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Abstract
We study contests with technological uncertainty, where contestants can invest in
different technologies of uncertain value. The principal, who is also uncertain about
the value of the technologies, can disclose an informative yet noisy public signal about
the merit of each technology. The signal can focus contestants’ investments into more
promising technologies or increase diversification. We characterize the principal’s
optimal disclosure of information about the technologies, which depends on the value
of diversification, the informativeness of available signals, and the ex-ante beliefs of
the likelihood of success for each technology. We also find that under some conditions
offering larger prizes or having more contestants decreases the extent of information
disclosure.
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1 Introduction

Many contests feature technological uncertainty: there are multiple technologies,
approaches, or methods that contestants could pursue, and it is not clear, both for
the contest sponsor and the contestants, which of these will ultimately be successful.
For instance, in prediction competitions hosted either on digital platforms (e.g., Kag-
gle) or by a firm (e.g., Netflix), there are multiple algorithms that contestants can use
(e.g., machine learning or regression methods). Contestants can use different farming
methods in agricultural yield contests, such as those sponsored by the National Corn
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Growers Association. In these settings, neither contestants nor the sponsor knows with
certainty which method will deliver the best results ex post. Technological uncertainty
is also present in procurement contests, such as those hosted by the U.S. Department of
Defense, where contestants and the procurer may not fully know the procurer’s pref-
erences over different possible attributes or designs. Similarly, in contest-like settings
within organizations, the principal and competing workers face uncertainty regarding
the impact of different projects.

Both uncertainty and competitive pressure affect how much contestants (the
‘agents’) invest in each technology.Uncertaintymeans that some agentswill inevitably
invest in unsuccessful technologies. For this reason, diversifying agents’ investments
across multiple technologies can improve the value that the contest sponsor (the ‘prin-
cipal’) obtains in the contest. However, diversifying investments can also reduce the
total investment on the ex-post best technology, reducing the principal’s payoff from
implementing it. In such a setting, the principal,who is also uncertain about the value of
each technology, may be able to disclose information that will influence agents’ beliefs
about the prospects of each alternative, which in turn determines their investments.

Public information revelation is a feature of many contest settings. For instance,
in prediction contests, the principal provides data that contestants use to train and
develop their algorithms; these data reveal information about the probability of success
of different algorithms. In yield contests, the National Wheat Foundation publicly
distributes information on different farming methods. In procurement contests, public
evaluations of prototypes inform to contestants about the procurer’s preferences. In
all these cases, the principal can strategically choose what data to make public to
influence the contestants’ investment decisions. Revealing all the historical data can
bias agents towards an approach that worked in the past but might not work well in
the future.

We investigate the contest-design question of how much information about the
technologies the principal should reveal. Revealingmore information could bias agents
to invest too much on some technologies and induce too little diversification—i.e., too
little investment across technologies that do not seem promising under the current
information but could be the best method ex post. This information design aspect
applies to a number of problems where technological uncertainty is important. For
instance, in prediction contests, the contestants submit predictions produced by an
algorithm that may not be the best one; but they can infer the performance of different
algorithms by testing themon a public dataset chosen by the contest designer. Choosing
a particular subset of data for contestants to build and test their algorithms could favor
one method over another.1 In Netflix’s recommendation competition in 2009, Netflix
publicly revealed a subset of all its available data on users’ preferences for contestants
to test different prediction algorithms. From Netflix’s perspective there is an option

1 Online platforms like Kaggle, DrivenData, and crowdAI, among others, offer firms the possibility to
sponsor contests to outsource their data science needs. The contest designer partitions the available data
into a “test dataset” and an “evaluation dataset.” The test dataset is publicly available and allows participants
to test their algorithms. The prize is allocated based on the performance of the algorithm over the evaluation
dataset.
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value to procuring a number of different algorithms because it is uncertain which one
will be the most valuable in the long run,2

We introduce a model to study technological uncertainty in contests and char-
acterize when the principal should reveal information to maximize the value of the
contest. Depending on the prior belief regarding the technologies, optimal information
disclosure can steer agents to focus on one specific technology or to diversify their
investments across technologies.

In our setting, M agents choose how much to invest in each of N different tech-
nologies.3 Only one of these technologies is valuable for the principal—the “best”
technology—and it is the one that she will implement ex post. The contest winner
is selected probabilistically among the agents who invested in the best technology:
the more an agent invests in the best technology, the higher his chances of winning
the prize. We model this competition as N parallel Tullock contests, one for each
technology.

The principal designs a public “experiment,” in the Bayesian persuasion sense of
the term, to reveal information to the agents regarding the likelihood-of-success of
each technology. In prediction contests, for instance, this experiment corresponds to
the public data made available to the participants, who can then test different classes
of algorithms on the data and update their beliefs about the possible value of each
approach.

The main trade-off in choosing the information structure that maximizes the princi-
pal’s expected payoff is one between diversification and focus: revealing more precise
information induces agents to focus on more promising technologies, but if the agents
rationally over-react to such information in equilibrium, then this may lead to too lit-
tle diversification from the principal’s perspective. We characterize conditions under
which the principal’s optimal information disclosure policy is maximally informative,
partially informative, or completely uninformative, depending on the features of the
environment. Whether the principal wants to reveal or hide information depends crit-
ically on three factors: (1) the value of technological diversification; (2) the quality of
the principal’s information; and (3) the extent of technological uncertainty.

First, investing in multiple technologies generates diversification: even if one tech-
nology looks more promising than another ex ante, the latter may turn out to be more
valuable in the long run. The larger the value of diversification, which turns out to be
related to a measure of risk aversion associated with the principal’s objective function,
the more likely it is that the principal chooses not to reveal information.

Second, the quality of the principal’s information matters: if she can design a very
informative experiment, i.e., an experiment that reveals the best technology with very
high probability, there is little justification to withhold revealing that information. In
practice, however, the principal may not have access to very informative signals. For
instance, in a prediction contest the principal may have a limited amount of data to
provide to the contestants.

2 In addition to whichever algorithm performs best given their current data the best algorithms in the long
run will depend on Netflix’s future data on users’ preferences.
3 These different technologies may represent different approaches to solve a problem in the case of innova-
tion; different characteristics, features, or designs in the case of procurement; or different tasks or projects
in the case of a worker competing within an organization.

123



J. Lemus, E. Temnyalov

Third, the extent of technological uncertainty reflects how asymmetric the different
approaches are a priori. If the agents’ beliefs about the technologies are ex ante very
asymmetric, the principal maywant to reveal information to either reinforce or weaken
the extent of this asymmetry. The more symmetric the technologies are ex ante, the
more diversification there is without disclosing information.

We also study the relationship between information design and more traditional
contest design aspects, such as the number of competitors and the size of the prize.
Under mild conditions, we find that the optimal design features less information dis-
closure in contests with more competitors or larger prizes. This is because when the
prize is larger or more agents compete, the aggregate investment on each technology
is larger. Hence, the value of disclosing information to focus investment towards one
technology is generally lower than the value of diversification.

Lastly, we explore the interaction between information disclosure and the optimal
size of the prize.We characterize conditions under which information design generally
adds value above and beyond what can be achieved by choosing the prize optimally
and not disclosing information. This is because the size of the prize affects the levels
of investments in the contest, whereas information disclosure affects their direction—
i.e. the relative investments across different technologies. Hence, the latter can yield
investment allocations that the former cannot necessarily achieve. We provide a con-
dition under which, when optimizing over both information disclosure and prizes,
the optimal solution entails a smaller prize and more information disclosure. In other
words, in this case information and prizes are substitutes: the principal may be better
off by offering a smaller prize and optimally revealing information, instead of offering
a larger prize and not revealing information.

1.1 Related literature

Most of the existing literature on information disclosure in contests focuses on disclos-
ing information about the contestant’s characteristics or the state of the competition.
For instance, Serena (2022) and Antsygina and Teteryatnikova (2022) study informa-
tion design in static contests when the designer can disclose the contestants’ types
(valuations or effort costs). Performance feedback has been theoretically investigated
by Aoyagi (2010), Ederer (2010), Bimpikis et al. (2019), Benkert and Letina (2020)
and Halac et al. (2016), among others, and empirically by Gross (2020, 2017), Huang
et al. (2014), Kireyev (2016), Bockstedt et al. (2016), and Lemus andMarshall (2021).
Kovenock et al. (2015) study the effect of players sharing information throughout the
contest. Fu et al. (2016) and Xin and Lu (2016) study optimal information disclosure
regarding agents’ entry decisions in contests. Zhang and Zhou (2016) and Mihm and
Schlapp (2018) study the optimal information disclosure when players are uncertain
about the principal’s preferences.

None of the papers above study a setting where both the contestants and the contest
designer are uncertain about the value of the underlying technologies, which we focus
on in this paper. Thus we contribute to the literature by studying a novel setting where
information design can improve contest outcomes.
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Our paper also contributes to the recent literature on diversification in contests. Pref-
erences for diversification has been studied theoretically (e.g., Terwiesch andXu 2008)
and empirically (e.g. Boudreau et al. 2011). Letina and Schmutzler (2019) characterize
the optimal prize structure when the designer wants to induce a variety of approaches.
We focus on how optimal information disclosure induces variety, complementing their
results, and also examine the interaction of prize size and disclosure.

Diversification has been studied in settings other than contests. For instance, Letina
(2016) studies the effect of market competition andmergers on variety, findings condi-
tions under which market competition creates too much variety. Toh and Kim (2013)
study how aggregate uncertainty affects technological diversification within a firm,
finding that a firm’s technology specializes more under greater uncertainty.

Our paper also relates to R&D models with multiple risky technologies. Dasgupta
and Maskin (1987) show that, in a winner-takes-all competition, the equilibrium allo-
cation of research on correlated projects is too high relative to the socially efficient
allocation, so there is less diversification in equilibrium. Bhattacharya and Mookher-
jee (1986) present a similar framework, but they study the level of risk taken by the
firms, finding that the optimal research strategy may feature excessive or insufficient
risk taking, depending on the level of risk aversion and the shape of the distribution
of research outcomes. Cabral (1994) shows that, when the competition is not winner-
takes-all, the level of risk taking is lower than the socially optimal level. Cabral (2003)
explores the same question in a dynamic environment, showing that a follower firm
takes more risk than the leader. Krishnan and Bhattacharya (2002) study how a firm
should design a product when there are several uncertain alternatives for the product’s
underlying technology. Lastly, Cornes and Hartley (2012) study existence, uniqueness
and properties of equilibria in Tullock contests with risk-averse contestants.

2 Model

There are M agents, indexed by i ∈ {1, . . . , M}, who compete in a contest. There are
N alternatives (“technologies”), indexed by t ∈ {1, . . . , N }, that the agents can work
on.

It is common knowledge that the principal values only one of these technologies,
but it is ex ante uncertain for the principal and the agents which one it is: we call this
technology the “best” one ex post. The agents and principal hold a common prior,
� ∈ �N , where

�N ≡
{

(θ1, . . . , θN ) θt ∈ [0, 1),
N∑

t=1

θt = 1

}

and θt is the common prior belief that technology t is the best one, with t = 1, . . . , N .
We model competition within each technology as a standard Tullock contest (see,
e.g., Pérez-Castrillo and Verdier 1992). Agent i wins the contest for technology t with
probability

pi (xi,t , x−i,t ) = xi,t

xt
,
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where xi,t is agent i’s investment, x−i,t is the investment profile of agent i’s rivals,
and xt = ∑M

j=1 x j,t is the aggregate investment in technology t .4 The contest awards
a prize V to agent i with probability pi (xi,t , x−i,t ) if and only if t turns out to be the
best technology.

The principal’s payoff depends on the aggregate investment into the best technology.
Specifically, the principal’s payoff is

v(x) =
N∑

t=1

f (xt ) · I (t is the best technology),

where f (·) is a strictly increasing, twice differentiable, and strictly concave function
and I (·) is the indicator function.5 In words, the principal derives no benefit from
investments on technologies other than the best one. A larger aggregate investment on
the best technology increases the principal’s payoff, but there are decreasing marginal
returns.6

For any belief � = (θ1, . . . , θN ) ∈ �N and aggregate investment profile
(x1, . . . , xN ), the principal’s expected payoff is

E�[v(x)] =
N∑

t=1

θt f (xt ). (1)

Note that, whenever there is residual uncertainty, i.e., θt < 1 for all t = 1, . . . , N , the
concavity of f (·) means that the principal values diversification among the technolo-
gies.

Modeling Assumptions. The principal is risk neutral over output profiles,
( f (x1), . . . , f (xN )). However, when we consider expected payoffs over the profile
of total investment on each technology, (x1, . . . , xN ), the principal’s preferences over
such profiles are risk averse due to the concavity of f (·). The latter interpretation—
with risk aversion over investment profiles—will turn out to be insightful because
the Arrow–Pratt coefficient of relative risk aversion associated with f (·) plays an
important role in our findings. Hence, we will refer to the principal as being risk
averse throughout the paper, and we will treat the principal’s payoffs as defined over
investment profiles rather than over the outputs that they correspond to.

We assume agents compete in a contest with a simple prize structure: a single prize
of size V . This prize structure is commonly used in practice and is optimal in many
contest settings (see, e.g., Clark and Riis 1998b). Furthermore, we model the prize as
technology-neutral. In practice it may be difficult to contract over technology-specific

4 We make the standard assumption in the contest literature: pi (0, . . . , 0) = 1/N . Also, our results are
identical if we instead assume that each contestant can only pursue one approach (e.g., due to heterogeneous
expertise, or because investment requires specialization), and we have N × M contestants.
5 The principal cares about total investment in many contest-design settings (e.g., Franke et al. 2013).
6 InAppendixB,we provide twomodelswhich induce such increasing and concave payoffs for the principal
that are a function of aggregate investment, and which are also consistent with the winning probabilities
of a Tullock contest. In the main text we work directly with the reduced-form representation given by the
Tullock winning probabilities and the principal’s payoff function above.
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prizes. In fact, virtually no contest in practice uses technology-contingent prizes. In
theory one could imagine a contest where the prize depends on which technology the
winner uses. This is weakly better than a single prize, but the analysis of this case is less
tractable. We study this as an extension in Appendix C; for the sake of tractability, our
baseline model uses a prize that is technology-neutral. The analysis in the appendix
can also address cost asymmetries among agents.

3 Analysis

3.1 Preliminary analysis

Consider agent i’s problem of choosing how much to invest in technology t . Given
any common belief � = (θ1, . . . , θN ) and the aggregate investment of agent i’s rivals
on technology t , agent i’s optimal investment profile solves the following problem:

max
xi,t ≥0

N∑
t=1

[
V · θt · pi (xi,t , x−i,t ) − xi,t

]
,

Agent i receives the prize, V , if and only if: (1) technology t is the best approach—
under the agent’s belief, this event happens with probability θt—and (2) agent i wins
the contest for technology t , which happens with probability pi (xi,t , x−i,t ).

In contrast, in the first-best allocation—if the principal could control the agent’s
investments—the investment on technology t is found by solving:

max
yt ≥0

N∑
t=1

[θt f (yt ) − yt ] .

Proposition 1 We have:

1. In the contest’s unique equilibrium, agent i’s investment on technology t is

x∗
i,t = θt

(
M − 1

M2

)
V .

2. The aggregate equilibrium investment on technology t is

x∗
t ≡

M∑
i=1

x∗
i,t = θt�, where � =

(
M − 1

M

)
V . (2)

3. In the first-best allocation, the investment on technology t is

y∗
t =

{
( f ′)−1

(
1
θt

)
if θt f ′(0) > 1

0 otherwise
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The term � represents the total equilibrium investment across all technologies.7

From Proposition 1, the principal’s expected equilibrium payoff from a contest in
which agents compete under belief (θ1, . . . , θN ) is

E�[v(x∗)] =
N∑

t=1

θt f (x∗
t ) − V =

N∑
t=1

θt f (θt�) − V . (3)

The agents’ and the principal’s incentives are generally misaligned. The equilib-
rium and first-best allocations differ in terms of both levels and directions. In terms of
absolute levels, it is easy to see from Proposition 1 that the equilibrium can generally
feature both over-investment and under-investment. For example, if V is large enough,
we can have that x∗

t > y∗
t for all t , i.e., agents invest too much across all technologies

relative to the first-best. The opposite happens when V is small enough. More gen-
erally, there can also simultaneously be under-investment and over-investment across
different technologies, for other levels of V .8

Another question is what proportion of the total investment is allocated to dif-
ferent technologies. That is, which technologies will agents invest too much or too
little in, as a function of their beliefs �, compared to the relative investment shares
in the first-best allocation? This comparison turns out to be more relevant for our
subsequent results, when we consider how the principal can strategically manipulate
beliefs through information disclosure, as the responsiveness of agents’ equilibrium
investments with respect to their beliefs plays a key role in that analysis. Specifically,
the proportion of total investment allocated towards technology t in equilibrium is

x∗
t∑N

t=1 x∗
t

= θt .

This is generically different from the interior first-best proportion of total investment
allocated towards technology t , which is given by

y∗
t∑N

t=1 y∗
t

=
( f ′)−1

(
1
θt

)
∑N

t=1( f ′)−1
(

1
θt

) .

Figure 1 compares the proportion of total investment allocated towards technology 1
in equilibrium and in the first best, with two technologies (N = 2). Let� = (θ, 1−θ)

so the belief that technology 1 is the best one is θ . Figure1 (left panel) shows that,
when f (x) = √

x , agents under-react to their beliefs regarding the technologies
relative to the first-best: when θ > 0.5, the proportion of total investment allocated
in equilibrium towards technology 1 (dashed line) is lower relative to the first best
(solid line). Analogously, when θ < 0.5, the proportion of total investment allocated

7 Note that θt f ′(0) > 1 makes the problem interesting, since the principal can simply not organize the
contest if the first-best effort is 0.
8 We consider the prize that maximizes the principal’s payoff later, in Sects. 3.3 and 3.4.
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Fig. 1 Comparison of the proportion of total investment allocated towards technology 1 as a function of
the belief θ . In the left panel, the principal’s preference is f (x) = √

x , whereas in the right panel it is
f (x) = 1 − exp(−8x)

to technology 1 in equilibrium (dashed line) is larger relative to the first best (solid
line). Therefore, in equilibrium the proportion of total investment allocated towards
the most promising technology is lower than the first-best proportion.

Figure1 (right panel) considers f (x) = 1− exp(−8x) and shows that, in this case,
agents can both over-react and under-react to their beliefs regarding the technologies,
depending on the range of beliefs considered. When the belief is around 0.5, agents
over-react to beliefs, in contrast to the left panel of the figure. In particular, when
θ > 0.5 (respectively, θ < 0.5) and not too far from 0.5, the proportion of total
investment allocated in equilibrium towards technology 1 is larger (respectively, lower)
relative to the first best. Hence the equilibrium proportion of total investment allocated
to the more promising technology is too large relative to first-best when the beliefs
are not too extreme, i.e., close enough to 0.5. On the other hand, when beliefs are
far enough from 0.5, agents in equilibrium under-react to their beliefs regarding the
technologies relative to the first best allocation, as in the left panel of the figure.

The over- and under-reaction illustrated in Fig. 1 can be counteracted through infor-
mation design. In the next section,we explore if andwhen the principal can increase her
payoff by disclosing some information about themerits of each technology through the
results of an experiment. Such an experiment can improve the allocation of investments
across the technologies. On the other hand, if agents over-react to such informa-
tion, there may be too little diversification from the principal’s perspective. Thus the
principal may prefer to disclose less information, potentially inducing investment mis-
allocation in equilibrium, in exchange for more diversification.

3.2 Information design

Wenow turn to the analysis of optimal information disclosure. In general, the principal
can reveal information to the agents regarding the feasibility or likelihood of success
of the different technologies. Importantly, it may be impossible for the principal to
fully reveal which technology is the best: if this were possible, the principal would
always choose to do so. One important feature of our analysis is that, even after
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information is publicly revealed, there is residual uncertainty.9 In such settings, we
ask a number of questions. Can the principal disclose information to improve the
equilibrium investments across technologies? Should the principal release information
at all? Would a more risk-averse principal reveal more or less information? How does
competition impact the extent of information disclosure? What is the optimal size of
the prize if information disclosure is taken into account?

The principal commits to an information policy ex ante, in a Bayesian persuasion
framework, which will inform the agents about the feasibility or value of the different
technologies. After observing the information revealed in this experiment, each agent
chooses howmuch to invest in the technologies.Once each agent hasmade their choice,
the contest resolves all remaining uncertainty and prizes are allocated. We model
public rather than private information disclosure for two reasons. First, information
disclosure is typically public in many of the applications of our model—in prediction
contests the principal reveals the same dataset to all contestants, who then use the data
to form beliefs over the value of different approaches and to develop their prediction
algorithms; in procurement contests the principal uses the same procurement tender to
solicit proposals from the contestants. Second, disclosing information privately would
entail differential treatment of contest participants, which could raise fairness and
corruption concerns in some settings, such as procurement.

Information structures. The principal designs a public signal structure s =
(M, G̃(·|t)), where M is a set of messages and G̃(m|t) is the probability that mes-
sage m ∈ M is sent when the state of nature is t , i.e., when technology t is the best
choice ex post. Let S be the set of all such signal structures available to the principal.
Importantly, as noted before, we do not assume that the principal must have access to a
perfectly informative signal. Instead, we solve for the optimal information disclosure
policy for any possible set S of available signal structures.

Each signal structure, s ∈ S, induces some distribution over posterior beliefs on
the technologies, Gs(�), and we denote the set of posterior beliefs in the support
of that signal as Ps , with generic elements � ∈ Ps . Let PS denote the set of all
feasible posterior beliefs that can be induced by some signal, including signals that
are compositions and combinations of signals available to the principal.

Lemma 1 For any set of signal structures S, the set of posteriors that can be induced
by the principal, PS, is convex.

Intuitively, for any two posterior beliefs θ̃ , θ̃ ′ ∈ PS that can be induced with some
signal structures, s′ and s′′, the principal can also induce any belief that is a convex
combination of the two posteriors, αθ̃ + (1 − α)θ̃ ′. This can be achieved using an
appropriatemixbetween the signal structures, s′ and s′′, andgenerally requires defining
a new message space and constructing a new signal structure. Therefore, the set of
feasible posteriors is a convex subset of the N − 1 simplex. In particular, when there
are only two technologies, the set of feasible posteriors is an interval.

9 For example, in prediction contests, players evaluate the performance of different algorithms using a
public “test dataset,” which is chosen by the contest designer. However, there is residual uncertainty: the
designer uses an “evaluation” dataset to determine the winner of the contest. The “best” algorithm is chosen
by evaluating out-of-sample performance. The evaluation dataset might not even exist at the beginning of
the contest. In that sense, any test dataset is a noisy public signal about the merits of each technology.
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Fig. 2 All panels show the range of posteriors for a prior of θ = 0.4. First panel: α = 0.55, posterior
in [0.35, 0.45]. Second panel: α = 0.75, posterior in [0.18, 0.67]. Third panel: α = 0.95, posterior in
[0.07, 0.86]

The following example illustrates how a standard and simple signal structure trans-
lates into a set of feasible posteriors and how the latter can be derived from a given
prior and a set of available signal structures.

Example 1 There are two technologies. The state of the world, t ∈ {1, 2}, describes
which of the two technologies is the best. Let the most informative experiment that the
principal can design be one that sends signal s ∈ {1, 2} according to Pr(s = t |t) = α,
with α ∈ (0.5, 1). For a prior θ ∈ [0, 1] that technology 1 is the best one, the posterior
beliefs conditional on signal s are:

Pr(t = 1|s = 1) = αθ

αθ + (1 − α)(1 − θ)
and Pr(t = 1|s = 2) = (1 − α)θ

(1 − α)θ + α(1 − θ)
. (4)

Equation4 generates two extreme posteriors for each prior: the boundary ofPS . The
entire set of feasible posteriors,PS , is convex, and is obtained by appropriately mixing
the principal’s most informative signal with an uninformative signal (see Lemma 1).

Figure2 shows the range of feasible posteriors for three values of α, a parameter
that represents the informativeness of the signals available to the principal. In each
panel, the x-axis corresponds to the prior belief, and the y-axis corresponds to the
posteriors generated by the experiment defined in Eq.4. In all panels, the vertical line
corresponds to the range of feasible posteriors for the prior belief θ = 0.4. With a less
informative signal (e.g. α = 0.55, Fig. 2, first panel), the posteriors are very close to
the prior, resulting in a posterior set narrowly concentrated around the prior.Withmore
informative signals (e.g. α = 0.75, Fig. 2, second panel), the set of feasible beliefs
expands around the prior. As the signal becomes almost perfectly informative (e.g.
α = 0.95, Fig. 2, third panel), the set of attainable posteriors expands even further.
Note, however, that while the principal’s signal is informative, with some probability
it will steer agents to invest in the “wrong” technology.

In our analysis we take a common prior, �0, and the set of feasible posteriors for
each prior, PS(�0) ⊆ �N , as the primitives of the model, assuming that PS(�0)

is closed and convex, following Lemma 1. In particular, �0 ∈ PS(�0) because the
principal can always decide not to reveal anything, so the posterior equals the prior.
For the sake of notation, we denote PS(�0) simply by PS , and we denote by ∂PS the
boundary ofPS . Any signal structure can be translated into this framework. Our results
then characterize the optimal information disclosure policy for arbitrary primitives.

123



J. Lemus, E. Temnyalov

Optimal Information Design. We analyze the value of information disclosure in
terms of the posterior beliefs that a signal structure induces. Recall that when agents
hold the belief�we have x∗

t = θt� in equilibrium. Therefore, the principal’s expected
payoff from inducing the posterior � is

ν(�) ≡
N∑

t=1

θt f (θt�). (5)

As inKamenica andGentzkow (2011), the value of information disclosure is described
by the convexity of ν(�).10 Let ν̂(�,PS) be the concave closure of ν(�) over PS .
The principal strictly benefits from persuasion whenever ν̂(�,PS) > ν(�). Next, we
characterize whether ν(·) is concave or convex.
Lemma 2 ν(�) is strictly concave at � = (θ1, . . . , θN ) ∈ �N if and only if

�θt f ′(θt�)[2−r f (θt�)]+�θN f ′(θN �)[2−r f (θN �)] < 0, for all t = 1, . . . , N−1, (6)

where r f (x) ≡ − x f ′′(x)

f ′(x)
is the relative risk aversion coefficient associated with f (·).

The necessary and sufficient condition for ν(·) to be locally concave at� in Lemma
2 depends on the Arrow–Pratt relative risk aversion coefficient associated with f (·).
For instance, when r f (θt�) > 2 for all t and � = (θ1, ...θN ) in the set of achievable
posteriors, the principal does not benefit from information disclosure;when r f (θt�) <

2 for all t and some � = (θ1, ...θN ) in the set of achievable posteriors, the principal
benefits from information disclosure.

We illustrate the relationship between the value of information disclosure and the
concavity of f (·) for the case of two technologies. Consider f (x) = xa for any
a ∈ (0, 1); we have r f (x) = 1 − a < 2, for any x . From Lemma 2, ν(·) is globally
convex, so there are always gains from information disclosure for any prior and for
any PS . Furthermore, the principal designs an experiment that generates the most
extreme possible posteriors in PS : for any prior belief, agents receive (with some
probability) the most favorable signal for one of the technologies. In other words, this
signal structure induces agents to focus on one technology in equilibrium, reducing
diversification across technologies. Next, consider f (x) = 1−e−λx ; we have r f (x) =
λx . Depending on λ, Lemma 2 shows that ν(·)might not be globally convex. Hence for
some beliefs and for some set of posteriors, full information revelation is not optimal,
resulting in less focus, as the agents’ posteriors would not be as extreme as under full
information revelation.

Why would the principal want to use a more or less informative signal structure?
First, consider the case of f (x) = √

x . Figure1 (left panel) shows that there is too

10 Note, however, that ν(�) is non-linear. When posterior beliefs are distributed according to some distri-
bution G, this non-linearity implies that we cannot write the principal’s expected payoff as a function of
one of G’s moments (e.g., posterior means). By contrast, recent Bayesian persuasion papers have studied
special settings where the principal’s payoff depends on expected posteriors—see e.g. Kolotilin (2018),
Hwang et al. (2019).
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Fig. 3 Function ν(θ), the value for the principal of inducing posterior θ , for different functions f (·). Left
panel: f (x) = √

x ; Right panel: f (x) = 1 − exp(−8x)

little investment towards the most promising technology, in proportional terms, com-
pared to the first-best allocation, i.e., there is too much diversification in equilibrium.
Figure3 (left panel) shows ν(·) corresponding to f (x) = √

x , which is strictly con-
vex, so the principal’s optimal information disclosure policy always induces the most
extreme posterior possible, which reduces the diversification and induces more focus
in equilibrium.

Second, consider the case with f (x) = 1 − e−8x . Figure1 (right panel) shows
that, for priors around 0.5, there is too much investment towards the most promising
technology, in proportional terms, compared to the first-best allocation; there is too
little diversification in equilibrium. Figure3 (right panel) shows ν(·) corresponding
to f (x) = 1 − e−8x , which is locally concave near θ = 0.5 and convex towards the
extremes. As wewill show, the principal in this case may not disclose any information,
either because the signals available are not too informative (i.e. posteriors are narrowly
concentrated around the 0.5) or because generating extreme posteriors induces even
less diversification. On the other hand, if the priors heavily favor one of the technolo-
gies, competition pushes agents to invest relatively more towards the less promising
technology and there is too much diversification in equilibrium. To induce more focus,
the principal designs an experiment that generates more extreme posteriors.

We formally show that, in general with N ≥ 2 technologies, the gain from informa-
tion disclosure (i.e. whether ν(·) is locally convex or concave) depends on the value
the principal assigns to diversification. When r f (·) is relatively large, i.e. f (·) is very
concave, diversification is more valuable to the principal than to the agents. This is
because the equilibrium allocation for any belief � is too responsive to differences
among the technologies relative to the principal’s first-best investment across technolo-
gies. In this case, agents over-react to differences among the technologies. In contrast,
when r f (·) is relatively small, i.e. f (·) is relatively less concave, then the value of
diversification to the principal is smaller so revealing information that induces more
extreme beliefs is more valuable and produces an allocation closer to the first-best.
Therefore, the principal may prefer to reveal information that induces more extreme
beliefs.

Proposition 2 The function ν(�) has the following properties:
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1. All of its global maxima are at the vertices of the N − 1 simplex;
2. The center of the simplex, � = (1/N , ...1/N ), is a local maximum if and only if

2 < r f

(
�

N

)

3. If there exists a local interior maximum, it must be � = (1/N , ...1/N ).

Proposition 2 shows that for any concave function f (·), the function ν(·) is either
strictly convex or it has a unique local interior maximum at the center of the simplex.
Additionally, ν(·) has global maxima with value f (�) at the extreme points of the
simplex because at those extreme points the principal and agents know with certainty
which technology is the best choice. Hence, if the principal has access to a perfectly
informative signal, revealing that signal is optimal. Also note that ν(·) cannot be
globally concave, since the global maxima are at the vertices of the simplex.

Importantly, while Fig. 3 is an illustration for N = 2, Proposition 2 shows that this
figure captures all the relevant features of the problem for N ≥ 2. In more dimensions,
we will have the same two cases: either the function will be globally convex, or it will
have a local interior maximum at the center of the simplex. Figure3 is more than just
an example because it qualitatively depicts all of the possible cases for the shape of
ν(·).

Whether ν(·) is locally concave at the center of the simplex depends on r f
(

�
N

)
, the

coefficient of relative risk aversion associated with f , evaluated at the most diversified
possible equilibrium investment profile—where, in aggregate, agents invest �

N in each
technology. In particular, following Lemma 2, if the relative risk aversion at the most
diversified equilibrium profile is not too large, i.e., r f

(
�
N

) ≤ 2, then diversification
is not an issue, reflected in ν(·) being globally convex, and the principal always uses
the most informative experiment, disclosing as much information as possible. On the
contrary, if the value of relative risk aversion in themost diversified equilibrium profile
is large, i.e., r f

(
�
N

)
> 2, then diversification is a problem for the principal, reflected

in ν(·) being locally concave at the center of the simplex. In this case, the principals’
information design problem is more involved, and we analyze it next.

Characterization of the Optimal Information Design. We now characterize the
optimal signal structure in our setting. Let �0 ∈ �N be the common prior belief
profile over the N technologies. Conditional on prior �0, let PS(�0) ⊆ �N (simply
denoted PS) be the convex set of posteriors beliefs that the principal can induce that
are consistent with Bayes’ rule (e.g., see Example 1). From these two primitives, we
now define key objects to characterize the principal’s optimal information design.

Let �C ≡ {� ∈ �N : ν̂(�,PS) = ν(�)} be the set of all posteriors where the
value function, ν, agrees with its concave closure, ν̂, over PS . Let ṽ ≡ sup{ν(�) :
ν′′(�) ≤ 0, � ∈ PS} be the largest value of the value function over the region of
PS where it is concave.11 We can now characterize the optimal disclosure policy.

Proposition 3 The optimal disclosure policy, s∗, with distribution Gs∗ such that
EGs∗ [�] = �0, is

11 If this region is empty, ṽ = −∞.
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Fig. 4 The solid black line corresponds to the principal’s payoff without disclosure with f (x) = 1 −
exp(−λx), λ = 8, and � = 0.9. The dashed red line corresponds to the concavified function ν̂(·) over the
region of feasible posteriors PS . Each panel shows a different scenario for the set of feasible posteriors
PS = [θ1, θ1] and the prior is θ0. First Panel: θ1 = 0.02 and θ1 = 0.98. Prior θ0 = 0.5. Second Panel:
θ1 = 0.1 and θ1 = 0.9. Prior θ0 = 0.8. Third Panel: θ1 = 0.3 and θ1 = 0.7. Prior θ0 = 0.5

1. maximally informative if ν(θ) ≥ ṽ for all θ ∈ ∂PS; then s∗ induces a distribution
over posterior beliefs with support consisting only of points in the boundary of the
feasible set of posteriors.

2. partially informative if ν(θ) < ṽ for some θ ∈ ∂PS andPS �= �C ; then s∗ induces
a distribution with support consisting of boundary points in ∂PS or in PS ∩ �C .

3. uninformative if PS = �C ; then s∗ induces the belief � = �0.

We now consider an illustrative example with two technologies to explain the three
cases in Proposition 3.We take the common prior, θ0, and set of feasible posteriors,PS ,
as primitives of the model and illustrate the optimal information policy in Proposition
3 for different priors and feasible posteriors.12 For the sake of this example, we assume
PS = [θ1, θ1]with 0 ≤ θ1 ≤ θ1 = 1−θ1 ≤ 1, although this symmetry is not required
for our results.

Figure4 shows the principal’s payoff with and without information disclosure in
three different scenarios when f (x) = 1 − exp(−λx) with λ = 8 and � = 0.9. In
each panel, the black solid line represents the principal’s payoff without disclosure,
ν(θ1) ≡ ν(θ1, 1 − θ1), and the red dashed line represents the concavification of the
principal’s payoff over the region of feasible posteriors, ν̂(·) over PS . Each panel
highlights three features: (1) the inflection points of ν(·), denoted by C and D, at θ1 =
0.26 and θ1 = 0.74, respectively; (2) the unique local interior maximum of ν(·) inside
the region of feasible posteriors, which in each case corresponds to θ1 = 1

2 ; and (3) the
points B and E , where the value of ν(·) equals its value at the interior local maximum.
The function ν is concave in the region betweenC and D and convex otherwise. In each
case, we have that ṽ = sup{ν(θ) : ν′′(θ) < 0, θ ∈ PS} = f

( 1
2

) = 1 − exp(−λ/2),

and we have some point θ̂1 such that θ̂1 = sup{θ : ν̂(θ, [θ1, θ1]) = ν(θ)}.
The principal’s optimal signal structure depends on the a priori asymmetry of the

technologies (i.e. the prior �0), the quality or informativeness of the feasible signals

12 For any prior and any set of feasible posteriors, there is a signaling technology that generates the latter
from the former under Bayesian updating. When we compare the optimal policy with various priors and
different sets of feasible posteriors, the signaling technology itself is changing to keep the priors and
posteriors Bayes-consistent (see Fig. 6 for an example). Our goal here is to illustrate how different priors
and feasible posteriors give rise to different optimal policies.
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the principal can use for a given prior (i.e., PS(�0)), and the value of diversification
to the principal (i.e. ṽ).

First, if the principal can generate highly informative signals, thenPS includes pos-
terior beliefs close to 0 and 1. When min{ν(θ1), ν(θ1)} > ṽ, a maximally-informative
disclosure is optimal. Graphically, in Fig. 4 (first panel), θ1 lies somewhere between
points A andB, and θ1 lies somewhere between points E and F, and the concave closure
of ν(·) is the line that connects ν(θ1) and ν(θ1). The optimal signal reveals θ1 with
some probability q and θ1 with the remaining probability 1 − q, where q is such that
the expected posterior is equal to the prior, θ0. The principal benefits from inducing
extreme posteriors. The reason is that, when the value of diversification to the principal
is low (i.e. the r f (x) coefficient is low enough), revealing information to the agents
increases the principal’s expected value because, in equilibrium, agents under-react to
asymmetries in the technologies when beliefs are extreme. This leads to an optimal
disclosure rule that mixes between the two most extreme posteriors possible within
PS .

Second, suppose the available signals are not as informative and the set of feasible
posteriors, PS , is narrow enough so that max{ν(θ1), ν(θ1)} < ṽ. Moreover, suppose
that the technologies are ex-ante asymmetric, with technology 1 more likely to be
successful ex ante, i.e., θ0 is to the right of point D. Graphically, in Fig. 4 (second
panel), θ1 lies somewhere between points B and C, and θ1 lies somewhere between
points D and E. This requires a large enough value of diversification so that ṽ is large.
In this case, the optimal signal is partially informative: it reveals the posterior θ̂1 with
some probability q and θ1 with the remaining probability 1 − q, where q is such that
the expected posterior is equal to the prior.

Third, suppose that the principal has access to relatively uninformative signals, so
she can induce posterior beliefs in PS close to 0.5 in the region where ν(·) is concave.
Graphically, in Fig. 4 (third panel), θ1 and θ1 lie somewhere between points C and D.
In this case, ν̂(·,PS) = ν(·) over PS—there is no value from information disclosure,
and the optimal signal is perfectly uninformative, inducing a posterior equal to the
prior. The value of diversification is large enough, and the technologies are symmetric
enough that revealing informationwould lead tomore extremeposteriors,which agents
would over-react to in equilibrium compared to the first-best.

3.3 Degree of information conflict of interest: size of the prize and number of
competitors

We now study how the size of the prize and the number of competitors affect the
optimal information disclosure policy. Both the size of the prize, V , and the number
of competitors, M , impact ν(·) only indirectly, through � = ( M−1

M

)
V . Thus, to study

the effects of V and M , it is enough to examine the comparative statics on �.
Define the degree of information disclosure to be the type of information policy

that is optimal for the principal. From Proposition 3: for any given prior �0 and any
given set of attainable posteriors PS(�0), we have no disclosure, partial disclosure,
or maximal disclosure, depending on the parameters of the contest, including the size
of the prize and the number of competing agents.
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If the region of beliefs over which the principal’s value function ν is concave,
denoted by �C , expands in terms of set inclusion, then the degree of information
disclosure weakly decreases, i.e. it decreases whenever the optimal policy switches
from maximal or partial disclosure towards partial or no disclosure. We characterize
the effect of V and M on the degree of information disclosure by examining their
effect on �C .

For tractability, we focus on the case of two technologies, so � = (θ, 1 − θ). The
condition for concavity of ν at�when N = 2 (Lemma 2) is equivalent to g(�, θ) < 0,
where

g(�, θ) ≡ h(�θ) + h(�(1 − θ))

and h(x) = x f ′(x)[2− r f (x)]. g(�, θ∗) = 0 at an inflection point, θ∗, of ν(·). Thus,
for each�, the inflection point of ν(·) in [0, 0.5] is the solution to the implicit equation

g(�, θ∗(�)) = 0. (7)

Lemma 3 The solution to Eq. (7), θ∗ ≡ θ∗(�), is decreasing in � if and only if

h′(�(1 − θ∗))
h′(�θ∗) − h′(�(1 − θ∗))

+ θ∗ > 0 (8)

A sufficient condition for inequality (8) to hold is that h is increasing and concave.

It can be shown that the sufficient condition in the lemma (i.e., that the function
h(x) is increasing and concave) holds for all x when f (x) = xa , with a ∈ (0, 1) and

for x ∈
(
0, 2−√

2
λ

)
∪

(
3+√

3
λ

,∞
)
when f (x) = 1 − exp(−λx), with λ > 0.

Directly from this lemma we can describe how the size of the prize and the number
of contestants affect the optimal degree of information disclosure in the contest.

Proposition 4 The optimal degree of information disclosure weakly decreases when
the number of competitors increases or when the size of the prize increases, if and
only if inequality (8) holds.

Increasing the number of competing agents or increasing the size of the prize
increases the total investment on each technology. As a consequence, given that f (·) is
concave, there is a lower marginal return to investment on each particular technology.
Intuitively, there is sufficient investment on each technology so there is no need to
sacrifice diversification to increase the investment on any particular technology.Hence,
the value of focus becomes less important to the principal compared to the value of
diversification.When inequality (8) holds, the objective becomesmore concave around
the center of the simplex. Hence, for any given prior�0 and set of attainable posteriors
PS , as the region of concavity expands, the concavification of the objective function
changes according to each case of Proposition 3. Therefore, the optimal information
disclosure policyweakly changes frommore disclosure (maximal or partial disclosure)
to less disclosure (partial or no disclosure).
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Fig. 5 Function ν when
f (x) = 1 − e−8x for different
values of the prize V = 0.6
(solid line), V = 0.8 (dashed
line), V = 1 (dotted line). The
function ν is convex when
V = 0.6; it is concave in the
region [0.29, 0.70] when
V = 0.8; and it is concave in the
region [0.25, 0.74] when V = 1
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Fig. 6 Function ν (dashed line) and its concavification ν̂ (solid line) for f (x) = 1 − e−8x , for different
prize size. The vertical line indicates the fixed prior 0.4. The set of attainable posteriors with the experiment
technology in Example 1 is PS = [0.18, 0.67]

Example 2 To illustrate Proposition 4, we consider f (x) = 1 − exp−8x , for which
inequality (8) holds. This means that as � increases the region of concavity of ν

increases. Figure5 shows how the function ν(·) changes for prizes of different sizes,
V = 0.6, 0.8, 1, with M = 5 competitors. The function ν becomes concave around
the center and the concave region expands as the prize increases: ν is convex when
V = 0.6, but it is locally concave for V = 0.8, and the region of concavity expands
for V = 1.

Additionally, suppose the prior is θ = 0.4 and the most informative experiment is
generated by the same signal specification as in Example 1, with a parameterα = 0.75.
We can now characterize the optimal information disclosure policy. Note that the set
of attainable posteriors is PS = [0.18, 0.67].13 Figure6 shows both ν(·) (dashed
line) and its concavification, ν̂(·) (solid red line). The optimal information disclosure
policy depends on V : the higher the prize values, the lower the extent of information
disclosure (see Proposition 4). Thus, with lower prize values (e.g. V = 0.6, Fig. 6, first
panel), the principal uses maximal disclosure. At higher prize values (e.g. V = 0.8,
Fig. 6, second panel), the principal uses partial disclosure. At even higher prize values
(e.g. V = 1, Fig. 6, third panel), the principal does not disclose information.

We can generalize Example 2 and carry out the same analysis for any prior belief
θ ∈ [0, 1]. The vertical axis in Fig. 7 shows the set of posteriors used by the optimal

13 The boundary of the set of posteriors for each prior is illustrated in Fig. 2 (second panel).
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Fig. 7 As� increases (from the first panel to the third panel), the extent of information disclosure decreases.
For each prior, the solid (red) line shows the posteriors induced by the optimal information structure. In the
“Full” region, there is full information disclosure, i.e., signals induce most extreme posteriors possible. In
the “Partial” region, there is partial information disclosure, i.e., posteriors are not the most extreme ones.
In the “None” region, there is no information disclosure, i.e., the posterior equals the prior (color figure
online)

information disclosure policy. In the first panel of Fig. 7, when� = 0.48, the function
ν is convex and, conditional on the set of feasible posteriors for each prior, the optimal
policy is maximal information disclosure. In other words, for each prior, the optimal
information structure induces the same posteriors induced by the most informative
experiment. In the second panel, when � = 0.64, there is no information revelation
for any prior in [0.41, 0.59], partial information disclosure for priors in [0.26, 0.41] ∪
[0.59, 0.74] and full disclosure for priors in [0, 0.26] ∪ [0.74, 1]. In the third panel,
when � = 0.8, there is no information revelation for any prior in [0.35, 0.65], partial
information disclosure for priors in [0.21, 0.35] ∪ [0.65, 0.79] and full disclosure for
priors in [0, 0.21] ∪ [0.79, 1]. As the number of competitors increases, the inflection
point of ν(·) decreases, meaning that the extent of information disclosure decreases.
In other words, in a contest with more competitors, the principal may be less willing to
disclose information relative to a contest with the same characteristics but with fewer
competitors.

3.4 Optimal size of the prize and information conflict of interest

We examine the interaction between information design and the size of the prize.
In the previous section, we characterized conditions under which increasing the prize
reduces the extent of information disclosure.Hence, a natural question to ask iswhether
choosing aprize optimally completely overcomes the impact of informationdisclosure.
Specifically, for a given prior�0 and set of posteriorsP(�0), does the principal strictly
benefit by disclosing information when the size of the prize is chosen optimally?

To answer this question we define

γ (V ,�) = ν̂(V ,�) − ν(V ,�),

which is a positive function, since ν̂ ≥ ν for any (V ,�).

Proposition 5 Let V ∗
0 be the optimal prize when the principal cannot disclose infor-

mation. The principal benefits from disclosing information on top of choosing the prize
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Fig. 8 Left panel: functions ν̂(θ) and ν(θ), the value for the principal of inducing posterior θ with and
without information disclosure, for f (x) = 1 − e−8x for different values of the prize V . Right panel: The
optimal size of V as a function of the prior belief, θ , assuming the principal uses the optimal information
disclosure policy

optimally only if γ (V ∗
0 ,�) > 0. If γ (�, V ) is submodular in V and �, the optimal

size of the prize is smaller when the principal can choose both the optimal prize and
an optimal information disclosure policy relative to the size of the prize when the
principal cannot disclose information.

This proposition suggests that information disclosure and prizes can be substitutes:
using a smaller prize and disclosing information can make the principal strictly better
off relative to the case of setting prize without the possibility of information disclosure.

We illustrate that information disclosure strictly benefits the principal even after
the prize is chosen optimally. Specifically, we find the jointly optimal prize and infor-
mation disclosure for any prior θ for f (x) = 1 − exp−8x with two technologies,
five competitors, and we use the experiment technology in Examples 1 and 2, with
α = 0.75.

Figure8 (left panel) plots the principal’s payoff as a function of the prize, V , when
the prior is θ = 0.4 and the set of posteriors is P = [0.182, 0.667]. In the figure,
the solid line corresponds to ν̂(V ; θ) − V , the principal’s expected payoff when the
principal uses the optimal information disclosure, whereas the dashed line corresponds
to ν(V ; θ)−V , the principal’s expected payoffwhen she does not disclose information.

Figure8 (left panel) shows that information disclosure is valuable to the principal
as a design tool, as it increases the principal’s payoff beyond that from a contest with
an optimal prize. In this example, absent any disclosure the optimal prize is V = 0.356
and the principal’s expected payoff is 0.33. In contrast, with the optimal disclosure
policy the optimal prize is V = 0.321, and the principal obtains an expected payoff of
0.37. This shows that the optimal information disclosure policy and the prize interact
with each other: By using a combination of optimal information disclosure and prize,
the principal increases her revenue by 13.4 percent while reducing the size of the prize
by 9.8 percent.

Figure8 (right panel) shows the optimal prizewhenwe repeat the exercise of finding
the optimal prize for any prior θ ∈ [0, 0.5]. The figure shows that the optimal prize is
increasing in the prior, θ1, for θ1 ≤ 0.5. That is, as the two technologies become more
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symmetric in terms of their probabilities of being the best one, the principal’s optimal
prize increases. The intuition for this is clearer from Figs. 5 and 6: for priors closer to
0.5, as the prize increases, the principal’s objective tends to increase more compared
to how much it increases for priors further away from 0.5. Hence the optimal prize,
which implicitly also depends on the optimal information policy, tends to increase
when the technologies are more symmetric and the prior is closer to 0.5.

4 Conclusion

We study a setting where there are different approaches to tackle a problem, there is
uncertainty on the success of each approach, and agents compete in a contest to find
the best solution. We ask whether it is beneficial for the contest sponsor (the principal)
to disclose information regarding the different approaches. Crucially, the principal
is also uncertain about which approach is the best one, and has limited information
to share with the agents. We find that the principal does not always benefits from
revealing information that would lead agents to believe that one technology is more
promising than the rest, when she cares about diversification: revealing information
can induce too many agents to work on the most promising technology, which reduces
diversification.

We present a tractable framework to study contests with technological uncertainty
and to analyze the trade-off between information revelation and diversification. In our
setting, each agent chooses one out of N available technologies to compete in the
contest, and only one of these technologies is the best one ex post. The principal can
commit to reveal to the agents the results of an experiment that signals the success
of each technology. We fully characterize the optimal signal structure that maximizes
the principal’s expected payoff from the contest as a function of the set of all signals
available to the designer. We show that the informativeness of the optimal signal
structure crucially depends on three main features of the environment: (1) the value
of technological diversity; (2) the quality of the principal’s information; and (3) the
extent of technological uncertainty. Each of these factors affects the principal’s choice
of information structure, as it affects the key trade-off between diversification and
focus.

Revealing more precise information about the technologies induces more extreme
posteriors, which incentivizes agents to focus onmore promising technologies in equi-
librium. However, the equilibrium allocation of agents’ investments may over-react
to such asymmetries in their beliefs regarding the different technologies compared to
the principal’s first-best allocation. Because the technologies are uncertain, the prin-
cipal’s payoff includes the option value of developing less promising technologies,
so diversification is also valuable and conflicts with the incentive to focus on more
promising technologies. The optimal signal structure balances these considerations
and can be maximally informative, partially informative, or completely uninformative
in different cases.

These results apply to contest setting where agents can pursue different approaches,
such as in procurement, contests for innovation, promotions within organizations, and
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others. In all of these settings, the agents and the principal may be unsure about which
technology, idea, or project will be most valuable or feasible ex post.
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Appendix A Proofs

Proof of Proposition 1

Proof These results are standard in the literature (see, e.g., Corchón and Serena 2018).
Agent i solves:

max
xi,t ≥0

N∑
t=1

⎡
⎢⎢⎢⎣V θt

xi,t

M∑
j=1

x j,t

− xi,t

⎤
⎥⎥⎥⎦ .

This problem is separable in t , and so the first-order optimization conditions yield the
following equilibrium level of investment on technology t :

x∗
i,t = θt

(
M − 1

M2

)
V . (A1)

Thus, the aggregate equilibrium investment on technology t is

x∗
t ≡

M∑
i=1

x∗
i,t = θt�, (A2)
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where � = ( M−1
M

)
V .

If the principal could control the agent’s investments, the principal’s would choose
the aggregate investment on technology t according to:

max
yt

N∑
t=1

θt f (yt ) − yt

which implies that, at an interior solution, θt f ′(y∗
t ) = 1 or

y∗
t = h(θt ) ≡ ( f ′)−1

(
1

θt

)
. (A3)

Note that y∗
t increases with θt because h(·) is increasing (by concavity of f (·)).

For technology t both the equilibrium investment, x∗
t (θt ), and the first-best, y∗

t (θt ),
only depend on the belief that technology t is the best one, rather than on the entire
profile of beliefs. The aggregate investment for different technologies, however, are
not arbitrary because they relate to each other through the condition

∑N
t=1 θt = 1.

The aggregate equilibrium investment across all technologies is

N∑
t=1

x∗
t (θt ) = �,

which is independent of the agents’ beliefs and only depends on the size of the prize
and the number of agents. In contrast, the aggregate first-best investment is

N∑
t=1

y∗
t (θt ) =

N∑
t=1

h(θt ),

which depends on the profile of beliefs over all the technologies. The equilibrium
investment on technology t depends only on θt and�, while the first-best level depends
on the shape of the function f and on the belief θt . ��

Proof of Lemma 1

Proof Consider any two posteriors θ̃ , θ̃ ′ ∈ PS induced by some messages m′ and m′′,
from (possibly different) signal structures s′ and s′′, respectively. For any α ∈ (0, 1),
the posterior αθ̃ + (1 − α)θ̃ ′ can be induced with a signal structure s∗ that is an
appropriately chosen mixture of s′ and s′′. First, define a newmessage m∗, and replace
m′ and m′′ with m∗ in s′ and s′′, respectively. Thus, if the receiver knows whether a
message is generated by s′ or s′′, their posterior conditional on m∗ would be θ̃ or θ̃ ′,
respectively. Now define the mixture s∗ so that with probability Pr(s′) = α·Pr(m∗)

Pr(m∗|s′) a
message is generated according to s′, and with corresponding probability Pr(s′′) =
(1−α)·Pr(m∗)
Pr(m∗|s′′) a message is generated according to s′′.
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The mixture probabilities Pr(s′) and Pr(s′′) are chosen such that conditional on
observing the message m∗, the receiver believes that with probability α this messages
was generated by s′, and with probability 1−α it was generated by s′′. The receiver’s
posterior is αθ̃ + (1 − α)θ̃ ′, so the set PS is convex. ��

Proof of Lemma 2

Proof If � = (θ1, . . . , θN ) ∈ �N we can write θN = 1 − ∑N−1
t=1 θt . Then, restricted

to the (N − 1)-simplex, ν is a function of N − 1 variables. To show that this function
is concave, let H(�) be the (N − 1) × (N − 1) matrix of second derivatives of ν(�).
Given the separability of the function ν(·) the matrix H(�) is diagonal. The condition
in the lemma corresponds to imposing that the element in row t is negative, which is
a necessary and sufficient condition for the Hessian to be negative definite. ��

Proof of Proposition 2

Proof For part (i), note that at each vertex θi = 1 for some i ∈ N and θ j = 0 ∀ j �= i .
Hence the values at the vertices are ν(0, . . . , 0, 1, 0, . . . , 0) = 1· f (�). The only points
that can obtain the global maximum of f (�) are the vertices of the simplex. To see
this, consider any point θ̃ = (θ ′

1, . . . , θ
′
N ) such that ν(θ̃) = ∑

j θ ′
j f (θ ′

j�) = f (�).
Then f (θ ′

j�) ≥ f (�) for some j ∈ N . Since f is increasing, this requires θ ′
j = 1,

hence the point θ̃ is a vertex.
For part (ii), note

ν(�) ≡
∑

t

θt f (θt�).

We can replace θN = 1 − ∑N−1
i=1 θt . Then we have

ν(�|� ∈ �N ) ≡ θN f (θN �) +
N−1∑
t=1

θt f (θt�).

Taking the derivative w.r.t θt , for t = 1, . . . , N − 1 we get

∂ν

∂θt
= − f (θN �) − θN � f ′(θN �) + f (θt�) + θt� f ′(θt�).

For an interior maximum, we need ∇ν = 0, so we require

f (θN �) + θN � f ′(θN �) = f (θt�) + θt� f ′(θt�), for all t = 1, . . . , N − 1.

Clearly θt = 1
N is a solution to this equation.

Furthermore, the second order condition is negative if and only if 2 < r f
(

�
N

)
,

which yields part (ii).
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For part (iii), suppose for the sake of a contradiction that there exists a local interior
maximum � = (θ1, . . . , θN ) �= (1/N , . . . , 1/N ). Then there exist some indices i, j
such that θi < θ j . W.l.o.g. we can relabel θt = θi and θN = θ j . From the FOC, and
using that f is increasing, we get:

0 < f (θN �) − f (θt�) = −θN � f ′(θN �) + θt� f ′(θt�).

Hence θt� f ′(θt�) − θN � f ′(θN �) > 0. Plugging this in the second order condition
we get:

�{2[θt f ′(θt�) − θN f ′(θN �)] − θt f ′(θt�)r f (θt�) − θN f ′(θN �)r f (θN �)]} > 0,

which is a contradiction. So any belief � that satisfies the FOC but where θt < θN

cannot be a maximum, which yields part (iii). ��

Proof of Proposition 3

Proof The proof follows from the convexity of PS in Lemma 1, the characterization
of the objective function in Proposition 2, and the standard concavification argument.

1. A maximally informative signal obtains when the set of posteriors is rich enough,
so the global maxima of ν(�) over PS is below the concave closure of ν(�) over
the region PS , because ∂PS includes points close to the vertices of the simplex,
so the concave closure of ν(�) over PS corresponds to the plane that connects the
boundary of PS .
Then the optimal signal s∗ only induces posteriors in ∂PS , so for any arbitrary
prior p ∈ PS , Bayesian consistency of the posteriors determines the distribution
over posteriors on ∂PS .

2. A partially informative signal obtains when the set of posteriors is limited, so the
concave closure of ν(�) over PS coincides with ν(�) for some values (near the
center of the simplex �N ).

3. An uninformative signal obtains when the set of posteriors is concentrated towards
the center of the simplex �N , where ν is concave, so the concavification of ν(·)
over PS and ν(·) itself coincide.

��

Proof of Lemma 3

Proof First, recall that ν(·) satisfies ν(θ) = ν(1−θ), it is convex at θ = 0, and θ = 0.5
is the unique local interior maximum. Therefore, there exists a unique θ̃ ∈ [0, 0.5]
such that ν(·) is convex in [0, θ̃ ] and concave in [θ̃ , 0.5]. For any �, the inflection
point as an implicit function of � defined by

g(�, θ̃(�)) = 0.
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Taking derivative of this expression with respect to � we get:

∂g(�, θ̃(�))

∂�
+ ∂g(�, θ̃(�))

θ̃

d θ̃ (�)

d�
= 0.

Thus,

d θ̃ (�)

d�
= − ∂g(�,θ̃(�))

∂�

∂g(�,θ̃(�))

θ̃

.

We can write g = h(�θ) + h(�(1 − θ)). Then, the derivative of g with respect to �

is θh′(�θ) + (1− θ)h′(�(1− θ)) and the derivative with respect to θ is �[h′(�θ) −
h′(�(1 − θ))]. Therefore,

d θ̃ (�)

d�
= −[θh′(�θ) + (1 − θ)h′(�(1 − θ))]

�[h′(�θ) − h′(�(1 − θ))] = −h′(�(1 − θ))

�[h′(�θ) − h′(�(1 − θ))] − θ

�
.

Hence, the derivative is negative if

h′(�(1 − θ))

h′(�θ) − h′(�(1 − θ))
+ θ > 0

which is the condition in the lemma. If h is increasing and concave, this condition
clearly holds. ��

Proof of Proposition 4

The optimal degree of information disclosure is characterized by the inflection point
θ∗. The further this point is from 0.5, the less the degree of information disclosure.
The condition in Lemma 3 implies that the inflection point moves further from 0.5.
Since � is increasing both in the size of the prize and the number of competitors, the
result obtains.

Proof of Proposition 5

Proof Without information disclosure, the principal’s expected payoff after choosing
the optimal prize, for any prior �, is

max
V ≥0

ν(V ,�) − V , (A4)

where we now make explicit that ν depends on V and �. The principal’s expected
payoff from using an optimal information structure and then choosing the optimal
prize is

max
V ≥0

ν̂(V ,�) − V , (A5)
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Since, in general, ν̂(V ,�) �= ν(V ,�), we would not expect the maximum values in
(A4) and (A5) to be the same. The principal gets a weakly larger payoff by optimising
over the prize and the information structure. In fact, by definition,

ν̂(V ,�) = ν(V ,�) + γ (�, V ),

where γ (·) is a positive function, since ν̂ ≥ ν. Therefore, for any prior �, and any
prize V , we have

ν̂(V ,�) − V ≥ ν(V ,�) − V ,

so themaximum value in (A5) is always larger than themaximum value in (A4). Using
these observations, we have the following result. ��

Appendix BMicrofoundations for Tullock and f (·)
The literature has provided axioms that justify the functional formof a “contest success
function.” Skaperdas (1996) provides a set of axioms that deliver a Tullock-form as a
particular casewhen agentsmake uni-dimensional investments. Clark andRiis (1998a)
extends these results by allowing contestants to differ in their types. Rai and Sarin
(2009) generalizes the axioms in Skaperdas (1996) to allow agents to make multiple
types of investments that result in a “score” which is used to determine the contest
winner.

In this section, we provide two applied micro-foundations that deliver particular
cases of the two primitives of our model: (1) agents compete in a Tullock contest on
each technology; and (2) the principal’s payoff is given by a strictly increasing and
concave function, f (xt ).

B.1 Achievingmaximum accuracy

Agents compete in a contest to achieve the highest accuracy, such as in a prediction
contest where the goal is to minimise prediction errors. Their investments translate
into a score, and we assume that the player with the lowest score wins. In a prediction
contest, for example, the lowest score reflects the most accurate prediction, which has
the lowest mean-squared error.

Let us consider one of the technologies separately. Suppose that agent i obtains
score si ∼ exp(xi ) when investing xi . That is,

Pr(si ≤ s) = 1 − exp(−xi s).
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Agent i obtains the most accurate predictions when si < min j �=i s j . Note that

min j �=i s j ∼ exp
(∑

j �=i x j

)
. Therefore,

P(si < min
j �=i

s j ) =
∫ ∞

0
P(si < min

j �=i
s j |si = s)P(si = s)ds

=
∫ ∞

0
exp

⎛
⎝−s ·

∑
j �=i

x j

⎞
⎠ xi exp(−xi s)ds

= xi∑M
k=1 xk

Therefore, agent i’s probability of winning is given by the ratio of his investment over
the total investment on a particular technology.

Next, suppose that the principal’s payoff from obtaining a minimum score of s for
the best technology is B(s). Assume that B(s) = 0 for s > s̄, for some threshold s̄. In
other words, a principal that seeks to achieve accuracy gains nothing when the most
accurate prediction is, in fact, sufficiently inaccurate. Let X ≡ ∑M

k=1 xk be the agents’
aggregate investment on the best technology. Then the principal’s expected payoff is

f (X) =
∫ ∞

0
B(s)X exp(−X · s)ds,

which is a function of the agents’ total effort. This function is strictly increasing and
concave as long as s X < 1. Note that the agents’ equilibrium aggregate investment is
strictly lower than the prize V , so s X < 1 for any X ∈ [0, V ] as long as s̄V ≤ 1.

Hence this simple foundation induces the reduced-form representation in our main
model, where the contestants win according to the Tullock contest probabilities, while
the principal’s payoff is strictly increasing and concave over the relevant range of the
aggregate investment on each technology.

B.2 Noisy investments and exponential cost

Suppose that an agent’s actual investment on a given technology depends on a level
of investment that they choose, yi , plus a random shock, εi , which the agent cannot
control. A negative shock may represent that the agent cannot commit the planned
investment, and must invest less. A positive shock may represent a “donation” made
by an external party, which adds to the agent’s investment. Thus, the agent’s actual
investment in a technology is

si = yi + εi .

Theprincipal awards the prize to the agentwith the largest actual investment.Assuming
that εk is i.i.d. from a type-I extreme value distribution, the probability that agent i
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wins the contest is

Pr(si > max
j �=i

s j ) = exp(yi )∑M
k=1 exp(yk)

.

Next, suppose that the principal’s payoff is equal to the highest actual investment by
some agent on the best technology. We have that

E[ max
j=1,...,M

s j ] = ln

⎛
⎝ M∑

j=1

exp(yi )

⎞
⎠

Furthermore, assuming that the investment cost is exponential, and making the change
of variables xi = exp(yi ), we obtain both the Tullock contest winning probabilities
and the appropriate principal’s payoff, f (x) = ln(x), which is strictly increasing and
concave.

Hence this foundation also induces the reduced-form representation in our main
model, in this case using noisy investments and an exponential cost function.

Appendix C Technology-specific prizes

In this sectionwe study the possibility of choosing technology-specific prizes, {Vt }t∈N ,
which naturally changes the allocation of investment across technologies. There are
two important differences with our baseline analysis. First, the parameter � in the
baseline model is now technology-specific,�t = ( M−1

M

)
Vt . This means that the equi-

librium investment towards technology t is x∗
t = θt�t . Second, the prize is awarded

only to the ex-post best technology, which means that Vt is paid with probability θt .
Suppose the technology-specific prizes are announced before the realization of the

principal’s experiment. That is, the prizes are chosen ex-ante and are independent of
the posterior beliefs. Then, the principal’s payoff is

ν(�; V1, . . . , VN ) ≡
N∑

t=1

θt [ f (θt�t ) − Vt ]

Figure 9 shows this function for f (x) = √
x and for f (x) = 1 − exp−8x . Note that

the asymmetry of technology-specific prizes invalidates some properties of ν used in
the main analysis. For instance, the global maximum is not attained at all the extrema
of the simplex: it is attained at the technology t that maximizes f (�t ) − Vt . We also
lose symmetry with respect to the center of the simplex.

Our analysis readily extends to the case with technology-specific prizes: we can
compute the function ν and find its concavification, to study whether or not there are
gains from information disclosure.

Lemma 4 ν(�) is concave at � = (θ1, . . . , θN ) ∈ �N if and only if

�t θt f ′(θt �t )[2−r f (θt �t )]+�N θN f ′(θN �N )[2−r f (θN �N )] < 0, for all t = 1, . . . , N −1. (C6)

123



J. Lemus, E. Temnyalov

where r f (x) ≡ − x f ′′(x)

f ′(x)
is the relative risk aversion coefficient associated with f (·).

This result is analogous to Lemma 2, except that different prizes in combination
with beliefs determine the concavity of ν(·). However the asymmetry introduced by
technology-specific prizes makes the taxonomy of information policies more cumber-
some to describe. Figure10 shows three cases in which the principal benefits from
information disclosure when there are technology-specific prizes.

Next we ask: what is the optimal combination of prizes and information disclosure?
Figure11 shows the principal’s payoff for different combinations of technology-

specific prizes (V1, V2), when f (x) = 1−exp(−8x), when the prior is θ = 0.4 and the
most informative experiment is generated by α = 0.75 in Example 1. In this case, the
optimal prize using the optimal information disclosure is V1 = V2 = 0.32, whereas
the optimal prize without information disclosure is V1 = 0.35 < V2 = 0.37.
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Fig. 9 Left panel: f (x) = √
x , technology-specific prizes V1 = 0.5 and V2 = 0.3. Right panel: f (x) =

1 − exp−8x , technology-specific prizes V1 = 0.8 and V2 = 0.85
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Fig. 10 Value of information disclosure for three particular combinations of technology-specific prizes
for f (x) = 1 − exp−8x when the prior is θ = 0.4 and the most informative experiment is generated by
α = 0.75 in Example 1. Left panel: V1 = 0.6 and V2 = 0.65. Left panel: V1 = 0.7 and V2 = 0.75. Right
panel: V1 = 0.8 and V2 = 0.85
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Fig. 11 The value of
information disclosure for
different combinations of
technology-specific prizes for
f (x) = 1 − exp(−8x), when the
prior is θ = 0.4 and the most
informative experiment is
generated by α = 0.75 in
Example 1
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