and
only if, for every x ∈ U , there exists r > 0 and L > 0 such that if y, z ∈ U , ‖y−x‖ ≤
r , and ‖z − x‖ ≤ r , then

‖ f (y) − f (z)‖ ≤ L‖y − z‖.

Proof of Fact 1 Suppose that f is locally Lipschitz. For each x ∈ U , there exists r > 0
such that B̄r (x) ≡ {y ∈ R

M |‖y − x‖ ≤ r} ⊂ U , and B̄r (x) is compact. This implies
that there exists L > 0 such that if y, z ∈ B̄r (x), then

‖ f (y) − f (z)‖ ≤ L‖y − z‖.
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To prove the converse relationship, we use proof by contraposition. Suppose that f is
not locally Lipschitz. Then, there exist a compact set C and sequences (xk), (yk) on
C such that, for all k,

‖ f (xk) − f (yk)‖ > k‖xk − yk‖.
Because C is compact, we can assume that xk → x∗, yk → y∗ as k → ∞. Then,

‖ f (x∗) − f (y∗)‖ ≥ k‖x∗ − y∗‖

for all k, which implies that x∗ = y∗. Choose any r > 0 and L > 0. Then, there exists
k > L such that xk, yk ∈ B̄r (x∗), and thus the latter claim of this fact is violated. This
completes the proof. ��

From the above fact, we have that every continuously differentiable function is
locally Lipschitz. Of course, the converse is not true: consider f (x) = |x |.

The next fact is known as Rademacher’s theorem. Because the proof of this fact is
long, it is omitted here.5

Fact 2 Suppose that f : U → R
N , where U ⊂ R

M is open. If f is locally Lipschitz,
then it is differentiable almost everywhere.

Next, we explain some knowledge of ordinary differential equations (ODEs). First,
consider the following ODE:

ẋ(t) = g(t, x(t)), x(t0) = x∗, (6)

where g : U → R
N and U ⊂ R × R

N is open. We call a subset I of R an interval if
it is a convex set containing at least two points. We say that a function x : I → R

N is
a solution to (6) if and only if 1) I is an interval containing t0, 2) x(t0) = x∗, 3) x is
absolutely continuous on any compact intervalC ⊂ I ,6 4) the graph of x is included in
U , and 5) ẋ(t) = g(t, x(t)) for almost every t ∈ I . Let x : I → R

N and y : J → R
N

be two solutions. Then, we say that x is an extension of y if J ⊂ I and y(t) = x(t)
for all t ∈ J . A solution x : I → R

N is called a nonextendable solution if there is no
extension except x itself. The next fact is well known, and thus we omit the proof.7

Fact 3 Suppose that g is locally Lipschitz. Then, for every interval I including t0,
there exists at most one solution to (6) defined on I , and if there exists a solution, it is
continuously differentiable. In particular, there exists a unique nonextendable solution
x : I → R

N to (6), where I is open and x(t) is continuously differentiable. Moreover,
for every compact set C ⊂ U , there exist t1, t2 ∈ I such that if t ∈ I and either t < t1
or t2 < t , then (t, x(t)) /∈ C .

5 See, for example, Heinonen (2004).
6 Recall that, for a function f : [a, b] → R

N , it is said to be absolutely continuous if and only if it
is differentiable almost everywhere, and f (y) − f (x) = ∫ y

x f ′(z)dz for all x, y ∈ [a, b]. For another
definition and the relationship between definitions, see Theorem 7.18–7.20 of Rudin (1987).
7 See, for example, Theorems 1.1 and 3.1 in chapter 2 of Hartman (1997).

123



Non-smooth integrability theory

Next, consider the following parametrized ODE:

ẋ(t) = h(t, x(t), y), x(t0) = z, (7)

where h : U → R
N and U ⊂ R × R

N × R
M is open. We assume that h is locally

Lipschitz. Fix (y, z) such that (t0, z, y) ∈ U . Then, (7) can be seen as (6), where
g(t, x) = h(t, x, y) and x∗ = z. Hence, we can define a nonextendable solution
x y,z : I → R

N according to Fact 3. We write x(t; y, z) = x y,z(t), and call this
function x : (t, y, z) �→ x(t; y, z) the solution function of (7). The following fact is
necessary, but is not particularly well-known; thus, we prove it in this paper.

Fact 4 Under the assumption that h is locally Lipschitz, the domain of the solution
function is open, and the solution function is locally Lipschitz.

Proof of Fact 4 First, we introduce a lemma. ��
Lemma 1 (Gronwall’s inequality).8 Suppose that g : [t0, t1] → R is continuous, and

g(t) ≤
∫ t

t0
Ag(s)ds + B(t),

for almost every t ∈ [t0, t1], where A > 0 and B(t) is an integrable function on [t0, t1].
Then, for almost ever” t ∈ [t0, t1],

g(t) ≤ B(t) + A
∫ t

t0
eA(t−s)B(s)ds.

In particular, if B(t) = C(t − t0) for some constant C, then for every t ∈ [t0, t1],

g(t) ≤ C

A
(eA(t−t0) − 1).

Proof First, for almost every t ∈ [t0, t1],

d

dt

(
e−At

∫ t

t0
g(s)ds

)
= e−At

(
g(t) −

∫ t

t0
Ag(s)ds

)
≤ e−At B(t).

Integrating both sides, we obtain

e−At
∫ t

t0
g(s)ds ≤

∫ t

t0
e−As B(s)ds,

8 The first inequality of this lemma is famous and introduced bymany textbooks. See, for example, problem
5.2.7 of Karatzas and Shreve (1998). However, we also need the second inequality in many situations, and
there is no readable proof of this inequality in published textbooks.We provide the proof of these inequalities
for readability and to make the present paper self-contained.
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and thus,

g(t) ≤ A
∫ t

t0
g(s)ds + B(t) ≤ B(t) + AeAt

∫ t

t0
e−As B(s)ds,

which implies that the first inequality holds almost everywhere. If B(t) = C(t − t0),
then by continuity, the above inequality holds everywhere, and integration by parts
yields

g(t) ≤ C(t − t0) + AC
∫ t

t0
eA(t−s)(s − t0)ds

= C(t − t0) + AC

[
− 1

A
eA(t−s)(s − t0)

]t
t0

+ C
∫ t

t0
eA(t−s)ds

= C
∫ t

t0
eA(t−s)ds = C

A
(eA(t−t0) − 1),

as desired. This completes the proof. ��
Let V ⊂ R × R

M × R
N be the domain of the solution function x(t; y, z). Choose

any (t∗, y, z) ∈ V . By Fact 3, there exists an open interval I such that t �→ x(t; y, z)
is a nonextendable solution defined on I , and t∗ ∈ I . Choose t1, t2 ∈ I such that
t1 < min{t∗, t0} ≤ max{t∗, t0} < t2. Consider the following differential equation:

ẋ(t) = h(t, x(t) + z′ − z, y′), x(t0) = z. (8)

If z′ = z and y′ = y, then x∗ : t �→ x(t; y, z) is a solution to (8). Choose a, b > 0
sufficiently small and define

�(a, b) = {(t, x, y′, z′)|t ∈ [t1, t2], ‖x − x∗(t)‖ ≤ a, ‖y′ − y‖ ≤ b, ‖z′ − z‖ ≤ b},
�′(a, b) = {(t, x + z′ − z, y′)|(t, x, y′, z′) ∈ �(a, b)}.

By definition, �(a, b) and �′(a, b) are compact. We assume that a, b are sufficiently
small that �′(a, b) ⊂ U . Because h is locally Lipschitz, there exists L > 0 such that,
for every (t ′1, z′1, y′

1), (t
′
2, z

′
2, y

′
2) ∈ �′(a, b),

‖h(t ′1, z′1, y′
1) − h(t ′2, z′2, y′

2)‖ ≤ L[|t ′1 − t ′2| + ‖z′1 − z′2‖ + ‖y′
1 − y′

2‖].

Suppose that ‖y′ − y‖ ≤ b, ‖z′ − z‖ ≤ b, and define t+2 (y′, c∗z) as the supremum
of the set of all t ∈]t0, t2] such that there exists a solution x̃ : [t0, t] → R

N to (8) and
(s, x̃(s), y′, z′) ∈ �(a, b) for all s ∈ [t0, t]. By Fact 3, we have that t+2 (y′, z′) > t0
and there exists a solution x̃ : [t0, t+2 (y′, z′)] → R

N to (8). If t ∈ [t0, t+2 (y′, z′)], then

‖x̃(t) − x∗(t)‖ ≤
∫ t

t0
‖h(s, x̃(s) + z′ − z, y′) − h(s, x∗(s), y)‖ds
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≤
∫ t

t0
‖h(s, x̃(s) + z′ − z, y′) − h(s, x∗(s) + z′ − z, y′)‖ds

+
∫ t

t0
‖h(s, x∗(s) + z′ − z, y′) − h(s, x∗(s), y)‖ds

≤
∫ t

t0
L‖x̃(s) − x∗(s)‖ds + L(‖y′ − y‖ + ‖z′ − z‖)(t − t0).

Therefore, by Lemma 1,

‖x̃(t) − x∗(t)‖ ≤ (‖y′ − y‖ + ‖z′ − z‖)(eL(t−t0) − 1). (9)

Choose b′ ∈]0, b[ sufficiently small that

b′(eL(t2−t0) − 1) < a. (10)

Suppose that ‖y′ − y‖ + ‖z′ − z‖ ≤ b′ and t+2 (y′, z′) < t2. Because x̃ is defined at
t+2 (y′, z′), we have that (t+2 (y′, z′), x̃(t+2 (y′, z′)), y′, z′) ∈ �(a, b). By (9) and (10),
‖x̃(t+2 (y′, z′)) − x∗(t+2 (y′, z′))‖ < a, which contradicts the definition of t+2 (y′, z′).
Therefore, if ‖y′− y‖+‖z′−z‖ ≤ b′, then x̃(t) is defined on [t0, t2], and if t ∈ [t0, t2],
then

‖x̃(t) − x∗(t)‖ ≤ (‖y′ − y‖ + ‖z′ − z‖)(eL(t2−t1) − 1).

By a symmetric argument, we have that if b′ ∈]0, b[ is so small that

b′(eL(t0−t1) − 1) < a, (11)

and ‖y′ − y‖ + ‖z′ − z‖ ≤ b′, then (8) has a solution x̃ defined on [t1, t0], and if
t ∈ [t1, t0],

‖x̃(t) − x∗(t)‖ ≤ (‖y′ − y‖ + ‖z′ − z‖)(eL(t2−t1) − 1).

Clearly,
x(t; y′, z′) = x̃(t) + z′ − z,

and thus the domain V of the solution function x includes

[t1, t2] × {(y′, z′)|‖y′ − y‖ + ‖z′ − z‖ ≤ b′},

which is a neighborhood of (t∗, y, z). Moreover,

max
t∈[t0,t1]

‖x(t; y′, z′) − x(t; y, z)‖ ≤ (‖y′ − y‖ + ‖z′ − z‖)eL(t2−t1),

and thus Fact 1 implies that the solution function is locally Lipschitz. This completes
the proof. ��
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We now present the formula for the solution to linear differential equations. Con-
sider the following ODE:

ẋ(t) = a(t)x(t),

where I is an interval including t0 and a : I → R is a bounded measurable function
on I . Then, the solution to the above equation is as follows:

x(t) = x(t0)e
∫ t
t0
a(s)ds

.

For a proof, see Theorem 1 of section 0.4 in Ioffe and Tikhomirov (1979).
Finally, we note a partial differential equation that appears in consumer theory.

Fact 5 Let f be a continuous CoD and � be a weak order such that f = f �. Define

Ex (p) = inf{p · y|y � x}.

Then, the function Ex is concave and continuous on R
n++. In addition, suppose that

f satisfies Walras’ law and x = f (p,m). Then, Ex (p) = m and Ex (q) > 0 for all
q ∈ R

n++. Moreover, the function Ex is continuously differentiable, and for every
q ∈ R

n++,
∇Ex (q) = f (q, Ex (q)). (12)

This function Ex is usually called the expenditure function, and equality (12) is
called Shephard’s lemma. For a proof, see Lemma 1 of Hosoya (2020).

7.2 Proof of Proposition 1

First, consider the following parametrized ODE:

ċ(t) = f ((1 − t)p + tq, c(t)) · (q − p), c(0) = w, (13)

and let c(t; p, q, w) denote the solution function of (13). We introduce two lemmas.

Lemma 2 Let U = R
n++ × R++. Choose any (p,m) ∈ U. Suppose that W ⊂ U and

the Lebesgue measure of U \ W is zero. Moreover, suppose that q ∈ R
n++ and there

exists i∗ ∈ {1, . . . , n} such that qi∗ �= pi∗ , and that the domain of the solution function
c(t; p, q, w) of the ODE (13) includes [0, t∗] × P∗

1 × P∗
2 for t∗ > 0, where P1 is a

bounded open neighborhood of q, P2 is a bounded open neighborhood of m, and P∗
j

denotes the closure of Pj . For every (t, r̃ , w) ⊂ R
n+1 such that t ∈ [0, t∗], r ∈ P1 for

ri =

⎧⎪⎨
⎪⎩
r̃i if i < i∗,
qi if i = i∗,
r̃i−1 if i > i∗,

and w ∈ P2, define

ξ(t, r̃ , w) = ((1 − t)p + tr , c(t; p, r , w)).
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Then, the Lebesgue measure of ξ−1(U \ W ) is also zero.

Proof Without loss of generality, we assume that i∗ = n. Throughout the proof of
Lemma 2, we use the following notation. If r ∈ R

n , then r̃ = (r1, . . . , rn−1) ∈ R
n−1.

Conversely, if r̃ ∈ R
n−1, then r = (r1, . . . , rn−1, qn).

Let P̃1 = {r̃ ∈ R
n−1|r ∈ P1} and P̂1 be the closure of P̃1. Although the actual

domain of ξ is [0, t∗] × P̃1 × P2, throughout this proof, we consider that the domain
of ξ is [0, t∗] × P̂1 × P∗

2 . We show that ξ is one-to-one on the set ]0, t∗] × P̂1 ×
P∗
2 . Suppose that t1 �= 0 �= t2 and ξ(t1, r̃1, w1) = ξ(t2, r̃2, w2) = (v, c). Because

vn = (1 − t1)pn + t1qn = (1 − t2)pn + t2qn and pn �= qn , we have that t1 =
t2. Because vi = (1 − t1)pi + t1r1i = (1 − t1)pi + t1r2i and t1 �= 0, we have
that r1i = r2i , and thus r̃1 = r̃2. Therefore, it suffices to show that c(t; p, r , w) is
increasing in w. Suppose that w1 < w2 and c(t; p, r , w1) ≥ c(t; p, r , w2). Because
c(0; p, r , w1) = w1 < w2 = c(0; p, r , w2), by the intermediate value theorem, there
exists s ∈ [0, t] such that c(s; p, r , w1) = c(s; p, r , w2). Then, by Fact 3, we have
w1 = c(0; p, r , w1) = c(0; p, r , w2) = w2, which is a contradiction.

Next, define
V 
 = ξ([
−1t∗, t∗] × P̂1 × P∗

2 ).

We show that ξ−1 is Lipschitz on V 
. Define

t(v) = vn − pn
qn − pn

,

r̃(v) = 1

t(v)
[(t(v) − 1) p̃ + ṽ].

Suppose that (v1, c1), (v2, c2) ∈ V 
 and (v j , c j ) = ξ(t j , r̃ j , w j ). Then, we have
t j = t(v j ) and r̃ j = r̃(v j ). Clearly, the functions t(v) and r̃(v) are Lipschitz on V 
.
Next, consider the following ODE:

ḋ(s) = f ((1 − (s + t − t2))p + (s + t − t2)r(v), d(s)) · (r(v) − p), d(t2) = c.

Let d(s; t, v, c) be the solution function of this ODE. If (v, c) = ξ(t, r̃ , w) for some
(t, r̃ , w) ∈ [
−1t∗, t∗]× P̂1×P∗

2 , then d(s; t, v, c) = c(s+t−t2; p, r , w). Moreover,
the set

{(t, v, c)|t ∈ [
−1t∗, t∗], (v, c) = ξ(t, r̃ , w) for some (r̃ , w) ∈ P̂1 × P∗
2 }

is compact, and by Fact 4, (t, v, c) �→ d(t2 − t; t, v, c) is Lipschitz on this set.
Therefore,

|w1 − w2| = |d(t2 − t1; t1, v1, c1) − d(t2 − t2; t2, v2, c2)|
≤ L[|t1 − t2| + ‖(v1, c1) − (v2, c2)‖]
= L[|t(v1) − t(v2)| + ‖(v1, c1) − (v2, c2)‖]
≤ L(M + 1)‖(v1, c1) − (v2, c2)‖,
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where L, M > 0 are some constants, and therefore our claim is correct.
Now, recall that the Lebesgue measure of U \ W is zero. Because ξ−1 is Lipschitz

on V 
, we have that the Lebesgue measure of

ξ−1(V 
 ∩ (U\W ))

is zero. Therefore, the Lebesgue measure of

∪
ξ
−1(V 
 ∩ (U\W ))

is also zero. Clearly, the Lebesgue measure of

ξ−1(U\W )\
(
∪
ξ

−1(V 
 ∩ (U\W ))
)

is zero, because this set is included in {0} × P̂1 × P∗
2 . This completes the proof of

Lemma 2. ��
Lemma 3 Choose any (p,m) ∈ R

n++. Then, there exists a solution E : R
n++ → R++

to the partial differential equation

∇E(q) = f (q, E(q)), E(p) = m, (14)

if and only if the domain of the solution function of (13) includes [0, 1]×{p}×R
n++ ×

{m}. Moreover, in this case, for each q ∈ R
n++,

E(q) = c(1; p, q,m).

Proof Suppose that a solution E : R
n++ → R++ to (14) exists. Choose any q ∈ R

n++.
Let d(t) = E((1 − t)p + tq). Then, d(0) = E(p) = m and

ḋ(t) = f ((1 − t)p + tq, d(t)) · (q − p),

and by the uniqueness of the solution to an ODE (Fact 3), we have that d(t) ≡
c(t; p, q,m). Hence, the domain of the solution function c includes [0, 1] × {p} ×
R
n++ × {m}, and moreover, E(q) = d(1) = c(1; p, q,m).
We show that the converse is also true. Suppose that the domain of the solution

function c includes [0, 1]×{p}×R
n++ ×{m}. Define E(q) = c(1; p, q,m). We show

that E(q) is a solution to (14).
First, let�∗ be the set of all (q, w) such that f is differentiable and S f is symmetric

and negative semi-definite at ((1− t)p+ tq, c(t; p, q, w)) for almost every t ∈ [0, 1],
and the mapping r̃ �→ c(t; p, r̃ , qn, w) is differentiable at r̃ = (q1, . . . , qn−1) for
almost every t ∈ [0, 1]. Suppose that (q, w) ∈ �∗ and let ei denote the i-th unit
vector. Then, for each i ∈ {1, . . . , n − 1},9

9 In this proof, we frequently abbreviate several variables for simplicity.
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lim
h→0

c(t; p, q + hei , w) − c(t; p, q, w)

h

= lim
h→0

1

h

×
[∫ t

0
f ((1 − s)p + s(q + hei ), c(s; p, q + hei , w)) · (q + hei − p)ds

−
∫ t

0
f ((1 − s)p + sq, c(s; p, q, w)) · (q − p)ds

]

=
∫ t

0

⎡
⎣ fi +

n∑
j=1

[
s
∂ f j
∂ pi

+ ∂ f j
∂m

∂c

∂qi

]
(q j − p j )

⎤
⎦ ds,

by the dominated convergence theorem, and thus ∂c
∂qi

(t; p, q, w) is defined for all
t ∈ [0, 1] and is absolutely continuous in t . Define the following absolutely continuous
function

ϕ(t) = ∂c

∂qi
(t; p, q, w) − t fi ((1 − t)p + tq, c(t; p, q, w)).

By the above evaluation and the symmetry of the Slutsky matrix, we have that for
almost all t ∈ [0, 1],

ϕ̇(t) = fi +
n∑
j=1

[
t
∂ f j
∂ pi

+ ∂ f j
∂m

∂c

∂qi

]
(q j − p j ) − fi − t

n∑
j=1

[
∂ fi
∂ p j

+ ∂ fi
∂m

f j

]
(q j − p j )

= t
n∑
j=1

[
∂ f j
∂ pi

− ∂ fi
∂ p j

− ∂ fi
∂m

f j

]
(q j − p j ) + ∂c

∂qi

n∑
j=1

∂ f j
∂m

(q j − p j )

= ϕ(t)
n∑
j=1

∂ f j
∂m

(q j − p j )

≡ a(t)ϕ(t),

where a(t) is some bounded measurable function. By the formula for the solution to
linear ODEs, we have that

ϕ(t) = ϕ(0)e
∫ t
0 a(s)ds .

However, we can easily check that ϕ(0) = 0, and thus ϕ(t) ≡ 0. In particular,
ϕ(1) = 0, and thus

∂c

∂qi
(1; p, q, w) = fi (q, c(1; p, q, w)).

Second, suppose that qn �= pn and i ∈ {1, . . . , n − 1}. By Lemma 2 and Fubini’s
theorem, there exist δ > 0 and a sequence (qk, wk) on�∗ such that qk → q, wk → m
as k → ∞, and for every k, i ∈ {1, . . . , n − 1} and almost every h ∈] − δ, δ[,
(qk + hei , wk) ∈ �∗. Then, for every h ∈] − δ, δ[,
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c(1; p, qk + hei , w
k) − c(1; p, qk, wk) =

∫ h

0
fi (q

k + sei , c(1; p, qk + sei , w
k))ds.

By the dominated convergence theorem, we have that

E(q + hei ) − E(q) =
∫ h

0
fi (q + sei , E(q + sei ))ds,

which implies that
∂E

∂qi
(q) = fi (q, E(q)).

Third, suppose that qn = pn and i ∈ {1, . . . , n − 1}. Let e = (1, 1, . . . , 1) and
define qk = q + k−1e. Then, qkn �= pn , and thus, for every h ∈] − qi , qi [,

E(qk + hei ) − E(qk) =
∫ h

0
fi (q

k + sei , E(qk + sei ))ds,

and by the dominated convergence theorem,

E(q + hei ) − E(q) =
∫ h

0
fi (q + sei , E(q + sei ))ds,

which implies that
∂E

∂qi
(q) = fi (q, E(q)).

In summary, we obtain the following: for every q ∈ R
n++ and i ∈ {1, . . . , n − 1},

∂E

∂qi
(q) = fi (q, E(q)). (15)

Replacing the role of n with that of 1 and repeating the above arguments, we can show
that (15) holds for i = n, and thus ∇E(q) = f (q, E(q)). This completes the proof. ��

We now complete the preparation for proving Proposition 1. We separate the proof
of Proposition 1 into ten steps.

Step 1 Suppose that t∗ > 0 and the domain of the solution function c(t; p, q, w)

of (13) includes [0, t∗] × {(p, q,m)}. Define p(t) = (1 − t)p + tq and x(t) =
f (p(t), c(t; p, q,m)). Then, p · x(t∗) ≥ m and p(t∗) · x(0) ≥ c(t∗; p, q,m).

Proof of Step 1 We prove only the former claim, because the latter claim can be shown
symmetrically. Define p(t, r) = (1 − t)p + tr , and let �(t∗) be the set of all (r , w)

such that the domain of t �→ c(t; p, r , w) includes [0, t∗], and for almost every
t ∈ [0, t∗], f is differentiable and S f is symmetric and negative semi-definite at
(p(t, r), c(t; p, r , w)). By Lemma 2 and Fubini’s theorem, there exists a sequence
(qk, wk) on �(t∗) that converges to (q,m) as k → ∞. Define d(t) = p · x(t) and
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dk(t) = p · f (p(t, qk), c(t; p, qk, wk)). Then, dk is absolutely continuous, and for
almost all t ∈ [0, t∗],

ḋk(t) = pT S f (p(t, q
k), c(t; p, qk, wk))(qk − p).

Now, differentiating both sides of Walras’ law, we obtain

(p(t, qk))T S f (p(t, q
k), c(t; p, qk, wk))(qk − p) = 0.

Subtracting the latter from the former, we have that

ḋk(t) = −t(qk − p)T S f (p(t, q
k), c(t; p, qk, wk))(qk − p) ≥ 0,

and thus, dk(t) is nondecreasing. Because dk(t) → d(t) for every t , we have that d(t)
is also nondecreasing, and thus

p · x(t∗) = d(t∗) ≥ d(0) = m,

which completes the proof of Step 1. ��
Step 2 The domain of the solution function c(t; p, q,m) includes [0, 1] × R

n++ ×
R
n++ × R++.

Proof of Step 2 Suppose not. Then, there exist p, q ∈ R
n++ and m ∈ R++ such that

c(t; p, q,m) is defined only on [0, t∗[, where t∗ ≤ 1. Let p(t) = (1−t)p+tq and x =
f (p,m). By Fact 3, we have that the trajectory of the function (p(t), c(t; p, q,m))

is excluded from any compact set in R
n++ × R++ as t → t∗, and thus either

lim supt→t∗ c(t; p, q,m) = +∞ or lim inf t→t∗ c(t; p, q,m) = 0. By Step 1,
max{p · x, q · x} ≥ p(t) · x ≥ c(t; p, q,m) for every t ∈ [0, t∗[, and therefore,
there exists an increasing sequence (tk) such that tk → t∗ and c(tk; p, q,m) → 0
as k → ∞. Define xk = f (p(tk), c(tk; p, q,m)). Because p · xk ≥ m = p · x and
p(tk) · x ≥ c(tk; p, q,m) = p(tk) · xk , we have that q · x ≥ q · xk . Hence, (xk) is a
sequence in the following compact set

{y ∈ �|q · y ≤ q · x}.

Therefore, without loss of generality, we can assume that xk → x∗ as k → ∞.
Because p · x∗ ≥ m, we have that x∗

� 0. However,

0 < p(t∗) · x∗ = lim
k→∞ p(tk) · xk = lim

k→∞ c(tk; p, q,m) = 0,

which is a contradiction. This completes the proof of Step 2. ��
Step 3 For all t ∈ [0, 1], c(1 − t; p, q,m) = c(t; q, p, c(1; p, q,m)). Moreover, if
m > m′, then c(t; p, q,m) > c(t; p, q,m′) for every t ∈ [0, 1].
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Proof of Step 3 First,

d

dt
c(1 − t; p, q,m) = f ((1 − t)q + tp, c(1 − t; p, q,m)) · (p − q),

and thus, by the uniqueness of the solution to an ODE (Fact 3), we have that

c(1 − t; p, q,m) = c(t; q, p, c(1; p, q,m)).

Next, suppose that c(t; p, q,m) ≤ c(t; p, q,m′) for some t ∈ [0, 1]. By the interme-
diate value theorem, there exists s ∈ [0, 1] such that c(s; p, q,m) = c(s; p, q,m′).
Again, by the uniqueness of the solution to an ODE, we have that

m = c(0; p, q,m) = c(0; p, q,m′) = m′,

which is a contradiction. This completes the proof of Step 3. ��

Step 4 Suppose that x �= y, x = f (p,m), y = f (q, w), and w ≥ c(1; p, q,m).
Then, p · y > m.

Proof of Step 4 First, define m∗ = c(1; q, p, w).10 By Step 3, we have that
c(t; q, p, w) = c(1 − t; p, q,m∗), and thus m∗ ≥ m. Moreover, w > c(1; p, q,m)

if and only if m∗ > m.
Define p(t) = (1 − t)p + tq and d(t) = p · f (p(t), c(t; p, q,m∗)). We have

already shown in the proof of Step 1 that d(t) is nondecreasing. Therefore, ifm∗ > m,
then

p · y = p · f (q, w) = d(1) ≥ d(0) = m∗ > m,

as desired. Thus, we hereafter assume that m∗ = m. In this regard, we have that
w = c(1; p, q,m), and c(1 − t; q, p, w) = c(t; p, q,m).

Define �∗ as the set of all (r , c) such that f is differentiable and S f is symmetric
and negative semi-definite at ((1 − t)p + tr , c(t; p, r , c)) for almost all t ∈ [0, 1].
By Lemma 2 and Fubini’s theorem, there exists a sequence (qk, wk) on �∗ such that
(qk, wk) → (q,m) as k → ∞. Let 2ε = ‖x − y‖, and define pk(t) = (1− t)p+ tqk

and xk(t) = f (pk(t), c(t; p, qk, wk)). Then, xk(1) → y and xk(0) → x as k → ∞,
and thus, without loss of generality, we can assume that ‖xk(1)− xk(0)‖ ≥ ε for all k.
By assumption, xk(t) is a Lipschitz function defined on [0, 1]. If f is differentiable at
(pk(t), c(t; p, qk, wk)), then define Skt = S f (pk(t), c(t; p, qk, wk)). By assumption,
Skt can be defined and is symmetric and negative semi-definite for almost all t ∈ [0, 1].
Because Skt is symmetric and negative semi-definite, there exists a positive semi-
definite matrix Ak

t such that S
k
t = −(Ak

t )
2. Moreover, the operator norm ‖Ak

t ‖ is equal

10 Note that, this is equivalent to w = c(1; p, q,m∗).
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to
√

‖Skt ‖.11 Because f is locally Lipschitz, there exists L > 0 such that ‖Skt ‖ ≤ L

for all k and almost all t ∈ [0, 1]. Define dk(t) = p · xk(t), and choose δ > 0 such
that ε2 > 2L2δ‖qk − p‖2 for every sufficiently large k. By the same arguments as in
the proof of Step 1, we can show that

ḋk(t) = −t(qk − p)T Skt (q
k − p) = t‖Ak

t (q
k − p)‖2,

ẋ k(t) = Skt (q
k − p)

for almost all t ∈ [0, 1]. Therefore,

ε2 ≤ ‖xk(1) − xk(0)‖2 =
∥∥∥∥
∫ 1

0
ẋ k(t)dt

∥∥∥∥
2

≤
∫ 1

0
‖ẋ k(t)‖2dt =

∫ 1

0
‖Skt (qk − p)‖2dt

≤
∫ 1

0
‖Ak

t ‖2‖Ak
t (q

k − p)‖2dt ≤ L
∫ 1

0
‖Ak

t (q
k − p)‖2dt

= L
∫ δ

0
‖Ak

t (q
k − p)‖2dt + L

∫ 1

δ

1

t
ḋk(t)dt

≤ L2δ‖qk − p‖2 + L

δ
(dk(1) − dk(δ)),

and thus,
δε2

2 L
≤ dk(1) − dk(δ).

Letting k → ∞, we have that

p · y = d(1) ≥ d(δ) + δε2

2 L
> d(0) = m,

as desired. This completes the proof of Step 4. ��
11 Because Skt is symmetric, there exists an orthogonal transform P such that

Skt = PT

⎛
⎜⎜⎜⎝

λ1 0 . . . 0
0 λ2 . . . 0
.
.
.

.

.

.
. . .

.

.

.

0 0 . . . λn

⎞
⎟⎟⎟⎠ P,

where λi is some eigenvalue of Skt . Because S
k
t is negative semi-definite, λi ≤ 0 for every i . Hence, if we

define

Akt = PT

⎛
⎜⎜⎜⎝

√−λ1 0 . . . 0
0

√−λ2 . . . 0
.
.
.

.

.

.
. . .

.

.

.

0 0 . . .
√−λn

⎞
⎟⎟⎟⎠ P,

then Skt = −(Akt )
2. Moreover, because the operator norm ‖Skt ‖ (resp. ‖Akt ‖) coincides with maxi |λi |,

(resp. maxi
√|λi |,) all our claims are correct.
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Step 5 If x �= y, x = f (p,m), y = f (q, w), and p · y ≤ m, then q · x > w.12

Proof of Step 5 By the contrapositive of Step 4, we have that c(1; p, q,m) > w =
c(0; q, p, w). By Step 3, m = c(0; p, q,m) > c(1; q, p, w). By Step 4, we obtain
that q · x > w, as desired. This completes the proof of Step 5. ��
Step 6 For every q ∈ R

n++, c(1; q, p̄, c(1; p, q,m)) = c(1; p, p̄,m).

Proof of Step 6 Define p(t) = (1 − t)p + tq, m∗ = c(1; p, p̄,m) and w(t) =
c(1; p̄, p(t),m∗). By Step 3, c(1 − t; p, p̄,m) = c(t; p̄, p,m∗), and thus w(0) =
c(0; p, p̄,m) = m.Moreover, by Lemma 3 and Step 2, E(r) = c(1; p̄, r ,m∗) satisfies
the following differential equation:

∇E(r) = f (r , E(r)).

Therefore,

ẇ(t) = d

dt
c(1; p̄, (1 − t)p + tq,m∗) = d

dt
E((1 − t)p + tq)

= f ((1 − t)p + tq, E((1 − t)p + tq)) · (q − p)

= f ((1 − t)p + tq, w(t)) · (q − p).

By the uniqueness of the solution to an ODE, we have that

w(t) = c(t; p, q,m)

for all t ∈ [0, 1]. Now, define m+ = c(1; p, q,m). Then,

c(1; p̄, q,m∗) = w(1) = m+.

By Step 3, we have c(1 − t; p̄, q,m∗) = c(t; q, p̄,m+), and thus

m∗ = c(1; q, p̄,m+),

as desired. This completes the proof of Step 6. ��
Step 7 Suppose that x = f (p,m) = f (q, w). Then, c(1; p, p̄,m) = c(1; q, p̄, w).

Proof of Step 7 Let p(t) = (1 − t)p + tq and m(t) = (1 − t)m + tw. Suppose that
f (p(t),m(t)) = y �= x for some t ∈ [0, 1]. ByWalras’ law, p(t)·y = m(t) = p(t)·x ,
and thus p · y > m and q · y > w by Step 5. However, this implies that p(t) · y > m(t),
which is a contradiction. Therefore, f (p(t),m(t)) ≡ x , and thus,

ṁ(t) = w − m = x · (q − p) = f (p(t),m(t)) · (q − p).

12 In other words, f satisfies the weak axiom of revealed preference.
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By the uniqueness of the solution to an ODE,

m(t) = c(t; p, q,m),

and thus w = c(1; p, q,m). Therefore, by Step 6, we have that c(1; p, p̄,m) =
c(1; q, p̄, w). This completes the proof of Step 7. ��

By Steps 2 and 7, we can define u f , p̄(x) for all x ∈ �, and our definition of u f , p̄(x)
is independent of the choice of (p,m) ∈ f −1(x).

Step 8 f = f u f , p̄ .

Proof of Step 8 Suppose that x = f (p,m), y �= x , and p · y ≤ m. If y /∈ R( f ), then
u f , p̄(y) = 0 < u f , p̄(x). If y = f (q, w) for some (q, w), then the contrapositive of
Step 4 implies that c(1; p, q,m) > w. By Step 3,

c(t; q, p̄, c(1; p, q,m)) > c(t; q, p̄, w)

for every t ∈ [0, 1]. By Step 6,

u f , p̄(x) = c(1; p, p̄,m) = c(1; q, p̄, c(1; p, q,m)) > c(1; q, p̄, w) = u f , p̄(y).

Therefore, x = f u f , p̄ (p,m), as desired. This completes the proof of Step 8. ��
Step 9 u f , p̄ is upper semi-continuous on R( f ).

Proof of Step 9 Suppose that x = f (p,m) and u f , p̄(x) < a. By Fact 4, the solution
function c is continuous, and thus there exists ε > 0 such that c(1; p, p̄,m + ε) < a.
Define y = f (p,m + ε). Then, the set

U = {z ∈ R( f )|p · z < m + ε}

is a neighborhood of x in the relative topology of R( f ), and for every z ∈ U , u f , p̄(z) <

u f , p̄(y) < a. This completes the proof of Step 9. ��
Step 10 Suppose that f = f � for someweakorder�, and� is upper semi-continuous
on R( f ). Then, for every x, y ∈ R( f ),

x � y ⇔ u f , p̄(x) ≥ u f , p̄(y).

Proof of Step 10 First, choose any x ∈ R( f ) and suppose that x = f (p,m). Define
z = f ( p̄, u f , p̄(x)), and let

Ex (q) = inf{q · w|w � x}.

By Fact 5, we have that

∇Ex (q) = f (q, Ex (q)), Ex (p) = m.
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Define d(t) = Ex ((1 − t)p + t p̄). Then,

ḋ(t) = f ((1 − t)p + t p̄, d(t)) · ( p̄ − p),

which implies that d(t) = c(t; p, p̄,m) for every t ∈ [0, 1]. In particular,

Ex ( p̄) = d(1) = c(1; p, p̄,m) = u f , p̄(x).

Now, choose any ε > 0. Then, there exists w ∈ � such that p · w < Ex ( p̄) + ε

and w � x . Define zε = f ( p̄, Ex ( p̄) + ε). Then, zε � w, and thus zε � x . Letting
ε → 0, by the upper semi-continuity of �, we obtain that z � x .

Next, define
Ez(q) = inf{q · w|w � z}.

By the same arguments as above, we can show that Ez(p) = m, and thus x � z.
Hence, x ∼ f ( p̄, u f , p̄(x)) for all x ∈ R( f ).

Now, choose any x, y ∈ R( f ). Then,

x � y ⇔ f ( p̄, u f , p̄(x)) � f ( p̄, u f , p̄(y)) ⇔ u f , p̄(x) ≥ u f , p̄(y),

as desired. This completes the proof of Step 10. ��

Steps 8–10 indicate that all of our claims in Proposition 1 are correct. This completes
the proof. ��

7.3 Proof of Corollary 1

It is obvious that condition (ii) implies condition (i).
Suppose that condition (i) holds, and choose any (p,m) ∈ R

n++ × R++. Let
x = f (p,m) and define

Ex (q) = inf{q · y|y � x}.
ByFact 5, this Ex is a concave solution to (2). Suppose that E is another solution to (2).
For each q ∈ R

n++, define c1(t) = Ex ((1− t)p + tq) and c2(t) = E((1− t)p + tq).
Then,

ċi (t) = f ((1 − t)p + tq, ci (t)) · (q − p), ci (0) = m,

and thus, by the uniqueness of the solution to an ODE (Fact 3), we have that c1 ≡ c2.
In particular, Ex (q) = c1(1) = c2(1) = E(q), and thus E = Ex . Therefore, the
solution is unique, and condition (iv) holds.

Suppose that condition (iv) holds. Choose any (p,m) ∈ R
n++ × R++ such that f

is differentiable at (p,m). Let E be a concave solution to (2). By an easy calculation,
we obtain

HE (p) = S f (p,m),
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where HE (p) denotes the Hessian matrix of E at p. Because E is concave, HE (p)
is negative semi-definite. Moreover, by extended Young’s theorem,13 HE (p) is sym-
metric. Therefore, f satisfies (S) and (NSD), and condition (iii) holds.

Finally, our Proposition 1 says that condition (iii) implies condition (ii). This com-
pletes the proof. ��

7.4 Proof of Corollary 2

Define

w f , p̄(x) =
{
u f , p̄(x) if x ∈ R( f ),

infε>0 sup{u f , p̄(y)|y ∈ R( f ), ‖y − x‖ < ε} if x /∈ R( f ).

Theorems 1 and 2 of Hosoya (2020) state the following facts: 1) f = f w f , p̄ , 2) w f , p̄

is upper semi-continuous, 3) w f , p̄ is continuous on R
n++ if and only if f satisfies the

C axiom, and 4) if� is an upper semi-continuous weak order on� such that f = f �,
then for each x, y ∈ �,

x � y ⇔ w f , p̄(x) ≥ w f , p̄(y).

We first show that w f , p̄(x) = v f , p̄(x) for all x ∈ �.
If x ∈ R

n++, then w f , p̄(x) = u f , p̄(x) = v f , p̄(x).
Suppose that x /∈ R( f ). Choose any ε > 0, and suppose that y ∈ R( f ) and

‖y − x‖ < ε. Then, there exists z ∈ R
n++ such that z � y and ‖z − x‖ < ε. If

z = f (p,m), then p · y < m, and thus u f , p̄(z) > u f , p̄(y). This indicates that

sup{u f , p̄(y)|y ∈ R( f ), ‖y − x‖ < ε} = sup{u f , p̄(y)|y ∈ R
n++, ‖y − x‖ < ε},

and thus, v f , p̄(x) = w f , p̄(x).
Suppose that x ∈ R( f ) \ R

n++. Let e = (1, 1, . . . , 1) and define xk = x + k−1e.
Then, xk ∈ R

n++. It is easy to show that

lim
k→∞ u f , p̄(x

k) = v f , p̄(x).

Because u f , p̄ is upper semi-continuous on R( f ), we have that

lim
k→∞ u f , p̄(x

k) ≤ u f , p̄(x).

On the other hand, if xk = f (pk,mk), then pk ·x < mk , and thus, u f , p̄(xk) > u f , p̄(x).
Therefore, we have that

lim
k→∞ u f , p̄(x

k) ≥ u f , p̄(x).

13 See Lemma 3.2 of Hosoya (2021).
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Combining these inequalities, we have that

v f , p̄(x) = lim
k→∞ u f , p̄(x

k) = w f , p̄(x),

as desired. Hence, v f , p̄(x) = w f , p̄(x).
The rest of the claim of this corollary is statement 3). If v f , p̄ is continuous, then

f = f � for a continuous weak order � defined as

x � y ⇔ v f , p̄(x) ≥ v f , p̄(y).

Let us show the converse. Suppose that there exists a continuous weak order � on
� such that f = f �. Debreu (1954) showed that there exists a continuous function
u : � → R that represents �. By the above arguments, v f , p̄ also represents �, and
thus v f , p̄ and u have the same order. On the other hand, in the proof of Theorem 1 of
Hosoya (2020), it was shown that if v f , p̄(x) > 0, then

v f , p̄(x) = v f , p̄( f ( p̄, v f , p̄(x)))

for all x ∈ �, and v f , p̄(0) = 0. Therefore, if v f , p̄(x) > 0, then

u(x) = u( f ( p̄, v f , p̄(x))),

and if v f , p̄(x) = 0, then
u(x) = u(0).

If v f , p̄(x) > 0, then for every sufficiently small ε > 0, there exists δ > 0 such that if
y ∈ � and ‖y − x‖ < δ, then

u( f ( p̄, v f , p̄(x) − ε)) < u(y) < u( f ( p̄, v f , p̄(x) + ε)),

which implies that |v f , p̄(y) − v f , p̄(x)| < ε. If v f , p̄(x) = 0, then for every ε > 0,
there exists δ > 0 such that if y ∈ � and ‖y − x‖ < δ, then

u(0) ≤ u(y) < u( f ( p̄, ε)),

which implies that 0 ≤ v f , p̄(y) < ε. Therefore, v f , p̄ is continuous. This completes
the proof. ��

7.5 Proof of Theorem 1

Define
I (t, c, g, p, q) = g((1 − t)p + tq, c) · (q − p),

where g : R
n++ × R++ → R

n is locally Lipschitz. Consider the following ODE:

ċ(t) = I (t, c(t), g, p, q), c(0) = m, (16)
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and let c(t; g, p, q,m) be the solution function. By Corollary 1, the domain of c
includes [0, 1]× { f k}× R

n++ × R
n++ × R++ for all k. First, we show that the domain

of c includes [0, 1] × { f } × R
n++ × R

n++ × R++, and limk→∞ c(t; f k, p, q,m) =
c(t; f , p, q,m) for all t ∈ [0, 1] and (p, q,m) ∈ R

n++ × R
n++ × R++.

Choose any (p,m) ∈ R
n++ ×R++ and q ∈ R

n++, and define p(t) = (1− t)p+ tq.
For every continuous function g : R

n++ × R++ → R
n , define

HK (g) = sup
(r ,c)∈[K−1,K ]n+1

‖g(r , c)‖.

Hereafter, we abbreviate c(t; f , p, q,m) as c(t) and c(t; f k, p, q,m) as ck(t). As we
have already mentioned, ck(t) is defined on [0, 1] for all k according to Corollary 1.
If p = q, then our claim trivially holds. Hence, we assume that p �= q.

Because f k is a demand function, there exists a weak order �k on � such that
f k = f �k . Define

Ek(r) = inf{r · y|y �k f k(p,m)}.
By Fact 5, we have that ck(t) = Ek(p(t)). Choose w0 > 0 so small that w0 < m and
nw0 pi < qim for all i ∈ {1, . . . , n}. If q · y ≤ w0, then yi ≤ w0/qi , and thus

p · y ≤
n∑

i=1

w0 pi
qi

< m.

Therefore, if p(t)·y = w0 for some t ∈ [0, 1], then p·y < m, and thus y ��k f k(p,m)

for all k. By definition, Ek(p(t)) ≥ w0, and thus ck(t) ≥ w0 for all k and t ∈ [0, 1].
On the other hand,

ck(t) = Ek(p(t)) ≤ p(t) · f k(p,m)

≤ (1 − t)m + t max{q · x |p · x = m}
≤ m + max{q · x |p · x = m} ≡ w1

for all k and t ∈ [0, 1]. Choose K > 1 such that p, q ∈ [K−1, K ]n and
w0, w1 ∈]K−1, K [. Because f is locally Lipschitz, there exists L > 0 such that
if (p′,m′), (q ′, w′) ∈ [K−1, K ]n+1, then

‖ f (p′,m′) − f (q ′, w′)‖ ≤ L‖(p′,m′) − (q ′, w′)‖.

Let I ∗ be the set of all t ∈ [0, 1] such that c(s) is defined and c(s) ∈ [K−1, K ] for all
s ∈ [0, t]. For any t ∈ I ∗,

|ck(t) − c(t)| ≤
∫ t

0
‖ f k(p(s), ck(s)) − f (p(s), c(s))‖‖q − p‖ds

≤
∫ t

0
[‖ f k(p(s), ck(s)) − f (p(s), ck(s))‖

+ ‖ f (p(s), ck(s)) − f (p(s), c(s))‖]‖q − p‖ds
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≤
∫ t

0
L‖q − p‖|ck(s) − c(s)|ds + HK ( f k − f )‖q − p‖t,

and thus, by Lemma 1,

|ck(t) − c(t)| ≤ HK ( f k − f )

L
(eL‖q−p‖ − 1). (17)

This indicates that ck(t) → c(t) as k → ∞, and thus c(t) ∈ [w0, w1] for all t ∈ I ∗.
Let t∗ = sup I ∗. Because c(t) is a nonextendable solution to (16), Fact 3 implies that
c(t) is defined at t∗. By the continuity of c(t), c(t∗) ∈ [w0, w1] ⊂ [K−1, K ], and thus
I ∗ = [0, t∗]. If t∗ < 1, then c(t∗) ∈]K−1, K [, and thus there exists t > t∗ such that
t ∈ I ∗, which is a contradiction. Thus, t∗ = 1 and I ∗ = [0, 1], which implies that our
claim holds.

Therefore, we have that the domain of the solution function c includes [0, 1]×{ f }×
R
n++ ×R

n++ ×R++. Fix (p,m) ∈ R
n++ ×R++, and define E(q) = c(1; f , p, q,m).

By Lemma 3, E solves (2). By the above arguments, E(q) = limk→∞ Ek(q) for all
q ∈ R

n++. Because Ek is concave, E is also concave. By Corollary 1, f is a demand
function. This completes the proof. ��

7.6 Proof of Corollary 3

Suppose that ( f k) is a sequence in FL . Let p∗ = (1, 1, . . . , 1) and m∗ = 1. Then,
( f k(p∗,m∗)) is a sequence on [0, 1]n . Therefore, it is bounded and there existsM > 0
such that ‖ f k(p∗,m∗)‖ ≤ M for all k. Moreover, this sequence has a convergent
subsequence ( f 
1(k)(p∗,m∗)). Next, for ν ≥ 2, suppose that 
ν−1(k) is defined and
( f 
ν−1(k)) is a uniformly convergent sequence on �ν−1. Then, for any (p,m) ∈ �ν ,

‖ f 
ν−1(k)(p,m)‖ ≤ ‖ f 
ν−1(k)(p∗,m∗)‖ + ‖ f 
ν−1(k)(p,m) − f 
ν−1(k)(p∗,m∗)‖
≤ M + Lν

√
n + 1ν,

which implies that ( f 
ν−1(k)) is an equicontinuous and uniformly bounded sequence
of functions on �ν . By Ascoli–Arzelà’s theorem, there exists a subsequence ( f 
ν(k))

that uniformly converges on�ν . Therefore, (
ν(k)) can be defined inductively. Define

(k) = 
k(k). Then, ( f 
(k)) is a subsequence of ( f k) that converges to some function f
with respect to ρ. Clearly, f is a continuous CoD that satisfies Walras’ law. Moreover,
if (p,m), (q, w) ∈ �ν , then

‖ f (p,m)− f (q, w)‖ = lim
k→∞ ‖ f 
(k)(p,m)− f 
(k)(q, w)‖ ≤ Lν‖(p,m)− (q, w)‖,

which implies that f is locally Lipschitz, and by Theorem 1, f ∈ FL . This completes
the proof. ��
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7.7 Proof of Theorem 2

First, we show the following lemma.

Lemma 4 Suppose that f is a locally Lipschitz demand function that satisfies Walras’
law, and R( f ) includes R

n++. If f satisfies the C axiom, then u f , p̄ is continuous on
R
n++.14

Proof Recall the differential equation (1):

ċ(t) = f ((1 − t)p + t p̄, c(t)) · ( p̄ − p), c(0) = m.

Let c(t; p,m) be the solution function. We have that u f , p̄(x) = c(1; p,m) if x =
f (p,m). Choose any sequence (xk) in R

n++ such that xk → x ∈ R
n++ as k → ∞,

and suppose that u f , p̄(xk) �→ u f , p̄(x). Taking a subsequence, we can assume that
there exists ε > 0 such that |u f , p̄(xk) − u f , p̄(x)| > ε for every k. Choose any
pk ∈ G f (xk). Because G f is upper hemi-continuous, taking a subsequence, we can
assume that pk → p∗ ∈ G f (x). Then,

u f , p̄(x
k) = c(1; pk, pk · xk) → c(1; p∗, p∗ · x) = u f , p̄(x),

which is a contradiction. Therefore, u f , p̄ is continuous on R
n++. This completes the

proof. ��
Choose any compact set D ⊂ R

n++. Let x ∈ D. We first show that there exist an

open neighborhood U of x and ε > 0 such that if p ∈ G f k (y) for some y ∈ U and k,
then pi ≥ ε for all i ∈ {1, . . . , n}.

Suppose not. Then, there exists a sequence ((p
, z
)) on R
n++ × � such that p
 ∈

G f k(
) (z
) for all 
, and z
 → x and min j p

j → 0 as 
 → ∞. First, suppose that

k(
) = k for infinitely many 
. Taking a subsequence, we can assume that k(
) = k
for any 
. By the C axiom, the inverse demand correspondenceG f k is compact-valued
and upper hemi-continuous. Moreover, p
 ∈ G f k (z
) for all 
 and z
 → x as 
 → ∞.
Therefore, if we choose

ε = 1

2
min

{
min
i

pi |p ∈ G f k (x)

}
,

then ε > 0 and min j p

j ≥ ε for sufficiently large 
, which is a contradiction. Hence,

we can assume that k(
) is increasing. Taking a subsequence, we can assume that
p
 → p∗ ∈ R

n+, where
∑

j p
∗
j = 1 and mini p∗

i = 0. Choose i, j ∈ {1, . . . , n} such
that p∗

i > 0 and p∗
j = 0.

Let e j denote the j-th unit vector. Choose a small δ > 0, and set y j = x j +
2, yi (δ) = xi − δ, and ym = xm for every m ∈ {1, . . . , n} \ {i, j}. Let y(δ) =
14 Note that, in this lemma, R( f ) need not be relatively open in �, and thus Corollary 2 cannot be directly
applied.
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(y1, . . . , yi (δ), . . . , yn). BecauseG f is upper hemi-continuous, there exists a sequence
(δν) of positive real numbers such that δν → 0 as ν → ∞ and there exists pν ∈
G f (y(δν)) such that pν → p+ ∈ G f (y(0)) as ν → ∞. Because p+ · y(0) >

p+ · (x + e j ), we have that pν · y(δν) > pν · (x + e j ) for sufficiently large ν. Choose
such a ν, and defineq = pν and y = y(δν). Then, q ∈ G f (y), and thus y = f (q, q ·y).
Define yk = f k(q, q · y). Then, yk → y as k → ∞. By assumption, q · z
 +q j < q · y
for sufficiently large 
, and thus, we have that q · z
 < q · yk(
) for sufficiently large

. However,

lim

→∞ p
 · z
 = p∗ · x > p∗ · y = lim


→∞ p
 · yk(
),

and thus p
 · z
 > p
 · yk(
) if 
 is sufficiently large, which contradicts the weak axiom
of revealed preference for f k(
). Therefore, our initial claim is correct.

Define Ux as such a neighborhood that corresponds with x ∈ D. Then, (Ux ) is
an open covering of D, and thus, there exists ε∗ > 0 such that if

∑
j p j = 1 and

f k(p, p · x) = x for some x ∈ D and k, then pi ≥ ε∗ for all i ∈ {1, . . . , n}.
Let

C = {p ∈ R
n++|p ∈ G f (x) for some x ∈ D},

Ck = {p ∈ R
n++|p ∈ G f k (x) for some x ∈ D}.

By the compact-valuedness and upper hemi-continuity of inverse demand correspon-
dences,C,Ck are compact. Because of our previous arguments, there exists a compact
set K ⊂ R

n++ that includes C and all Ck . Define m1 = min{p · x |p ∈ K , x ∈ D} > 0
and m2 = max{p · x |p ∈ K , x ∈ D} > 0.

It suffices to show that supx∈D |u f k , p̄(x)−u f , p̄(x)| → 0 as k → ∞. Suppose not.
Then, there exist ε > 0 and a sequence (x
) in D such that |u f k(
), p̄(x


)−u f , p̄(x
)| ≥
ε for all 
, where k(
) is increasing. Because D is compact, we can assume that
x
 → x∗ ∈ D as 
 → ∞. Suppose that x
 = f k(
)(p
,m
), where p
 ∈ Ck(
) and
m
 = p
 · x
. Taking a subsequence, we can assume that p
 → p∗ ∈ K . Define
m∗ = p∗ · x∗. Then, (p
,m
), (p∗,m∗) ∈ K × [m1,m2], and thus,

‖ f k(
)(p
,m
) − f (p∗,m∗)‖ ≤ ‖ f k(
)(p
,m
) − f (p
,m
)‖
+ ‖ f (p
,m
) − f (p∗,m∗)‖ → 0

as 
 → ∞. This implies that f (p∗,m∗) = x∗.
Now, consider the following differential equation:

ċ(t) = I (t, c(t), g, p,m), c(0) = m∗, (18)

where g : R
n++ × R++ → � is locally Lipschitz and I (t, c, g, p,m) = g((1− t)p+

t p̄, c + m − m∗) · ( p̄ − p). Let c(t; g, p,m) be the solution function of (18). We
abbreviate c(t; f , p∗,m∗) as c∗(t) and c(t; f k(
), p
,m
) as c
(t). By Proposition 1,
the domain of c∗(t) and c
(t) includes [0, 1], u f , p̄(x∗) = c∗(1), and u f k(
), p̄(x


) =
c
(1) + m
 − m∗.
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Choose a > 0 and b > 0 sufficiently small, and define

� = {(c, p,m)|∃t ∈ [0, 1] s.t. |c∗(t) − c| ≤ a, ‖p − p∗‖ + |m − m∗| ≤ b}.

Let �̂ be the set of all locally Lipschitz CoDs g such that ‖g − f ‖ ≤ b, where

‖h‖ = sup
(t,c,p,m)∈[0,1]×�

‖h((1 − t)p + t p̄, c + m − m∗)‖.

Define �̃ = � × �̂. We assume that a, b are so small that 1) � is a compact set in
R++ × R

n++ × R++, 2) min{c + m − m∗|(c, p,m) ∈ �} > 0, 3) there exists L > 0
such that if (t .c, p,m), (t, c′, p,m) ∈ [0, 1] × �, then

‖ f ((1− t)p+ t p̄, c+m−m∗)− f ((1− t)p+ t p̄, c′ +m−m∗)‖‖ p̄− p‖ ≤ L|c−c′|,

and 4) there exists B > 0 such that if (t, c, p,m, g) ∈ [0, 1] × �̃, then

|I (t, c, g, p,m) − I (t, c, f , p∗,m∗)| ≤ B[‖p − p∗‖ + |m − m∗| + ‖g − f ‖].

Now, for any sufficiently large 
, ‖p
 − p∗‖ + |m
 − m∗| ≤ b and ‖ f k(
) − f ‖ ≤ b.
For such an 
, define t
 = sup{t ∈ [0, 1]|∀s ∈ [0, t], (c
(s), p
,m
) ∈ �}. Because
c
(0) = m∗ = c∗(0), we have that t
 is well-defined and positive. If t ∈ [0, t
], then

|c
(t) − c∗(t)|
≤
∫ t

0
|I (s, c
(s), f k(
), p
,m
) − I (s, c∗(s), f , p∗,m∗)|ds

≤
∫ t

0
|I (s, c
(s), f k(
), p
,m
) − I (s, c
(s), f , p∗,m∗)|ds

+
∫ t

0
|I (s, c
(s), f , p∗,m∗) − I (s, c∗(s), f , p∗,m∗)|ds

≤
∫ t

0
L|c
(s) − c∗(s)|ds + B(‖p
 − p∗‖ + |m
 − m∗| + ‖ f k(
) − f ‖)s.

By Lemma 1, we have that for any t ∈ [0, t
],

|c
(t) − c∗(t)| ≤ B(‖p
 − p∗‖ + |m
 − m∗| + ‖ f k(
) − f ‖)
L

(eL − 1)

≡ C(‖p
 − p∗‖ + |m
 − m∗| + ‖ f k(
) − f ‖)

for some C > 0. Now, choose any b′ ∈]0, b] with Cb′ < a. If 
 is sufficiently large,
then ‖p
 − p∗‖ + |m
 −m∗| + ‖ f k(
) − f ‖ ≤ b′. For such an 
, we have that t
 = 1:
if not, then a ≤ |c
(t
) − c∗(t
)| ≤ Cb′ < a, which is a contradiction. Therefore,

|c
(1) − c∗(1)| ≤ C(‖p
 − p∗‖ + |m
 − m∗| + ‖ f k(
) − f ‖),
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and thus if 
 is sufficiently large, then

|u f k(
), p̄(x

) − u f , p̄(x

∗)| ≤ |c
(1) − c∗(1)| + |m
 − m∗| <
ε

2
.

By Lemma 4, u f , p̄ is continuous at x∗, and thus |u f , p̄(x
) − u f , p̄(x∗)| < ε
2 if 
 is

sufficiently large. Therefore,

ε ≤ |u f k(
), p̄(x

) − u f , p̄(x


)|
≤ |u f k(
), p̄(x


) − u f , p̄(x
∗)| + |u f , p̄(x

∗) − u f , p̄(x

)| < ε,

which is a contradiction. This completes the proof. ��

7.8 Proof of Corollary 4

By Theorem 2, it suffices to show that lim supk→∞ v f k , p̄(x) ≤ v f , p̄(x) for all x ∈
�\R

n++. Choose any x ∈ �\R
n++. Let e = (1, 1, . . . , 1) and define x
 = x+
−1e. By

the same argument as in the proof ofCorollary 2,we can show that u f , p̄(x
) > v f , p̄(x)
and lim
→∞ u f , p̄(x
) = v f , p̄(x). The same fact is true for v f k , p̄. Choose ε > 0. Then,
there exists 
 such that u f , p̄(x
) < v f , p̄(x) + ε. Because u f k , p̄(x


) → u f , p̄(x
), we
have that u f k , p̄(x


) < u f , p̄(x
) + ε for sufficiently large k. Therefore, for such k,
v f k , p̄(x) < u f k , p̄(x


) < v f , p̄(x)+2ε. Hence, lim supk→∞ v f k , p̄(x) ≤ v f , p̄(x)+2ε,
and because ε > 0 is arbitrary, lim supk→∞ v f k , p̄(x


) ≤ v f , p̄(x), as desired. This
completes the proof. ��

7.9 Proof of Corollary 5

By Theorem 2, it suffices to show that if ( f k) is a sequence on FL,M that converges
to f ∈ FL with respect to ρ, then f ∈ FL,M .

First, choose any x ∈ R
n++. Then, there exists ν such that x ∈]ν−1, ν[n . Choose

pk ∈ G f k (x) for each k. Because (pk) is a sequence of the compact set

Pν = {p ∈ R
n++|

∑
i

pi = 1, min
i

pi ≥ Mν},

there exists a subsequence p
(k) such that limk→∞ p
(k) = p∗ ∈ Pν . Because f 
(k)

converges to f uniformly on any compact set,

x = lim
k→∞ f 
(k)(p
(k), p
(k) · x) = f (p∗, p∗ · x),

and thus p∗ ∈ G f (x). This implies that R( f ) includes R
n++.

Second, choose any x ∈]ν−1, ν[n , and suppose that there exists p ∈ G f (x) such
that mini pi < Mν . Let xk = f k(p, p · x). Then, xk → x as k → ∞, and thus
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xk ∈]ν−1, ν[n for sufficiently large k. Because p ∈ G f k (xk),wehave that f k /∈ FL,M ,
which is a contradiction. Therefore, if p ∈ G f (x), thenmini pi ≥ Mν . BecauseG f (x)
is obviously closed, this implies that G f is compact-valued.

Third, it is easy to show that for any demand function f ′ and x ∈ R( f ′), G f ′
(x) is

convex. Therefore, G f is convex-valued.
Finally, suppose that G f is not upper semi-continuous at x . Then, there exist an

open neighborhood U of G f (x) and sequences (x
) and (p
) such that x
 → x as

 → ∞ and p
 ∈ G f (x
)\U for all 
. Choose ν such that x
 ∈]ν−1, ν[n for all

. Then, (p
) is a sequence in the compact set Pν . Thus, by taking a subsequence,
we can assume that p
 → p∗ ∈ Pν as 
 → ∞. Because f is continuous, we have
that p∗ ∈ G f (x) ⊂ U , which is a contradiction. Therefore, f satisfies the C axiom.
Hence, f ∈ FL,M , as desired. This completes the proof. ��

7.10 Proof of Theorem 3

ByCorollary 3,FL is compact with respect to ρ. Therefore, there exists a subsequence
( f 
(k)) of ( f k) such that for some g ∈ FL , ρ( f 
(k), g) → 0 as k → ∞. Because
( f k) converges to f pointwise, we have that f = g, and thus f ∈ FL .

Next, suppose that f k ∈ FL,M for any k. By Corollary 5 and the same argument
as in the above paragraph, we have that f ∈ FL,M . Suppose that for some compact
set D ⊂ R

n++,
lim sup
k→∞

sup
x∈D

|u f k , p̄(x) − u f , p̄(x)| > 0.

Taking a subsequence, we can assume that there exists ε > 0 such that
supx∈D |u f k , p̄(x) − u f , p̄(x)| ≥ ε for all k. Because FL is compact with respect
to ρ, there exists a subsequence ( f 
(k)) such that limk→∞ ρ( f 
(k), f ) = 0. By Corol-
lary 5, for any sufficiently large k, supx∈D |u f 
(k), p̄(x) − u f , p̄(x)| < ε, which is a
contradiction. This completes the proof. ��
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