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Abstract
A new proof of the existence of a Walrasian equilibrium with an infinite dimensional
commodity space is provided, which allows agents’ preferences to be discontinuous.
The new theorems include as corollaries the existence results of Mas-Collel, Yannelis
and Zame, Araujo and Monteiro, and Mas-Collel and Richard, among others.
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1 Introduction

In pioneering game theoretic papers Dasgupta and Maskin (1986) and Reny (1999)
proved the existence of aCournot-Nash equilibrium relaxing the continuity assumption
on the payoff functions. Since then, several advances have been made; see for example
Reny (2020). Recently, advances were also made in general equilibrium theory. In

Nicholas C. Yannelis and Konrad Podczeck contributed equally to this article.

We thank two referees for helpful comments and suggestions. Any remaining errors are, of course, ours.

B Konrad Podczeck
konrad.podczeck@univie.ac.at

Nicholas C. Yannelis
nicholasyannelis@gmail.com

1 Institut für Volkswirtschaftslehre, Universität Wien, Oskar-Morgenstern-Platz 1, 1190 Vienna,
Austria

2 Department of Economics, Henry B. Tippie College of Business, The University of Iowa, 108 John
Pappajohn Business Building, Iowa City, IA 52242-1994, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00199-024-01553-0&domain=pdf
http://orcid.org/0000-0003-2734-2206


K. Podczeck, N. C. Yannelis

particular, the existence of a Walrasian equilibrium was proved for economies where
consumers’ preferences need not be continuous, need not be convex or monotone, and
also preferences were allowed to be interdependent, non-ordered, and price dependent
(see Podczeck andYannelis 2022, and their references; see also Anderson et al., 2022).
That work generalized all the previous finite dimensional results on the existence
of a Walrasian equilibrium without ordered preferences, i.e., Gale and Mas-Colell
(1975), Shafer (1976), among others. It should be noted that to prove the existence
of a Walrasian equilibrium without ordered preferences, new methods of proofs were
needed. Similarly, to allow for not necessarily continuous preferences, new methods
were also introduced.

The twoquestionswewish to address on this paper are the following.Canone extend
Podczeck and Yannelis (2022) to an infinite dimensional commodity space? If yes,
can one obtain the infinite dimensional existence of a Walrasian equilibrium theorems
of Mas-Colell (1986), Yannelis and Zame (1986), Araujo and Monteiro (1989), and
Mas-Colell and Richard (1991) as corollaries? We provide a positive answer to both
questions. Specifically, we prove the existence of a Walrasian equilibrium allowing
for non-ordered, interdependent, and discontinuous preferences.

The standards proofs of the existence of Walrasian equilibrium in infinite dimen-
sional commodity spaces typically trace the result in finite dimensions and then a
limiting argument takes place to cover the whole space. Two main obstacles need to
be overcome. First, in spaces whose positive cone has a non-empty interior the price
simplex is similar with the one in finite dimensions, it is weak star compact and the
limit price is always non-zero. Second, and more typical, in spaces whose positive
cone has an empty interior, the closed unit ball contains zero and the limiting price
could be zero. For this reason, cone conditions like properness or extreme desirability
assumptions are used to make sure that the limiting price is different from zero. The
continuity assumption on preferences plays an important role to obtain the limits. Any
lack of this continuity assumption makes the limiting arguments more complicated.
How do we deal with this problem? We suitably consider the set of all finite dimen-
sional subspaces of our commodity space that are included in the order ideal generated
by the initial endowments, and apply the finite dimensional existence theorem due to
Podczeck and Yannelis (2022) to obtain an equilibrium there. At the last step, i.e. in
the limit, the cone condition (proper preferences) plays an important role to show that
the price is different from zero and has the designated continuity property. During
the limiting process we use the assumption that preference correspondences have the
continuous inclusion property, instead of the assumption of continuity of preferences,
and this forces us to deviate from the standard arguments of the existing literature.1

The paper is organized as follows: Sect. 2 introduces the model, the assumptions,
and the two main existence theorems. Section3 contains the proofs of the theorems.
Several remarks are collected in section 4. Finally, section 5 indicates how from our
theorems we can derive as corollaries the results of Mas-Colell (1986), Yannelis and
Zame (1986), Araujo and Monteiro (1989), and Mas-Colell and Richard (1991).

1 In the theorems in which they assume the continuous inclusion property, Anderson et al. (2022) use, in
addition, the assumption that consumption sets are compact.
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2 Themodel and the result

We start with a definition (see He and Yannelis 2017).

Definition 1 Let X be a topological space and Y a linear topological space. A corre-
spondence ψ : X → 2Y is said to have the continuous inclusion property at x if there
is an open neighborhood O of x and an F : O → 2Y such that F(z) ⊆ ψ(z) for any
z ∈ O and coF is upper hemicontinuous with non-empty compact values.

The content of this definitionwill serve as replacement of the usual notion of continuity
of preferences which can be found in economic models of decision making.

In the economieswe consider, the commodity-price duality is a dual system 〈L, L∗〉,
where L is a Riesz space endowed with a locally convex Hausdorff topology τ ,2 and
L∗ is the topological dual of L , which is assumed to be a sublattice of the order dual L∼
of L . We always assume that L+, the positive cone of L , is closed. (It is not required
that the lattice operations in L are continuous.)

The hypothesis that the commodity space is a Riesz space goes back to Aliprantis
and Burkinshaw (1983). Its present form, namely that the commodity space carries a
topology that makes the topological dual a sublattice of the order dual, is taken from
Mas-Colell and Richard (1991).

We write η for a Hausdorff vector space topology on L which is at least as weak
as the original topology τ of L . We also consider the order ideal L(e) in L , where e
is any element of L+.3 There is a norm on L(e) defined by the Minkowski functional
of [−e, e]. This norm is denoted in the following by ρ. (See Lemma 3 below for the
relationship between the topology induced on L(e) by ρ and that induced on L(e) by
τ .) We always consider L(e)∗ as being endowed with the weak∗-topology, coming
from L(e) viewed as being endowed with the norm ρ; in particular, in L(e)∗, the
notion of “weak∗-convergence” is always meant with respect to that topology.

Definition 2 An economy E is a family of triples {(Xi , Pi , ei ) : i ∈ I } where
• I is a non-empty finite set of agents;
• Xi ⊆ L is the consumption set of agent i , and X = ∏

i∈I Xi ;
• Pi : X → 2Xi is the preference correspondence of agent i ;
• ei ∈ Xi is the endowment of agent i , and e = ∑

i∈I ei 	= 0.

Definition 3 Let E be an economy.

(a) Givenπ ∈ L∗, the budget set of agent i is Bi (π) = {xi ∈ Xi : πxi ≤ πei }, writing
xi for the projection of x onto its i-th coordinate.

(b) A (non-free disposal) Walrasian equilibrium is a pair (π, x), where π ∈ L∗\{0}
and x ∈ X , such that

(i) xi ∈ Bi (π) for each i ∈ I ;
(ii) Bi (π) ∩ Pi (x) = ∅ for each i ∈ I ;

2 Unless something else is said, any topological notion appearing below in this paper is meant with respect
to the topology τ .
3 The order ideal L(e) is the set

⋃∞
n=1[−ne, ne], n ∈ N, where [−ne, ne] is the order interval {z ∈ L :

−ne ≤ z ≤ ne}.
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(iii)
∑

i∈I xi = ∑
i∈I ei .

(c) A quasi-Walrasian equilibrium is a pair (π, x), where π ∈ L∗ \{0} and x ∈ X ,
such that

(i) xi ∈ Bi (π) for each i ∈ I ;
(ii) if y ∈ Pi (x) then π y ≥ πxi for each i ∈ I ;
(iii)

∑
i∈I xi = ∑

i∈I ei .
Let E be an economy. For all i ∈ I , letψi : L(e)∗×X → 2Xi be the correspondence

defined by setting ψi (p, x) = Bi (p)∩ Pi (x) for (p, x) ∈ L(e)∗ × X . WriteA for the
set of feasible allocations of E ; thusA = {x ∈ X : ∑

i∈I xi = ∑
i∈I ei }. We consider

the following assumptions: (A brief comment may be found after their statement.)

(A1) For each i ∈ I , Xi = L+.
(A2) A is ηI -compact.
(A3) If x ∈ A and p ∈ L(e)∗ are such that the set I ′ ⊆ I of all i with ψi (p, x) 	= ∅

is non-empty, then for some i ∈ I ′, ψi has the continuous inclusion property
at (p, x), where the topology on the domain side of ψi is the product of the
weak∗-topology of L(e)∗ (when L(e) is given the norm ρ) with the topol-
ogy ηI , and the topology on the codomain side of ψi is the original topology
τ of L .

For the next assumption we need some preparation. Let H0 be a finite-dimensional
subspace of L containing the individual endowments, and H the set of all finite-
dimensional linear subspaces H of L which include H0 and are included in L(e).
Note that H is directed by inclusion.

(A4) If H ∈ H then, if x ∈ A ∩ H I and p ∈ H∗ are such that the subset I ′ of I
consisting of the i with ψH

i (p, x) ≡ ψi (p, x)∩ H 	= ∅ is non-empty, then, for
some i ∈ I ′, the correspondence ψH

i has the continuous inclusion property at
(p, x).

Actually we prove two theorems. One is based, besides of (A1)–(A4) on (A5) and (A7)
below, the other on (A6) and (A8), besides of (A1)–(A4). The division corresponds
to whether or not the order ideal L(e) is dense in L . For (A5) and (A6), we call an
allocation x Pareto efficient if it is feasible and there is no feasible allocation x ′ with
x ′
i ∈ Pi (x) for all i ∈ I ,4 and call it individually rational if ei /∈ Pi (x) for all i ∈ I .

(A5) The order ideal L(e) is dense in L , and if x is any individually rational and
Pareto efficient allocation, then for each i ∈ I , Pi (x) is F-proper5 at x , with
vi,x ∈ L(e)+.

(A6) If x is an individually rational and Pareto efficient allocation, then for each
i ∈ I , Pi (x) is E-proper at x relative to L(e),6 with vi,x ∈ L(e)+.

4 What we call Pareto efficient does not amount to its usual notion, if there are external effects.
5 A preference relation Pi : L I+ → L+ is F-proper at x ∈ L I+ if there exists a vector vi,x ∈ L and a
neighborhoodUi,x of 0 ∈ L such that xi + vi,x ∈ L+, and if u ∈ Ui,x then xi +αvi,x −αu ∈ L+ implies
xi + αvi,x − αu ∈ Pi (x) for every real number α which is sufficiently small.
6 A preference relation Pi : L I+ → L+ is called E-proper at x ∈ L I+ relative to K ⊆ L if there exists a
vector vi,x ∈ L , a neighborhood Ui,x of 0 ∈ L+, and a set Ai,x ⊆ K , being radial at xi (in K ), such that
xi + αvi,x ∈ Pi (x) for every sufficiently small real number α > 0, and if z ∈ Ai,x ∩ L+ and z /∈ Pi (x),
then u ∈ U implies z − αvi,x + αu /∈ Pi (x) for every real number α > 0.
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(A7) For each i ∈ I , each p ∈ L(e)∗, and each x ∈ X , xi /∈ ψi (p, x).
(A8) For each i ∈ I and each x ∈ X , Pi (x) is convex and xi /∈ Pi (x).

Remark 1 Assumptions (A1), (A2), (A5), (A6), and (A8) (togetherwith the assumption
that L+ is closed in L) are standard in general equilibrium theory with infinitely many
commodities (see, e.g., Podczeck 1996). New in this setting are (A3), (A4), and (A7).
For the case of finitely many commodities, assumptions containing these can be found
in He and Yannelis (2016) or in Podczeck and Yannelis (2022) (see also Remark 2).

Here are our results.

Theorem 1 If the economy E = {(Xi , Pi , ei ) : i ∈ I } satisfies (A1)–(A5), and (A7)
then it has a Walrasian equilibrium (π, x) in L∗ × L.

Theorem 2 If the economy E = {(Xi , Pi , ei ) : i ∈ I } satisfies (A1)–(A4), (A6), and
(A8) then it has a Walrasian equilibrium (π, x) in L∗ × L.

3 Proof of the theorems

The idea of proving infinite-dimensional theorems by tracing them to finite dimensions
is rather standard in the mathematical literature. However, the arguments needed to
approximate infinite-dimensional results by finite-dimensional ones are neither triv-
ial nor routine. The lack of the continuity assumptions on preferences complicates
the arguments considerably; in particular, we cannot rely on Bewley (1972). Our
proof is based on the finite-dimensional existence of Walrasian equilibrium theorem
of Podczeck and Yannelis (2022). Specifically, we construct a family of subeconomies
satisfying the assumptions of this theorem and show that limit price-allocations consti-
tute aWalrasian equilibria for the original infinite-dimensional economy.Assumptions
(A5) and (A6) play an important role in that process. It should be noted that assump-
tions (A5) or (A6) are not needed for the finite-dimensional proof of the existence
of a Walrasian equilibrium. Actually, instead of relying on continuity of preferences,
we will make use of the assumption that the correspondences ψi have the continuous
inclusion property. This assumption plays an important role not only in the establish-
ment of equilibria for the approximating economies with finitely many commodities,
but also after this, i.e., for the argument in the limit. Besides of this, the arguments in
the limit are standard. Thus, the right combination of standard parts and the continuous
inclusion property is what is important for the limit.

Belowwe provide the details of the proof.We prove the two theorems from above in
the following way. After a common part, which is similar to the proof of the existence
theorem in Podczeck and Yannelis (2022), we will indicate when the proof of the first
theorem starts, and then when that of the second one does.

Let H0 be afinite-dimensional subspace of L containing the individual endowments,
and let H be the set of all finite-dimensional linear subspaces H of L which include
H0 and are included in L(e). Note thatH is directed by inclusion. Viewing H ∈ H as
a finite-dimensional space in its own right, write H∗ for its dual space.

Fix any H ∈ H. Consider the restriction EH of the economy E to H . Write R
�

for the commodity space of EH , write XH
i for Xi ∩ H and AH for A ∩ H I . Let
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〈Cn〉n∈N be an increasing sequence of closed balls inRl , with
⋃

n∈N Cn = R
l , and set

Ki,n = Cn∩XH
i for each i and each n. For each n ∈ N, write Kn = ∏

i∈I Ki,n . Noting
that AH is compact, we can assume that AH is included in Kn for each n. Write 	

for {p ∈ R
� : ‖p‖ ≤ 1}, and for p ∈ 	, write BH

i (p) for {x ∈ XH
i : px ≤ pei }, that

is write BH
i (p) for Bi (p) ∩ XH

i , i ∈ I . Moreover, write y = (p, x) for elements of
	 × XH , where XH denotes the product of the sets XH

i over I . Note also that Ki,n is
non-empty, compact, and convex for each i and each n. From this it follows that the
same is true of Kn for each n.

Let F be the collection of correspondences Fi
y witnessing that (A4) is satisfied

for the fixed H under consideration. Since in a Euclidean space, any neighborhood
of any point includes a compact neighborhood of this point, and XH is closed in its
ambient Euclidean space, we can assume by Definition 1 that for each correspondence
in F the domain Oi

y is bounded in 	 × XH and the image Fi
y(O

i
y) is bounded in XH

i

(shrinking the domains of the members of F appropriately). Thus, each Fi
y in F is

such that there is an ni,y ∈ N such that for n ≥ ni,y , Oi
y is included in 	 × Kn , and

Fi
y(O

i
y) is included in Ki,n . For each i ∈ I and n ∈ N, write Cin for the collection of

those Oi
y which are included in 	 × Kn and are such that Fi

y(O
i
y) is included in Ki,n .

Fix any i ∈ I and any n ∈ N. Let V i
n = ⋃ Cin . Note that Cin is an open cover of

V i
n . Being included in a Euclidean space, V i

n is metrizable, therefore paracompact;
see, e.g., Engelking (1989, p. 300, Theorem 5.1.3). Thus Cin has a closed locally finite
refinement F i

n = {Ei
j,n : j ∈ J in}, where J in is an index set (and Ei

j,n is closed in V i
n );

see Engelking (1989, p. 302, Theorem 5.1.11).7

For each j ∈ J in choose a y j ∈ 	 × Kn such that Ei
j,n ⊆ Oi

y j , where Oi
y j belongs

to Cin . For each y ∈ V i
n let I in(y) = { j ∈ J in : y ∈ Ei

j,n}. Then I in(y) is finite for each

y ∈ V i
n . Let φ

i
n(y) = (⋃

j∈I in(y) F
i
y j (y)

)
for y ∈ V i

n .

Define Hi
n : 	 × Kn → 2Ki,n by setting, for each y = (p, x) ∈ 	 × Kn ,

Hi
n(y) =

{
φi
n(y) if y ∈ V i

n

BH
i (p) ∩ Ki,n otherwise.

Evidently Hi
n has non-empty compact convex values and is upper hemicontinuous

(note thatV i
n is open in	×Kn and thatφi

n(y) ⊆ BH
i (p)∩Ki,n for all y = (p, x) ∈ V i

n ;

the fact saying that y �→ ⋃
j∈I in(y) Fi

y j (y) : V i
n → 2R

l
is upper hemicontinuous

can be easily checked; as
(⋃

j∈I in(y) F
i
y j (y)

) = (⋃
j∈I in(y) F

i
y j (y)

)
, it follows from

Hildenbrand (1974, p. 26, Proposition 6) that y �→ (⋃
j∈I in(y) F

i
y j (y)

) : V i
n → 2R

l
is

upper hemicontinuous as well.)

7 Recall that a topological spaceW is called paracompact if it is Hausdorff and every open cover ofW has
an open locally finite refinement. Recall also that a refinement of a cover A of a set W is a cover B of W
such that every member of B is included in some member of A. Finally, recall that a family B of subsets
of a topological space W is called locally finite if every point of W has an open neighborhood which meets
only finitely many members of B.

123



Existence of Walrasian equilibria with discontinuous...

Do this construction for each i ∈ I and each n ∈ N. Moreover, for each n ∈ N,
define a correspondence Gn : 	 × Kn → 2	 by setting

Gn(y) = argmax q∈	q
∑

i∈I
(xi − ei )

for each y = (p, x) ∈ 	 × Kn .
By Kakutani’s fixed point theorem, for each n the correspondence Gn × ∏

i∈I Hi
n

has a fixed point, (p∗
n, x

∗
n ) say. As in the proof of Theorem 4 in He and Yannelis (2016)

it follows that x∗
n ∈ AH for each n. To see this, fix any n. Write z∗n = ∑

i∈I (x∗
n,i − ei ).

By the definition of Gn , we must have p∗
nz

∗
n ≥ qz∗n for each q ∈ 	, and by the

definition of the correspondences Hi
n , we have 0 ≥ p∗

nz
∗
n . Thus 0 ≥ qz∗n for each

q ∈ 	. Because the definition of 	 implies that each non-zero excess demand vector
can be given a positive value by an appropriate q ∈ 	, it follows that z∗n = 0, i.e.,
x∗
n ∈ AH .
Because AH and 	 are compact, we can assume, therefore, that the sequence

〈(p∗
n, x

∗
n )〉 is convergent, say to (p∗, x∗). Thus x∗ ∈ AH . By construction, x∗

n,i ∈
BH
i (p∗

n) for each i ∈ I and each n, which implies that x∗
i ∈ BH

i (p∗) for each i ∈ I .
Suppose there is an i ∈ I such that ψH

i (p∗, x∗) 	= ∅. By (A4) we can assume that i
is such that the continuous inclusion property holds for ψH

i at (p∗, x∗). Let Oi
(p∗,x∗)

and Fi
(p∗,x∗) be chosen according to the fifth paragraph of this proof. We can pick

an n0 ∈ N so large that we have both Oi
(p∗,x∗) ⊆ 	 × Kn and Fi

(p∗,x∗)(O
i
(p∗,x∗)) ⊆

Ki,n for n ≥ n0. Thus Oi
(p∗,x∗) ⊆ V i

n for n ≥ n0. In addition, since 〈(p∗
n, x

∗
n )〉

converges to (p∗, x∗) and Oi
(p∗,x∗) is open in 	 × XH , we can pick an n1 ∈ N so that

(p∗
n, x

∗
n ) ∈ Oi

(p∗,x∗) whenever n ≥ n1. Set n̄ = max{n0, n1}. Then (p∗̄
n, x

∗̄
n ) ∈ V i

n̄ .

Thus Hi
n̄(p

∗̄
n, x

∗̄
n ) = φi

n̄(p
∗̄
n, x

∗̄
n ). Consequently x ∗̄

n,i ∈ φi
n̄(p

∗̄
n, x

∗̄
n ) ⊆ ψi (p∗̄

n, x
∗̄
n ), and

we get a contradiction to (A7) as well as to (A8).
Setting pH = p∗ and xH = x∗, we have thus constructed a pair (pH , xH ) satisfy-

ing

∑

i∈I
x Hi = e; and

if y ∈ Pi (x
H ) ∩ H then pH y > pHei , for all i ∈ I . (∗)

Now let H ∈ H vary.Using theHahn–Banach theorem, and the fact that the familyH is
directed by inclusion, we can view 〈(pH , xH )〉 as a net in L(e)∗×L I . Using Alaoglu’s
theorem, we can assume that 〈(pH , xH )〉 is such that 〈pH 〉 is weak∗-convergent to
some p ∈ L(e)∗, and, since A is ηI -compact by hypothesis, we can assume that
〈(pH , xH )〉 is such that 〈xH 〉 is ηI -convergent to some x ∈ A ⊂ L(e)I . In particular,
〈xHi 〉 is η-convergent to xi ∈ L(e) for all i ∈ I . We have

∑

i∈I
xi = e;
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there exists no feasible allocation x ′ with x ′
i ∈ Pi (x) ∩ L(e) for all i ∈ I ;

ei /∈ Pi (x) for all i ∈ I ;
if y ∈ Pi (x) ∩ L(e) then py > pei , for all i ∈ I .

Indeed. The equality above is clear. The middle two claims follow from the last one.
As for the last one, suppose by way of contradiction that there is an i0 ∈ I such that
py ≤ pei0 but y ∈ Pi0(x) ∩ L(e), so that ψi0(p, x) 	= ∅. By (A3) we can assume that
ψi0 has the continuous inclusion property at (p, x). Thus there is a neighborhood Oi0
of (p, x) in L(e)∗ × X such that ψi0(p

′, x ′) 	= ∅ for each (p′, x ′) ∈ Oi0 . Because the
net 〈(pH , xH )〉 is weak∗ × ηI -convergent to (p, x) ∈ L(e)∗ ×A ⊆ L(e)∗ × X , there
is an H1 ∈ H such that (pH , xH ) ∈ Oi0 ∩ (L(e)∗ ×A) for H ≥ H1. But this implies,
in view of (A4), that (pH , xH ) cannot satisfy (∗) for the approximating economies
EH , for large H ∈ H, and we get a contradiction. Thus if y ∈ Pi (x) ∩ L(e), then
py > pei , for all i ∈ I .

Identify p with an extension of it to a linear functional defined on all of L . Consider
first the situation of Theorem 1. By (A5) and Lemma 1 below, we can choose, for every
i ∈ I , an open and convex cone �i , with ({xi } + �i ) ∩ L(e)+ 	= ∅, such that γ ∈ �i

and xi + γ ∈ L+ imply that xi + λγ ∈ Pi (x) for every sufficiently small real number
λ > 0. Since xi ∈ L(e)+, it is clear that xi + γ ∈ L(e)+ implies xi + λγ ∈ L(e)+
if 0 ≤ λ ≤ 1. Thus we must have pxi ≤ pz for all z ∈ ({xi } + �i ) ∩ L(e)+ and all
i ∈ I . Moreover, ({xi }+�i ) is open and convex, and, since �i is a cone, xi belongs to
the closure of {xi } + �i , for all i ∈ I . Thus we can apply Lemma 2 below to choose,
for every i ∈ I , an element pi in L∗ and a linear functional ti on L such that all of the
following hold: pi + ti = p, pi xi ≤ pi z for all z ∈ ({xi } + �i ), and ti xi ≤ ti z for all
z ∈ L(e)+. The latter inequality implies ti z ≥ 0 for all z ∈ L(e)+ and ti xi = 0. Thus
we must have, for each i ∈ I , pi xi = pxi and pi z ≤ pz for all z ∈ L(e)+.

Because, by hypothesis, L∗ is a sublattice of the order dual L∼ of L , the set
{p1, . . . , pI } has a supremum π in L∗. Pick any z ∈ L(e)+. We have

π z = sup

{
∑

i∈I
pi zi : zi ∈ L+ ∩ L(e) and

∑

i∈I
zi = z

}

.

As 0 ≤ zi ≤ z implies zi ∈ L(e)+, and since pz′ ≥ pi z′ for all z′ ∈ L(e)+ and all
i ∈ I , it follows that pz ≥ π z. Moreover, since xi ≥ 0 and pxi = pi xi for all i ∈ I ,
and since

∑
i∈I xi = e, we have

pe =
∑

i∈I
pxi =

∑

i∈I
pi xi ≤ πe.

Hence pe = πe. Finally, z ∈ L(e)+ implies the existence of a number λ > 0 such that
λe ≥ z, so p(λe − z) ≥ π(λe − z). We have shown that π z = pz for all z ∈ L(e)+.
As L(e) is a sublattice of L , it follows that π and p agree on L(e).

Consider any y ∈ L+ \L(e)+ and suppose y ∈ Pi0(x) but π y ≤ πei0 for some
i0 ∈ I . We can assume that the continuous inclusion property holds for ψi0 at (π, x),
so there is a neighborhood Oi0 of (π �L(e), x) in L(e)∗ × X (where π �L(e) denotes
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the restriction of π to L(e)) such that Fi0(π
′, x ′) 	= ∅ for all (π ′, x ′) ∈ Oi0 . As

〈(pH , xH )〉 is weak∗ × ηI -convergent to (p, x) ≡ (π � L(e), x), there is an H1 ∈ H
such that (pH , xH ) ∈ Oi0 ∩ (L(e)∗ ×A) for H ≥ H1. But then, as above, (pH , xH )

cannot satisfy (∗) for the approximating economies EH , for sufficiently large H ∈ H,
and we get a contradiction. Thus, for each i ∈ I , if y ∈ Pi (x), then π y > πei .

We must have xi ∈ Bi (π) for each i ∈ I . Indeed, since x is a Pareto efficient
and individually rational allocation, it follows from (A5), together with Lemma 1,
that for each i ∈ I there is a vi,x ∈ L(e)+ such that xi + αvi,x ∈ Pi (x) for every
sufficiently small number α > 0. Consequently, from above, for each i ∈ I , we have
π(xi + αvi,x ) > πei for every sufficiently small number α > 0, and therefore, by
feasibility of x , we have πxi = πei . In particular, xi ∈ Bi (π) for each i ∈ I . It
also follows from (A5) that π 	= 0. To see this, suppose, if possible, otherwise. Then
Bi (π) = Xi and ψi (π, x) = ∅ for each i , which is impossible in view of (A5),
implying that αvi,x ∈ Pi (x) for each i ∈ I if α > 0 is small enough. Thus (π, x) is a
Walrasian equilibrium, with a price system π in L∗.

Now we come to the situation of Theorem 2. Consider any i ∈ I . Because of (A6)
we can choose an open and convex cone �i and a subset Ai of L(e), being radial at xi
in L(e), such that

there is a vi ∈ �i with xi + vi ∈ L(e)+ and xi + λvi ∈ Pi (x) if λ > 0 is small,
(∗∗)

and such that y′ ∈ Ai ∩ L+ but y′ /∈ Pi (x) implies (y′ − �i ) ∩ Pi (x) = ∅. In fact,
since �i is open we have, denoting by cl Pi (x) the τ -closure of Pi (x),

y′ ∈ Ai ∩ L+ but y′ /∈ Pi (x) implies (y′ − �i ) ∩ clPi (x) = ∅. (∗ ∗ ∗)

Clearly (∗∗) implies xi ∈ clPi (x), and therefore, since�i is a cone, xi ∈ cl(Pi (x)+�i )

too.Moreover, since xi +vi = xi +λvi +(1−λ)vi , we have (Pi (x)+�i )∩L(e)+ 	= ∅.
Further, Pi (x)+�i is open and, by (A8), convex. Finally, if z ∈ (Pi (x)+�i )∩ L(e)+,
then pxi ≤ pz. To see this, choose any y ∈ Pi (x) and some γ ∈ �i and suppose
y+γ ∈ L(e)+. Since xi ∈ L(e)+ and because Ai is radial at xi in L(e), we canfix some
λ, with 0 < λ ≤ 1, such that (1−λ)xi +λ(y+γ ) ∈ Ai ∩L(e)+. Since, by (A8), Pi (x)
is convex and since x ∈ clPi (x), we have (1−λ)xi +λy ∈ clPi (x). Hence, because of
(∗∗∗), (1−λ)xi +λ(y+ γ ) ∈ Pi (x)∩ L(e)+. Thus pxi ≤ p((1−λ)xi +λ(y+ γ )),
i.e., pxi ≤ p(y + γ ).

It now follows from Lemma 2 again that, for each i ∈ I , there is an element pi in
L∗ and a linear functional ti on L such that all of the following hold: pi + ti = p,
pi xi ≤ pi z for all z ∈ (Pi (x) + �i ), and ti xi ≤ ti z for all z ∈ L(e)+. As above, this
implies that, for each i ∈ I , pi xi = pxi and pi z ≤ pz for all z ∈ L(e)+. Moreover,
since �i is a cone, pi xi ≤ pi y for all y ∈ Pi (x) and all i ∈ I . Again since L∗ is a
sublattice of L∼, the set {p1, . . . , pI } has a supremumπ in L∗. As above it follows that
π and p agree on L(e), and that if y ∈ L+\L(e)+ then y ∈ Pi (x) implies π y > πei
for all i ∈ I . Finally, again as above, we must have xi ∈ Bi (π) for each i ∈ I ,
and π 	= 0, which this time follows by using (A6), instead of (A5). Thus (π, x) is a
Walrasian equilibrium, also under (A6). This finishes the proof of the two theorems.
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Lemma 1 If L(e) is dense in L, then L+(e) is dense in L+.

Proof See Podczeck (1996). ��

Lemma 2 Let Y be a (real) vector space, endowed with a Hausdorff, locally convex
topology τ . Let A and B be convex subsets of Y , with A τ -open such that A ∩ B 	= ∅.
Let y ∈ B ∩ clA (clA denotes the τ -closure of A), let f be a linear functional on Y
and suppose f y ≤ f y′ for all y′ ∈ A ∩ B. Then there exist linear functionals f1 and
f2 on Y such that f1 is τ -continuous, f1y ≤ f1a for all a ∈ A, f2y ≤ f2b for all
b ∈ B, and f1 + f2 = f .

Proof See Podczeck (1996). ��

Lemma 3 The topology induced on L(e) by τ is weaker than that induced by ρ.

Proof By hypothesis, L∗, the τ -dual of L , is a subspace of the order dual of L . Thus the
order interval [−e, e] is σ(L, L∗)-bounded, therefore also τ -bounded. Hence if V is
any τ -neighborhood of zero in L , there is a real number ε > 0 such that [−εe, εe] ⊆ V .
In particular, the topology induced on L(e) by τ is weaker than that induced by ρ. ��

4 Discussion

Remark 2 Assumptions (A5) or (A6) become superfluous if L is finite-dimensional.
On the other hand, if L is finite-dimensional, then it is possible to let preferences
be price dependent (see Podczeck and Yannelis 2022). The latter is not so in the
present context, because, for instance, there is no canonical price space—look at the
approximating economies EH .

Remark 3 The reader may ask why we don’t prove first the existence of a quasi-
equilibriumand then use some irreducibility condition to show that a quasi-equilibrium
is a full Walrasian equilibrium. The reason is simply that the continuous inclusion
property of the correspondences ψi can be used to check directly whether a certain
price/allocation state is actually a Walrasian equilibrium of an economy (in the sense
that if (π, x) ∈ L∗\{0} × X , with x being feasible and xi ∈ B(π) for all i ∈ I , then
(π, x) is a Walrasian equilibrium if ψi (π, x) = ∅ for all i ∈ I ). Note also that if the
continuous inclusion property holds for some i ∈ I , then this i has, regardless of what
are the ruling prices, local cheaper points in his budget set.

Remark 4 It was is stated in Remark 9 in He and Yannelis (2017) that the finite-
dimensional proof of the existence of Walrasian equilibrium for economies with the
continuous inclusion property, as the proof of their Theorem 4, goes through if con-
sumption sets are assumed to be norm-compact. We note that this is irrelevant for the
present paper as consumption sets are not assumed to be norm-compact.
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5 Relation to the literature

The quasi-Walras equilibrium existence results in Mas-Colell (1986), Yannelis and
Zame (1986, Theorem 1), Araujo and Monteiro (1989, Theorem 1), and Mas-Colell
and Richard (1991) are corollaries of ours, under the following auxiliary assumption:

(B1) For some real number k > 0, eki = (1− (1/k))ei + (1/(k#I ))e for each i ∈ I .

(Also recall that L(e)∗ means the dual of L(e), where L(e) is viewed as carrying the
norm ρ, giving L(e)∗ the corresponding weak∗-topology; see Sect. 2.)

In the quasi-Walrasian equilibrium existence result of Yannelis and Zame (1986,
Theorem 1) the following assumptions were made:

(1) The commodity space (L, τ ) is a Banach lattice.
(2) There is a Hausdorff topology � on L such that

(a) � is weaker than the norm topology of L;
(b) � is a vector space topology;
(c) all order intervals in L are �-compact.

(3) Xi = L+ and ei ∈ Xi for all i ∈ I .
(4) The aggregate endowment is strictly positive (i.e., the order ideal spanned by the

aggregate endowment is τ -dense in L).
(5) Each preference relation Pi is (�, norm)-continuous for all i ∈ I .
(6) xi /∈ Pi (x) for all i ∈ I and all x ∈ X .
(7) For each i , there is a commodity vi ∈ L+ which is strongly desirable on the setA.

Our assumptions made at the beginning of Sect. 2, together with (A2), are implied by
their (1) and their (2). Assumption (A1) and their (3) amount to the same. Our (A5)
follows from their (7), together with their (4). Assumption (A7) is implied by their
(6). Together, their 5) and our (B1) imply our (A3) and (A4). (Note that if |λ| is close
to 1, then, still, λy ∈ Pi (x) as well as there is a neighborhood Ox of x such that
λy ∈ Pi (x ′) for all x ′ ∈ Ox , and that, by (B1), λy ∈ B(p′) for all p′ out of some
neighborhood Op of p in L(e)∗, for λ < 1 or λ > 1; define the correspondence Fi
by setting Fi (p′, x ′) = {λy} for (p′, x ′) ∈ Op × Ox .) Letting k = n for some n ∈ N,
and letting n → ∞, we get from (2) and (5) a quasi-Walrasian equilibrium for the
original economy, i.e., the economy without the auxiliary assumption (B1).

Araujo and Monteiro (1989, Theorem 1) also proved the existence of a quasi-
equilibrium and considered preferences Pi coming from a complete pre-order �i on
Xi , i ∈ I , without any interdependence, so that the usual notion of Pareto efficiency
applies; it was assumed that:

(1) The commodity space (L, τ ) is a locally convex lattice.
(2) (L, τ ) is Dedekind complete and order continuous.
(3) Xi = L+ and ei ∈ Xi for all i ∈ I .
(4) Pi is convex (in the sense that if y ∈ Pi (xi ) then λy + (1 − λ)xi Pi (xi ) for all

0 < λ < 1), τ -continuous, and non-satiable on [0, e], for all i ∈ I .
(5) If x is any individually rational and Pareto efficient allocation, then, for each i ∈ I ,

Pi (x) is F-proper, with vi,x ∈ L(e)+.
(6) L(e) is τ -dense in L .
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The assumptions made at the beginning of Sect. 2 are implied by (1) of Araujo and
Monteiro (1989, Theorem 1). Their Proposition 1 says that (2) is equivalent to the fact
that all order intervals are σ(L, L∗)-compact, which implies our (A2). Their (3) and
our (A1), together with the last point in Definition 2, are the same. Moreover, their (4)
implies our (A7). Their (5) and (6) imply our (A5). Using 4) and (B1), we can see that
(A3) and (A4) are true (use the fact that {z ∈ Xi : y �i z} = Xi\{z ∈ Xi : z �i y} and
that {z ∈ Xi : z �i y}, being τ -closed and convex by 4), is also σ(L, L∗)-closed, for
any i ∈ I and any y ∈ Xi , together with the fact noted in the discussion of Yannelis
and Zame (1986)). As above, we can get a quasi-Walrasian equilibrium for the original
economy (of course, this time from other assumptions).

Mas-Colell and Richard (1991), who generalized Mas-Colell (1986), proved the
existence of a quasi-equilibrium and considered preferences Pi coming from a com-
plete pre-order �i on Xi , i ∈ I , without any interdependence, too. The following
assumptions were made:

(1) The commodity space (L, τ ) is a Riesz space endowed with a locally convex
Hausdorff topology τ .

(2) L∗, the topological dual of L , is a sublattice of the order dual L∼ of L .
(3) The positive cone L+ of L is τ -closed.
(4) Xi = L+ and ei ∈ Xi for all i ∈ I .
(5) Pi is convex, τ -continuous, and monotone on L+, for all i ∈ I .
(6) The order interval [0, e] = {z ∈ L : 0 ≤ z ≤ e} is σ(L, L∗)-compact.
(7) For each i ∈ I , Pi (x) is uniformly E-proper on L+, with vi,x = e.

What is at the beginning of Sect. 2 is implied by (1), (2), and (3) of Mas-Colell and
Richard (1991). Their (4) and our (A1), together with the last point in Definition 2,
are the same. Their (6) implies our (A2), and their (7) our (A6). Their (5) implies
our (A8). Finally, (A3) and (A4) follow from (5) and our (B1) (use the same facts as
above). As before, we can get a quasi-Walrasian equilibrium for the original economy.
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