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Abstract
Cooperation through repetition is an important theme in game theory. In this regard,
various celebrated “folk theorems” have been proposed for repeated games in increas-
ingly more complex environments. There has, however, been insufficient attention
paid to the robustness of a large set of equilibria that is needed for such folk theorems.
Starting with perfect public equilibrium as our starting point, we study uniformly strict
equilibria in repeated games with privatemonitoring and direct communication (cheap
talk). We characterize the limit equilibrium payoff set and identify the conditions for
the folk theorem to hold with uniformly strict equilibrium.
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1 Introduction

Cooperation through repetition is an important theme in game theory. In this regard,
various celebrated “folk theorems” have been proposed for repeated games in increas-
ingly more complex environments. There has, however, been insufficient attention
paid to the robustness of a large set of equilibria that is needed for such folk theorems.
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In this paper, we study uniformly strict equilibria in repeated games with private
monitoring and direct communication (cheap talk). Our starting point is perfect public
equilibrium (PPE) (Fudenberg et al. 1994). In each period, players take actions simul-
taneously, observe private signals, and send publicmessages simultaneously. A perfect
public equilibrium is a profile of public strategies that specifies a Nash equilibrium as
their continuation play after every public history (a sequence of past message profiles).
We impose strict incentives at every public history by requiring that, in each period,
a player would incur a positive payoff loss (in terms of the value at the period) when
deviating in either action or message from the equilibrium strategy. We also require
such payoff losses from a unilateral deviation to be uniformly bounded away from 0
across all public histories.

It is well known that strict equilibrium has desirable robustness properties. For
example, strict equilibria survive most equilibrium refinements in strategic form
games. In our setting of infinitely repeated games, our uniform strictness requirement
is a natural strengthening of strict equilibrium.

We present two main results. Our first result is a characterization of the limit set of
uniformly strict perfect public equilibrium payoffs via a collection of static program-
ming problems. We follow the approach of Fudenberg and Levine (1994) (henceforth
FL) to characterize the limit equilibrium payoff set. It also builds on other classic
results from Abreu et al. (1990) and Fudenberg, Fudenberg et al. (1994). We adapt
their ideas to ourmodel and generalize themby introducing uniformly strict incentives.
In our second result, we establish a folk theorem by identifying conditions ensuring
that this limit set coincides with the set of feasible and individually rational payoffs
generated by the data of the underlying stage game.

There is a large literature dealing with folk theorems for repeated games with
varying assumptions regarding public or private monitoring with or without commu-
nication. Most relevant to our paper are the various folk theorems for repeated games
with private monitoring and communication (Aoyagi 2005; Ben-Porath and Kahne-
man 1996; Compte 1998; Fudenberg andLevine 2007;Kandori andMatsushima 1998;
Laclau 2012, 2014; Obara 2009; Tomala 2009).1

Our detectability and identifiability conditions for the folk theorem are similar to
and weaker than the conditions (A2) and (A3) in Kandori and Matsushima (1998).
(A2) and (A3) imply that, for any pair of players, their deviations are detectable
and identifiable (i.e. one player’s deviation can be statistically distinguished by the
other player’s deviation) based on the private signals of the other n − 2 players.
Our detectability and identifiability condition instead impose a similar restriction on
the joint distributions of the messages of all players. Their conditions allow each
player’s future payoff independent of her message. This indifference makes truth-

1 There is an extensive literature on folk theorems for repeated games with private monitoring and without
communication, including (Bhaskar and Obara 2002; Ely and Välimaki 2002; Hörner and Olszewski 2006;
Mailath andMorris 2002; Mailath and Olszewski 2011; Matsushima 2004; Piccione 2002; Sekiguchi 1997;
Sugaya 2022). They usually rely on non-strict equilibrium (such as belief-free equilibrium) to establish the
folk theorem.
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telling incentive compatible for each player. On the other hand, we require uniform
strictness of incentive for sending any (nontrivial) message.2

Our conditions are also similar to the sufficient conditions in Tomala (2009), but
Tomala studies a type of perfect equilibrium with mediated communication, which is
more flexible than cheap talk, and does not impose strict incentive constraints. As a
consequence, the conditions for the folk theorem in Tomala (2009) are weaker than
ours.

2 Preliminaries

2.1 Repeated games with private monitoring and communication

Stage game
We present the model of repeated games with private monitoring and communica-

tion. The set of players is N = {1, . . . , n}. The game proceeds in stages and in each
stage t , player i chooses an action from a finite set Ai . An action profile is denoted
by a = (a1, . . . , an) ∈ �i Ai := A. Stage game payoffs are given by g : A → R

n .
We denote the resulting stage game by G = (N , A, g) . Actions are not publicly
observable. Instead, each player i observes a private signal si from a finite set Si . A
private signal profile is denoted s = (s1, . . . , sn) ∈ �i Si := S. For each a ∈ A,

p (·|a) ∈ �(S) is the distribution on S given action profile a. We assume that the
marginal distributions have full support, that is,

∑
s−i

p (si , s−i |a) > 0 for all si ∈ Si ,
a ∈ A and i ∈ N .

Players communicate publicly each period. Player i sends a public message mi

from a finite set Mi after observing a private signal si in each period.3 Player i’s
message strategy ρi : Si → Mi in the stage game is a mapping from private signals to
public messages. Let Ri be the set of player i’s message strategies. An action profile
a ∈ A and a profile of message strategies ρ = (ρ1, . . . , ρn) ∈ �i Ri := R generates
a distribution p̃(·|(a, ρ)) over public messages M = �i Mi , where

p̃(m|(a, ρ)) :=
∑

s∈S:ρi (si )=mi ,∀i
p(s|a).

We normalize payoffs so that each player’s pure strategyminmax payoff is 0 in the
stage game. The pure strategy minmax payoff is the relevant payoff lower bound for
our folk theorem because we study equilibrium with strict incentives and without any
mediator. Note that the pure strategy minmax payoff may be strictly larger than the
mixedminmax payoff. The set of feasible payoff profiles is V (G) = co {g (a) |a ∈ A}.
Let A(G) ⊆ A be the set of action profiles that generate an extreme point in V (G).

2 Kandori and Matsushima (1998) also discusses a way to provide strict incentive for truth-telling via a
scoring rule, but the strict incentive vanishes in the limit for the minmax points for their folk theorem
(Theorem 2). We instead fix the level of the required strict incentive first, then prove the folk theorem by
letting δ → 0.
3 We can support the largest set of equilibria by using Mi = Si . But we use a more general message space
Mi to allow for the possibility of restricted message spaces.
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Finally V ∗(G) = {v ∈ V (G)|v ≥ 0} is the set of feasible, individually rational payoff
profiles.

Repeated game with public communication
In the repeated game, play proceeds in the followingway.At the beginning of period

t ≥ 1, player i chooses an action contingent on
(
hti , h

t
)
, where hti ∈ Ht

i = At−1
i ×St−1

i
is player i’s private history that consists of her private actions and private signals and
ht ∈ Ht = Mt−1 is the public history of message profiles.4 Player i also chooses
a message strategy ρi ∈ Ri contingent on

(
hti , h

t , ai
)
. Then player i’s pure strategy

σi = (σ a
i , σm

i ) consists of an “action” component σ a
i : ⋃t [Ht

i × Ht ] −→ Ai and a
“message” component σm

i :⋃t [Ht
i × Ht × Ai ] −→ Ri .

A strategy σi is a public strategy if in any period t both σ a
i (hti , h

t ) and σm
i (hti , h

t , ai )
are independent of private history hti ∈ Ht

i . For the sake of simple exposition, we drop
hti from any public strategies.We denote player i’s action and on-pathmessage strategy
at ht for public strategy σi by σi (ht ) = (σ a

i (ht ), σm
i (ht , σ a

i (ht ))) ∈ Ai × Ri . A pure
strategy profile σ induces a probability measure on A∞. Player i’s discounted average
payoff given a profile of strategies σ = (σ1, . . . , σn) is (1−δ)E[∑∞

t=1 δt−1gi (ãt )|σ ],
where the expectation is taken with respect to this measure.

2.2 Uniformly strict perfect public equilibrium

A profile of public strategies σ is a perfect public equilibrium if its continuation
strategies constitute a Nash equilibrium after every public history(Fudenberg et al.
1994). In this paper, we impose an additional robustness requirement by requiring
uniformly strict incentive compatibility at every public history. Letwσ (ht ) be a profile
of discounted average continuation payoffs at public history ht ∈ H given a public

strategy profile σ . Given σ and ht , let�σ,ht

i be the set of deviations (a′
i , ρ

′
i ) ∈ Ai × Ri

such that a′
i 
= σ a

i (ht ) or i’s unilateral deviation from σi (ht ) to (a′
i , ρ

′
i ) changes the

distribution of continuation payoff profiles wσ (ht , ·) from period t + 1. We call such
one-shot deviations nontrivial deviations at ht with respect to wσ . Any other one-shot
deviation is called a trivial deviation, as it does not change any outcome in the current
period and in the future at all.

We define η-uniformly strict perfect public equilibrium (η -USPPE) as follows.

Definition 1 (η-USPPE) A profile of public strategies σ is an η -uniformly strict
perfect public equilibrium for η ≥ 0 if the following conditions are satisfied for any

ht ∈ H for any (a′
i , ρ

′
i ) ∈ �

σ,ht

i and any i ∈ N ,

gi
(
σ a (ht

))+ δ

1 − δ

∑

m∈M
wσ
i

(
ht ,m

)
p̃
(
m|σ (ht))− η

≥ gi
(
a′
i , σ

a
−i

(
ht
))+ δ

1 − δ

∑

m∈M
wσ
i (ht ,m) p̃

(
m|(a′

i , ρ
′
i ), σ−i

(
ht
))

,

4 We define H1 = H1
i = {∅} for all i ∈ N .

123



Uniformly strict equilibrium for repeated games with…

This condition means that player i would lose at least η at any public history if she
makes any nontrivial deviation.5, 6

This definition just checks the one-shot deviation constraints at each public history,
but all the incentive constraints for the continuation game after each public history are
satisfied, because the one-shot deviation principle holds.

Note that η-USPPE σ may assign a suboptimal message off-path, i.e. σm
i (ht , a′

i )

may not be an optimal message strategy when a′
i 
= σ a

i (ht ), since it is just a Nash
equilibrium. But we can replace them with an optimal message to obtain a sequential
equilibrium that is realization equivalent to σ , because other players never learn about
player i’s deviation to a′

i due to the full support assumption.7

As an example of η-USPPE, consider any stage game with an η -strict Nash
equilibrium. Then repeating this η-strict Nash equilibrium and sending some mes-
sage independent of histories is an η -uniformly strict PPE.8 In the following, let
Eη(δ) ⊂ R

n denote the set of all η-USPPE payoff profiles given δ. In general, η-
USPPE may not exist, hence Eη(δ) may be an empty set. The equilibrium payoff set
for the standard PPE is compact, but the compactness of Eη(δ) may not be entirely
obvious because the set of nontrivial deviations at each public history depends on the
continuation payoff profile. However, we can show that Eη(δ) is compact.

Lemma 1 Eη(δ) is compact.

Proof See the “Appendix”. �

3 Characterization of limit equilibrium payoff set

3.1 Constructing the bounding set for equilibrium payoffs

We characterize the limit η-USPPE payoff set in two steps. In this subsection, we
construct a compact set Qη with the property that Eη(δ) ⊆ Qη for all δ ∈ (0, 1). In
the next subsection, we show that, if int Qη 
= ∅, then for any ε > 0, there exists a
nonempty, compact, convex setW ⊆ Qη and δ ∈ (0, 1) such thatW ⊆ Eη(δ) for any
δ ∈ (δ, 1) and the Hausdorff distance between W and Qη is less than ε.

Let 
 = {λ ∈ R
n| ‖λ‖ = 1} and ei = (0, 0, . . . , 1, . . . , 0)� ∈ 
 with the i th

coordinate equal to 1. Following the approach of Fudenberg and Levine (1994), for
each λ ∈ 
, we consider the following programming problem (Pλ,η).

(Pλ,η) sup
v∈Rn , a∈A, ρ∈R, x :M→Rn

λ · v s.t .

v = g (a) + E[x (·) |(a, ρ)]
5 The incentive constraints for trivial deviations are satisfied by definition.
6 Another possible formulation of uniformly strict equilibrium would be to require such η-strict incentive
uniformly across all the information sets, including the interim stages after observing a private signal.
7 Note that we do not require any strict incentive for such off-path message strategies and any trivial
deviation from the on-path messages, as they do not affect any player’s incentive or payoff at all.
8 Note that any deviation in message after playing the Nash equilibrium is a trivial deviation for this
strategy profile.
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gi (a) + E[xi (·) |(a, ρ)] − η ≥ gi
(
a′
i , a−i

)+ E[xi (·) |(a′
i , ρ

′
i ), (a−i , ρ−i )]

∀(a′
i , ρ

′
i ) ∈ �̂

(a,ρ),x
i ∀i ∈ N

∑

i

λi xi (m) ≤ 0 ∀m ∈ M

where �̂
(a,ρ),x
i is the set of (a′

i , ρ
′
i ) ∈ Ai × Ri such that a′

i 
= ai or player i’s unilateral
deviation from (ai , ρi ) to (a′

i , ρ
′
i ) does change the distribution of x(·) given (a−i , ρ−i ).

Naturally, we call such a deviation nontrivial deviation with respect to x for (Pλ,η).
Since the value of the problem is bounded above by maxa∈A λ · g(a), it is either

some finite value or −∞ when there is no feasible solution.
This programming problem is different fromFL’s problem in Fudenberg and Levine

(1994) in two aspects because of our uniform strictness requirement. First, an η -wedge
is added to the incentive constraints for nontrivial deviations (with respect to x(·)).
Secondly, we restrict attention to pure actions because uniformly strict equilibrium
must be in pure strategies by definition. Note that this problem is independent of δ like
FL’s problem.

Let kη(λ) denote the vale of the supremum for (Pλ,η). Let Hη(λ) =
{x ∈ R

n|λ · x ≤ kη(λ)} be the half space below the hyperplane λ · x = kη(λ) if kη(λ)

is finite. Hη(λ) is an empty set if kη(λ) = −∞. Let Qη = ⋂
λ∈
 Hη(λ). The next

theorem shows that Qη is a bound of the equilibrium payoff set given any η and δ.

Theorem 2 For any η ≥ 0 and any δ ∈ (0, 1), Eη(δ) ⊆ Qη.

Proof If Eη(δ) = ∅, then Eη(δ) ⊆ Qη is trivially true. So suppose that Eη(δ) 
= ∅

and recall that Eη(δ) is a nonempty compact set by Lemma 1. Fix any η ≥ 0 and
pick any λ ∈ 
. Let v∗ be the η-uniformly strict PPE payoff profile that solves
maxv∈Eη(δ) λ·v. Let σ ∗ be the equilibrium strategy profile to achieve v∗ and (a∗, ρ∗) ∈
A × R be the equilibrium action profile and the message strategy profile in the first
period. Since σ ∗ is an η-USPPE, it must satisfy the following conditions:

gi
(
a∗)+ δ

1 − δ

∑

m∈M
wσ ∗
i (m) p̃

(
m|(a∗, ρ∗)

)− η

≥ gi
(
a′
i , a

∗−i

)+ δ

1 − δ

∑

m∈M
wσ ∗
i (m) p̃(m|(a′

i , ρ
′
i ), (a

∗−i , ρ
∗−i )) ∀(a′

i , ρ
′
i )∈�

σ ∗,h1
i .

Define x∗
i (m) = δ

1−δ

(
wσ ∗
i (m) − v∗

i

)
. Then

∑
m λi x∗

i (m) ≤ 0 becausewσ ∗
i (m) ∈

Eη(δ). Since x∗
i is a translation of δ

1−δ
wσ ∗
i by a constant, (v∗, (a∗, ρ∗), x∗) satisfies

all the η-strict incentive compatibility constraints with respect to the set of nontrivial

deviations �̂
σ ∗(h1),x∗
i for player i in the programming problem (Pλ,η). Finally,

g
(
a∗)+ E[x∗(·)|(a∗, ρ∗)] = g

(
a∗)+ δ

1 − δ

∑

m∈M

(
wσ ∗

(m) − v∗) p̃
(
m|(a∗, ρ∗)

)

= v∗
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and it follows that (v∗, (a∗, ρ∗), x∗) is feasible for (Pλ,η) and kη(λ) is finite. This
implies kη(λ) ≥ λ · v∗, hence Eη(δ) is contained in the halfspace Hη(λ). Since this
is true for all λ ∈ 
, we have Eη(δ) ⊂⋂λ∈
 Hη(λ) = Qη for any δ ∈ (0, 1). �

The following lemma, which corresponds to Lemma 3.2. in FL, is useful to assess
the possibility of a uniformly strict folk theorem.

Lemma 3 kη(−ei ) is bounded above by −v
η
i , where

v
η
i = min

a∈A

[

max

{

gi (a), max
a′
i 
=ai

gi (a) + η

}]

.

Proof Suppose that (v, a, ρ, x) is feasible for problem (P−ei ,η). The last constraint
of the problem becomes xi (m) ≥ 0 ∀m ∈ M . Then player i’s payoff

vi = gi (a) +
∑

m∈M
xi (m) p̃(m|(a, ρ))

is bounded from below by gi (a). By the η-strict incentive constraint, vi is also bounded
from below by maxa′

i 
=ai gi (a
′
i , a−i ) + η. Hence vi is bounded below by

v
η
i = min

a∈A

[

max

{

gi (a), max
a′
i 
=ai

gi (a
′
i , a−i ) + η

}]

Therefore, kη(−ei ) is bounded from above by −v
η
i . �

This v
η
i coincides with theminmax payoff 0 when η = 0, but can be strictly positive

when η > 0. As the next lemma shows, it coincides with theminmax payoff if and only
if there exists a minmax action profile for player i where player i plays an η-strictly
optimal action.

Lemma 4 For each i ∈ N, v
η
i = 0 if there exists ai ∈ A such that gi (ai ) =

mina′−i
maxa′

i
gi (a′

i , a
′−i ) and gi (a

i ) − gi (a′
i , a

i
−i ) ≥ η for any a′

i 
= aii . Furthermore,

v
η
i > 0 if there is no such ai ∈ A.

Proof Fix i and choose any a ∈ A. If ai is a best response to a−i , then

gi (a) = max
a′
i

gi (a
′
i , a−i ) ≥ min

a′−i

max
a′
i

gi (a
′
i , a

′−i ) = 0.

If not, then

max
a′
i 
=ai

gi (a
′
i , a−i ) + η ≥ min

a′−i

max
a′
i

gi (a
′
i , a

′−i ) + η ≥ 0.

Hence, max
{
gi (a),maxa′

i 
=ai gi (a
′
i , a−i ) + η

}
is nonnegative for any a ∈ A.
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Suppose that ai ∈ A satisfies the conditions of the Lemma. Then gi (ai ) = 0 and
maxa′

i 
=aii
gi (a′

i , a
i−i ) + η ≤ gi (ai ) = 0. Hence v

η
i = 0 is achieved at a = ai .

Suppose that there is no such ai ∈ A. Then η must be strictly positive since the
minmax action profile would satisfy the conditions when η = 0. Take any a ∈ A. If ai
is a best response to a−i , then gi (a) ≥ mina′−i

maxa′
i
gi (a′

i , a
′−i ) = 0. Hence we have

either (1) gi (a) > 0 or (2) gi (a) = 0 but gi (a) − maxa′
i 
=ai gi (a

′
i , a−i ) < η, which

implies maxa′
i 
=ai gi (a

′
i , a−i )+η > 0. Hence, max

{
gi (a),maxa′

i 
=ai gi (a
′
i , a−i ) + η

}

is strictly positive in either case.
When ai is not a best response to a−i , then

max
a′
i 
=ai

gi (a
′
i , a−i ) + η ≥ min

a′−i

max
a′
i

gi (a
′
i , a

′−i ) + η > 0

asη > 0. Since A is afinite set,vη
i = mina∈A

[
max

{
gi (a),maxa′

i 
=ai gi (a
′
i , a−i ) + η

}]

must be strictly positive. �
If this bound v

η
i is strictly positive, then k(−ei ) = −v

η
i < 0, hence the minmax

payoff can never be approximated by any η-USPPE by Theorem 2. So, it is necessary
for a folk theorem that an η-strict incentive is provided by the current payoffs at the
minmax point.

Also note that this boundmay be achieved by some non-minmax action profilewhen
it is strictly positive. If no minmax action profile for player i is η-strictly optimal for
i , then some non-minmax action profile â ∈ A may achieve v

η
i > 0 if gi (â) is close

to 0 and maxa′
i 
=âi gi (a

′
i , â−i )+ η is small as well (any deviation from â is very costly

for player i).
Similarly, we observe that kη(ei ) may be strictly below maxa gi (a) unless it is η-

strictly optimal for player i to play the action that achieves this value. Otherwise, an
additional incentive needs to be provided for player i through some punishment (as
λ = ei ). This necessarily leads to some inefficiency because punishment occurs with
positive probability (Green and Porter 1984). Thus it is necessary for a folk theorem
that gi (a) − gi (a′

i , a−i ) ≥ η holds for every a′
i 
= ai for some action profile a that

solves maxa gi (a). If this is not the case, then kη(ei )must be less than maxa gi (a) and
may be achieved by some action profile that does not solve maxa gi (a).

3.2 Limit result for equilibrium payoff set

3.2.1 Decomposability and local decomposability

Our main theorem claims that Qη provides the limit η-USPPE payoff set when Qη

has an interior point. We prove it by establishing η-uniformly strict versions of many
well-known results in Fudenberg and Levine (1994) and Abreu et al. (1990).

We first observe that a set of payoffs can be supported by η-USPPE if it is
self-decomposable with respect to η-strict incentive constraints with respect to non-
trivial deviations. Given δ ∈ (0, 1) and w : M → R

n , we consider the static
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game �δ(G, p, w), where player i’s strategy set is Ai × Ri and player i’s payoff
is (1 − δ) gi (a)+δE[wi (·)|(a, ρ)], wherew assigns payoffs for each message profile
and the expectation is computed with respect to p̃(·|a, ρ).

Definition 2 A pair consisting of an action profile a ∈ A and a profile of message
strategies ρ ∈ R is η-enforceable for η > 0 with respect to nonempty set W ⊂ R

n

and δ ∈ (0, 1) if there exists a function w : M → W such that, for all i ∈ N ,

(1 − δ) gi (a) + δE[wi (·) |(a, ρ)] − (1 − δ)η

≥ (1 − δ) gi
(
a′
i , a−i

)+ δE[wi (·) |(a′
i , ρ

′
i ), (a−i , ρ−i )] ∀(a′

i , ρ
′
i ) ∈ �̂

(a,ρ),w
i

where �̂
(a,ρ),w
i is the set of nontrivial deviations from (a, ρ) for player i with respect

to w. If v = (1 − δ) g (a) + δE[w (·) |(a, ρ)] for some η-enforceable pair (a, ρ) and
w : M → W , thenwe say that v isη-decomposable and that ((a, ρ), w)η -decomposes
v with respect to W and δ. Define the set of η -decomposable payoffs with respect to
W and δ as follows:

B (δ,W , η) := {v ∈ R
n|v is η-decomposable with respect to W and δ}.

We say that W is η-self decomposable with respect to δ if W ⊂ B (δ,W , η).
It is easy to see that a “uniformly strict” version of Theorem 1 in Abreu et al. (1990)

holds here: if W is η-self decomposable with respect to δ, then every v ∈ B (δ,W , η)

can be supported by some η-USPPE. Since the following lemma follows easily from
the result in Abreu, Pearce and Stacchetti, its proof is omitted.

Lemma 5 If a nonempty set W ⊂ R
n is bounded and η-self decomposable with respect

to δ ∈ (0, 1), then B (δ,W , η) ⊂ Eη (δ) .

For the rest of this subsection, we prove that local η-self decomposability of
W implies η-self decomposability of W . In the framework of repeated games with
imperfect public monitoring, Fudenberg, Levine, and Maskin (Fudenberg et al. 1994)
introduced a notion of local self decomposability that is sufficient for self decompos-
ability. Here we prove the corresponding lemma in our setting.We begin with a lemma
that establishes a certain monotonicity property of B. It implies that, if W is η-self
decomposable with respect to δ ∈ (0, 1) , then W is η-self decomposable for every
δ′ ∈ (δ, 1).

Lemma 6 If W ⊆ R
n is convex and C ⊆ B (δ,W , η)∩W, then C ⊆ B

(
δ′,W , η

)
for

every δ′ ∈ (δ, 1) .

Proof Suppose that v ∈ C . Since v ∈ B (δ,W , η) , v is η-decomposable with respect
toW and δ, hence there exists a pair (

(
a, ρ), wδ

)
that η-decomposes v. For any δ′ > δ,

define wδ′ : M → W as the following convex combination of v and wδ:

wδ′
(m) = δ′ − δ

δ′ (1 − δ)
v + δ

(
1 − δ′)

δ′ (1 − δ)
wδ(m).
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Clearly, wδ′
(m) ∈ W for each m ∈ M since W is convex. Furthermore, we can show

that, for every δ′ ∈ (δ, 1) , the pair
(
(a, ρ), wδ′)

η-decomposes v with respect to W

and δ′. To see this, first note that, for all δ′ ∈ (δ, 1) , and i ∈ N ,

(
1 − δ′) gi (a) + δ′E

[
wδ′
i (·)|(a, ρ)

]

= (1 − δ′) gi (a) + δ
(
1 − δ′)

1 − δ
E
[
wδ
i (·)|(a, ρ)

]+ δ′ − δ

1 − δ
vi

= 1 − δ′

1 − δ

{
(1 − δ)gi (a) + δE

[
wδ
i (·)|(a, ρ)

]}+ δ′ − δ

1 − δ
vi

= vi .

Next, note that for all (a′
i , ρ

′
i ) ∈ �

(a,ρ),wδ′
i = �

(a,ρ),wδ

i and i ∈ N ,

(
1 − δ′) gi (a) + δ′E[wδ′

i (·)|(a, ρ)] − (1 − δ′)η

=
(
1 − δ′)

(1 − δ)

[
(1 − δ)gi (a) + δE

[
wδ
i (·)|(a, ρ)

]]+ δ′ − δ

(1 − δ)
vi − (1 − δ′)η

≥
(
1 − δ′)

(1 − δ)

[
(1 − δ) gi

(
a′
i , a−i

)+ δE[wδ
i (·) |(a′

i , ρ
′
i ), (a−i , ρ−i )] + (1 − δ)η

]

+ δ′ − δ

(1 − δ)
vi − (1 − δ′)η

= (1 − δ′) gi
(
a′
i , a−i

)+ δ′
[(

1 − δ′) δ
δ′(1 − δ)

E[wδ
i (·) |(a′

i , ρ
′
i ), (a−i , ρ−i )] + δ′ − δ

δ′ (1 − δ)
vi

]

= (1 − δ′) gi
(
a′
i , a−i

)+ δ′E
[
wδ′
i (·)|(a′

i , ρ
′
i ), (a−i , ρ−i )

]
.

Consequently,
(
(a, ρ), wδ′)

η -decomposes v with respect to W and δ′. Hence
C ⊆ B

(
δ′,W , η

)
for every δ′ ∈ (δ, 1) and this completes the proof. �

Next we introduce local η-self decomposability and show that local η-self decom-
posability implies η-self decomposability for sufficiently large discount factors.

Definition 3 A nonempty set W ⊆ R
n is locally η-self decomposable if, for any

v ∈ W , there exists δ ∈ (0, 1) and an open set U containing v such that U ∩ W ⊂
B (δ,W , η) .

Lemma 7 If W ⊂ R
n is compact, convex, and locally η-self decomposable, then there

exists a δ ∈ (0, 1) such that W is η-self decomposable with respect to δ for any
δ ∈ (δ, 1) .
Proof Choose v ∈ W . SinceW is η-locally self decomposable, there exists δv ∈ (0, 1)
and an open ball Uv around v such that

Uv ∩ W ⊆ B (δv,W , η) .
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SinceW is compact, there exists a finite sub-collection
{
Uvk

}K
k=1 that coversW .Define

δ = maxk=1,...,K
{
δvk

}
. Then

Uvk ∩ W ⊆ B
(
δvk ,W , η

) ⊆ B (δ,W , η)

for any δ ∈ (δ, 1) by Lemma 6 and the convexity of W . Consequently,

W= ∪K
k=1

(
Uvk ∩ W

) ⊆ B (δ,W , η) .

for every δ ∈ (δ, 1) . �

3.2.2 Local decomposability of a smooth set in the bounding set

We call a nonempty compact and convex set in R
n smooth if there exists a unique

supporting hyperplane at every boundary point of the set.
The following lemma shows that, if Qη has an interior point inR

n , then there exists
a smooth, compact and convex set in int Qη that is arbitrarily close to Qη.

Lemma 8 Suppose that Qη ⊆ R
n has an interior point. Then, for every ε > 0, there

exists a smooth compact and convex set W ′ ⊂ int Qη such that the Hausdorff distance
between W ′ and intQη is at most ε.

Proof Choose any ε > 0. Since bounded sets in Euclidean space are totally bounded,
there exists a finite set Z ⊆ int Qη such that, for each v ∈ int Qη, there exists
z ∈ Z such that ‖z − v‖ < ε. Let W = coZ . Then W is nonempty, compact and
convex. Since Qη is convex, it follows that int Qη is convex, hence W ⊆ int Qη.

For each v ∈ int Qη, there exists z ∈ W such that ‖z − x‖ < ε, which implies
supv∈int Qη [minz∈W ‖z − v‖] ≤ ε. On the other hand, maxz∈W [minv∈int Qη ‖z − v‖]
is clearly 0 since W ⊆ int Qη. Hence the Hausdorff distance between W and int Qη

is at most ε.
Next we construct W ′ from W . Since W ⊆ int Qη is a polyhedron and has only a

finite number of vertices, we can find a small enough ε′ > 0 such that, at every v ∈ W ,
the closed ball Bε′

v of radius ε′ around v is in int Qη. Define W ′ = ⋃v∈W Bε′
v . Since

W ⊆ W ′ ⊆ int Qη, the Hausdorff distance between W ′ and int Qη is at most ε.
Next we show thatW ′ is a smooth compact convex set. To show thatW ′ is compact,

it suffices to show that W ′ is closed. Suppose that wk ∈ W ′ for each k and {wk} is
convergent with limit w∗. For each k, there exists vk ∈ W such that ‖vk − wk‖ ≤ ε′.
Since W is compact, we may assume wlog that {vk} is convergent with limit v∗ ∈ W .

Consequently, ‖v∗ − w∗‖ ≤ ε′ implying that w∗ ∈ W ′.
To show that W ′ is convex, choose any x, y ∈ W ′. Then there exists x ′, y′ ∈ W

such that
∥
∥x ′ − x

∥
∥ ≤ ε′ and

∥
∥y′ − y

∥
∥ ≤ ε′ by definition of W ′. For any α ∈ [0, 1],

αx ′ + (1−α)y′ is inW and the distance between αx ′ + (1−α)y′ and αx+ (1−α)y is
less thanα

∥
∥x ′ − x

∥
∥+(1−α)

∥
∥y′ − y

∥
∥ ≤ ε′. So,αx+(1−α)y ∈ Bε′

αx ′+(1−α)y′ ⊆ W ′.
Therefore W ′ is convex.

Finally, to see thatW ′ has a unique supporting hyperplane at every boundary point,
first note that every boundary point of W ′ must be a boundary point of Bε′

v for some
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v ∈ W . Since a supporting hyperplane of a boundary point of W ′ must be a sup-
porting hyperplane of Bε′

v at the same point and Bε′
v cannot have multiple supporting

hyperplanes at any boundary point, the supporting hyperplane must be unique at every
boundary point of W ′. �

Wenow show that any such setW ′ that approximates Qη from the inside is η-locally
decomposable, which leads to our main result by Lemma 7.

We need two technical lemmas for local decomposability.

Lemma 9 A smooth, compact and convex set C ⊆ R
n has non-empty interior in R

n.

Proof Suppose otherwise. Then the affine hull of C has dimension less than n. Let S
denote the affine hull and, translating if necessary, we may assume that 0 ∈ C and S
is a vector subspace of R

n . Since C is smooth, C is not a singleton set. So we can find
p 
= 0 ∈ C . Let x∗ ∈ argmaxx∈C p · x . Then p · x ≤ p · x∗ for all x ∈ C . Hence
the set {x ∈ R

n|p · x = p · x∗} is a supporting hyperplane for C at x∗. Now choose
q ∈ S⊥. Then q · x = 0 for all x ∈ C , so the set {x ∈ R

n|q · x = 0} is a supporting
hyperplane for C at x∗. Clearly {x ∈ R

n|p · x = p · x∗} and {x ∈ R
n|q · x = 0} are

distinct hyperplanes because the former does not include 0 (since p · x∗ ≥ p · p > 0),
while the latter does.

Lemma 10 Let W ⊂ R
n be a smooth, compact and convex set and let v be a boundary

point of W . Let λv 
= 0 ∈ R
n be a normal to the unique supporting hyperplane of

W at v, i.e., λv · v ≥ λv · x for all x ∈ W. Then, for any point y ∈ R
n such that

λv · v > λv · y, there exists α∗ ∈ (0, 1) such that (1 − α) v + αy ∈ intW for any
α ∈ (0, α∗) .

Conversely, if λv ∈ R
n satisfies λv · v ≥ λv · x for all x ∈ W and, for any y ∈ R

n

such that λv · v > λv · y, there exists α∗ ∈ (0, 1) such that (1 − α) v + αy ∈ intW
for any α ∈ (0, α∗), then there is the unique supporting hyperplane of W at v and λv

is its normal vector.

Proof Translating if necessary, wemay assume that v = 0.We argue by contradiction.
Suppose that there exists y ∈ R

n such that λv · y < 0 but for each α∗ ∈ (0, 1) there
exists α ∈ (0, α∗) such that αy /∈ intW . Then there exists a sequence {αk} such that
0 < αk < 1, αk → 0 and αk y /∈ intW for each k. Since intW is non-empty by the
previous lemma and convex, there exists for each k a qk 
= 0 such that

qk
||qk || · x ≤ qk

||qk || · (αk y)

for all x ∈ intW by the separating hyperplane theorem. Let k → ∞ and qk
||qk || → q for

some q 
= 0, extracting a subsequence if necessary. Then q · x ≤ 0 for all x ∈ intW .

Then q · x ≤ 0 for all x ∈ W , hence q is a normal vector for a supporting hyperplane
of W at v = 0. To derive a contradiction, we show that q 
= βλv for all β > 0. To see
this, take any z ∈ intW and note that α2

k z ∈ intW (since 0 ∈ W ). Therefore

qk
||qk || · (αk z) ≤ qk

||qk || · y
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implying that 0 ≤ q · y. If β > 0, then (βλv) · y < 0. Consequently, q 
= βλv , which
contradicts the smoothness of W .

For the converse, {x ∈ R
n|λv · x = 0} is clearly supporting hyperplane of W at

v = 0. Suppose that there is a different supporting hyperplane
{
x ∈ R

n|λ′ · x = 0
}
of

W at v = 0, which satisfies λ′ · x ≤ 0 for any x ∈ W . Then there must exist y′ ∈ R
n

such that λ′ · y′ > 0 and λv · y′ < 0. Then αy′ is in W for small enough α ∈ (0, 1)
by assumption, but λ′ · (αy′) > 0, which is a contradiction. Hence there is the unique
supporting hyperplane of W at v = 0 and λv is its normal vector. �
Theorem 11 Suppose that Qη has an interior point in R

n. For any ε > 0, there exists
a smooth, compact and convex set W ⊆ int Qη and δ ∈ (0, 1) such that W ⊂ Eη(δ)

for any δ ∈ (δ, 1) and the Hausdorff distance between W and Qη is at most ε.

Proof By Lemma 8, there exists a smooth, compact and convex set W in int Qη such
that the Hausdorff distance betweenW and intQη is at most ε. Since cl(int Qη) = Qη,

it follows that the Hausdorff distance betweenW and Qη is at most ε. By Lemma 7, it
suffices to show that W is locally η-self decomposable. Take any boundary point w∗
ofW . SinceW is smooth, there is unique λ∗ ∈ 
 such that λ∗ ·w∗ = maxw∈W λ∗ ·w.
Since W ⊆ int Qη, there exists a feasible solution (v, (a, ρ), x) for the programming

problem
(
Pλ∗,η

)
such that λ∗ ·v > λ∗ ·w∗. Define x ′(m) = x(m)− (v−w∗) for each

m ∈ M . Then (w∗, (a, ρ), x ′) is feasible in the programming problem because the
η-strict incentive constraints for nontrivial deviations are not affected, λ∗ · x ′(m) =
λ∗ · x(m) − λ∗ · (v − w∗) < 0 for each m ∈ M , and

g (a) + E[x ′(·)|(a, ρ)]
= g (a) +

∑

m∈M
x(m) p̃ (m|(a, ρ)) − v + w∗

= w∗

For each δ and m, define wδ(m) by wδ(m) := w∗ + 1−δ
δ
x ′(m). If (a, ρ) is played

and wδ is used as the continuation payoff profile, then, for all (a′
i , ρ

′
i ) ∈ �̂

(a,ρ),wδ

i =
�̂

(a,ρ),x ′
i and i ∈ N ,

(1 − δ) gi (a) + δE[wδ
i (·) |(a, ρ)] − (1 − δ)η

= (1 − δ)
(
gi (a) + E

[
x ′
i (·)|(a, ρ)

])+ δw∗
i − (1 − δ)η

≥ (1 − δ)
(
gi
(
a′
i , a−i

)+ E
[
x ′
i (·)|(a′

i , ρ
′
i ), (a−i , ρ−i )

]+ η
)+ δw∗

i − (1 − δ)η

= (1 − δ)

(

gi
(
a′
i , a−i

)+ E

[
δ

1 − δ

(
wδ
i (·) − w∗

i

) |(a′
i , ρ

′
i ), (a−i , ρ−i )

])

+ δw∗
i

= (1 − δ) gi
(
a′
i , a−i

)+ δE
[
wδ
i (·)|(a′

i , ρ
′
i ), (a−i , ρ−i )

]
.

Also note that (1 − δ)g(a) + δE[wδ(·)|(a, ρ)] = w∗.
Next we show that wδ(m) is in intW for every m if δ is large enough. Since W

is smooth, λ∗ is a normal vector of the unique supporting hyperplane of W at w∗.
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Choose any δ′ ∈ (0, 1). Since λ∗ · x ′(m) < 0, it follows that λ∗ ·wδ′
(m) < λ∗ ·w∗ for

each m ∈ M . Since δ′
1−δ′ (wδ′

(m) − w∗) = δ
1−δ

(wδ(m) − w∗) for any δ, δ′ ∈ (0, 1)
by definition, we have

wδ(m) =
(

1 − (1 − δ)δ′

δ(1 − δ′)

)

w∗ + (1 − δ)δ′

δ(1 − δ′)
wδ′

(m)

for δ ∈ (δ′, 1). Then, for each m, there exists δm ∈ (0, 1) such that wδ(m) ∈ int(W )

for any δ ∈ (δm, 1) by Lemma 10. Let δ = maxm δm . Then ((a, ρ), wδ) η-decomposes
w∗ with respect to int(W ) and δ for any δ > δ.

For each ξ ∈ R
n , let f δ(ξ) = (1 − δ)g(a) + δE[wδ(·) + ξ |(a, ρ)]. Then f δ is

continuous, injective and f (0) = w∗. Since wδ(m) ∈ intW for each m ∈ M and M
is finite, there exists an open neighborhood V δ of 0 such that wδ(m) + ξ ∈ intW for
each m ∈ M and each ξ ∈ V δ and f δ(V δ) = U δ is an open neighborhood of w∗.
Since f δ maps Vδ homeomorphically ontoU δ , it follows that every point u ∈ U δ can
be η-decomposed by ((a, ρ), wδ + ( f δ)−1(u))with respect to int(W ) for each δ > δ.
Therefore, U δ ∩ W ⊆ U δ ⊆ B (δ, intW , η) ⊆ B (δ,W , η) for any δ > δ. A similar
argument applies for any w∗ ∈ intW . Hence W is locally η-self decomposable. �

4 Uniformly strict Folk theorem

In this section, we prove a folk theorem with η-uniformly strict PPE by showing that
Qη coincides with V ∗(G) under certain conditions. In the following, we use φi to
denote a mixed strategy over Ai × Ri . Let αi (φi ) denote the marginal distribution of
φi on Ai . For each (a−i , ρ−i ), let

p̃(·|φi , (a−i , ρ−i )) =
∑

(a′
i ,ρ

′
i )∈Ai×Ri

p̃(·|(a′
i , ρ

′
i ), (a−i , ρ−i ))φi

(
(a′

i , ρ
′
i )
)

and let p̃−i (·|φ j , (a− j , ρ− j )) be the marginal distribution of p̃(·|φ j , (a− j , ρ− j )) over
M−i .

We need the following four conditions on the private monitoring structure and the
payoff functions for our folk theorem. Recall that A(G) ⊆ A is the set of action
profiles that generate an extreme point in V (G).

Definition 4 (η-detectability) For each a ∈ A(G), there exists ρ ∈ R that satisfies the
following condition: for each i ∈ N , if p̃(·|φi , (a−i , ρ−i )) = p̃(·|(a, ρ)) for some
φi ∈ �((Ai × Ri )\{(ai , ρi )}), then gi (a) − gi (αi (φi ), a−i ) ≥ η holds.

This condition means that if player i’s unilateral deviation to a mixed strategy (with
0 probability on (ai , ρi )) cannot be detected, then she must lose at least η in terms of
the stage-game expected payoff

When we approximate the minmax point, we need a slightly stronger detectability
condition.
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Definition 5 (η∗-detectability with respect to i at a ∈ A) There exists ρ ∈ R that satis-
fies the following condition: for each j 
= i , if p̃−i (·|φ j , (a− j , ρ− j )) = p̃−i (·|(a, ρ))

for some φ j ∈ �
(
(A j × R j )\{(a j , ρ j )}

)
, then g j (a) − g j (α j (φ j ), a− j ) ≥ η holds.

This condition means that the above η-detectability condition holds for j 
= i
without using player i’s message.

The next condition means that, if player i’s deviation is not linearly independent
from some other player’s deviation, then she must lose at least η in terms of the
stage-game expected payoff.

Definition 6 (η-identifiability) For each a ∈ A(G), there exists ρ ∈ R that satis-
fies the following condition: for each pair i 
= j , if p̃(·|φi , (a−i , ρ−i )) − p̃(·|(a, ρ))

and p̃(·|φ j , (a− j , ρ− j )) − p̃(·|(a, ρ)) are not linearly independent for some φi ∈
�((Ai × Ri )\{(ai , ρi )}) and φ j ∈ �

(
(A j × R j )\{(a j , ρ j )}

)
, then min{gi (a) −

gi (αi (φi ), a−i ), g j (a) − g j (α j (φ j ), a− j )} ≥ η holds.

The last conditions require that, for every player i , there exists the best action profile
and the minmax action profile, where player i would lose at least η by deviating to
any other pure action. Remember Lemma 3 and our discussion following the lemma;
we know that they are necessary for the folk theorem.

Definition 7 (η-best response property) G satisfies η-best response property for{
ai , ai , i ∈ N

} ⊂ A if the following conditions are satisfied for any i ∈ N :

1. gi (ai ) = maxa gi (a) and gi (ai ) − gi (a′
i , a

i
−i ) ≥ η for any a′

i 
= aii .
2. gi (ai ) = mina−i maxai gi (ai , a−i ) and gi (ai ) − gi (a′

i , a
i
−i ) ≥ η for any a′

i 
= aii .

It may be useful to compare these conditions to the similar conditions (A1)-(A3)
for Theorem 1 in Kandori and Matsushima (1998). (A1) requires 0∗-detectability
condition at the minmax action profile. We instead assume η∗ -detectability condition
at the minmax action profile and the best action profile for each player. Kandori
and Matsushima (1998) assumes (A2) and (A3) for every action profile in A(G),
which is a restriction on the distribution of the private signals of any subset of n − 2
players, whereas we assume η-detectability and η-identifiability for every a ∈ A(G),
which is a restriction on the joint distribution of all messages. η-detectability and η-
identifiability are weaker than (A2) and (A3) when the message space is rich enough
in the following sense. For η-identifiability, if (A2) and (A3) are satisfied at a and
Mi = Si for every i ∈ N , then η-identifiability is automatically satisfied with truthful
message strategies, since the type of linear dependency that appears in the definition
of η-identifiability would never occur given (A2) and (A3). For the same reason, (A2)
implies η-detectability for every a ∈ A(G).

As an example of monitoring structure that satisfies our conditions, consider p that
satisfies the individual full rank condition for each player with respect to the other
players’ signals and the pairwise full rank condition for every pair of players with
respect to the private signals of the other n − 2 players. Then (A2) and (A3) are
satisfied. In addition, η∗-detectability is trivially satisfied. Hence all our conditions on
the monitoring structure (η∗-detectability and η-detectability & η-identifiability) are
satisfied.
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Using these conditions, we can state our folk theorem with η-USPPE using as
follows.

Theorem 12 Fix any private monitoring game (G, p). Suppose that intV ∗(G) 
= ∅
and G satisfies η-best response property for

{
ai , ai , i ∈ N

} ⊂ A. If (G, p) satisfies
both η-detectability and η-identifiability with the same ρa ∈ R for each a ∈ A(G) and
satisfies η∗-detectability at ai and ai with respect to i for every i ∈ N, then, for any
ε > 0, there exists a smooth, compact and convex set W ⊆ intV ∗(G) and δ ∈ (0, 1)
such that W ⊂ Eη(δ) for any δ ∈ (δ, 1) and the Hausdorff distance between W and
V ∗(G) is at most ε.

We prove this theorem through a series of lemma. We first observe that η-
detectability is equivalent to the existence of a transfer x that guarantees η-strict
incentive compatibility.

Lemma 13 (G, p) satisfies η-detectability if and only if for any a ∈ A(G), there exists
a ρ ∈ R and there exists xi : M → R for each i ∈ N that satisfies

gi (a) + δ

1 − δ

∑

m∈M
xi (m) p̃ (m|(a, ρ)) − η

≥ gi
(
a′
i , a−i

)+ δ

1 − δ

∑

m∈M
xi (m) p̃(m|(a′

i , ρ
′
i ), (a−i , ρ−i )) ∀(a′

i , ρ
′
i ) 
= (ai , ρi )

Since the proof for this result is standard, it is omitted.9 By the same argument,
we can show that η∗-detectability with respect to i is equivalent to the existence of a
transfer that does not depend on player i’s message and guarantees η-strict incentive
for every player other than i .

Lemma 14 (G, p) satisfies η∗-detectability for i with respect to a ∈ A if and only if
there exists a ρ ∈ R and, for each j 
= i , a function x j : M−i → R satisfying

g j (a) + δ

1 − δ

∑

m−i∈M−i

x j (m−i ) p̃−i (m−i |(a, ρ)) − η

≥ g j

(
a′
j , a− j

)
+ δ

1 − δ

∑

m−i∈M−i

x j (m−i ) p̃−i (m−i |(a′
j , ρ

′
j ), (a− j , ρ− j )) ∀(a′

j , ρ
′
j )


= (a j , ρ j )

The next lemma shows that kη(λ) is equal to maxa∈A λ ·g(a) for any regular λ (with
at least two nonzero elements) when η-detectability and η-identifiability are satisfied.

Lemma 15 Suppose that (G, p) satisfies η-detectability and η-identifiability with the
same ρ ∈ R for each a ∈ A(G). Then, for any λ ∈ 
 /∈ {±ei , i ∈ N }, kη(λ) =
maxa∈A

∑
i λi gi (a).

9 For example, see the proof of the the corresponding result in Kandori and Matsushima (1998) (p. 650).
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Proof Pick any aλ ∈ A(G) that solves maxa∈A
∑

i λi gi (a). By assumption, there is
the same ρλ ∈ R for which the conditions for η-detectability and η-identifiability
are satisfied at aλ. We show that there exists x : M → R

n satisfying the following
conditions:

∑

m∈M
xi (m)

(
p̃(m|(aλ, ρλ)) − p̃(m|(a′

i , ρ
′
i ), (a

λ−i , ρ
λ−i ))

) ≥ gi (α
′
i , a

λ−i ) − gi (a
λ) + η

∀(a′
i , ρ

′
i ) 
= (aλ

i , ρλ
i ) ∀i ∈ N

∑

i

λi xi (m) = 0 ∀m ∈ M .

This implies kη(λ) = ∑
i λi gi (a

λ) because ((aλ, ρλ), x) is feasible for the problem
(Pλ,η) and achieves the upper bound

∑
i λi gi (a

λ), hence is clearly a maximum point
for (Pλ,η). Note that every on-path deviation is a nontrivial deviation with respect to
transfer x we find. The existence of such (xi )i∈N is equivalent to the feasibility of the
following linear programming problem (with value 0):

min
x

0
∑

m∈M
xi (m)

(
p̃(m|(aλ, ρλ)) − p̃((a′

i , ρ
′
i ), (a

λ−i , ρ
λ−i ))

) ≥ gi (a
′
i , a

λ−i ) − gi (a
λ) + η

∀(a′
i , ρ

′
i ) 
= (aλ

i , ρλ
i ) ∀i ∈ N

∑

i∈N
λi xi (m) = 0 ∀m ∈ M

The dual problem of this problem is:

max
q≥0,d

∑

i∈N

∑

(a′
i ,ρ

′
i ) 
=(aλ

i ,ρλ
i )

(
gi (a

′
i , a

λ−i ) − gi (a
λ) + η

)
qi ((a

′
i , ρ

′
i ))

∑

(a′
i ,ρ

′
i ) 
=(aλ

i ,ρλ
i )

(
p̃(m|(aλ, ρλ)) − p̃(m|(a′

i , ρ
′
i ), (a

λ−i , ρ
λ−i ))

)
qi ((a

′
i , ρ

′
i ))

= λi d(m) ∀m ∈ M, ∀i ∈ N

where qi ((a′
i , ρ

′
i )) ≥ 0 is the multiplier for the strict incentive constraint for (a′

i , ρ
′
i ) 
=

(aλ
i , ρλ

i ) and d(m) ∈ R is the multiplier for the λ-“budget balancing” condition for
m ∈ M .

By the strong duality theorem, the value of the primal problem is 0 if and only if the
value of the dual problem is 0. Take any (q, d) that is feasible for the dual problem.
For each i , we consider two cases. First suppose λi = 0. Then the following holds for
all m ∈ M :

∑

(a′
i ,ρ

′
i ) 
=(aλ

i ,ρλ
i )

(
p̃(m|(a′

i , ρ
′
i ), (a

λ−i , ρ
λ−i )) − p̃(m|(aλ, ρλ))

)
qi ((a

′
i , ρ

′
i )) = 0
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If qi ((a′
i , ρ

′
i )) = 0 for each (a′

i , ρ
′
i ) 
= (aλ

i , ρλ
i ), then the i th term of the objective

function is 0. If qi ((a′
i , ρ

′
i )) 
= 0 for some (a′

i , ρ
′
i ) 
= (aλ

i , ρλ
i ), then this condition is

equivalent to p̃(m|φ′
i , (a

λ−i , ρ
λ−i )) = p̃(m|(aλ, ρλ)) ∀m ∈ M , where φ′

i ∈ �((Ai ×
Ri )\{(aλ

i , ρλ
i )}) is defined by φ′

i ((a
′
i , ρ

′
i )) = qi ((a′

i ,ρ
′
i ))∑

(a′
i ,ρ

′
i ) 
=(aλ

i ,ρλ
i )

qi ((a′
i ,ρ

′
i ))
. Note that the i th

term of the objective function can be written as

⎛

⎜
⎝

∑

(a′
i ,ρ

′
i ) 
=(aλ

i ,ρλ
i )

qi ((a
′
i , ρ

′
i ))

⎞

⎟
⎠

∑

(a′
i ,ρ

′
i ) 
=(aλ

i ,ρλ
i )

(
gi (αi (φ

′
i ), a

λ−i ) − gi (a
λ) + η

)

which is bounded above by 0 by η-detectability.
Next suppose that λi 
= 0. Then there exists j such that λ j 
= 0 since λ /∈ {±ei , i ∈

N }. Consequently, for all m ∈ M we have

∑

(a′
i ,ρ

′
i ) 
=(aλ

i ,ρλ
i )

(
p̃(m|(aλ, ρλ)) − p̃(m|(a′

i , ρ
′
i ), (a

λ−i , ρ
λ−i ))

)
qi ((a

′
i , ρ

′
i )) = λi d(m)

∑

(a′
j ,ρ

′
j ) 
=(aλ

j ,ρ
λ
j )

(
p̃(m|(aλ, ρλ)) − p̃(m|(a′

j , ρ
′
j ), (a

λ− j , ρ
λ− j ))

)
q j ((a

′
j , ρ

′
j )) = λ j d(m)

If d(m) = 0 for all m, then we can apply the same argument as before to show that
the i th and j th terms of the objective function are at most 0. If d(m) 
= 0, then qi is
not identically 0 nor is q j identically 0. So we can “cross multiply” the two equalities,
cancel d(m) and conclude that, for all m ∈ M ,

⎡

⎢
⎣

λ j

(∑
(a′

i ,ρ
′
i ) 
=(aλ

i ,ρλ
i ) qi ((a

′
i , ρ

′
i ))
)

λi

(∑
(a′

j ,ρ
′
j ) 
=(aλ

j ,ρ
λ
j )
q j ((a′

j , ρ
′
j ))
)

⎤

⎥
⎦
(
p̃(m|φ′

i , (a
λ−i , ρ

λ−i )) − p̃(m|(aλ, ρλ))
)

=
(
p̃(m|φ′

j , (a
λ− j , ρ

λ− j )) − p̃(m|(aλ, ρλ))
)

whereφ′
i andφ′

j are definedbyφ′
i ((a

′
i , ρ

′
i )) = qi ((a′

i ,ρ
′
i ))∑

(a′
i ,ρ

′
i ) 
=(aλ

i ,ρλ
i )

qi ((a′
i ,ρ

′
i ))

andφ′
j ((a

′
j , ρ

′
j )) =

q j ((a′
j ,ρ

′
j ))∑

(a′
j ,ρ

′
j ) 
=(aλ

j ,ρ
λ
j )
q j ((a′

j ,ρ
′
j ))

respectively.

Since p̃(·|φ′
i , (a

λ−i , ρ
λ−i )) − p̃(·|(aλ, ρλ)) and p̃(·|φ′

j , (a
λ− j , ρ

λ− j )) − p̃(·|(aλ, ρλ))

are not linearly independent, it follows from η-identifiability that both∑
(a′

i ,ρ
′
i ) 
=(aλ

i ,ρλ
i )

(
gi (αi (φ

′
i ), a

λ−i ) − gi (aλ) + η
)
and
∑

(a′
j ,ρ

′
j ) 
=(aλ

j ,ρ
λ
j )

(
g j (α j (φ

′
j ), a

λ− j ) − g j (aλ) + η
)

are bounded above by 0. This implies that the i th term (and the j th term) of the objec-
tive function are bounded above by 0.

Hence the i th term of the objective function is bounded above by 0 in either case
for any feasible (q, d), implying that the value of the dual problem is bounded above
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by 0 for any feasible (q, d). Since 0 can be achieved by q(·) = 0 and d(·) = 0, the
value of the dual problem is exactly 0 as we wanted to show. �

The next lemma shows that η-best response property and η∗ -detectability with
respect to i is sufficient to guarantee kη(ei ) = maxa gi (a) and kη(−ei ) = 0.

Lemma 16 Suppose that G satisfies η-best response property for
{
ai , ai , i ∈ N

} ⊂ A.
Then the following holds for each i ∈ N.

• If (G, p) satisfiesη∗-detectabilitywith respect to i at ai , then kη(ei ) = maxa gi (a).
• If (G, p) satisfies η∗-detectability with respect to i at ai , then kη(−ei ) =

−mina−i maxai gi (a) = 0.

Proof For λ = ei , we can find ai ∈ A such that gi (ai ) = maxa gi (a) and gi (ai ) −
gi (a′

i , a
i
−i ) ≥ η for any a′

i 
= aii by assumption. Let ρi ∈ R be the profile of message
strategies for which the conditions for η∗-detectability with respect to i are satisfied at
ai for any j 
= i . ByLemma14, for each j 
= i , there exists x j : M−i → R such that all
theη-strict incentive compatibility conditions are satisfied for any (a′

j , ρ
′
j ) 
= (aij , ρ

i
j ).

For player i , set xi (m) = 0 for all m ∈ M . Then the η-strict incentive compatibility

conditions for player i are satisfied for every nontrivial deviation (a′
i , ρ

′
i ) ∈ �̂

(ai ,ρi ),x
i ,

since i’s message does not affect the transfer x for any player (so deviating in message
after the equilibrium action is a trivial deviation). Since

∑
i λi xi (m) = 0 for each

m by construction, (ai , ρi , x) generates an objective function value of maxa gi (a)

for the problem (Pei ,η). Clearly this is the largest possible value for (Pei ,η), hence
kη(ei ) = maxa gi (a).

For λ = −ei , we can find ai ∈ A such that gi (ai ) = mina−i maxai gi (a) = 0
and gi (ai ) − gi (a′

i , a
i
−i ) ≥ η for any a′

i 
= aii . Let ρi ∈ R be any profile of message
strategies for which the conditions for η∗-detectability with respect to i are satisfied
at ai for any j 
= i . As in the previous case, we can find x j : M−i → R for each
j 
= i such that all the η-strict incentive compatibility conditions are satisfied for j .
Set xi (m) = 0 for all m for player i . Since

∑
i λi xi (m) = 0, (ai , ρi , x) generates an

objective function value of −gi (ai ) = −mina−i maxai gi (a) = 0 for (P−ei ,η).

Since k(−ei ) is bounded from above by 0 by Lemmas 3 and 4, ai solves (P−ei ,η).
Hence kη(−ei ) = −g(ai ) = −mina−i maxai gi (a) = 0. �

Now we complete the proof of Theorem 12. The last two lemmas prove kη(λ) =
maxa

∑
i λi gi (a) for any λ /∈ {−ei , i ∈ N

}
and kη(−ei ) = 0 for every i ∈ N . Since

V ∗(G) is a compact and convex set, V ∗(G) = ⋂
λ Hη(λ) = Qη. Then the theorem

follows from Theorem 11 when intV ∗(G) 
= ∅.

5 Discussion

More strict incentive constraints
For our uniformly strict folk theorem, we require a fixed level of strict incentive
compatibility at every public history. In terms of average payoff, the strict incentive
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(1 − δ)η converges to 0 as δ → 1. This means that the loss from a single deviation
becomes negligible relative to the size of the total payoff in the limit. We could instead
require η-strict incentive compatibility in terms of average payoff. This means that
the loss from a deviation is comparable to a permanent payoff shock, say, losing $1
in all the future periods. To do this, we would replace η in the definition of η-USPPE
(Definition 1) with η

1−δ
. However, it turns out that the set of η -USPPE in this sense

becomes empty for any η > 0 as δ → 1.
More generally, we can impose f (δ)-strict incentive constraint in terms of average

payoff, where f (δ)may not converge to 0 or converge to 0 more slowly than (1−δ) as
δ → 1.We can show that, for any such f , the set of “ f -uniformly strict” PPE becomes
empty for large enough δ. In this sense, our folk theorem cannot be improved in terms
of the order of the strict incentive in the limit.

The reason for this is as follows. The effect of the current stage gamepayoff vanishes
at the rate of (1−δ) as δ → 1 in terms of average payoff. So, if we like to provide f (δ)-
strict incentive with f (δ) such that limδ→1

f (δ)
1−δ

→ ∞, it must come from the variation
in continuation payoffs.10 However, the maximum variation of continuation payoffs
for player i must vanish at the same rate of (1 − δ) if her continuation payoff wi (m)

is always at least as large as the equilibrium payoff v from the present period. This
is because the distance between the expected continuation payoff and the equilibrium
payoff is E[w(·)|(a, ρ)] − v = 1−δ

δ
(v − g(a)), which shrinks to 0 at the rate of 1− δ.

Hence, to provide f (δ)-strict incentive, continuation payoff must be strictly less than
the equilibrium payoff after some message profile, i.e., there exists ε > 0 and m ∈ M
such that w(m) < v − ε for any large δ. However this cannot happen at every public
history, hence there is no f (δ)-USPPE with such f (δ) for any large enough discount
factor.

Folk theorem with double limits
We prove our folk theorem by fixing a level of strict incentive η > 0 and letting δ → 1.
If we instead allow η go to 0 and δ go to 1, then we can prove a folk theorem with
weaker conditions. When η is small, we can construct Qη using the minmax action
profiles if (G, p) just satisfiesη-detectability instead ofη∗ - detectability at theminmax
action profiles. Since Qη converges to V ∗(G) as η → 0 and is the limit η-USPPE
payoff set (with full dimensionality), we can prove a version of folk theorem only with
η-detectability (for minmax action profiles in addition to A(G)) and η-identifiability,
where η goes to 0 and δ goes to 1 at the same time.
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Appendix

Proof of Lemma 2 This is trivial if Eη(δ) is an empty set, so suppose that it is not.
First, note that Eη(δ) is bounded, so we must show that Eη(δ) is closed. Take any
v∗ ∈ cl(Eη(δ)). Choose a sequence vk ∈ Eη(δ) in R

n that converges to v∗. For each
k, let (ak, ρk) ∈ A × R be the strategy profile in the first period and wk : M → R

n

be the continuation payoff profile from the second period of the equilibrium strategy
that supports vk . Note that wk(m) ∈ Eη(δ) for all m ∈ M . Then for each i ∈ N ,

vk = (1 − δ)gi
(
ak
)

+ δ
∑

m∈M
wk
i (m) p̃

(
m|ak, ρk

)

Since A × R is compact and Eη(δ) is bounded, we may, extracting a subsequence if
necessary, assume that (ak, ρk) and wk are convergent with respective limits (a∗, ρ∗)
and w∗. Furthermore, we may assume that (ak, ρk) = (a∗, ρ∗) for all sufficiently
large k. Then

v∗ = (1 − δ)gi
(
a∗)+ δ

∑

m∈M
w∗
i (m) p̃

(
m|a∗, ρ∗) .

and for all sufficiently large k,

gi
(
a∗)+ δ

1 − δ

∑

m∈M
wk
i (m) p̃

(
m|a∗, ρ∗)− η

≥ gi
(
a′
i , a

∗−i

)+ δ

1 − δ

∑

m∈M
wk
i (m) p̃(m|(a′

i , ρ
′
i ), (a

∗−i , ρ
∗−i ))

for all (a′
i , ρ

′
i ) ∈ �̂

(a∗,ρ∗),wk

i . If (a′
i , ρ

′
i ) ∈ �̂

(a∗,ρ∗),w∗
i , then (a′

i , ρ
′
i ) ∈ �̂

(a∗,ρ∗),wk

i for
all sufficiently large k, hence in the limit

gi
(
a∗)+ δ

1 − δ

∑

m∈M
w∗
i (m) p̃

(
m|a∗, ρ∗)− η

≥ gi
(
a′
i , a

∗−i

)+ δ

1 − δ

∑

m∈M
w∗
i (m) p̃(m|(a′

i , ρ
′
i ), (a

∗−i , ρ
∗−i ))

for all (a′
i , ρ

′
i ) ∈ �̂

(a∗,ρ∗),w∗
i . Since w∗(m) ∈ cl(Eη(δ)) for all m ∈ M , it follows that

v∗ ∈ B(δ, cl(Eη(δ)), η), therefore cl(Eη(δ)) ⊆ B(δ, cl(Eη(δ)), η). Since cl(Eη(δ))

is bounded (in fact compact), by η-self decomposability (Lemma5), we can conclude
that cl(Eη(δ)) ⊆ Eη(δ), i.e., Eη(δ) is closed. �
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