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Abstract
Expected exponentially-discounted utility (EEDU) is the standard model of choice
over risk and time in economics. This paper considers the dynamic preference foun-
dations of EEDU in the timed risks framework. We first provide dynamic preference
foundations for a time-invariant expected utility representation. The new axioms for
this are called foregone-risk independence and strong time invariance. This class of
dynamic preferences includes EEDU as a special case. If foregone-risk independence
is strengthened to a new condition called conditional consistency, then an EEDU
representation results. Alternative approaches for extending exponential discounting
axioms to risk are considered, resulting in five new preference foundations of EEDU.

Keywords Risk and time preferences · Expected utility · Discounted utility ·
Preference axioms

Mathematics Subject Classification D15 · D81

1 Introduction

Risk and time are often treated separately in economics, yet many decisions involve
an element of both. The standard model that combines risk and time in economics
is expected exponentially-discounted utility (EEDU). It combines the most widely
used model for choice under risk, expected utility, and for riskless choice over time,
exponential discounting. This paper considers the preference foundations of EEDU.

A natural starting point for a foundation of EEDU is to use existing axioms for
expected utility (Fishburn 1970) at each point in time and to use the existing axioms
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for exponential discounting (Fishburn and Rubinstein 1982; Attema et al. 2010) for
riskless objects. It is known (Abdellaoui et al. 2011) that this approach does not deliver
EEDU, in particular because the utility derived over time and the utility derived for
risk need not be cardinally equivalent. The EEDU model, as such, requires its own
treatment. A consideration of how risks are judged though time, as opposed to a
separate treatment of risk and time.

The foundations of EEDU have been considered in various frameworks, such as
lotteries over riskless consumption streams (Epstein 1983; Hayashi 2003), streams of
independent lotteries (Anchugina 2017), and uncertain/ambiguous streams of out-
comes for EEDU with (possibly sets of) subjective probabilities (Kochov 2015;
Bastianello and Faro 2022). We consider a framework of timed risks. The decision
maker receives one outcome, at one point in time, but this timed outcome is risky. The
timed risks framework has been used before (Nachman 1975; Prakash 1977; Fishburn
and Rubinstein 1982; DeJarnette et al. 2020; Ebert 2020) and its simplified structure
makes it a suitable testing ground for developing preference conditions that clarify the
normative and empirical content of EEDU. The timed risk framework lends itself to
various economic applications. For example, models of alternating offers bargaining
typically use timed outcomes (Rubinstein 1982), or incorporate a risk of breakdown
(Binmore et al. 1986), or do both (see Muthoo 1999, p.85). The timed risk framework
captures each of these. There is also a large literature on optimal stopping problems,
applied to the evaluation of various options. The decision time, as well as the ran-
dom amount and random time of the eventual payoff, are central in the analysis. Such
problems fit well with the timed risk framework.

We adopt a dynamic approach, modelling a decision maker as a set of decision-
time-indexed preference relations over timed risks. Key to the approach here is that
updating occurs at each decision time. The decision maker only considers timed risks
that are known not to have paid out before the current decision time. Otherwise, the
timed risk is of no interest. Consider the following timed risk, that offers equal chances
of £10 at time 1, £20 at time 2, or £30 at time 3:

p=
[
1

3
chance, £10 at time 1; 1

3
chance, £20 at time 2; 1

3
chance of £30 at time 3

]

(1)

If the decision maker is considering p at time zero or at time one, then all of the
possible outcomes are yet to pass. At time 2, however, the decision maker considering
p knows that “£10 at time 1” has passed and did not happen. Updating the probabilities
of the remaining outcomes proportionally, as in Bayes rule, gives:

p|2 =
[
1

2
chance, £20 at time 2; 1

2
chance, £30 at time 3

]
(2)

Similarly, at decision time 3, the timed risk can be updated again giving:

p|3 =
[
£30 at time 3

]
(3)
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For all later times, the updated timed risk is not defined. The preference relations at
each decision time are defined over the set of those timed risks that remainwell-defined
after updating. The details are given in Sect. 2. The implications of this behaviour are
captured in a simple and testable preference axiom called foregone-risk independence.
Consider two timed risks, p and q. Foregone-risk independence requires that, at deci-
sion time a, p is preferred to q if and only if p|a is preferred to q|a. Section3 provides
the formal details.

Time invariance, the perception of times as delays relative to decision time, is a
well-known property of riskless choice over time (Halevy 2015). It is assumed bymost
models of discounting. In riskless choice over time this requires that preferences are
not reversed if the decision time and the timed outcomes are subject to common delay.
Also in Sect. 3, we extend this condition to risk.We formulate a strong time invariance
axiom that requires that preferences are not reversed if the decision time and all except
a set of possible timed outcomes, common to both timed risks, are subject to common
delay. For example, consider the following timed risks:

p =
[
1

3
chance, £10 at time 1; 1

3
chance, £20 at time 2; 1

3
chance of £30 at time 3

]

q =
[
1

3
chance, £10 at time 1; 1

3
chance, £20 at time 2; 1

3
chance of £40 at time 4

]

The “13 chance of £10 at time 1” and the “13 chance of £20 at time 2” are common
to both p and q. Let us fix those and apply a one unit of time delay to the remaining
outcomes:

p′ =
[
1

3
chance, £10 at time 1; 1

3
chance, £20 at time 2; 1

3
chance of £30 at time 4

]

q ′ =
[
1

3
chance, £10 at time 1; 1

3
chance, £20 at time 2; 1

3
chance of £40 at time 5

]

Strong time invariance requires that p is preferred to q at decision time zero if and
only if p′ is preferred to q ′ at decision time one. When combined with foregone-
risk independence, and basic assumptions concerning preferences, this condition is
sufficient to establish an expected utility representation of dynamic preferences. This
general expected utility representation includes EEDU as a special case.

In Sect. 4 it is shown that strengthening foregone-risk independence to an axiom
called conditional consistency characterises EEDU. The conditional consistency
axiom requires, roughly, that actual behaviour is consistent with planned behaviour.
The condition is one way to extend time consistency to risk. Alternative ways of
extending exponential discounting axioms to risk are considered. Axioms of strong
stationarity and of strong time consistency are formulated and the logical relation-
ships between these axioms are explained. Section5 summarises and states the main
theorem paper. The main theorem provides five equivalent axiom sets, each of which
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characterise those dynamic preferences that admit EEDU representations. All proofs
are contained in the “Appendix”.

2 Preliminaries

2.1 Notation for timed risks

Let X , the set of outcomes, be a separable metric space. Time is T = [0,∞) and has
the usual metric. Timed outcomes, such as (x, t), are elements of X ×T . Throughout
the paper, elements of T are taken to be calendar times. Timed risks, denoted p, q,
r . . . are elements of L, which is the set of simple probability measures over X × T
endowed with the topology of weak convergence. A timed risk provides the decision
maker with one outcome at one point in time, but both the outcome and its timing are
random. The degenerate timed risk, that assigns probability one to a timed outcome
(x, t), is written δ(x,t). We can write a timed risk as

p =
∑

(x,t)∈X×T
p(x, t)δ(x,t) (4)

where p(x, t) ≥ 0 for all (x, t) ∈ X × T ,
∑

(x,t)∈X×T p(x, t) = 1, and p(x, t) > 0
for finitely many (x, t) ∈ X × T .

We will be interested in cases where the timed outcomes of a given timed risk are
subject to a common delay. Given a timed risk p ∈ L and � ≥ 0, we write

p� =
∑

(x,t)∈X×T
p(x, t)δ(x,t+�), (5)

which is the timed risk p with all possible timed outcomes delayed by�. We will also
be interested in cases where some, but perhaps not all, timed outcomes are subject to
a common delay. Given S ⊆ T , we write [p,S, r ] to denote the timed risk such that

[p,S, r ] (x, t) =
{
p(x, t) for all (x, t) ∈ X × S,

r(x, t) for all (x, t) ∈ X × T \S.
(6)

That is, the timed risk that coincides with p for all times in S and coincides with r
elsewhere. Note that [p,S, r ] ∈ L if and only if p(X × S) = 1 − r(X × T \S).

Given p ∈ L, we denote the marginals on X and T as pX and pT , respectively.
Let T (p) = {t : pT (t) > 0}. Given a subset S ⊆ T , we let S(p) = T (p) ∩ S. That
is, S(p) is the times in S of those timed outcomes to which p assigns strictly positive
probability. Combining this with the above notations, if [p,S, r ] ∈ L then [p�,S, r ]
is well-defined for all � such that t ∈ S(p) implies t + � ∈ S.
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2.2 Dynamic preferences and foregone-risk independence

At time zero, we will define initial preferences �0 over the set of timed risk L. To
specify a dynamic preference, we want to consider a preference relation �a at each
decision time a ∈ T . But, for decision times a > 0, consider the following question:
for what set of timed risks should preferences �a be defined? Two extreme cases are
evident. First, timed risks with possible outcomes only at time a or later. It seems a
basic requirement that the decision maker at time a can rank such objects. Second,
consider timed risks with possible outcomes strictly before time a. At time a the
outcomes of such timed risks have passed, and so we will not require that the decision
maker can rank such objects. We could assume that the decision maker each time is
indifferent between all passed timed outcomes. Instead, we will say that �a is simply
not defined for such objects. We will define each �a only on a relevant subset of L.

Given decision time a > 0, consider timed risks with possible outcomes both
before and after time a. We will require that the decision maker can rank such objects
at time a. These rankings, however, need not agree with �0 because outcomes that
occur before a are, in this model, irrelevant at decision time a. To this end, we will
consider how timed risks are updated as timepasses. Thedecisionmaker only considers
timed risks that are known not to have paid out before the current decision time.
Hence, as time passes, the decision maker can update the probabilities attached to the
remaining outcomes. Let p|a denote the timed risk p conditional on decision time a.
Let tp = max {t : p(x, t) > 0} denote the latest time at which p can possibly pay out.
For 0 ≤ a ≤ tp, we define p|a so that:

1. p|a (x, t) = 0 for all (x, t) with t < a.
2. p|a (x, t) = p(x,t)

p(X×[a,∞))
for all (x, t) with t ≥ a.

The notation p|a is not defined if a > tp and we write p|a ∈ L if and only if p|a is
well defined. We can now define dynamic preferences. For all decision times a ∈ T
a preference relation �a is defined over the set La = {p : p|a ∈ L}. That is, �a is
defined over all timed risks p such that p|a is well defined. This captures the idea
of defining each �a only on a relevant subset of L. If one updates at time a and a
timed risk is still well defined, then it still has something to offer and so is relevant.
Note that L0 = L and that a ≤ b implies La ⊇ Lb. Furthermore, for all a ∈ T , La

is a nonempty convex subset of L. A dynamic preference is a set of such preference
relations {�a}a∈T .

Our first axiom, foregone-risk independence, captures the preference implications
of a decision maker who updates in the way described above:

Axiom 1 (Foregone-Risk Independence) For all p, q ∈ La we have p|a �a q|a if
and only if p �a q.

If the decision maker knows the decision time a and knows that the timed risks under
consideration have not yet paid out, then choosing between p|a and q|a really is the
same as choosing between p and q. This simply suggests that the decision maker
makes use of available information and that they understand probability calculus. A
violation of foregone-risk independence would mean not using available information
in an appropriate manner and the condition warrants normative status. A caveat is that
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the assumptions of the framework must be appropriate for the problem at hand. In a
framework of sequences, where the decision maker receives an outcome at each point
in time, it is not so clear that independence of previous outcomes is appropriate. In
the sequences framework, where previous outcomes did actually happen, the memory
of such consumption may well be relevant (Gilboa et al. 2016). In the timed risks
framework, however, the decision maker will receive only one outcome at one point in
time. Foregone-risk independence heremeans that the decisionmaker is not affected by
timed outcomes that may have previously been possible but never actually happened.

Togive a simple example, consider a business ownerwho is ordering some inventory
that can be immediately sold. There are three suppliers, A, B, and C. Orders can
be placed up to the day before delivery, and each supplier charges a different price.
Supplier A delivers Tuesday or Friday, with equal probabilities, and is medium priced.
Supplier B delivers Tuesday, but is expensive. Supplier C delivers Thursday, and is
cheap. Suppose that the business owner ordered from supplier A on Monday, but
finds after Tuesday that the inventory has not arrived. The business owner updates and
re-evaluates their choice. Supplier A is now certain to deliver Friday. The previous
possibility that supplier A might deliver Tuesday is not relevant. The owner knows
this did not happen. Supplier B is also now irrelevant, as Tuesday has passed. The
business owner could, and likely should, switch their order to supplier C.

2.3 Dynamic preference conditions

A dynamic preference is a weak order if, for all a ∈ T , �a is complete and transitive
on La . It is continuous if, for all a ∈ T and all p ∈ La , the sets {q ∈ La : q �a p}
and {q ∈ La : p �a q} are closed. An outcome x0 ∈ X is null if, for all a ≤ s, t ,
we have δ(x0,s) ∼a δ(x0,t). A set of outcomes X with a non-empty subset of null
outcomes X0 ⊂ X is non-negative if for all x ∈ X , x0 ∈ X0 and a ≤ t we have
δ(x,t) �a δ(x0,t), and is non-trivial if X \X0 is non-empty. If X is non-negative and
non-trivial, a dynamic preference satisfies impatience if for all x ∈ X \X0 and all
a, t, s ∈ T wehavea ≤ t < s if and only if δ(x,t) �a δ(x,s). The following assumptions
will be used throughout the paper:

Definition 1 (Basic Assumptions) The dynamic preference {�a}a∈T is a continuous
and impatient weak order. The set of outcomes X has a non-empty subset of null
outcomes, is non-negative, and is non-trivial.

The non-negativity assumption is purely for convenience and everything here can be
extended to include negative outcomes. Non-triviality is necessary for non-constant
utility representations. That X includes at least one null outcome is, however, an
assumption we cannot dispense with unless the representations obtained are altered.
See, for example, Fishburn and Rubinstein 1982, 688–690).

2.4 Dynamic models

A dynamic model {Ua}a∈T is a set of real-valued utility functions, Ua : La → R. A
dynamic preference {�a}a∈T is represented by the dynamic model {Ua}a∈T if, for all
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a ∈ T and all p, q ∈ La , we have p �a q if and only if Ua(p) ≥ Ua(q). That is, a
utility representation of each of the preference relations in the dynamic preference. It
has been known since Debreu (1954, 1964) that the basic assumptions are necessary
and sufficient for {�a}a∈T to be represented by a dynamic model {Ua}a∈T with each
Ua being continuous and strictly decreasing with respect to time. We will consider
two special cases below.

3 Expected time invariant utility

A timed risk p can be identifiedwith a random timed outcome (X , T ) that is distributed
such that Pr ((X , T ) = (x, t)) = p(x, t) for all (x, t) ∈ X × T . Given a utility
function for timed-outcomes, U : X × T → R, we will use the notation

Ep[U (X , T )] =
∑

{(x,t):p(x,t)>0}
p (x, t)U (x, t) (7)

to denote the expected utility of a timed risk p. A dynamicmodel conforms to expected
time invariant utility (ETIU) if there exists a utility function for timed-outcomes U :
X × T → R such that, for all a ∈ T and all p, q ∈ La , we have:

p �a q ⇔ Ep|a[U (X , T − a)] ≥ Eq|a[U (X , T − a)]. (8)

Three things are apparent in this representation: the expected utility form, the updating
of timed-risks at each decision time, and the treatment of time relative to decision
time. That is, the decision maker is concerned with outcomes and their respective
delays. As expectation is defined above, a timed outcome (x, t) will be included in
the calculation of Ep|a[U (X , T − a)] only if p|a(x, t) > 0, which is possible only if
t ≥ a. The updating at each decision time implies that ETIU preferences necessarily
satisfy foregone-risk independence.

A dynamic preference {�a}a∈T satisfies the independence axiom if, for all a ∈ T ,
p, q, r ∈ La and 0 ≤ α ≤ 1 we have:

p �a q if and only if α p + (1 − α) r �a αq + (1 − α) r . (9)

If preferences can be represented by ETIU, then they must satisfy the independence
axiom. Independence is a static axiom, butmost convincing normative defences invoke
dynamic arguments in atemporal frameworks using compound lotteries (Halevy 1988;
Karni and Schmeidler 1991). We replace the independence axiom with dynamic con-
ditions appropriate for the timed-risk framework.

3.1 Strong time invariance

Delays are differences between two calendar times. Calendar times are, therefore,
delays from a specified time zero. It may, however, be that the decision maker finds
the delay from decision time to be more relevant than the delay from time zero. If,
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for example, (x, t) refers to receiving an outcome x on 1st January 2040, and the
current decision time is 1st of January 2023, then (x, t) refers to receiving an outcome
x with a delay of 17 years. As the decision time changes, the delay associated with
(x, t) changes, but its calendar time does not. A decision maker has time invariant
preferences if, essentially, they focus on delays when assessing timed risks.

Time invariance is a well-known condition in intertemporal decision making. The
property was often implicitly assumed in the literature on time discounting, until
Halevy (2015) provided a preference definition. For riskless timed outcomes, this
states that preferences are not reversed if all timed outcomes and the decision time
are delayed by a common amount. For timed risks, one could ask that preferences
are not reversed if all possible timed outcomes and the decision time are delayed by
a common amount. If a possible timed outcome is common to both timed risks, then
we ask that preferences are unaffected if everything except these are delayed by a
common amount. We call this strong time invariance:

Axiom 2 (Strong Time Invariance) For all a ∈ T , [p,S, r ] , [q,S, r ] ∈ La, and
� ≥ 0 such that t ∈ S implies t ≥ a and t ∈ S(p) ∪ S(q) implies t + � ∈ S, we
have [p,S, r ] �a [q,S, r ] if and only if [p�,S, r ] �a+� [q�,S, r ].

Suppose that [p,S, r ] , [q,S, r ] ∈ La . The timed outcomes that are not common
to both of these timed risks occur only at times in S. Specifically, they occur at times
in S(p)∪S(q). If we wish to delay those timed outcomes by� ≥ 0, whilst preserving
the common timed outcomes outside of S, then we can ensure this by choosing� such
that the delayed times in S(p) ∪ S(q) remain in the subset S. That is, choose � ≥ 0
such that t ∈ S(p) ∪ S(q) implies t + � ∈ S. If the subset S occurs after decision
time a, so that t ∈ S implies t ≥ a, and � is chosen appropriately, then [p�,S, r ]
and [q�,S, r ] are well defined and both belong to La+�. The axiom then requires
that preferences are not reversed if the decision time and those timed outcomes in S
are all delayed by a common amount.

Restricting strong time invariance to degenerate timed risks gives that condition that,
for all δ(x,t), δ(y,s) ∈ La we have δ(x,t) �a δ(y,s) if and only if δ(x,t+�) �a+� δ(y,s+�),
which is time invariance. Strong time invariance extends this to risk. We state as a
Proposition that strong time invariance is necessary for ETIU maximisation:

Proposition 1 If a dynamic preference {�a}a∈T can be represented by expected time
invariant utility then it must satisfy strong time invariance.

3.2 ETIU representation

In the above, we have introduced the axioms of foregone-risk independence and of
strong time invariance. If dynamic preferences satisfy both of these axioms, then the
following result, which is central to our foundation of ETIU, can be obtained:

Proposition 2 Consider a dynamic preference {�a}a∈T that satisfies the basic
assumptions. If {�a}a∈T satisfies foregone-risk independence and strong time invari-
ance, then it satisfies the independence axiom.
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The main idea of the proof of Proposition 2 can be explained as follows. Consider
two timed risks p = p1δ(x,0) + p2δ(y,2) and q = q1δ(x ′,0) + q2δ(y′,2) that have
possible timed outcomes that occur at times 0 and 2, and let r = δ(z,1). Taking S =
[0, 1)∪ (1,∞) and� = 2 we can apply strong time invariance and α p+ (1−α)r �0
αq + (1 − α)r is equivalent to:

α
(
p1δ(x,2) + p2δ(y,4)

) + (1 − α)r �2 α
(
q1δ(x ′,2) + q2δ(y′,4)

) + (1 − α)r .

Updating these timed risks at decision time 2 gives

(
α

(
p1δ(x,2) + p2δ(y,4)

) + (1 − α)r
) |2 = p1δ(x,2) + p2δ(y,4) (10)

and

(
α

(
q1δ(x ′,2) + q2δ(y′,4)

) + (1 − α)r
) |2 = q1δ(x ′,2) + q2δ(y′,4), (11)

and so applying foregone-risk independence, the above holds if and only if:

p1δ(x,2) + p2δ(y,4) �2 q1δ(x ′,2) + q2δ(y′,4). (12)

Then, we must have p �0 q, because if p ≺0 q, then taking S = T and � = 2 and
applying strong time invariance would yield a preference contradicting the above. In
this way, the independence axiom is established. The proof of Proposition 2 applies
this idea more generally. In the proof, continuity of preferences with respect to time
(as given in the basic assumptions) is used explicitly. The above argument assumes
that the possible outcomes of r that occur at different times to those of p and of q.
If there are possible outcomes with the same timing, there may not exist an S such
that the argument applies. This is handled by perturbing the timings of r ’s possible
outcomes and appealing to a continuity argument.

The following Proposition provides a dynamic preference foundation for ETIU:

Proposition 3 For a dynamic preference {�a}a∈T that satisfies the basic assumptions,
the following statements are equivalent:

1. {�a}a∈T satisfies foregone-risk independence and strong time invariance.
2. {�a}a∈T can be represented by the dynamic model {Ua}a∈T such that, for all

a ∈ T and all p ∈ La and, we have:

Ua(p) = Ep|a[U (X , T − a)], (13)

where U : X × T → R is continuous and is strictly decreasing in t − a for all
non-null x.

If {�a}a∈T is represented by {Ua}a∈T as in statement 2 then {�a}a∈T is also rep-
resented by {Va}a∈T such that Va(p) = Ep|a[V (X , T − a)] for all a ∈ T and all
p ∈ La if and only if there exists λ > 0 and κ ∈ R such that V = λU + κ . That is,
utility is a cardinal scale.
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4 Expected exponential discounting

A dynamic model conforms to expected exponentially-discounted utility (EEDU) if
there exists a utility function for outcomes u : X → R and a discount factor 0 < β < 1
such that, for all a ∈ T and all p, q ∈ La , we have:

p �a q ⇔ Ep|a[βT u(X)] ≥ Eq|a[βT u (X)].

Hence, EEDU is the special case of ETIU whereU (x, t −a) = β t u(x) for all (x, t) ∈
X ×T . Neither the discount factor nor the utility function depend here on the decision
time a. Although we apply the discount factor β t to utility at time t ≥ a, we could
equivalently apply the discount factor β t−a at each decision time a and represent the
very same preferences. This section provides a dynamic preference foundation for
EEDU. It has been shown above that, when combined with the basic assumptions, the
axioms of foregone-risk independence and strong time invariance characterise ETIU.
EEDU is a special case of ETIU, so these axioms remain necessary, but they are not
sufficient.

It is well-known that, in riskless choice over time, preferences represented by
dynamic exponential discounting must satisfy time consistency. Translating that con-
dition to degenerate timed risks, time consistency is satisfied if, for all a ≤ b and
all δ(x,s), δ(y,t) ∈ Lb, we have δ(x,s) �a δ(y,t) if and only if δ(x,s) �b δ(y,t). One
might conjecture that appending this condition to the axiom set in Proposition 3 is
sufficient for an EEDU representation. However, as has been observed several times
(Abdellaoui et al. 2011; DeJarnette et al. 2020), this is not the case. One can obtain
an ETIU representation with von Neumann-Morgenstern utility U for timed risks,
and one can obtain an exponential discounting representation V (x, t) = β t u(x) for
degenerate timed risks, but there is nothing that requiresU = V . Indeed, they need not
even be cardinally equivalent. AsU and V both represent preferences over degenerate
timed risks, the most that can be said is that they must be ordinally equivalent. That
is, there exists a strictly increasing function φ : R → R such that U = φ ◦ V . We
are concerned with how the time consistency condition can be extended to timed risks
to obtain EEDU. We now strengthen the foregone-risk independence axiom in a way
that encapsulates time consistency.

4.1 Conditional consistency and EEDU

Consider the following axiom called conditional consistency:

Axiom 3 (Conditional Consistency) For all p, q ∈ Lb and a ≤ b we have p|b �a q|b
if and only if p �b q.

The preference p|b �a q|b could be interpreted as a plan, made at time a, to choose
p over q when time b arrives. The preference p �b q means p is actually chosen over
q at time b. Hence, conditional consistency captures the idea that actual behaviour is
consistent with planned behaviour. Conditional consistency strengthens foregone-risk
independence, which can be seen by taking a = b. Restricting conditional consistency
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to degenerate timed risks, noting that δ(x,s)|b = δ(x,s) for all δ(x,s) ∈ Lb, we have time
consistency. Conditional consistency is the precise strengthening of foregone-risk
independence that delivers a dynamic preference for EEDU:

Proposition 4 For a dynamic preference {�a}a∈T that satisfies the basic assumptions,
the following statements are equivalent:

1. {�a}a∈T satisfies conditional consistency and strong time invariance.
2. {�a}a∈T can be represented by the dynamic model {Ua}a∈T such that, for all

p ∈ L and all a ∈ T , we have:

Ua(p) = Ep|a[βT u (X)],

where u : X → R+ is continuous, u(x0) = 0 for all null x0 ∈ X, and β ∈ (0, 1).

Denote the representation in statement 2 as (u, β). Then {�a}a∈T is also represented
by (v, γ ) if and only if β = γ and v = λu for a constant λ > 0. That is, the discount
factor is unique and utility is a ratio scale.

If we restrict the framework here to include only degenerate timed risks (timed
outcomes), then a representation (u, β) can be obtained. In the riskless case, however,
it is known that u and β are unique only up to joint power (Fishburn and Rubinstein
1982, p.682). That is, (v, γ ) also represents preferences if and only if there are strictly
positive a, b such that v = aub and γ = βb. An implication of uniqueness up to joint
power is that one is free to choose the discount factor arbitrarily, provided that utility is
suitably adjusted. So one learns nothing, for example, by comparing two individuals’
discount factors. In the timed risks framework, however, the discount factor obtained
in the above Proposition is uniquely determined. Whether discount factors are appro-
priate measures of impatience is not clear, but interpersonal comparisons are at least
meaningful. To discuss comparative impatience, it is useful to use preference-based
notions such as delay aversion (Benoit and Ok 2007; Bastianello 2017).

4.2 Alternative axioms

In the previous section, conditional consistency was introduced as an extension of time
consistency to timed risks. The idea of time consistency in riskless choice is that the
decision maker does not reverse previously expressed preferences. For timed risks, if
the decision maker prefers p to q at decision a, then it is not immediate that p should
be preferred to q at a later time b. It is possible that there are timed outcomes under
p that are attractive at time a but that have passed by time b. The timed risks p|b
and q|b have no possible timed outcomes in the interval between a and b, and so this
does not present as a problem for the conditional consistency condition. One might
consider cases where there are possible timed outcomes of p and q between decision
times a and b, but these are common to both timed risks. Then, whatever is passed by
decision time b under one timed risk, is also passed under the other. In such cases, the
requirement that previously expressed preferences are not reversed is reasonable, and
we state this as an axiom:
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Axiom 4 (Strong Time Consistency) For all a ≤ b and p, q ∈ Lb, if p(x, t) = q(x, t)
for all (x, t) ∈ X × [a, b) then p �a q if and only if p �b q.

Stationarity is the requirement that preferences, at a fixed decision time, are not
reversed if timed outcomes are subject to a common delay. For timed risks, DeJar-
nette et al. (2020) proposed a risk stationarity axiom. This requires that preferences
between timed risks, at a fixed decision time, are not reversed if all timed outcomes
in the support of those risks are subject to a common delay. We state here a stronger
version of this axiom:

Axiom 5 (Strong Stationarity) For all a ∈ T , [p,S, r ] , [q,S, r ] ∈ La, and � ≥ 0
such that t ∈ S implies t ≥ a and t ∈ S(p) ∪ S(q) implies t + � ∈ S, we have
[p,S, r ] �a [q,S, r ] if and only if [p�,S, r ] �a [q�,S, r ].

Strong stationarity requires that preferences are not reversed if all except a common
set of possible timed outcomes are subject to a common delay. Restricting to the
case where S = T gives the risk stationarity condition. Restricting the condition to
degenerate timed risks gives the stationarity axiom of Fishburn and Rubinstein (1982).
Stationarity axioms do not seem to have the same normative appeal as time consistency
axioms. However, they are necessary and testable implications of EEDU. Furthermore,
as Halevy (2015) showed, these conditions are closely related. A similar result, stated
next, summarises the relationships between these conditions:

Proposition 5 Consider a dynamic preference {�a}a∈T that satisfies the basic
assumptions. Then, the following hold:

1. If {�a}a∈T satisfies conditional consistency and strong stationarity, then it satisfies
the independence axiom.

2. If {�a}a∈T satisfies foregone-risk independence, then any two of conditional con-
sistency, strong stationarity and strong time invariance imply that all three are
satisfied.

3. If {�a}a∈T satisfies foregone-risk independence and strong time consistency, then
it satisfies conditional consistency.

4. Any two of strong time consistency, strong stationarity and strong time invariance
imply that all three are satisfied.

5 Summarymain result

The following result is the main theorem of the paper, which summarises and follows
as a corollary of the Propositions given above:

Theorem 1 For a dynamic preference {�a}a∈T that satisfies the basic assumptions,
the following statements are equivalent:

1. {�a}a∈T satisfies conditional consistency and strong time invariance.
2. {�a}a∈T satisfies conditional consistency and strong stationarity.
3. {�a}a∈T satisfies foregone-risk independence, strong time consistency, and strong

time invariance.

123



Dynamic preference foundations of expected…

4. {�a}a∈T satisfies foregone-risk independence, strong time consistency, and strong
stationarity.

5. {�a}a∈T satisfies foregone-risk independence, strong time invariance and strong
stationarity.

6. {�a}a∈T can be represented by expected exponentially-discounted utility.

The equivalence of statements 1 and 2 follows from statement 2 of Proposition 5.
Statements 3 and 4 of Proposition 5 ensure the equivalence of statements 2 and 3 of
the Main Theorem. The equivalence of statements 3, 4 and 5 of the Main Theorem
follows from statement 4 of Proposition 5. The equivalence of statement 1 and 6 of the
Main Theorem repeats Proposition 4. Hence, the six statements are equivalent, and
so provide five different dynamic preference foundations for expected exponentially-
discounted utility.

6 Closing remarks

This paper provides various preferences conditions for choice over timed risks. We
focus on EEDU, as the central model for time and risk in economics. We incorporate
in the dynamic framework simple assumptions regarding information. The decision
maker knows the current date and knows that the timed risks being considered, as they
are being considered, have yet to pay out. In this setting, when combined with basic
preference assumptions, the axioms of foregone-risk independence and strong time
invariance are necessary and sufficient to establish a time-invariant expected utility
representation. This provides a new perspective on expected utility maximisation, as
the independence axiom emerges from dynamic preference conditions. How risks are
perceived through time, rather than a separate treatment risk and time. Strengthening
foregone-risk independence to conditional consistency delivers an expected exponen-
tially discounted utility representation.

The new axioms in this paper are falsifiable and experimental testing, in particular
of those axioms relating to updating timed risks, is warranted.1 Our consideration
is more normative. Foregone-risk independence, in particular, seems sufficiently self
evident that one would hope violations of the principle are corrected through learning
or experience. Time invariance, implied by strong time invariance, has been defended
by an arbitrariness principle. If the condition holds, there is no special, arbitrary, time
zero as all delays in all time periods are treated the same way. Conditional consis-
tency is more demanding than foregone-risk independence. The extent to which it is
compelling, and we believe it is compelling, provides the rationale for exponential
discounting over the many other possible forms of discounting. Evaluating and choos-
ing between such principles is important because, in some cases, one cannot have it
all. In the context of riskless social choice, for example, where heterogeneous evalua-
tions are aggregated, it has been shown that time consistency and time invariance are
incompatible (Jackson and Yariv 2015; Millner and Heal 2018). The formulation of

1 We have not discussed empirical challenges to expected utility and exponential discounting. These are
significant and well-known. For surveys, see Machina (1987) and Frederick et al. (2002).
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related concepts for risky decision making over time, as provided here, could be used
to extend such results.
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Appendix: Proofs

Throughout these proofs we will assume that the basic assumptions hold.

Proof of Proposition 1 Suppose that {�a}a∈T is represented by ETIU and consider
a ∈ T , [p,S, r ] , [q,S, r ] ∈ La , and � ≥ 0 such that t ∈ S implies t ≥ a and
t ∈ S(p) ∪ S(q) implies t + � ∈ S. Then [p,S, r ] �a [q,S, r ] if and only if:

∑
(x,t)∈X×S

p|a(x, t)U (x, t − a)) ≥
∑

(x,t)∈X×S
q|a(x, t)U (x, t − a),

where common terms have been cancelled. Timed risks are simple probability mea-
sures here and so we can enumerate the timed outcomes of p|a and q|a in X ×S that
occur with strictly positive probability. We will write that, in X ×S, p|a has possible
timed outcomes (xp1, tp1), . . . , (xpm, tpm) and that q|a has possible timed outcomes
(xq1, tq1), . . . , (xqn, tqn). The above inequality can therefore be written as:

p|a(xp1, tp1)U (xp1, tp1 − a) + . . . + p|a(xpm, tpm)U (xpm, tpm − a)

≥ q|a(xq1, tq1)U (xq1, tq1 − a) + . . . + q|A(xqn, tqn)U (xqn, tqn − a).

Define p�|a and q�|a such that p�|a(x, t + �) = p|a(x, t) and q�|a(x, t + �) =
q|a(x, t) for all (x, t) ∈ X × S. Then, the above is equivalent to:

p�|a(xp1, tp1 + �)U (xp1, tp1−a)+. . .+ p�|a(xpm, tpm + �)U (xpm, tpm − a)

≥ q�|a(xq1, tq1 + �)U (xq1, tq1 − a)+. . .+q�|a(xqn, tqn+�)U (xqn, tqn − a).

We can enumerate the timed outcomes of p�|a and q�|a in X × S. Denote
these (xp�1, tp�1), . . . , (xp�m, tp�m) and (xq�1, tq�1), . . . , (xq�n, tq�n). Further-
more,we can enumerate these so that (xp�i , tp�i ) = (xpi , tpi+�), for all i = 1, . . . , n
and so that (xq�i , tq�i ) = (xqi , tqi +�) for all i = 1, . . . ,m. By replacing these terms
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in the previous inequality, we have:

p�|a(xp�1, tp�1)U (xp�1, tp�1 − (a + �)) + · · ·
· · · + p�|a(xp�m, tp�m)U (xp�m, tp�m − (a + �))

≥ q�|a(xq�1|a, tq�1)U (xq�1, tq�1 − (a + �)) + · · ·
· · · + q�|a(xq�n, tq�n)U (xq�n, tq�n − (a + �)).

Notice that the earliest time in S that p�|a possibly pays out is no sooner than time
a + �. Then, for all a ≤ b ≤ a + �, we must have p�|a(x, t) = p�|b(x, t) for all
(x, t) ∈ X × S. For all such b, the previous inequality is equivalent to:

∑
(x,t)∈X×S

p�|b(x, t)U (x, t − (a + �)) ≥
∑

(x,t)∈X×S
q�|b(x, t)U (x, t − (a + �)).

Choosing b = a+�, this is easily seen to be equivalent to [p�,S, r ] �a+� [q�,S, r ].
ETUI preferences therefore necessarily satisfy strong time invariance. ��

Proof of Proposition 2 Assume that {�a}a∈T satisfies foregone-risk independence and
strong time invariance.Wewill show that�0 satisfies independence. Showing that each
�a satisfies independence is entirely similar. Let p, q ∈ L and consider r ∈ L such that
timed outcomes of r occur at different times to those of p and q, T (r) ∩ T (p) = ∅
and T (r) ∩ T (q) = ∅. The remaining case is considered later. Let α ∈ [0, 1] and
denote p̃ = α p + (1 − α)r and q̃ = αq + (1 − α)r . Assume that p̃ �0 q̃. Let

S̃ = {t : r(x, t) = 0}. Defined in this way, we have p̃ =
[
p̃, S̃, p̃

]
and q̃ =

[
q̃, S̃, q̃

]
,

and for all (x, t) we have:

[
p̃, S̃, p̃

]
(x, t) =

{
α p(x, t) if t ∈ S̃,

(1 − α)r(x, t) if t /∈ S̃,

and:

[
q̃, S̃, q̃

]
(x, t) =

{
αq(x, t) if t ∈ S̃,

(1 − α)r(x, t) if t /∈ S̃.

Let t∗ solve max t subject to t ∈ T (r). Choosing � > t∗, we have t ∈ S̃(p) ∪ S̃(q)

implies t + � ∈ S̃. By strong time invariance, taking S = S̃, we have p̃ �0 q̃ if and

only if
[
p̃�, S̃, p̃

]
��

[
q̃�, S̃, q̃

]
. By foregone-risk independence, this holds if and

only if
[
p̃�, S̃, p̃

]
|� ��

[
q̃�, S̃, q̃

]
|�. For all (x, t) with t ≥ � > t∗, we have:

[
p̃�, S̃, p̃

]
|�(x, t) = α p�(x, t)∑

y∈X ,s≥� α p�(y, s)
= p�(x, t)
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because
∑

y∈X ,s≥� p�(y, s) = 1. That is,
[
p̃�, S̃, p̃

]
|� = p�. By the same rea-

soning,
[
q̃�, S̃, q̃

]
= q�. So, we have shown that α p + (1 − α)r �0 αq + (1 − α)r

if and only if p� �� q�. By strong time invariance, but this time taking S = T , this
holds if and only if p �0 q, hence �0 satisfies independence for the case where r is
such that timed outcomes of r occur at different times to those of p and q.

We have considered the case where p, q, r ∈ L and the timed outcomes of r occur
at different times to those of p and q, T (r) ∩ T (p) = ∅ and T (r) ∩ T (q) = ∅.
We now consider with the remaining case where at least one of T (r) ∩ T (p) or
T (r) ∩ T (q) is non-empty. The idea is to perturb r , apply the above, allow these
perturbations to tend to zero, then appeal to continuity. For the details, let R ⊂ T
denote the set of times where the timing of an r outcome coincides with the timing
of a p or q outcome, R = T (r) ∩ (T (p) ∪ T (q)). Given m > 0 let rR,m be defined
so that rR,m(x, t + 1

m ) = r(x, t) for all (x, t) ∈ X × R and rS,m(x, t) = r(x, t) for
all (x, t) ∈ X × T \R. By choosing a sufficiently large m, specifically m such that
1
m < min {|t − s| : t ∈ R, s ∈ T (p) ∪ T (q)}, the timing of outcomes of rR,m do not
coincide with the timings of p or q, that is T (rR,m) ∩ T (p) = ∅ and T (rR,m) ∩
T (q) = ∅. Therefore, by the arguments given above, we have p �0 q if and only if
α p+(1−α)rR,m �0 αq+(1−α)rR,m for allm that are sufficiently large. Notice that
limm→∞ rR,m = r and so, by continuity, we have α p + (1− α)r �0 αq + (1− α)r ,
as required. ��
Proof of Proposition 3 We show that statement 1 implies statement 2. The converse
has been shown in the main text and Proposition 1. If statement 1 holds then, by
Proposition 2, �0 satisfies independence. Combined with the basic assumptions, this
guarantees that �0 admits an expected utility representation, p �0 q if and only if
Ep[U (X , T )] ≥ Eq [U (X , T )] for a continuous functionU : X×T → R (Grandmont
1972). For all x such that (x, 0) �0 (x0, 0), impatience implies thatU (x, t) decreases
strictly with t . The utility function U is a cardinal scale, and so �0 is represented by
EpV if and only if there exists λ > 0 and κ ∈ R such that V = λU + κ .

Given time a > 0, using foregone-risk independence, for all p, q ∈ La we have
p �a q if and only if p|a �a q|a. Notice that all p ∈ La implies (p|a)−a ∈ L. Then,
by strong time invariance, p|a �a q|a if and only if (p|a)−a �0 (q|a)−a , which holds
if and only ifE(p|a)−a

[U (X , T )] ≥ E(q|a)−a
[U (X , T )]. Notice thatE(p|a)−a

[U (X , T )]
can be equivalently expressed as E(p|a)[U (X , T − a)]. Therefore, for all p, q ∈ La ,
we have p �a q if and only if E(p|a)[U (X , T − a)] ≥ E(q|a)[U (X , T − a)]. This
holds for all a ∈ T so an ETIU representation of {�a}a∈T exists. ��
Proof of Proposition 4 By Proposition 3, �0 is represented by Ep[U (X , T )]. Given
a ≥ 0, conditional consistency requires that p �a q if and only if p|a �0 q|a, and
so �a is represented by Ep|a[U (X , T )]. There exists a null outcome x0 ∈ X and
we set U (x0, 0) = 0. Recall that, for all s, t ∈ T , we have δ(x0,s) ∼0 δ(x0,t) and so
U (x0, ·) ≡ 0.As X is non-negative,U ≥ 0.DefineUa such thatUa(x, t) = U (x, t−a)

for all (x, t). Proposition 3 also implies that �a is represented by Ep|a[Ua(X , T )].
SinceU andUa are both von Neumann-Morgenstern utilities for�a and the locations
are fixed so thatU (x0, ·) ≡ Ua(x0, ·) ≡ 0, we must haveUa = λaU for some λa > 0.
Then, we haveU (x, t) = Ua(x, t+a) = λaU (x, t+a) for all (x, t) ∈ X×T . Fixing a
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(z, r) ∈ X×T with δ(z,r) �0 δ(x0,r), we can define a function D : T → R++ such that
D(t) = 1

λt
= U (z,r+t)

U (z,r) for all t ∈ T andbe assured that D does not dependon the choice
of (z, r), becauseU (z, r + t) = D(t)U (z, r) holds for all (z, r) ∈ X × T . Defined as
such, D is a continuous and strictly decreasing function and D(0) = 1. Given s, t ∈ T ,
we can choose r = 0 followed by r = s to get D(t) = U (z,t)

U (z,0) = U (z,s+t)
U (z,s) . Similarly,

we have D(s) = U (z,s)
U (z,0) and so:

D(s + t) = U (z, s + t)

U (z, 0)
= U (z, s)

U (z, 0)

U (z, s + t)

U (z, s)
= D(s)D(t).

The Cauchy functional equation D(s+ t) = D(s)D(t) therefore holds for all s, t ∈ T .
The only continuous solution, not equal to zero everywhere, is D(t) = β t for some
β > 0 (see, for example, Corollary 1.36 in Kannappan 2009). Defining u(x) :=
U (x, 0) for all x ∈ X , noting that U (x, t) = D(t)U (x, 0) for all (x, t) ∈ X × T ,
we have U (x, t) = β t u(x) for all (x, t) ∈ X × T . Because impatience requires that
β t u(x) is strictly decreasing in t for all non-null x , we have β ∈ (0, 1). Under the
requirement thatU (x0, ·) ≡ 0,U is a ratio scale and therefore the utility for outcomes
u satisfies u(x0) = 0 and is a ratio scale. The discount factor β is uniquely determined
because β t = U (x,t)

U (x,0) for all (x, t). ��
Proof of Proposition 5 Statement 1Assume that {�a}a∈T satisfies conditional consis-
tency and strong stationarity. We show that �0 satisfies independence. That each �a

satisfies independence is entirely similar. Let p, q ∈ L and consider r ∈ L such that
T (r)∩T (p) = ∅ andT (r)∩T (q) = ∅. The remaining case can be shown, by perturba-
tion and continuity, exactly as in the proof of Proposition 2. Let S̃ = {t : r(x, t) = 0}.
Let t∗ solve max t subject to t ∈ T (r). Choosing � > t∗, we have t ∈ S̃(p) ∪ S̃(q)

implies t+� ∈ S̃. Letα ∈ [0, 1] and denote p̃ = α p+(1−α)r and q̃ = αq+(1−α)r .
To develop a contradiction, suppose a violation of independence: p̃ �0 q̃ and p ≺0 q.

The assumed p̃ �0 q̃ preference, by strong stationarity with S = T , is equiv-
alent to p̃� �0 q̃�. This can be rewritten as [ p̃�, S̃, p̃�] �0 [q̃�, S̃, q̃�]. By
strong stationarity again, but now taking S = S̃, this preference is equivalent to
[ p̃2�, S̃, p̃�] �0 [q̃2�, S̃, q̃�]. Notice that [ p̃2�, S̃, p̃�] = [ p̃2�, S̃, p̃�]|� and
[q̃2�, S̃, q̃�] = [q̃2�, S̃, q̃�]|�, because the timed outcomes that are possible under
these timed risks cannot occur before time �. Then, by conditional consistency, this
preference is equivalent to [ p̃2�, S̃, p̃�] �� [q̃2�, S̃, q̃�].

Now consider the other assumed preference, p ≺0 q. This is equivalent, by
strong stationarity with S = T , to p� ≺0 q�. Note that p� = [ p̃�, S̃, p̃]|� and
q� = [q̃�, S̃, q̃]|�, and so by conditional consistency this preference is equivalent to
[ p̃�, S̃, p̃] ≺� [q̃�, S̃, q̃]. By strong stationarity, now with S = S̃, this is equivalent
to [ p̃2�, S̃, p̃�] ≺� [q̃2�, S̃, q̃�]. Thus, we arrive at a contradiction, and so �0 must
satisfy independence.

Statement 2 Assume strong stationarity and strong time invariance. Let p, q ∈ Lb

anda ≤ b. By strong time invariance, p|b �a q|b if and only if (p|b)b−a �b (q|b)b−a .
By strong stationarity, (p|b)b−a �b (q|b)b−a if and only if p|b �b q|b. By foregone-
risk independence, p|b �b q|b if and only if p �b q, and so conditional consistency
holds.
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Next, suppose that {�a}a∈T satisfies conditional consistency and strong time invari-
ance. Consider a ∈ T , [p,S, r ] , [q,S, r ] ∈ La , and � ≥ 0 such that t ∈ S
implies t ≥ a and t ∈ S(p) ∪ S(q) implies t + � ∈ S. By strong time invariance,
[p,S, r ] �a [q,S, r ] if and only if [p�,S, r ] �a+� [q�,S, r ]. By Proposition 2,
{�a}a∈T satisfies independence, and so [p�,S, r ] �a+� [q�,S, r ] if and only if[
p�,S, r̃

]
�a+�

[
q�,S, r̃

]
, provided that r̃ is chosen so that these timed risks are

well-defined. Choose such an r̃ with the additional property that r̃(x, t) = 0 for all
(x, t) ∈ X × [a, a + �). Then,

[
p�,S, r̃

]
and

[
q�,S, r̃

]
must also both assign zero

probability to all timed outcomes with times in the [a, a+�) interval. For these timed
risks, the timed outcomes in S occur no earlier than a + �, and for times not in S
we chose r̃ accordingly. This means that

[
p�,S, r̃

] |(a + �) = [
p�,S, r̃

] |a and[
q�,S, r̃

] |(a + �) = [
q�,S, r̃

] |a. By conditional consistency,
[
p�,S, r̃

]
�a+�[

q�,S, r̃
]
if and only if

[
p�,S, r̃

] |(a + �) �a
[
q�,S, r̃

] |(a + �), equivalent
to

[
p�,S, r̃

] |a �a
[
q�,S, r̃

] |a. By foregone-risk independence,
[
p�,S, r̃

] |a �a[
q�,S, r̃

] |a if and only if
[
p�,S, r̃

]
�a

[
q�,S, r̃

]
. With a final application of inde-

pendence, this is equivalent to [p�,S, r ] �a [q�,S, r ], and so strong stationarity
holds.

Finally, suppose that {�a}a∈T satisfies conditional consistency and strong stationar-
ity. Consider a ∈ T , [p,S, r ] , [q,S, r ] ∈ La , and � ≥ 0 such that t ∈ S implies t ≥
a and t ∈ S(p)∪S(q) implies t+� ∈ S. By strong stationarity, [p,S, r ] �a [q,S, r ]
if and only if [p�,S, r ] �a [q�,S, r ]. By foregone-risk independence, this is equiva-
lent to [p�,S, r ] |a �a [q�,S, r ] |a. As above, we can choose r̃ such [

p�,S, r̃
] |(a+

�) = [
p�,S, r̃

] |a and
[
q�,S, r̃

] |(a + �) = [
q�,S, r̃

] |a. By the first state-
ment of this Proposition, {�a}a∈T satisfies independence, and so this implies that
[p�,S, r ] �a [q�,S, r ] is equivalent to

[
p�,S, r̃

] |(a+�) �a
[
q�,S, r̃

] |(a+�).
By conditional consistency, this holds if and only if

[
p�,S, r̃

]
�a+�

[
q�,S, r̃

]
.With

a final application of independence, this is equivalent to [p�,S, r ] �a+� [q�,S, r ],
and so strong time invariance holds, establishing statement 2.

Statement 3Assume that {�a}a∈T satisfies strong time consistency and foregone-
risk independence and let p, q ∈ Lb and a ≤ b. Because p|b(x, t) = q|b(x, t) = 0
for all (x, t) ∈ X × [a, b), strong time consistency requires that p|b �a q|b if and
only if p|b �b q|b. By foregone-risk independence, p|b �b q|b if and only if p �b q
and so conditional consistency holds. This establishes statement 3 of the Proposition.

Statement 4Assume strong stationarity and strong time invariance. Let a ∈ T and
p, q ∈ Lb, with p(x, t) = q(x, t) for all (x, t) ∈ X × [a, b). Setting S = [b,∞)

can write p = [p,S, p] and q = [q,S, p]. If S = [b,∞), then t ∈ S(p) ∪ S(q)

implies both t ≥ b and t + b − a ∈ S. Then, by strong time invariance, p �a q if
and only [pb−a,S, p] �b [qb−a,S, p] and, by strong stationarity, [pb−a,S, p] �b

[qb−a,S, p] if and only if [p,S, p] �b [q,S, p]. That is, strong time consistency
holds.

Next, suppose that {�a}a∈T satisfies strong time consistency and strong time invari-
ance. Consider a ∈ T , [p,S, r ] , [q,S, r ] ∈ La , and � ≥ 0 such that t ∈ S
implies t ≥ a and t ∈ S(p) ∪ S(q) implies t + � ∈ S. By strong time invari-
ance, [p,S, r ] �a [q,S, r ] if and only if [p�,S, r ] �a+� [q�,S, r ]. We then have
[p�,S, r ] (x, t) = [q�,S, r ] (x, t) = 0 for all (x, t) such that t ∈ [a, a + �) ∩ S
and also have [p�,S, r ] (x, t) = [q�,S, r ] (x, t) = r(x, t) for all (x, t) such
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that t ∈ [a, a + �)\S. The prerequisites of strong time consistency hold, and so
[p�,S, r ] �a+� [q�,S, r ] if and only if [p�,S, r ] �a [q�,S, r ]. That is, strong
stationarity holds.

Finally, suppose that {�a}a∈T satisfies strong time consistency and strong sta-
tionarity. Consider a ∈ T , [p,S, r ] , [q,S, r ] ∈ La , and � ≥ 0 such that t ∈ S
implies t ≥ a and t ∈ S(p) ∪ S(q) implies t + � ∈ S. By strong stationarity,
[p,S, r ] �a [q,S, r ] if and only if [p�,S, r ] �a [q�,S, r ]. As above, we have
[p�,S, r ] (x, t) = [q�,S, r ] (x, t) for all (x, t) such that t ∈ [a, a + �), as each are
equal to zerowhere [a, a+�) intersects S and are equal to r(x, t) otherwise. By strong
time consistency, [p�,S, r ] �a [q�,S, r ] if and only if [p�,S, r ] �a+� [q�,S, r ].
That is, strong time invariance holds, establishing Statement 4 and the Proposition. ��
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