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Abstract
A principal makes a binary decision based on evidence that can be manipulated by a
privately informed agent. The principal’s objective is to minimize the expected loss
associated to type I and II errors.When the principal can commit to an acceptance stan-
dard, the optimal test features ex-post inefficient standards, to internalize the agent’s
manipulation incentives. We provide conditions for the principal to set soft or harsh
standards, that is, lower or higher standards, respectively, than the ex-post optimal stan-
dard. When misaligned manipulation (i.e., manipulation by the low type) is dominant,
the principal sets soft standards when the prior probability that the candidate is low
type is relatively small. In contrast, when aligned manipulation (i.e., manipulation by
the high type) is dominant, the principal sets soft standards when the prior probability
that the candidate is low type is relatively large. In both scenarios, these soft standards
result in that the non-commitment equilibrium outcome is Pareto dominated by the
equilibrium outcome under commitment. We also provide conditions for the optimal
revelation mechanism to Pareto dominate commitment when the prior probability that
the agent is low type is relatively large.
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1 Introduction

There are many real world examples in which agents devote resources to influence
an assessment. For instance, in the wake of the replicability crisis, the scientific com-
munity has come to realize that methodologies and practices followed for decades, or
even centuries, are not immune to malign incentives and research misconduct in par-
ticular.1 A number of alternative solutions have been put forth; for instance, recently,
the Ministry of Science and Technology and courts in China have moved towards hard
penalties for scientific misconduct—the most extreme even considering the death
penalty.2 However, in many fields, in practice it is nearly impossible to detect research
misconduct and even more difficult to prove it, rendering potential punishment vir-
tually ineffective.3 The logic of the problem is not exclusive to research misconduct.
In civil litigation, evidence tampering is pervasive. Sanchirico (2004) points out that
“according to many judges and practitioners[,]...documents that should be produced
in response to a discovery request are regularly shredded, altered, or suppressed.”

Our paper analyzes the management of information manipulation.4 We consider a
decision maker facing a binary decision problem—approval or rejection. The decision
maker’s objective is to minimize the expected loss associated to type I and II errors;
i.e., approving a low type agent and rejecting a high type. On the other hand, the
agent’s preference for approval is type-independent. Before choosing an action, the
decision maker observes evidence that is partially informative about the agent’s type.
However, the agent may exert hidden efforts to alter the evidence, in order to improve
the chances of a favorable decision.

We consider two forms of informationmanipulation. Test-defensiveness in psychol-
ogy is a useful application to illustrate. On one hand, according to Butcher (2002),
“When taking psychological tests at pre-employment, pilots who have personality
problems and other mental health symptoms can respond in a way to ‘mask’ those
problems”.5 On the other hand, Butcher (1994) suggests that high average perfor-
mance of pilots in psychological tests can be explained by fit pilots’ attempts to
display “overly favorable response patterns.” Therefore, high type agents may also
manipulate evidence; and in some contexts, even to a greater extent than low type
agents. For example, consider the problem of admission in graduate school programs
requiring specific skills or background. Many schools use qualifying or preliminary
exams in their in-program selection procedures (e.g., economics, mathematics, and
engineering). Qualified candidates’ readiness for the exams can increase substantially
with their exerted effort, which is likely to be determined by approval cut-offs. In con-

1 Di Tillio et al. (2017) provide a historical account of the development of experimental methods.
2 Source: https://www.statnews.com/2017/06/23/china-death-penalty-research-fraud/ (STATNEWS June
23, 2017).
3 Although punishment is not completely ineffective in all fields, within several of them, uncovering
misconduct may not be practical (see, e.g., Fanelli 2009).
4 In the absence of concerns about collateral effects on the agent’s incentives, such decisions are analyzed
as standard statistical decision problems (see, e.g., Neyman and Pearson 1933; Karlin and Rubin 1956, and
DeGroot 2005).
5 Airlines’ screening of pilots was subject to intensive scrutiny in 2015, in the aftermath of a Germanwings
plane crash in the Alps, believed to be deliberately caused by the pilot.
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trast, unqualified candidates’ readiness may increase very little due to lack of skills
or a weak background.6 Since the decision maker’s and high type agents’ incentives
are aligned, we refer to the effort of the latter as aligned manipulation. In contrast, we
refer to the effort exerted by low type agents asmisaligned manipulation. Both types of
manipulation, however, are entirely wasteful: they generate a cost to the agent without
altering the probability that her type is high. For instance, in the test-defensiveness
application, preparation for a psychological test is unlikely to affect the psychological
fitness of a pilot.

First, we analyze a simple model of commitment to a standard of evidence. In
order to discourage misaligned manipulation and incentivize aligned manipulation,
the resulting standards under commitment differ from optimal statistical decision-
making. We characterize the direction of the deviations from ex-post optimality in
terms of two interacting factors: the manipulation effect that is dominant (misaligned
or aligned), and the prior probability that the agent’s type is low (Propositions 1-4).
Second, we analyze a revelation mechanism for this problem and show that offering a
decision rule that only relies on a standard for agents reporting a high type is optimal.
Since the decision maker is solely concerned with encouraging manipulation when
designing the optimal mechanism, the corresponding standard and the standard under
commitment may be biased in opposite directions with respect to the ex-post efficient
standard.

Commitment improves the expected payoff of the decision maker. Perhaps sur-
prisingly, it generically involves lowering the standard compared to the case without
commitment within a non-trivial set of prior beliefs—therefore leading to outcomes
that are Pareto superior (Corollaries 1 and 2). In turn, the optimal mechanism Pareto
dominates commitment for relatively high priors that the type is low (Propositions 5
and 6), as for such priors, the revelation mechanism results in lower standards than
commitment.

We characterize when optimal standards of evidence are harsh or soft; i.e., require,
respectively, more or less favorable evidence than optimal statistical tests for choosing
the agent’s preferred action.7 It is instructive to start the analysis with the case of pure
misaligned manipulation, in which the high type is non-responsive to changes in
the standard. For large prior probabilities that the type is high, the ex-ante optimal
standard is soft (Proposition 1). This is because soft standards help decision making
if low type agents’ effort is a strategic complement of the standard. In turn, under
the MLRP assumption, strategic complementarity develops for the low standards that
arise in equilibrium, when the agent’s type is likely to be high (Lemmata 1 and 2). An
analogous reasoning reveals that harsh standards are ex-ante optimal when the agent’s
type is likely to be low.

In contrast, the results reverse in the pure aligned manipulation model. In this
model, for large prior probabilities that the type is high, the ex-ante optimal standard
is harsh; and, for large prior probabilities that the type is low, the ex-ante optimal
standard is soft (Proposition 2). Therefore, a key policy insight is that the agent’s

6 For an empirical analysis of the determinants of success in qualifying exams, thesis completion, and
research productivity in economics Ph.D. programs, see Grove and Wu (2007).
7 Commitment does not always lead to ex-post inefficiencies (see, e.g., Li and Suen 2004; Ben-Porath et al.
2019 and Vohra et al. 2021).
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preferred action requires less favorable evidence either when the agent’s type is likely
to be high under pure misaligned manipulation (due to the strategic complementarity
between the standard and effort), or when the agent’s type is likely to be low under
pure aligned manipulation (due to the strategic substitutability between the standard
and effort).8

Next, we consider the general case in which the decision maker is concerned with
both misaligned manipulation and aligned manipulation. The extent of the respon-
siveness to the standard of each agent type’s effort plays a crucial role in the analysis.
We consider a parametrized version of the model that allows us to vary both the high
type’s natural readiness and the manipulation cost of the low type. By changing these
parameters we are able tomodify the responsiveness of aligned andmisalignedmanip-
ulation, respectively, to changes in the standard. In particular, we show formally that
our results for the pure misaligned manipulation case are robust within a range of
large values for the natural readiness of the high type (Proposition 3), provided that
the marginal benefits to preparation vanish as readiness increases. Analogously, our
results for the pure aligned manipulation case are robust within a range of high effort
costs of the low type (Proposition 4). For intermediate values of the parameters, there
is a tension between encouraging aligned manipulation and discouraging misaligned
manipulation.

Finally, we consider revelation mechanisms without transfers: given a reported
type, the decision maker sets probabilities of outright acceptance, outright rejection,
or taking a test. In the optimal mechanism, only agents reporting a high type are tested.
Setting a strictly positive outright acceptance probability for the low type allows the
decision maker to extract this agent’s manipulation cost and obtain a higher expected
payoff than when he commits to a standard. We provide conditions such that, for
large prior probabilities that the agent’s type is low, the agent prefers the optimal
mechanism over simple commitment to a standard, and the opposite is true when
those probabilities are small (Proposition 6). This is because the decision maker is
solely concerned about incentivising the high type’s effort, since the low type is not
tested in the optimal mechanism, and strategic substitutability (complementarity) is
induced in equilibrium for large (small) prior probabilities that the agent’s type is low.

1.1 Related literature

An early antecedent to our work is Li (2001). Both his and this paper highlight that
the quality of information is endogenous to decision-making. While he focuses on
mitigating free-riding by committee members, we focus on discouraging effort by
low type agents and encouraging effort by high type agents—who, in Li’s model, are
non-strategic. In his setup, committee members’ effort reduces the variance of the
signal; in ours, agents’ effort shifts probability mass to the right. Li (2001) shows

8 Soft standards for new drugs with good prior prospects are consistent with recent findings on the approval
of new drugs for which the FDA has granted a Breakthrough-Drug Designation. This designation is given
based on preliminary evidence to drugs that could provide a substantial improvement to what is available
on the market. A number of drugs that received this designation, however, were approved by the FDA,
despite subsequent trials showing limited efficacy. Lowering the standard may benefit decision making by
discouraging misaligned manipulation (see Sect. 8 for further discussion).
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that standards biased against the decision favored by prior beliefs are ex-ante optimal.
As a counterpart, in our setup, when the decision maker is mainly concerned with
incentivizing aligned manipulation, ex-ante optimal standards are harsh if the prior
probability that the type is high is large, and soft otherwise.

The relation between Li’s model and ours is parallel to that between Espinosa and
Ray (2020) and de Haan et al. (2011). In Espinosa and Ray (2020), the agent can
increase the variance of the signal distribution; in contrast, in de Haan et al. (2011),
the agent can shift probability mass to the right by paying a cost. Both papers focus
on a static game, without commitment by the principal, whereas our analysis focuses
on how this commitment distorts otherwise ex-post efficient standards.

Three concurrent papers analyze problems that are closely related to our model:
Cunningham and Moreno de Barreda (2019) show that costly signal-jamming
improves a sender’s probability of persuading the receiver in a model with uniformly
distributed types. In their model, signal-jamming makes the receiver worse-off and
commitment always leads to harsh standards. In contrast, in our model, information
manipulation may be dominated by aligned manipulation, making the decision-maker
(the receiver) better-off; and, under pure or dominant misaligned or aligned manipu-
lation, commitment always leads to soft standards for a range of priors. Ball (2020)
analyzes how the receiver’s commitment problem can be mitigated by introducing
an intermediary who distorts and coarsens primitive information. Finally, Frankel
and Kartik (2022) show that “underutilizing data” is optimal when discouraging an
agent to “game” a scoring system. As a counterpart, in our setup, when the decision
maker is mainly concerned with desincentivizing misaligned manipulation, ex-ante
optimal standards are soft if the prior probability that the type is high is large, and
harsh otherwise. The driving force of our result, however, is different from that in
Frankel and Kartik (2022). As explained above, strategic complementarity between
the standard and the agent’s effort leads the decision maker to use soft standards when
the probability that the agent is low-type is small. This connection between strate-
gic complementarity and priors relies on the MLRP satisfied by the family of signal
distributions. Analogously, the connection between strategic substitubility and priors
beliefs results in harsh standards when the probability that the agent is low-type is
large. The antithesis to what the papers above and ours do is considered in Degan and
Li (2021), where the sender can commit to a certain level of precision of her signal, in
a setup without moral hazard. In equilibrium, the sender commits to make her signal
somewhat precise only if the priors about the type are uniform or slightly pessimistic.

Taylor and Yildirim (2011) consider how evidence standards play a dual role: as
a selection criterion and as a tool to incentivize an agent whose effort increases the
probability that her type is high.9 Although their analysis focuses on comparing blind
versus informed reviews, they also consider a model with commitment to a standard
in which the principal observes the agent’s ability but not her type, and accordingly,
sets different standards. Optimal standards are harsh (soft) for agents with low-cost
(high-cost) effort, resembling our findings for the pure aligned manipulation model.
The driving forces behind their findings and ours are different, however, as in our

9 Boleslavsky and Cotton (2015) and Zapechelnyuk (2020) also consider grading and certification systems,
respectively, that incetivize producers to provide high quality.
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model, the agent has private information and effort is purely wasteful (it does not
affect the probability that the agent’s type is high).

Our paper contributes to a growing literature on research practices and economic
incentives.10 Di Tillio et al. (2017, 2021) study how scientists’ persuasion bias affects
the informativeness of experiments, explicitly considering the probabilistic structure of
sample selection. In contrast, our analysis abstracts from the specific manner in which
information is manipulated. Our framework is very different from standard Bayesian
persuasion models (see Kamenica 2019 and Kamenica et al. 2021 for a survey and
open issues, respectively): (i) in our model, there is asymmetric information, because
the sender (the agent) knows her type; (ii) our model has moral hazard: the receiver
(the decision maker) does not observe the signal distribution chosen by the sender;
(iii) the sender is restricted to choose within a set of signal distributions, and it is
costly to choose more favorable signal distributions; and (iv) the receiver affects the
sender’s incentives by committing to a standard. Regarding the last point, in a similar
spirit to what we do, Tsakas et al. (2021) modify the standard Bayesian persuasion
framework by making the receiver strategic. They show that, by committing to incur
some cost (burn money) if she picks an action preferred by the sender, the receiver
can incentivize the sender to choose a more informative signal.

Perez-Richet and Skreta (2022) analyze optimal testing design under information
manipulation when the probability structure of the test is unrestricted. Closer to what
we do, Whitmeyer (2019) studies a setup in which the receiver can benefit from com-
mitting to garbling the signal from the sender. His analysis imposes very little structure
on the process generating the signals and the receiver’s garbling. In contrast, in our
analysis, a fixed family of distributions satisfying MLRP and the use of standards are
assumed as exogenously given; furthermore, our results focus on how ex-ante optimal
standards deviate from ex-post optimality and the factors driving such differences.

The distinctive feature of our model, in comparison to classical statistical problems,
is the presence of moral hazard. Our mechanism design approach, however, is rather
shaped by information asymmetry: in the optimal revelation mechanism, the menu
offered by the decision-maker has features resembling a discrete-type version ofMussa
and Rosen (1978) price discrimination model.11 Our setup, however, is different,
because the decision maker has aligned (opposite) interests with the high (low) type
agent.12

10 See, e.g., Henry andOttaviani (2019), Di Tillio et al. (2017, 2021), Herresthal (2022),McClellan (2022),
and references therein.
11 For instance, the low type agent is indifferent between reporting her true type or lying, whereas the
high type agent strictly prefers reporting her type. The work of Ederer et al. (2018) is related to ours as
well. They analyze how “opaque” contracts help a principal incentivize an agent to exert balanced efforts
between tasks. In contrast, in our paper, standards’ distortions aim to discourage (encourage) the low (high)
type agent to exert effort.
12 Our paper also relates to the literature on optimal evidentiary legal standards to induce adequate behavior
(see, e.g., Demougin and Fluet 2008; Ganuza et al. 2015; Gerlach 2013; Kaplow 2011; Sanchirico 2012).
The informative role of evidentiary standards has received little attention in this literature. Stephenson
(2008) analyzes the effect of standards on the research effort of agencies seeking court approvals, and
Mungan and Samuel (2019) show that harsh standards deter crime when guilty agents mimic innocent ones.
Their work, however, has no counterpart to our characterizations of harsh and soft standards.
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Finally, there is a growing literature in computer science on strategic classification
that relates to our work (see, e.g., Hu et al. 2019; Milli et al. 2019). In those papers,
the principal publishes a deterministic decision rule (a classifier) which combines
a set of features for assessing an agent. The classifier provides incentives to some
agents to exert (undesirable) efforts in order to improve their features, just to meet
the classification boundary. We contribute to this literature by introducing uncertainty
over the result of the test. Random test results are more realistic and substantially
change equilibrium behaviour.

2 Themodel

A manager (the principal or receiver) faces a binary decision: he decides whether to
hire or reject a candidate (the agent or sender). The candidate’s type is binary: she is
either fit or unfit. The manager prefers to hire the candidate if she is fit and to reject
the candidate if she is unfit. The candidate’s fitness, however, is not observable to the
manager. She is fitwith a prior probability strictly between 0 and 1, and unfit otherwise.
The prior unfitness odds, i.e., the prior probability that the candidate is unfit divided
by the prior probability that the candidate is fit, are denoted by κ .

The manager is risk-neutral and minimizes expected losses. Without loss of gener-
ality, the manager’s losses due to hiring unfit candidates and rejecting fit candidates
are normalized to 1.13 For κ < (>)1, if the manager were to make his decision based
on prior information only, he would choose hiring (rejection). Throughout the paper
we refer to κ simply as the prior. A useful interpretation for the reader to keep in mind
is that κ corresponds to a measure of the manager’s relative expected loss from hiring
given the prior information.

2.1 Evidence

The manager runs a test to obtain further evidence on the candidate’s fitness. The
result of the test is the realization of a signal z ∈ [0, 1]. The distribution of the
signal is determined by the candidate’s readiness for the test, θ ∈ [θ, θ ] =: �. The
distribution and density functions of a candidate’s signal with readiness θ are denoted
by F(·, θ) and f (·, θ), respectively.14 Thus, the domain of F is D := [0, 1] × �

and its interior is denoted by D◦; similarly, the interior of � is denoted by �◦. We
assume that the distribution F is atomless and thrice continuously differentiable on D,
being the third-order partial derivatives of F continuous real functions defined over
D. Further, we assume that f (z, θ) > 0 for all (z, θ) ∈ (0, 1)×� and that the density

13 Our model also applies to situations in which the principal weights more heavily type I errors than type
II errors, or vice versa. An increase in the relative weight of hiring the unfit candidate over the weight of
rejecting the fit candidate has the same effect as an increase in κ .
14 In principle, fit and unfit candidates could face different distributions. We impose, however, that the
distributions are the same, F . The interpretation is that that both type of candidates face the same “test,”
but their readiness for it can be different, which is captured completely by θ .
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is log-supermodular:

∂2 ln f (z, θ)

∂θ∂z
> 0 (1)

for all (z, θ) ∈ D◦. The log-supermodularity of the density function implies the
strict Monotone Likelihood Ratio Property (MLRP): if θ ′ > θ , then f (·,θ ′)

f (·,θ)
is strictly

increasing, which in turn implies strict first-order stochastic dominance (FOSD),
F(z, θ) > F(z, θ ′) for all z ∈ (0, 1).

2.2 Informationmanipulation

The candidate has a baseline preparedness for the test thatwe call hernatural readiness,
normalized to θ if she is unfit, and given by some θq > θ if she is fit. By exerting a
costly effort, the candidate can increase her readiness. The “final” readiness of the unfit
and fit candidates are denoted by θu and θq , respectively. Their respectivemanipulation
efforts are θu − θ and θq − θq , and the incurred costs are denoted by Cu(θu; θ) and
Cq(θq; θq), respectively. These cost functions are assumed to be thrice continuously
differentiable, with both Cu(·; θ) and Cq(·; θq) strictly increasing. Both the cost and
marginal cost of making no effort are set equal to zero: Cu(θ; θ) = C ′

u(θ; θ) = 0, and
for all θq ∈ �◦, Cq(θq; θq) = C ′

q(θq; θq) = 0.15 To avoid notation cluttering, we
often omit the dependence of the cost function on the natural readiness, and simply
write Ci (θi ) (and similarly for its derivatives) for i = u, q.

Each candidate minimizes the sum of the expected loss from rejection and the cost
of effort. The candidate’s loss from rejection is normalized to 1. As discussed below,
the manager sets a standard, s ∈ [0, 1], such that the candidate is accepted if and only
if her signal realization is greater than the standard. Given any standard s ∈ [0, 1],
candidate i’s objective function is

Ui (s, θi ) := F(s, θi ) + Ci (θi ), (2)

for i = u, q, respectively, for all θu ∈ � and θq ∈ �q := [θq , θ ]. Given a standard s,
the optimal readiness, denoted by θ∗

i (s), is a minimizer of Ui (s, ·) for i = u, q.
In order to ensure a unique solution of the candidate’s problem, guaranteeing the

convexity of the candidate’s loss function, we assume C ′′
i > −∂2F(s, ·)/∂θ2, for all

s ∈ (0, 1) and i = u, q. A sufficient (but not necessary) condition for this requirement
is that the cost functions are strictly convex (C ′′

u > 0 and C ′′
q (·; θq) > 0) while F

is convex in θ (∂2F(s, θ)/∂θ2 ≥ 0 for all (s, θ) ∈ D◦).16 Additionally, in order to
ensure an interior solution of the candidate’s problem (i.e., θ is not an optimal choice
for the candidate), we assume that C ′

i (θ) > −Fθ (s, θ) for all s ∈ (0, 1) and i = u, q.

15 The derivatives of functions of one variable are denoted by a prime or d /dx , where x is the variable.
16 The convexity of F in θ is not needed. For instance, any distribution defined by f (z, θ) = γ (θ) f1(z) +
(1 − γ (θ)) f0(z) for all (z, θ) ∈ [0, 1]2, where d( f1/ f0)/dz > 0 and γ : � → [0, 1] is strictly increasing
and convex, with 0 < γ ′′(θ) < C ′′

i (θ) for all θ ∈ �, satisfies C ′′
i > −∂2F(s, ·)/∂θ2.
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Finally, we impose that C ′
q(θ; θq) < C ′

u(θ) for all θ ∈
(
θq , θ

)
, which is equivalent

to the standard sorting condition.

2.3 Applications

Many applications discussed in the literature fit well within ourmodel: pharmaceutical
companies trying to get their drugs approved by the FDA (Li 2001), borrowers trying
to get a loan approval (Ball 2020), or students trying to be admitted to a college
(Cunningham and Moreno de Barreda 2019).

We use the college admission application to illustrate the different elements of
the model. Here, the principal is the college and the agent is the student trying to
get admitted to the college. The student is fit if she has academic aptitudes suitable
for college education, and unfit otherwise. College applicants are asked to provide
their SAT score. Since the test is administrated by the Educational Testing Service,
each individual college can be assumed not to be involved in the design of the test.
Our model captures this by the assumption that F is exogenously given and only
the admission standard can be decided by each college. Finally, students decide the
level of effort that they allocate to get ready for the test. Their score distribution is
determined by both their natural or nurtured academic aptitudes, θ for unfit students
and θq for fit ones, and their test preparation effort, which, altogether, results in their
actual readiness, θu and θq , respectively.

2.4 Evidence standards

Throughout the paper, we only consider readiness pairs θ := (θu, θq) ∈ � := {θ ∈
�2 : θu < θq}, due to the sorting condition. We assume that the manager chooses a
“threshold” strategy (s ∈ [0, 1]) such that the candidate is hired if her signal is greater
or equal to the standard (i.e., z ≥ s), and she is rejected otherwise.17 For any standard
s, and readiness profile (θu, θq), the probabilities of wrongful rejection and wrongful
hiring are, respectively, F(s, θq) times the prior probability that the candidate is fit
and (1 − F(s, θu)) times the prior probability that the candidate is unfit. Thus, the
manager’s expected loss is an affine transformation of18

V (s, θ) = F(s, θq) − κ F(s, θu) (3)

for all (s, θ) ∈ [0, 1] × �. We will often explicitly indicate the dependence of V on
the prior κ , writing V (s, θ; κ) instead of V (s, θ).

17 In the classical statistical setup, given θ ∈ �, the MLRP implies that the manager’s optimal policy is
to set an acceptance standard. On the other hand, in our model, θ is not fixed, thus, in principle we could
consider other policies, different from setting a standard. A plausible scenario, however, is that agents are
capable to tailor downwards the result of the test (e.g., in a multiple choice test in which students can tell
whether they know each answer, if there are two scores s2 > s1, where the former score results in fail
and the latter in pass, a student who can score s2 could deliberately give wrong answers to score s1). This
obligates the manager to define hiring and rejection sets using a standard, and it may explain why standards
are widespread in practical decision-making.
18 The manager’s expected loss is (V + κ) times the prior probability that the candidate is fit.
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Define the ex-post optimal standard to be the function s∗ mapping any given readi-
ness profile and prior (θ , κ) to the standard minimizing the manager’s expected loss;
that is, s∗(θ, κ) is the minimizer of V (·, θ; κ). Also define the likelihood ratio function
g(s, θ) := f (s, θq)/ f (s, θu) for all (s, θ) ∈ [0, 1]×�. By the strict MLRP, g(·, θ) is
strictly increasing for all θ ∈ �. Thus, for the range of priors for which the problem
is test-worthy (i.e., for which the optimal standard is interior, so that the candidate is
not outright hired or outright rejected), given by κ ∈ (g(0, θ), g(1, θ)), the optimal
standard is strictly increasing in the prior, as it satisfies g(s∗(θ; κ), θ) ≡ κ .

The problem solved by the manager facing a candidate with her natural readiness
is called classical statistical problem. The manager’s expected loss in this problem is
V (s, θ, θq) = F(s, θq)−κ F(s, θ), for all s ∈ [0, 1]. The classical statistical problem
is then test-worthy if κ ∈ (κ, κ) where κ := g(0, θ, θq) and κ := g(1, θ, θq). MLRP
implies that κ < 1 < κ . Furthermore, the range of priors for which the classical
statistical problem is test-worthy gets larger as θq increases since κ (κ) is weakly
decreasing (weakly increasing) in θq (this is a direct consequence of Remark 2 in the
“Appendix”). In other words, the greater the difference between the natural readiness
of the fit and unfit candidates, the more informative the test and the larger the range
of priors for which the manager relies on this test.

Finally, before analyzing the role of commitment, we briefly consider an imperfect
information static game, denoted by �0, between the manager and the candidate, who
simultaneously choose the standard and readiness, respectively. Their expected loss are
given by (3) and (2), respectively. A pure strategy Bayesian Nash equilibrium (BNE)
of �0 is a triplet (s∗

N E , θuN E , θq N E ) ∈ D × �q , with s∗
N E = s∗(θuN E , θq N E ; κ),

θuN E = θ∗
u (s∗

N E ), and θq N E = θ∗
q (s∗

N E ).

For all κ ∈
(
infs∈(0,1) g(s, θ∗

u (s), θ∗
q (s)), sups∈(0,1) g(s, θ∗

u (s), θ∗
q (s))

)
, �0 has at

least oneBNEwith s∗
N E ∈ (0, 1), andhence, satisfying that g(s∗

N E , θ∗
u (s∗

N E ), θ∗
q (s∗

N E ))

= κ . These equilibria are not necessarily unique. It is not difficult, however, to pro-
vide conditions for uniqueness (for instance, see the proof of Corollary 1 below). On
the other hand, (0, θ, θq) is the unique BNE if κ < infs∈(0,1) g(s, θ∗

u (s), θ∗
q (s)), and

(1, θ, θq) is the unique BNE if κ > sups∈(0,1) g(s, θ∗
u (s), θ∗

q (s)).

3 Analysis of commitment to standards

If the manager could commit in advance to a standard and the candidate could manip-
ulate her readiness (at a type-dependent cost), the equilibrium extent of manipulation
and hence, the endogenous informativeness of the test, would depend on the announced
standard. With the aim of addressing how the manager can benefit from commitment,
we analyse a dynamic game, denoted by �, in which, (i) first, Nature chooses the
candidate’s type (fit or unfit) and reveals it to the candidate; (ii) the manager (without
observing the candidate’s type) commits to a standard s ∈ [0, 1]. Then, in stage (iii),
having observed the standard chosen by the manager, the candidate chooses readiness
θ . (iv) Nature chooses a signal realization z ∈ [0, 1] according to F(·, θ), and the
candidate is hired if and only if z ≥ s.
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The candidate’s and manager’s expected losses are given by (2) and (3), respec-
tively, and their preferences, including κ , θq , F , Cu , and Cq , are common knowledge.

The unfit and fit candidates’ sets of strategies, denoted by �[0,1] and �
[0,1]
q , respec-

tively, are sets of functions mapping standards to readiness. Our analysis focuses on
Subgame Perfect Nash Equilibria in pure strategies (SPNE) (strictly speaking, the
relevant equilibrium concept is Perfect Bayesian Equilibrium, but we omit specifying
beliefs as they are trivial: the manager’s beliefs are the same as the prior, and the candi-
date observes the standard and her type). A SPNE always exists and we let κ ⇒ S∗(κ)

be the correspondence mapping κ ∈ (0,∞) to the set of standards in such equilibria
(with S∗−1 being the inverse). We typically have a unique equilibrium in �. Some of
these games, however, have multiple equilibria for knife-edge values of the prior κ .

3.1 Strategic complementarity/substituibility of readiness

Since F(0, θ) = 0 and F(1, θ) = 1 for all θ ∈ �, θ∗
u (0) = θ∗

u (1) = θ and θ∗
q (0) =

θ∗
q (1) = θq . Furthermore, θ∗

i (s) is an interior solution and satisfies

C ′
i (θ

∗
i (s)) = −Fθ (s, θ

∗
i (s)), (4)

for all s ∈ (0, 1) and i = q, u. Thus, at the optimal readiness, the marginal cost is
equal to the marginal return to readiness, the rate at which the probability of failing
the test decreases with readiness for a given standard. Further, θ∗

q > θ∗
u by the sorting

condition.
By the assumption C ′′

i > −∂2F(s, ·)/∂θ2, the sign of the effect of the standard on
the candidate’s optimal readiness is determined by whether F is sub or supermodular
at (s, θ∗

i (s)) (i.e., by the sign of ∂ f (s, θ∗
i (s))/∂θ ) since:

dθ∗
i (s)

ds
= −∂ f (s, θ∗

i (s))

∂θ

(
C ′′

i (θ∗
i (s)) + ∂2F(s, θ∗

i (s))

∂θ2

)−1

(5)

for all s ∈ (0, 1) and i = q, u. Furthermore, there exists a continuous function,
mapping readiness to the standard, that separates the submodular region of the domain
of F from the supermodular region (see Remark 2 in the proof of Lemma 1 in the
“Appendix”). As a result, the candidate’s optimal readiness θ∗

i (s) is single-peaked:
there exists a cut-off ŝi for i = u, q, which we call the modularity-switch point,
such that for standards smaller than ŝi , F is submodular at (s, θ∗

i (s)) and hence, θ∗
i

is strategic complement of the standard over [0, ŝi ). Analogously, θ∗
i is a strategic

substitute of the standard over (ŝi , 1] by the supermodularity of F at (s, θ∗
i (s)) over

(ŝi , 1]. We call this property single modularity-switch:

Lemma 1 For i = u, q, there exists ŝi ∈ (0, 1) such that

dθ∗
i (s)

ds

⎧⎨
⎩

> 0 if 0 ≤ s < ŝi

= 0 if s = ŝi

< 0 if ŝi < s ≤ 1.
(6)
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Fig. 1 The left panel shows the candidates’ best response to the standard and the submodular and super-
modular regions, in the setting of Example 1 with θq = 1. The right panel shows the corresponding optimal
efforts

Example 1 Consider F(z, θ) = zθ for all (z, θ) ∈ [0, 1] × � with � = [1 − e−1, 2],
and cost functions given by Cu(θ) = 1

2 (θ −θ)2 for all θ ∈ � and Cq(θ) = 1
2 (θ −θq)2

for all θ ∈ �q . Since ∂ f (z, θ)/∂θ = zθ−1(θ ln z + 1), equalizing this expression to
0, we find that the function separating the submodular and supermodular regions is

given by z = e− 1
θ . The left panel of Fig. 1 illustrates the equilibrium readiness θ∗

u and
θ∗

q , the submodular and supermodular regions and the modularity switch-points. The
right panel displays the corresponding efforts.

A distribution is said to have a neutral signal s (c.f., Milgrom 1981) if f (s, θ) =
f (s, θ ′) for all θ, θ ′ ∈ �. If a distribution F has a neutral signal s, then F is submodular
at (z, θ) if z < s, supermodular if z > s, and the modularity-switch point for both
candidate types is the neutral signal.

Example 2 Consider F(z, θ) = θ z2 + (1 − θ)z for all z ∈ [0, 1], θ ∈ � = [0, 1] and
θq ∈ ( 1

4 ,
3
4

)
. In the classical statistical problem, the likelihood ratio function is given

by g(s, θ, θq) = 1 + θq(2s − 1), which is strictly increasing in s, so the problem is
test-worthy if κ ∈ (1 − θq , 1 + θq). Since ∂ f (z, θ)/∂θ = 2z − 1, F has a neutral

signal at z = 1
2 .

The unfit candidate’s cost function is Cu(θ) = 1
2θ

2 for all θ ∈ �, thus her optimal
readiness is θ∗

u (s) = s(1 − s) for all s ∈ [0, 1]. Similarly, the fit candidate’s cost
function is Cq(θ) = 1

2 (θ − θq)2 for all θ ∈ [θq , 1]; thus her readiness is θ∗
q (s) =

θq + s(1− s) for all s ∈ [0, 1]. Hence, the optimal readiness of both candidate’s types
are strategic complements of the standard for s < 1/2 and strategic substitutes for
s > 1/2.

3.2 Deviations from ex-post efficiency

The standard set by the manager in the BNE of the static game �0, in which the
candidate does not observe the standard before choosing her readiness, is ex-post
efficient.Our focus, however, is on the dynamic game� inwhich themanager also takes
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into account the candidate’s incentives to exert effortwhen setting the optimal standard.
Addressing the effects of the standard on manipulation effort leads the manager to set
ex-post inefficient standards.

In equilibrium, the manager’s expected loss as a function of the standard is given
by:

V (s, θ∗
u (s), θ∗

q (s)) = F(s, θ∗
q (s)) − κ F(s, θ∗

u (s)).

Since

dV (s, θ∗
u (s), θ∗

q (s))

ds
= f (s, θ∗

q (s)) + Fθ (s, θ
∗
q (s))

dθ∗
q (s)

ds

−κ

(
f (s, θ∗

u (s)) + Fθ (s, θ
∗
u (s))

dθ∗
u (s)

ds

)
, (7)

for all s ∈ (0, 1), the F.O.C. of the manager’s problem simplifies to v(s∗
P ) = κ for all

SPNE with s∗
P ∈ (0, 1), where v is the pseudo likelihood ratio function, defined by

v(s) := f (s, θ∗
q (s)) + Fθ (s, θ∗

q (s))
dθ∗

q (s)
ds

f (s, θ∗
u (s)) + Fθ (s, θ∗

u (s)) dθ∗
u (s)
ds

or its limit, whenever this limit is well defined, for all s ∈ [0, 1].
Since the manager wants to encourage manipulation by the fit type and dis-

courage manipulation by the unfit type, addressing these indirect effects of the
standard results in that, in general, equilibrium standards are not ex-post efficient.
In terms of the F.O.C.’s of the manager problem, with and without commitment,
v(s) �= g(s, θ∗

u (s), θ∗
q (s)) for almost all s ∈ (0, 1). We are interested in characteriz-

ing when the optimal standard under commitment is higher or lower than the ex-post
optimal standard.

Definition 1 Let (s∗
P , θ∗

u , θ∗
q ) be a SPNE of �. The equilibrium standard is soft (harsh)

if s∗
P < (> )s∗

(
θ∗

u (s∗
P), θ∗

q (s∗
P ); κ

)
.

Upon observing the signal, at the margin, a harsh manager rejects a candidate even
if the expected loss from hiring is strictly less than the expected loss from rejection.
Similarly, at the margin, a soft manager hires a candidate even if the expected loss
from rejection is strictly less than the expected loss from hiring.

Next, we show that the direction of the deviations from ex-post optimality critically
depends on whether the candidate’s effort is a strategic substitute or complement of
the standard at the equilibrium, and on whether it is more relevant to deter effort from
the unfit candidate or to encourage effort from the fit candidate.
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4 Benchmarkmodels

It is instructive to start the analysis considering pure misaligned manipulation and
pure aligned manipulation models; i.e., games where only the unfit and fit candidate,
respectively, are responsive to changes in the standard. An important feature of these
cases is that S∗ is increasing in the prior, κ . Specifically, we say that S∗ is weakly
(strictly) increasing within a given interval I ⊆ (0,∞) if κ ′ > κ , s ∈ S∗(κ) and
s′ ∈ S∗(κ ′) imply that s′ ≥ s (s′ > s), for all κ, κ ′ ∈ I . The monotonicity of S∗
and the single modularity-switch property imply the existence of a unique threshold
for the prior such that, the candidate’s effort is a strategic complement of the standard
in equilibrium for sufficiently low priors and a strategic substitute of the standard in
equilibrium for sufficiently high priors.

As a consequence, as the prior increases, a soft-harsh pattern of equilibrium stan-
dards arises in pure misaligned manipulation games, while a harsh-soft pattern arises
in pure aligned manipulation games. The intuition behind the different patterns is sim-
ple. On one hand, when the manager is mainly concerned with deterring effort from
the unfit candidate, he optimally induces less effort from this candidate by setting a
soft standard if the prior is sufficiently low (as the candidate’s effort is a strategic com-
plement of the standard for low priors), or alternatively, a harsh standard if the prior is
sufficiently high (as the candidate’s effort is a strategic substitute of the standard for
high priors).

On the other hand, when the manager is mainly concerned with encouraging effort
from the fit candidate, he optimally induces more effort from this candidate by setting
a harsh standard for low priors (by the strategic complementarity role of the standard)
and a soft standard for high priors (by its strategic substitutability).

4.1 Puremisalignedmanipulation

A game in which the fit candidate’s readiness is exogenously given is called a pure
misaligned manipulation game. In this game, denoted by �u , �q = {θq} for some

θq ∈ (
θ∗

u (ŝu), θ
]
, and the unfit candidate exerts effort to make her signal distribution

more similar to the fit candidate’s signal distribution. All other assumptions on �,
laid out in Sects. 2–3, remain valid. Just as in the solution of the classical statistical
problem, the equilibrium standard is increasing in the prior. Intuitively, the higher the
prior probability that the candidate is unfit, the higher is the required realization of
the signal to induce posterior beliefs that make the manager’s expected payoff from
hiring greater than the expected payoff from rejection.

Lemma 2 In every game �u, S∗ is weakly increasing over (0,∞) and strictly increas-
ing over S∗−1(0, 1). Furthermore, S∗(κ) = {0} if κ ∈ (0, κ] and S∗(κ) = {1} if
κ ∈ [κ,∞).

Consider an intermediate value of the prior leading to an interior SPNE standard,
s∗

P ∈ (0, 1). From (5) and the single modularity-switch property, v and g(·, θ∗
u (·), θq)

cross only once at the unfit candidate’s modularity switch point ŝu . The left and right
panel of Fig. 2 show v and g(·, θ∗

u (·), θq) from Example 2 for different values of θq .
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Fig. 2 The left and right panel show the pseudo likelihood ratio function v (solid line) and equilibrium
standards for each κ in the static game �0 (dashed line). The cost functions and distribution are those in
Example 2, with θq = 2

3 in the left panel and θq = 1
3 in the right panel. In the left panel, the equilibrium

standards of �u coincide with v and, in the right panel, they correspond to the dash-dotted line

Since g(·, θ∗
u (s∗

P ), θq) is increasing, we have that s∗
P < ŝu if and only if v(s∗

P ) >

g(s∗
P , θ∗

u (s∗
P ), θq) and s∗

P > ŝu if and only if v(s∗
P ) < g(s∗

P , θ∗
u (s∗

P ), θq).19 Therefore,
by the monotonicity of the equilibrium standard in the prior, the equilibrium standard
is soft if the prior probability that the candidate is unfit is relatively low and harsh if
it is relatively high.20

Proposition 1 For any game �u, there exists κ̃u ∈ (κ, κ) such that

the optimal standard is

⎧⎪⎪⎨
⎪⎪⎩

ex-post efficient if κ ∈ (
0, κ

]
soft if κ ∈ (κ, κ̃u)

harsh if κ ∈ (̃κu, κ)

ex-post efficient if κ ∈ [κ,∞).

(8)

Proposition 1 states that the manager optimally applies soft standards for relatively
low priors and harsh standards for relatively high priors. This result follows fromLem-
mata 1-2: by the increasingness of the standard in the prior (Lemma 2), relatively low
priors lead to relatively low standards in equilibrium. But, if the equilibrium standard
is relatively low, then the equilibrium standard and unfit readiness pair (s∗

P , θ∗
u (s∗

P ))

is located in the submodular region of F , being the unfit type’s effort a strategic com-
plement of the standard (Lemma 1). Therefore, for low priors, the manager benefits

19 If d F(s, θ∗
u (s))/ds ≤ 0 for some s ∈ (0, 1), then from (7), we have dV (s, θ∗

u (s), θq )/ds > 0, and,
hence, s cannot be an equilibrium standard. All examples in the paper satisfy that v(s) > 0 for all s ∈ (0, 1).
There are, however, games such that v(s) < 0 within some intervals. For instance, in the game �u , defined
by F(s, θ) = θs10 + (1 − θ)s, θq = 1, and Cu(θ) = 1

2 θ2 for all s ∈ [0, 1] and θ ∈ � = [0, 1], we have
that v(s) < 0 for all s ∈ (0.52, 0.65).
20 On the other hand, the equilibrium standard associated with extreme values of the prior (i.e., if κ ∈
(0, κ]∪ [κ, ∞)) is ex-post efficient since the manager does not rely on the test outcome (the SPNE standard
is a corner solution), as it cannot overturn extreme prior beliefs. The equilibrium standard is also ex-post
efficient if the evidence from the test is valuable but a commitment to a standard is not; i.e., if κ = κ̃u and
S∗ (̃κu) = {ŝu}. Example 2 illustrates that the manager may not choose ex-post efficient standards at κ̃u
when S∗ (̃κu) is multivalued.
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from lowering the standard below the ex-post efficient level, because this discourages
misaligned manipulation. An analogous argument reveals that the manager optimally
induces less effort by the unfit candidate if he sets harsh standards for relatively high
priors, due to the strategic substitutability role of the standard. If v is strictly increas-
ing, then S∗ is single-valued at all κ , and the cut-off prior for soft and harsh standards
is equal to the likelihood ratio function evaluated at the modularity-switch point,
κ̃u = g(ŝu, θ∗

u (ŝu), θq), as it is illustrated in the left-panel of Fig. 2. Since the unfit
candidate becomes less responsive to changes in the standard as her cost of improving
readiness increases, it is possible to provide sufficient conditions for relatively high
costs Cu to generate a positive and monotone pseudo likelihood ratio function v (see
Remark 3 in the “Appendix”).21 In contrast, if the candidate’s effort is sufficiently
responsive to changes in the standard (which is allowed by low manipulation costs),
then v might be non-monotone and the equilibrium standard varies discontinuously
with changes in the prior. This implies that candidates with arbitrarily similar priors
may be subject to very different standards as it is illustrated in the right-panel of Fig. 2.
These two observations are addressed formally by Remark 4 in the “Appendix”. On
the other hand, g(·, θ∗

u (·), θq) is strictly increasing, as (5) and direct computations
reveal.

Example 3 (Example 2 revisited) Consider F(z, θ) = θ z2+(1−θ)z for all z ∈ [0, 1],
θ ∈ � = [0, 1] and θq ∈ (1/4, 3/4). Thus, κ = 1 − θq and κ = 1 + θq . Recall

that ŝu = 1
2 . By Proposition 1, in the game �u , the optimal standard is soft for

κ ∈ (1− θq , κ̃u), harsh for κ ∈ (̃κu, 1+ θq), and ex-post efficient for κ ≤ 1− θq and
κ ≥ 1 + θq .

For θq ∈ (1/2, 3/4), direct computations reveal that v′(s) > 0 for all s ∈ (0, 1).
Therefore, by Remark 4, κ̃u = g(ŝu, θ∗

u (ŝu), θq) = 1 and the manager is ex-post
efficient at κ̃u . For θq ∈ (1/4, 1/2), v is non-monotone. In this case, κ̃u = 1 and
S∗(̃κu) = {s1, s2}, where s1 and s2 are, respectively, the smallest and greatest root of
s(1− s) = θq/2. The right-panel of Fig. 2 shows how the standard varies discontinu-
ously with κ for θq = 1/3, with s1 = 0.21 and s2 = 0.79. The manager is not ex-post
efficient at κ̃u—he is soft at (0.21, θ∗

u , 1/3) and harsh at (0.79, θ∗
u , 1/3).

4.2 Pure alignedmanipulation

In a pure aligned manipulation game, denoted by�q , only the fit candidate’s readiness
is responsive to changes in the standard. Here, the unfit candidate is non-strategic:
her readiness is exogenously given by her natural readiness; i.e., θ∗

u (s) = θ for all
s ∈ [0, 1]. All other assumptions on �, laid out in Sects. 2–3, remain valid. Loosely
speaking, �q is the game obtained from any game �, as Cu(θ) goes to infinity for all
θ > θ . Let κq and κq be the smallest and largest priors, respectively, at which testing

21 Similarly, it is easy to show that ifv ismonotone for a sufficiently highnatural readiness of thefit candidate
(θ ′

q ), then it is also monotone for all natural readiness that exceed such value (i.e., for all θq > θ ′
q ), by the

log-supermodularity of F .
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is worthy in the pure aligned manipulation setting.22 Similarly to the pure misaligned
manipulation scenario (Lemma 2), the equilibrium standard is monotone in the prior.

Lemma 3 In game �q , S∗ is weakly increasing over (0,∞) and strictly increasing
over (κq , κq). Further, S∗(κ) = {0} (corresp., ⊂ (0, 1),= {1}) for all κ ∈ (0, κq)

(corresp., (κq , κq), (κq ,∞)).

In turn, the monotonicity result and the single modularity-switch property allow us
to connect the level of the prior with the strategic role of the standard in equilibrium.

Proposition 2 For any game �q , κq < κ̃q < κq and

the optimal standard is

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ex-post efficient if κ ∈ (
0, κq

)
harsh if κ ∈ (κq , κ̃q)

ex-post efficient if κ = κ̃q

soft if κ ∈ (̃κq , κq)

ex-post efficient if κ ∈ (κq ,∞),

(9)

where κ̃q := g(ŝq , θ, θ∗
q (ŝq)).

According to Proposition 2, the manager biases the standard in order to encour-
age manipulation by the fit candidate: he chooses harsh standards for relatively low
priors and soft standards for relatively high priors. The intuition behind the reversed
equilibrium pattern (when compared to Proposition 1) is that the manager wants to
incentivize effort by the fit candidate, instead of desincentivize it. Higher effort by the
fit candidate increases the probability that this candidate is hired, which is the right
decision for the manager.

In contrast to the pure misaligned manipulation setting, aligned manipulation
enlarges the set of priors for which testing is worthy (since κq ≤ κ and κ ≤ κq )
and the optimal standard associated to the cut-off prior is always the modularity-
switch point; that is, S∗(̃κq) = {ŝq} (see the proof of Proposition 2). This allows us
to provide a closed-form expression for κ̃q , corresponding to the likelihood ratio at
the fit candidate’s modularity-switch point, and to guarantee ex-post efficiency at the
cut-off.

5 The general model

In the general set-up, both candidate types are strategic, but the intuition from the pure
manipulationmodels is robust: themanager is still willing to give up ex-post efficiency
to take advantage of the standard’s incentive role.

In any SPNE (s∗
P , θ∗

u , θ∗
q ) such that (s∗

P , θ∗
u (s∗

P )) and (s∗
P , θ∗

q (s∗
P )) are located in the

supermodular and submodular regions of F respectively, the unfit and fit candidates’

22 Formally, κq := infs∈(0,1)

{
F(s,θ∗

q (s))
F(s,θ)

}
and κq := sups∈(0,1)

{
1−F(s,θ∗

q (s))
1−F(s,θ)

}
(see proof of Lemma 3

for details).
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readiness are, respectively, strategic substitute and strategic complement of the stan-
dard. In such equilibria, there is no strategic tension, and the manager applies harsh
standards in order to discourage effort of the unfit candidate and encourage effort of
the fit candidate. This case arises when the function separating the submodular and
supermodular regions of F is strictly increasing and s∗

P ∈ (ŝu, ŝq) (see Remark 2 in
the “Appendix” and Fig. 1). This function is increasing if and only if f (s, ·) is strictly
log-concave. For instance, the distribution in Example 1 satisfies this condition. Anal-
ogously, the manager applies soft standards in equilibria such that (s∗

P , θ∗
u (s∗

P)) and
(s∗

P , θ∗
q (s∗

P )) are located in the submodular and supermodular regions of F , respec-
tively. This case arises when f (s, ·) is strictly log-convex.

However, if both (s∗
P , θ∗

u (s∗
P )) and (s∗

P , θ∗
q (s∗

P )) are located in either the submodular
region of F , or the supermodular region of F , then the manager faces a trade-off
between discouraging effort by the unfit candidate and encouraging effort by the fit
candidate (for instance, if F has a neutral signal). In this case, the relative magnitudes
of the strategic effects of the standard on the optimal efforts exerted by the candidates
will play a critical role. We define the strategic ratio as the ratio of the strategic (i.e.,
indirect) effects of the standard on the signal distributions of the fit candidate over that
of the unfit candidate:

r(s) := Fθ (s, θ
∗
q (s))

dθ∗
q (s)

ds

(
Fθ (s, θ

∗
u (s))

dθ∗
u (s)

ds

)−1

for all s ∈ (0, 1) \ {ŝu}, r(0) := lims→0 r(s), r(ŝu) := lims→ŝu r(s) and r(1) :=
lims→1 r(s), respectively, whenever these limits exist. Next result follows directly
from (7):

Lemma 4 For any SPNE (s∗
P , θ∗

u , θ∗
q ) of � with s∗

P ∈ (0, 1):

(i) if (s∗
P , θ∗

u (s∗
P )) and (s∗

P , θ∗
q (s∗

P )) are located in the submodular and supermodular
regions of F, respectively, i.e., s∗

P ∈ (ŝq , ŝu), then the optimal standard is soft;
(ii) if (s∗

P , θ∗
u (s∗

P )) and (s∗
P , θ∗

q (s∗
P )) are located in the supermodular and submodular

regions of F, respectively, i.e., s∗
P ∈ (ŝu, ŝq), then the optimal standard is harsh;

(iii) if both (s∗
P , θ∗

u (s∗
P )) and (s∗

P , θ∗
q (s∗

P )) are located in the submodular region, i.e.,
s∗

P ∈ (0,min{ŝq , ŝu}), then the optimal standard is soft (harsh) if and only if
r(s∗

P) < (>)κ; and
(iv) if both (s∗

P , θ∗
u (s∗

P )) and (s∗
P , θ∗

q (s∗
P )) are located in the supermodular region,

i.e., s∗
P ∈ (max{ŝq , ŝu}, 1), then the optimal standard is soft (harsh) if and only

if r(s∗
P) > (<)κ .

We discuss the intuition of parts (iii) and (iv) for the case in which r(s∗
P) < κ . If

the strategic ratio is less than the prior, then the manager is relatively more concerned
with the effect of his commitment on the effort exerted by the unfit candidate and we
say that misaligned manipulation is dominant at this prior. Since the effort exerted
by the unfit candidate is a strategic complement of the standard over the submodular
region and a strategic substitute over the supermodular region, the manager optimally
commits to soft and harsh standards, respectively. The intuition of the case r(s∗

P) > κ

is analogous, and in this case we say that aligned manipulation is dominant at this
prior.
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As an application, consider a distribution F , such that F(z, ·) is an affine trans-
formation of −θ for all z ∈ [0, 1]. The corresponding marginal return to readiness is
independent of readiness itself and thus, F has a neutral signal. Furthermore, assume
that candidates have quadratic costs with C ′′

q = C ′′
u , as in Example 2. From (5), the

candidates’ manipulation responds in the same manner to changes in the standard,
which yields that the strategic ratio is equal to 1 for every standard. Since v is equal
to 1 only at the neutral signal, by (iii) and (iv) in Lemma 4, the manager applies either
harsh standards or ex-post efficient standards for all priors. On the other hand, multiple
soft-harsh or harsh-soft cut-offs may arise whenever neither misaligned manipulation
nor aligned manipulation is dominant at all priors.

In contrast to the pure manipulation models, the monotonicity of standard in the
prior cannot be guaranteedwithout imposing further assumptions in the generalmodel.
However, intuition suggests that most qualitative aspects of the results obtained in
the pure manipulation games are robust when both candidate types are allowed to
manipulate readiness, but themanipulation of one of the types ismuchmore responsive
to changes in the standard than the other’s. In the next subsections, we show this
formally.

5.1 Dominatingmisalignedmanipulation

The manager is dominantly concerned about the indirect effect of the standard on the
effort exerted by the unfit candidate if, for instance, the fit candidate may benefit little
from exerting effort. This is the case if returns to readiness are decreasing and the fit
candidate has a high natural readiness.

Let �(θq) be the game � defined by a triplet (F, Cq , Cu), with θq ∈ �◦. In the
sequel, we denote explicitly the dependence on θq of the smallest and largest priors at
which the problem is test-worthy, κ and κ , by writing κ(θq) and κ(θq), respectively.
The following result shows that the arguments leading to Proposition 1 still apply
when the fit candidate’s effort changes little in response to changes in the standard.

Proposition 3 Assume Fθ (s, θ) = 0 for all s ∈ (0, 1). Then, there exists θq ∈ �◦

such that for all θq ∈
(
θq , θ

)
, there exists κ̃u(θq) ∈ (κ(θq), κ(θq)) such that

the optimal standard is

⎧⎪⎪⎨
⎪⎪⎩

ex-post efficient if κ ∈ (
0, κ(θq)

]
soft if κ ∈ (κ(θq), κ̃u(θq))

harsh if κ ∈ (̃κu(θq), κ(θq))

ex-post efficient if κ ∈ [κ(θq),∞).

(10)

Proposition 3 states that if the marginal benefit from exerting effort vanishes as
the fit candidate’s natural readiness approaches its largest value and the fit candidate’s
natural readiness is large, then, in the limit, the strategic ratio goes to 0, and themanager
prioritises deterring effort from the unfit candidate by applying soft standards for
relatively low priors and harsh standards for relatively high priors (by Lemmata 1-4).
Example 4 illustrates Proposition 3.
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Fig. 3 Example 4. Strategic ratio r(s) versus pseudo likelihood ratio function v(s) and equilibrium standards
S∗(κ) of � for θq = 0.5. The equilibrium standard is soft for κ ∈ (0.625, 1) (highlighted in magenta),
harsh for κ ∈ (1, 1.375) (highlighted in green) and ex-post efficient otherwise

Example 4 Consider the distribution

F(z, θ) = θ

(
1 − θ

2

)
z2 +

(
1 − θ

(
1 − θ

2

))
z,

for all (z, θ) ∈ [0, 1]2. The unfit candidate’s cost function is Cu(θ) = θ2 for all
θ ∈ [0, 1]. The fit candidate’s natural readiness is θq ∈ (0, 1), and her cost function

is Cq(θ; θq) = 1
2 (θ − θq)2 for all θ ∈ [θq , 1]. Since F has a neutral signal at 0.5, we

have that ŝu = ŝq = 0.5.
The best response functions of unfit and fit candidates are θ∗

u (s) = s(1− s)(s(1−
s)+2)−1 and θ∗

q (s; θq) = (s(1−s)+θq)(s(1−s)+1)−1, respectively, for all s ∈ [0, 1].
This yields an strategic ratio r(s) =

(
(1 − θq)/2

)2
((s(1 − s) + 2)/(s(1 − s) + 1))3.

The strategic ratio r(s) is decreasing (increasing) over (0, 0.5) (over (0.5, 1)), attaining
its minimum at the neutral signal. Furthermore, as θq increases, r(s) shifts down, and
v(s) “rotates” around (0.5, v(0.5)) = (0.5, 1), becoming "steeper" (v(s) is decreasing
(increasing) in θq for all s < (>)0.5). For sufficiently high fit candidates’ natural
readiness—namely, for θq ∈ (0.42, 1]—misaligned manipulation is dominant (at
θq = 0.42, v(0) = r(0), whereas r(s) < v(s) for all s ∈ [0, 1] for larger θq ), and
hence, a soft-harsh pattern arises as κ increases (see Fig. 3).

5.2 Dominating alignedmanipulation

In this section, we consider the case in which the manager’s strategic concerns are
dominated by the effect of the standard on the fit candidate’s effort. The main qual-
itative features of the pure aligned manipulation game �q arise in game � as well,
provided that the unfit candidate’s effort is sufficiently costly, since this candidate’s
type becomes less responsive to changes in the standard as her cost of improving
readiness increases.
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Fig. 4 Example 5.Alignedmanipulation is dominant in the red shaded regionwhilemisalignedmanipulation
is dominant in the blue shaded region. The parameterλ(θq ) equalizes theminimumof the difference between
strategic ratio and the pseudo likelihood ratio (r(s) − v(s)) to 0, for each θq ∈ (0, 1). The parameter θq (λ)

equalizes themaximumof the difference between strategic ratio and the pseudo likelihood ratio (r(s)−v(s))
to 0, for each λ ∈ (0, 1)

For any game �, defined by a triplet (F, Cq(·; θq), Cu), we define a set of games
indexed by λ ∈ [0, 1], and denoted by �(λ), where the only difference between �

and �(λ) is that the cost function of the unfit candidate in the latter is λ−1Cu , for all
λ ∈ (0, 1], whereas �(0) corresponds to �q . For an interpretation, λ may measure the
unfit candidate’s degree of access to a manipulation technology. As in the analysis of
pure aligned manipulation games, we let κq(λ) and κq(λ) be the be the smallest and

largest priors, respectively, at which testing is worthy in the game �(λ).23

Proposition 4 There exists λ > 0 such that for all λ ∈ (0, λ), there exists κ̃q(λ) ∈
(κq(λ), κq(λ)) such that

the optimal standard is

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ex-post efficient if κ ∈ (
0, κq(λ)

)
harsh if κ ∈ (κq(λ), κ̃q(λ))

ex-post efficient if κ = κ̃q(λ)

soft if κ ∈ (̃κq(λ), κq(λ))

ex-post efficient if κ ∈ (κq(λ),∞).

(11)

This result reveals that, if increasing readiness is sufficiently costly for the unfit can-
didate, the manager encourages effort of the fit candidates by applying harsh standards
for relatively low priors and soft standards for relatively high priors (by Lemmata 1-
4). For instance, the development of plagiarism checkers has helped decision makers
(e.g., editors) ensure the originality of submitted manuscripts, by detecting miscon-
duct. These innovations have transformed editors’ decision problems, making them

23 Formally, κq (λ) := infs∈(0,1)

{
F(s,θ∗

q (s))

F(s,θ∗
u (s;λ))

}
and κq (λ) := sups∈(0,1)

{
1−F(s,θ∗

q (s))

1−F(s,θ∗
u (s;λ))

}
, where

θ∗
u (·; λ) is the best response of the unfit candidate with cost function λ−1Cu for all λ ∈ (0, 1], and

θ∗
u (·; 0) = θ .
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to resemble more closely the aligned manipulation setup. Proposition 4 is illustrated
in Example 5.

Example 5 We revisit Example 4. The fit candidate’s cost function remains the same
but the unfit candidate’s cost function is now given by Cu(θ) = 1

2λθ2 for all θ ∈ [0, 1]
(e.g., in Example 4, λ = 0.5).

The best response functions of unfit and fit candidates are given by, respec-
tively, θ∗

u (s; λ) = s(1 − s)(s(1 − s) + 1/λ)−1 and θ∗
q (s; θq) = (s(1 − s) +

θq)(s(1 − s) + 1)−1, for all s ∈ [0, 1]. The strategic ratio is r(s) = λ2(1 −
θq)2 ((s(1 − s) + 1/λ)/(s(1 − s) + 1))3.

For each possible fit candidate’s natural readiness θq , there exist large cost functions

for the unfit candidate—namely, for λ ∈ (0, λ(θq))—such that r(s) > v(s) for all
s ∈ [0, 1], and, thus, the manager’s concerns about the fit candidates’ effort dominate.
Hence, a harsh-soft pattern arises as κ increases. For instance, for λ = 1/2 and
θq = 0.10, the manager is harsh for κ ∈ (0.89, 1), soft for κ ∈ (1, 1.10), and ex-post
efficient otherwise.

Figure 4 displays the threshold for λ, as a function of θq , such that for all λ < λ,
alignedmanipulation is dominant. Intuitively, the marginal benefit from fit candidates’
effort is lower for larger values of θq ; thus, in order to have dominant aligned manip-
ulation, the marginal cost of the unfit candidate must be larger, or equivalently, λ must
be lower.

Example 5 also illustrates Proposition 3. For each λ, as θq increases, we move from
aligned manipulation dominance to misaligned manipulation dominance. Larger gaps
between candidates’ readinesses, associated with larger θq , result in a less responsive
fit candidate, making the effects of the standard on the readiness of the unfit candidate
dominant.

6 Welfare analysis

In this section,we analyze the impact onwelfare of themanager’s ability to commit.We
compare equilibrium standards and payoffs in the dynamic game� and the static game
�0—in which the standard and readiness are chosen simultaneously. In the previous
sections, we found that when the candidate can manipulate the signal distribution, the
ability to commit to a standard increases the expected payoff of the manager. This
is achieved by either inducing a lower readiness by the unfit candidate or a greater
readiness by the fit candidate, or both.

The candidate is strictly better-offwith lower standards. Intuitively, a lower standard
gives the candidate a higher probability of acceptance if she keeps her readiness
unchanged; additionally she can adjust her readiness, which can only increase her
payoffs even further.

Therefore, the equilibrium outcome of the dynamic game Pareto dominates the
equilibrium outcome of the static game if and only if the standard in the former is
lower than in the latter.
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Remark 1 A SPNE of � Pareto dominates a BNE of �0 if s∗
P < s∗

N E . If s∗
P > s∗

N E the
manager is weakly better off and the candidates are worse off in the SPNE.

Aligned manipulation often leads to non-unique BNE; however, as the return to
effort vanishes, as θq increases, uniqueness is recovered.24 Our discussion in the rest
of this section focuses on the case in which we have a unique BNE.We find conditions
on prior beliefs and the type of manipulation that is dominant for which commitment
leads to outcomes that Pareto dominate the outcome without commitment.

We assume that the fit candidate’s natural readiness is relatively large. This guaran-
tees that g(·, θ∗

u (·), θ∗
q (·)), the likelihood ratio with adapted readiness, is increasing,

which ensures that (i) the BNE of �0 is unique, and (ii) the equilibrium standard
under commitment is soft if and only if it is lower than the standard in the BNE.25 To
see why (ii) holds when g(·, θ∗

u (·), θ∗
q (·)) is increasing, notice that when the standard

under commitment, s∗
P , is soft, g(s, θ∗

u (s∗
P ), θ∗

q (s∗
P )) = κ for a standard s > s∗

P . Since
g(·, θ∗

u (s∗
P ), θ∗

q (s∗
P )) is increasing, g(s∗

P , θ∗
u (s∗

P ), θ∗
q (s∗

P)) < κ . On the other hand, the
standard in the equilibrium of the static game, s∗

N E is ex-post efficient; i.e., it satisfies
g(s∗

N E , θ∗
u (s∗

N E ), θ∗
q (s∗

N E )) = κ . Thus, if g(·, θ∗
u (·), θ∗

q (·)) is increasing, s∗
N E > s∗

P as
well. An analogous argument proves the converse.

Our next result (Corollary 1) considers the case in which the effect of standards on
the unfit candidate’s effort dominates, whereas the second one (Corollary 2) considers
the case in which the effect of the standard on the fit candidate’s effort dominates.

Corollary 1 Assume that Fθ (z, θ) = 0 for all z ∈ (0, 1) and (1) also holds at (0, θ)

and (1, θ) for all θ ∈ �◦. Then, for all large enough fit candidate’s natural readiness
θq and relatively low priors for which the problem is test-worthy, the (unique) BNE
of �0(θq) is Pareto dominated by every SPNE of �(θq).

This result is a consequence of Proposition 3. By Propositions 1 and 3, when mis-
aligned manipulation is dominant, the manager applies soft standards in the dynamic
game when there is a relatively low prior probability that the candidate is unfit.

In contrast, when aligned manipulation is dominant, the manager sets soft stan-
dards when there is a relatively high prior probability that the candidate is unfit (by
Propositions 2 and 4). Let �0(θq , λ) and �(θq , λ) be the static and dynamic games,

respectively, with fit candidate’s natural readiness θq ∈ (θ, θ ] and unfit candidate’s

cost function λ−1Cu , with λ ∈ [0, 1] (where λ = 0 corresponds to the pure aligned
manipulation case). Next result is essentially a consequence of Proposition 4.

Corollary 2 Assume that Fθ (z, θ) = 0 for all z ∈ (0, 1) and (1) also holds at (0, θ)

and (1, θ) for all θ ∈ �◦. Then, for all combination of large enough fit candidate’s

24 The source and nature of the non-uniqueness of the SPNE of� and the BNE of�0 are very different. The
SPNE of � is generically unique. Non-uniqueness of the SPNE only can arise because, for specific values
of κ , the objective function of the manager, V (·, θ∗

u (·), θ∗
q (·)), has multiple minimisers. This can only occur

when v is non-monotone. The non-uniqueness of the BNE, on the other hand, arises when g(·, θ∗
u (·), θ∗

q (·))
is non-monotone. In this case, we can have intervals of values of κ for which we have multiple BNEs.
25 Our focus on relatively large natural readiness of the fit candidate does not seem to be too restrictive.
For instance, in Example 4, the possible range for θq is (0, 1] and g(·, θ∗

u (·), θ∗
q (·)) is increasing for all

θq > 0.16.
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natural readiness θq with large enough unfit candidate’s manipulation costs (i.e.,
small enough λ), and relatively high priors for which the problem is test-worthy, the
(unique) BNE of �0(θq) is Pareto dominated by every SPNE of �(θq).

7 Amechanism design approach

Announcing a standard (either in hiring or internal promotion processes) is nowadays a
ubiquitous response to the pre-contractual informational asymmetries. In this section,
however, we show that themanager could do better by offering the candidate amenu of
testing options to choose from; that is, by designing a revelation mechanism. Indeed,
applying such a mechanism can yield a Pareto improving outcome when there is a
high likelihood that the type of the candidate is unfit.

By the Revelation Principle, we can focus on direct mechanisms that are truthful
(i.e., that, in equilibrium, induce the candidate to reveal her true type). We restrict
attention to mechanisms without monetary transfers. Thus, the mechanisms that we
consider are described by a decision rule mapping each report (unfit or fit) to proba-
bilities of outright rejection, outright hiring, and using a test with approval standard s
to make the decision.

In the “Appendix” we show that, without loss of generality, the analysis can be
restricted to the class of mechanisms in which: (i) any candidate who claims to be
unfit is outright rejected with probability p ∈ [0, 1] and hired otherwise, and (ii)
any candidate who claims to be fit is asked to take a test. Thus, we only consider
truthful revelation mechanisms characterized by a duplet (s, p) ∈ [0, 1]2, where s
is the standard applied to a candidate reporting to be fit, and p is the probability of
outright rejection for a candidate reporting to be unfit.

The individual rationality constraint for the unfit candidate is redundant: rejecting
the contract yields a loss of 1 ≥ p for all p ∈ [0, 1]. The same applies to the fit
candidate: 1 ≥ F(s, θq) ≥ F(s, θ∗

q (s)) + Cq(θ∗
q (s)) for all s ∈ [0, 1].

Incentive-compatibility requires p ≤ F(s, θ∗
u (s)) + Cu(θ∗

u (s)) and F(s, θ∗
q (s)) +

Cq(θ∗
q (s)) ≤ p for the unfit and fit candidate, respectively. The first restriction is

binding, as the expected loss to the manager is decreasing in p, whereas the second
is not. Therefore, incentive compatibility for the unfit candidate implies that in any
mechanism (s, p), we have p = F(s, θ∗

u (s))+Cu(θ∗
u (s)) and the payoff to themanager

is VM (s) := F(s, θ∗
q (s)) − κ

(
F(s, θ∗

u (s)) + Cu(θ∗
u (s))

)
. Thus, if (sM , pM ) is an

optimal mechanism for the manager, then sM solves mins∈[0,1] VM (s) and pM =
F(sM , θ∗

u (sM )) + Cu(θ∗
u (sM )).

Let κM be the minimum of the ratio of the probability of rejecting the fit candidate
over the probability of rejecting the unfit candidate across different standards; and let
κM be the maximum of the ratio of the probability of accepting the fit candidate over
the probability of accepting the unfit candidate across different standards.26 We also

26 Formally, κM := infs∈(0,1)

{
F(s,θ∗

q (s))

F(s,θ∗
u (s))+Cu (θ∗

u (s))

}
and κM :=

sups∈(0,1)

{
1−F(s,θ∗

q (s))

1−F(s,θ∗
u (s))−Cu (θ∗

u (s))

}
.
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Fig. 5 Example from Sect. 5 with λ = θq = 0.5: equilibrium standard in � (solid line) and the optimal
mechanism standard (dashed line), for each prior κ

define the pseudo likelihood ratio function relevant to this problem,

vM (s) := f (s, θ∗
q (s)) + Fθ (s, θ∗

q (s))
dθ∗

q (s)
ds

f (s, θ∗
u (s))

(12)

for all s ∈ [0, 1]. Finally, we let S∗
M be the correspondence mapping κ ∈ (0,∞) to

the set of standards applied to candidates reporting to be fit in an optimal mechanism
and adopt the definition of weakly increasing correspondence introduced in Sect. 4.27

Proposition 5 The correspondence S∗
M is weakly increasing over (0,∞). If (sM , pM )

is an optimal mechanism, then, (i) (sM , pM ) = (0, 0) for all κ < κ M , (sM , pM ) =
(s, F(s, θ∗

u (s)) + Cu(θ∗
u (s))), for some s ∈ (0, 1) satisfying vM (s) = κ , for all

κ ∈ (κM , κ M ), and (sM , pM ) = (1, 1) for all κ > κM ; and (ii) the manager strictly
prefers the optimal mechanism to the equilibria of � for all κ ∈ (κM , κ M ).

The manager is better-off using the optimal mechanism than simply committing to
a standard, for all priors leading to an interior equilibrium standard, due to the higher
probability of rejecting the unfit candidate. The proof of Proposition 5 reveals that, as
in the pure aligned manipulation scenario of the game in which the manager commits
to a standard, the optimal mechanism enlarges the range of priors for which screening
is worthy.

Candidates are better-off with the revelation mechanism than under simple com-
mitment to a standard if sM < s∗

P and worse-off if sM > s∗
P . Provided that the pseudo

likelihood ratio function of �, v, and vM are both strictly increasing, sM < s∗
P if

vM (s∗
P ) > v(s∗

P ), for all κ ∈ S∗−1
M (0, 1). Similarly, sM > s∗

P if vM (s∗
P) < v(s∗

P ).
Functions v and vM differ in the same manner that v and g(·, θ∗

u (·), θq) differ in
the pure misaligned manipulation setup: by the presence of the indirect effect of the

standard, Fθ (·, θ∗
u (·)) dθ∗

u (·)
ds , that appears in the denominator of v. Thus, if the problem

is sufficiently well-behaved, so that both functions are well-defined in [0, 1],28for all
27 As in the game in which the manager simply commits to a hiring standard (see Sect. 4.1), the possibility
of multiple equilibria for some knife-edge values of κ , in general, cannot be ruled out.
28 See the discussion in footnote 19.
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s ∈ (0, 1)we have v(s) > (=,<)vM (s) if s < (=,>)ŝu . In this scenario, an argument
analogous to the proof of Proposition 1 shows that standards in the commitment setup
are lower than in the optimal mechanism for low priors and higher for high priors.
This is illustrated in Fig. 5 for the example described in Sect. 5. Under the assumptions
of Proposition 6, if F has a neutral signal and misaligned (aligned) manipulation
dominates in �, then, the manager’s deviations from the standard in the static game
are in opposite (the same) direction under commitment and the optimal mechanism.
When they are in the same direction, the deviation under the optimal mechanism is
larger than under commitment, because of the buffering effect of the unfit candidate’s
effort in the latter.

The economics behind this, however, is very different: with the optimalmechanism,
at the margin, the manager ignores the effect of the standard on the unfit candidate’s
effort because, since pM = F(sM , θ∗

u (sM )) + Cu(θ∗
u (sM )), the optimal menu offsets

changes in F(·, θ∗
u (·)) with changes in Cu(θ∗

u (·)) (which, at the margin, are the same).
Since no test is needed when the unfit type is revealed, the manager is only concerned
with incentivising the fit candidate’s effort when setting up the standard in the optimal
mechanism. Thus, the standard of the optimal mechanism and under commitment
with pure misaligned manipulation deviate in opposite directions with respect to the
standard without commitment.

Our last result shows that a sufficient condition for both v and vM to be well-
defined and strictly increasing is that the fit candidate’s natural readiness and the unfit
candidate’s marginal cost are large. Under these assumptions, the candidates’ ranking
over the two settings (commitment and the revelation mechanism) depends on the
prior. In particular, the revelation mechanism is Pareto superior for sufficiently high
priors that the candidate’s type is low.

Recall that, given a triplet (F, Cu, Cq), �(θq , λ) is the game in which the manager
commits to a standard, the fit candidate has a natural readiness θq , and the unfit

candidate has a cost function λ−1Cu if λ ∈ (0, 1], or the game �q if λ = 0. Also, let
ŝu(λ) be the modularity-switch point of the unfit candidate with cost function λ−1Cu

for all λ ∈ (0, 1], and κM (θq , λ) and κM (θq , λ), defined as κM and κM , respectively,
but with θ∗

q (·; θq) and θ∗
u (·; λ) determined by θq ∈ �◦ and λ ∈ [0, 1], respectively.

Proposition 6 Assume that Fθ (z, θ) = 0 for all z ∈ (0, 1) and that condition (1) also
holds at (0, θ) and (1, θ) for all θ ∈ �◦. Then, for all combination of large enough
fit candidate’s natural readiness θq with large enough unfit candidate’s manipulation
costs (i.e., small enough λ),

(i) both candidate’s types prefer commitment to a standard over the optimal mech-
anism, for the relatively low priors for which the mechanism is worthy (κ ∈
(κM (θq , λ), v(ŝu(λ)))), and

(ii) both candidate’s types prefer the optimal mechanism to commitment, and hence the
optimal mechanism Pareto Dominates commitment, for the relatively high priors
for which the mechanism is worthy (κ ∈ (v(ŝu(λ)), κM (θq , λ)).

A large enough fit candidate’s natural readiness θq and unfit candidate’s manipu-
lation costs guarantee the monotonicity of the standard in the prior in both settings.
Both candidate’s types prefer the scheme with the lowest standard. Compared with
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commitment, under the optimal revelation mechanism the manager sets higher stan-
dards for sufficiently small priors that the candidate’s type is low and lower standards
for sufficiently high priors that the candidate’s type is low.

The logic behind Proposition 6 is independent of which information manipulation
effect dominates in the commitment setting. Furthermore, if the distribution has a neu-
tral signal, the prior at which the candidate preferences for the revelation mechanism
and commitment reverse is κ = 1.

8 Discussion

Information manipulation by interested parties is ubiquitous. Motivated by the
widespread use of approval standards in applications, we analyse the desirability
and implications of the use of commitment to ex-post inefficient standards as a tool
to manage information manipulation. Optimal standards trade off classic statistical
decision-making for management of information manipulation. Strategic complemen-
tarity between readiness and the standard develops in the submodular region of the
domain of the signal distribution—i.e., for low standards that arise in equilibrium
when agents have good prior prospects. Analogously strategic substitutability arises
for agents with bad prior prospects.

An application often discussed in the literature is the drug approval process by
regulatory agencies such as the FDA or the ABPI (see, e.g., Li 2001; Henry and
Ottaviani 2019).AsLi (2001) observes, “most of the evidence concerning effectiveness
of a new drug is provided by its producer, not by the panelists.” Pharmaceutical
companies engage in a range of information manipulation practices, including hiding
data, cherry-picking variables, manipulating experimental conditions, etc. (see, e.g.,
Goldacre 2014). In the light of our results, a question that arises is whether regulatory
agencies’ approval standards are tilted in the right direction to manage information
manipulation incentives.

For instance, our model predicts that, when misaligned manipulation is dominant,
drugswith good prospects (low κ) should be subject to soft approval standards; namely,
drugs with ex-post evidence marginally-negative expected values should be approved.
A natural choice for drugs having good prospects are those in the Breakthrough-Drug
Designation (BDD) programof the FDA.AsDarrowet al. (2018) show, trials following
the nomination of many of the drugs in the BDD program have confirmed their good
prospects, producing good results, and have been approved by the FDA. Nevertheless,
trial results for some of the drugs in the program have shown little efficacy, even failing
to meet customary standards (see Darrow et al. 2018, p. 1449). Yet, a number of such
drugs have been approved by the FDA. Propositions 1 and 3 suggest that softening
the standard has a positive side-effect of discouraging misaligned manipulation.29 An
empirical study of these issues is a subject of interest for future research.

29 The BDD scheme was conceived to provide a “fast-track” approval process. The softening of standards
that we refer to, however, is not related to the “fast-track” aspect of the program, but exclusively to the
evidence documented in Darrow et al. (2018) on the approval of drugs that showed little efficacy in trials
run after the drug was granted the designation.
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As psychological screening has become widespread,30 practitioners have empha-
sized the importance of assessing it properly (see, e.g., Dattner 2013; Caska 2020). The
assessment of screening tests not only needs to take into account their performance
in terms of wrong hiring/rejection, but also, their effect on test-preparation incen-
tives. While the performance of selection procedures is determined by many factors,
practitioners should bear in mind the insights of our analysis: managing informa-
tion manipulation can further benefit from other incentive schemes in the economics
toolkit.

Our analysis shows that a revelationmechanism allows the decisionmaker to obtain
a higher expected payoff than simple commitment to a standard and it may be Pareto
improving. Thus, protocols more involved than plain tests, as those described in our
mechanism design approach, may be advantageous for managers’ hiring procedures.
Other possible approaches include mechanisms with transfers, manager’s random-
izations (probabilities of outright hiring/rejection), and hiring/rejection sets that are
not monotone (i.e., not determined by a single standard) for both the commitment
setup and revelation mechanisms. Additionally, the decision maker could introduce
randomizations where the probability of hiring/rejection is conditional on the signal
realization.We leave the analysis of these variations of the problem for future research.

Finally, we make a number of assumptions that aid the tractability of the analysis.
For instance, the agent’s type distribution and the principal’s choice set are binary. It is
not difficult to imagine situations where agents’ heterogeneity may play an important
role. Future research extending the analysis to continuous types is encouraged.
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Appendix: Proofs and Ancillary material

Proofs and Ancillary material of Sect. 2

Formal analysis of ex-post optimal standard
Since sign {∂V (s, θ)/∂s} = sign {g(s, θ) − κ} for all (s, θ) ∈ (0, 1)×�, we have

that for all θ ∈ �, the optimal standard is:

s∗(θ; κ) =
⎧⎨
⎩
0 if 0 < κ ≤ g(0, θ)

s∗
θ,κ

if g(0, θ) < κ < g(1, θ)

1 if g(1, θ) ≤ κ,

(13)

where s∗
θ ,κ

is defined by g(s∗
θ,κ

, θ) ≡ κ for all κ ∈ (g(0, θ), g(1, θ)). Since g(·, θ) is
strictly increasing by the MLRP, s∗(θ; ·) is weakly increasing for all θ ∈ �.

Proofs and Ancillary material for Sect. 3

Let m(z, θ) := 1
f (z,θ)

∂ f (z,θ)
∂θ

for all (z, θ) ∈ D. Note that m(·, θ) is strictly increasing

for all θ < θ since for all z ∈ (0, 1) and θ < θ , we have that ∂m(z, θ)/∂z =
∂2 ln f (z, θ)/∂θ∂z > 0.

Claim 1 Fθ (z, θ) < 0 for all z ∈ (0, 1) and θ < θ .

Proof For all z ∈ (0, 1) and θ < θ ,

Fθ (z, θ) =
∫ z

0

∂ f (z′, θ)

∂θ
dz′ =

∫ z

0
f (z′, θ)m(z′, θ)dz′ (14)

By the MLRP, we know that Fθ (z, θ) ≤ 0 for all z ∈ (0, 1) and θ < θ . We now
show that this inequality is indeed strict. By the positiveness of the density function and
strict monotonicity of m(·, θ), if (14) is equal to zero for some z ∈ (0, 1) and θ < θ ,
then f (z′, θ)m(z′, θ) > 0 and Fθ (z′, θ) > 0 for all z′ ∈ (z, 1). But Fθ (z′, θ) > 0
contradicts FOSD (and hence the MLRP). ��
Proof of Lemma 1. The proof of Lemma 1 relies on the fact that we can separate the
submodular regions of the domain of F from the supermodular regions:

Remark 2 For all θ < θ there exists s̃(θ) ∈ (0, 1) such that

∂ f (z, θ)

∂θ

⎧
⎨
⎩

< 0 if z < s̃(θ)

= 0 if z = s̃(θ)

> 0 if z > s̃(θ)

(15)

for all z ∈ [0, 1].31

31 We allow for Fθ (z, θ) = 0 for all z ∈ [0, 1], thus, it is possible that ∂ f (z,θ)
∂θ

= 0 for all z ∈ [0, 1].
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Proof By Claim 1, for all z ∈ (0, 1) and θ < θ , we have that
∫ z
0 (∂ Fθ (z′, θ)/∂z)dz′ =

Fθ (z, θ) < 0, where the equality follows from the fact that Fθ (0, θ) = 0 for all
θ < θ . Thus there is z′ ∈ (0, z) such that ∂ Fθ (z′, θ)/∂z < 0; and similarly, there is
z′′ ∈ (z, 1) such that ∂ Fθ (z′′, θ)/∂z > 0 since Fθ (1, θ) = 0 for all θ < θ . Therefore,
m(z′, θ) < 0 and m(z′′, θ) > 0, and by continuity of m, there is z′′′ ∈ (z′, z′′) such
that m(z′′′, θ) = 0. Indeed, z′′′ is the unique root of m(·, θ) = 0 because of the strict
monotonicity of m(·, θ) for all θ < θ . Thus, θ �→ s̃(θ) maps θ to the unique root of
m(·, θ) = 0, for all θ < θ . ��

Now, by the Implicit Function Theorem, s̃ is continuous, with

ds̃(θ)

dθ
= −∂m (̃s(θ), θ)

∂θ

(
∂m (̃s(θ), θ)

∂s

)−1

for all θ < θ . In particular, ∂m (̃s(θ), θ)/∂s > 0 and hence, ds̃(θ)/dθ is finite for all
θ < θ .

Let ŝu be a global maximizer θ∗
u . By the properties of the cost function, ŝu ∈

(0, 1), and θ∗
u (ŝu) > θ . Further, dθ∗

u (ŝu)/ds = 0 and hence, by (5), s̃(θ∗
u (ŝu)) = ŝu .

Indeed, ŝu is the unique maximizer of θ∗
u : if ŝ′

u �= ŝu is another maximizer of θ∗
u , then

s̃(θ∗
u (ŝu)) = ŝ′

u , contradicting that s̃ is a function.
Suppose there exists s′ �= ŝu such that s̃(θ∗

u (s′)) = s′. If s′ is not a local extreme
of θ∗

u , then s′ is a tangency point between θ∗
u and the inverse of s̃.32 But this would

imply 0 = dθ∗
u (s′)/ds = (ds̃(θ∗

u (s′))/dθ)−1, which leads to a contradiction because
ds̃(θ)/dθ is finite for all θ < θ . Furthermore, s′ cannot be a local minimum of
θ∗

u as this would imply that for some θ > θ∗
u (s′), there are s′′ < s′ < s′′′ with

θ∗
u (s′′) = θ∗

u (s′′′) = θ and such that dθ∗
u (s′′)/ds < 0 and dθ∗

u (s′′′)/ds > 0, implying
s̃(θ) < s′′ < s′′′ < s̃(θ), a contradiction. Therefore s′ can only be a local maxi-
mum of θ∗

u . But this would imply that there is a local minimum of θ∗
u in the interval

(min{s′, ŝu},max{s′, ŝu}), contradicting that θ∗
u does not have local minima in (0, 1).

We conclude that θ∗
u intersects s̃ only once at (ŝu, θ∗

u (ŝu)). The argument for θ∗
q is

analogous. The thesis of the Lemma 1 follows immediately. ��

Proofs and Ancillary material of Sect. 4

Proof of Lemma 2. We prove that S∗ is weakly increasing using an indirect argument.
Consider κ ′ > κ , s ∈ S∗(κ), and s′ ∈ S∗(κ ′). Then,

F(s, θq) − κ F(s, θ∗
u (s)) ≤ F(s′, θq) − κ F(s′, θ∗

u (s′))
F(s′, θq) − κ ′F(s′, θ∗

u (s′)) ≤ F(s, θq) − κ ′F(s, θ∗
u (s)).

Adding these inequalities yields (κ ′ − κ)
(
F(s, θ∗

u (s)) − F(s′, θ∗
u (s′))

) ≤ 0, which
implies F(s, θ∗

u (s)) ≤ F(s′, θ∗
u (s′)). Now suppose s′ < s; since densities are

32 The inverse of s̃ then could be defined over an open interval containing s′ because the tangency occurring
under the working hypothesis would imply that ds̃(θ∗

u (s′))/dθ �= 0.
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strictly positive, we have F(s′, θq) < F(s, θq). Thus, F(s′, θq) − κ F(s′, θ∗
u (s′)) <

F(s, θq) − κ F(s, θ∗
u (s)), contradicting that s is the equilibrium standard for κ .

Now we show that S∗(κ) = {0}. Notice that V (0, θ, θq; κ) < V (s, θ, θq; κ) ≤
V (s, θ∗

u (s), θq; κ), for all s > 0, where the strict inequality follows from the fact that
s∗(θ, θq; κ) = 0, and the weak inequality follows from FOSD.

Since S∗ is weakly increasing, we conclude S∗(κ) = {0} for all κ ∈ (0, κ]. An
analogous argument proves that S∗(κ) = {1} for all κ ∈ [κ,∞).

Finally, we show that S∗ is strictly increasing over S∗−1(0, 1). Notice that for all
κ ∈ S∗−1(0, 1), s ∈ S∗(κ) only if the right hand side of (7) is equal to 0. Thus, s can
only be an element of S∗(κ) for only one κ ∈ S∗−1(0, 1). ��
Proof of Proposition 1. We start with the following lemma:

Lemma 5 Let (s∗
P , θ∗

u , θq) be a SPNE of �u such that s∗
P ∈ (0, 1). The equilibrium

standard is soft (harsh) if and only if F is strictly submodular (strictly supermodular)
at (s∗

P , θ∗
u (s∗

P )).

Proof Since s∗
P is an interior minimizer of V (·, θ∗

u (·), θq), from (7), it satisfies

g(s∗
P , θ∗

u (s∗
P), θq) = κ

(
1 + Fθ (s∗

P , θ∗
u (s∗

P ))

f (s∗
P , θ∗

u (s∗
P ))

dθ∗
u (s∗

P)

ds

)
. (16)

By Claim 1, Fθ (z, θ) < 0 for all z ∈ (0, 1) and θ < θ . Thus, the sign of the second
term on the right-hand side of (16) is the same as the sign of −dθ∗

u (s∗
P )/ds, which

in turn, from condition (5), is the same as the sign of ∂ f (s∗
P , θ∗

u (s∗
P ))/∂θ . Thus,

g(s∗
P , θ∗

u (s∗
P ), θq) < κ if and only if F is strictly submodular at (s∗

P , θ∗
u (s∗

P )).
Furthermore, since g(·, θ∗

u (s∗
P ), θq) is strictly increasing, we have that either

g(s, θ∗
u (s∗

P ), θq) = κ for some s > s∗
P , or the minimizer of V (·, θ∗

u (s∗
P ), θq) is s = 1.

Thus, s∗
P < s∗(θ∗

u (s∗
P), θq; κ) if and only if F is strictly submodular at (s∗

P , θ∗
u (s∗

P )).
The argument for the case in which F is strictly supermodular at (s∗

P , θ∗
u (s∗

P)) is
analogous. ��

Now, for any game �u , let κ̃u := sup{κ ∈ (0,∞) : supS∗(κ) ≤ ŝu}, where ŝu is
the modularity-switch point.
Part 1. We first prove that κ̃u < κ:

Case 1. κ = ∞: For any κ ∈ (0,∞), we have that

min
s∈[0,ŝu ]

{
V (1, θ, θq; κ) − V (s, θ∗

u (s), θq; κ)
}

= min
s∈[0,ŝu ]

{
1 − F(s, θq) − κ(1 − F(s, θ∗

u (s)))
}

.

This expression is negative for a large enough κ◦, thus s /∈ S∗(κ◦) for all s ∈ [0, ŝu].
Since S∗ is weakly increasing (Lemma 2), s /∈ S∗(κ ′) for all s ∈ [0, ŝu] and κ ′ > κ◦.
Thus, κ̃u ≤ κ◦ < ∞.

Case 2. κ < ∞: From Lemma 2, S∗(κ) = {1}. Indeed, V (1, θ, θq; κ) <

mins∈[0,ŝu ] V (s, θ∗
u (s), θq; κ). Notice that V (s, θ, θq; ·) is continuous over (0,∞), for
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880 S. Martinez-Gorricho, C. Oyarzun

all (s, θ) ∈ [0, 1] × �, and by the Maximum Theorem, so it is mins∈[0,ŝu ] V (s, θ∗
u (s),

θq; ·). Thus, for small enough δ > 0, we have V (1, θ, θq; κ − δ) < mins∈[0,ŝu ] V
(s, θ∗

u (s), θq; κ − δ). Therefore, supS∗(κ − δ) > ŝu and since S∗ is weakly increas-
ing (Lemma 2), we conclude that κ̃u ≤ κ − δ < κ .
Part 2. Now we show that the optimal standard is ex-post efficient for all κ ∈ [κ,∞):
From Lemma 2, S∗(κ) = {1} for all κ ≥ κ . Recall that θ∗

u (1) = θ . From (13),
s∗(θ, θq; κ) = 1 for all κ ≥ κ . Thus, the standard is ex-post efficient for all κ ≥ κ .
Part 3. Now we show that the optimal standard is harsh for all κ ∈ (̃κu, κ): consider
any κ ∈ (̃κu, κ) and s ∈ S∗(κ); since S∗ is weakly increasing over (0,∞) and strictly
increasing over S∗−1(0, 1) (by Lemma 2), we have that s ∈ (ŝu, 1]. By Lemmata 1
and 5, the optimal standard is harsh if s ∈ (ŝu, 1). And if s = 1 the optimal standard
is harsh because s∗(θ, θq; κ) < 1 for κ < κ .

Noting that κ̃u = inf{κ ∈ (0,∞) : inf S∗(κ) ≥ ŝu}, an argument analogous to that
of Part 1 shows that κ̃u > κ . Similarly, arguments analogous to those in Parts 2 and
3 yield that the optimal standard is ex-post efficient for all κ ∈ (0, κ] and soft for all
κ ∈ (

κ, κ̃u
)
, respectively. ��

Remark 3 Assume that (1) also holds at (0, θ) and (1, θ) for all θ ∈ �◦. Then, there
exists λ > 0 such that the game �u defined by F and the cost function λ−1Cu has a
strictly increasing pseudo likelihood ratio function v, for all λ ∈ (0, λ).

Proof Let θ∗
u (·; λ) be the unfit candidate’s best response for the cost function λ−1Cu

if λ > 0 and θ∗
u (·; λ) = θ if λ = 0. If λ > 0, the derivative of F(·, θ∗

u (·; λ)) is

du(s; λ) := f (s, θ∗
u (s; λ)) − Fθ (s, θ

∗
u (s; λ))

∂ f (s, θ∗
u (s; λ))

∂θ(
C ′′

u (θ∗
u (s; λ))

λ
+ ∂2F(s, θ∗

u (s; λ))

∂θ2

)−1

for all s ∈ [0, 1]. Since f (·, θ) > 0, by the Maximum Theorem, there exists λ1 > 0
such that for all λ ∈ (0, λ1), we have that mins∈[0,1] {du(s; λ)} > 0. Thus, for all
λ ∈ (0, λ1), v′ > 0 is equivalent to

min
s∈[0,1]

{
1

f (s, θq)

∂ f (s, θq)

∂s
− 1

du(s; λ)

d (du(s; λ))

ds

}
> 0.

Indeed,

lim
λ→0

min
s∈[0,1]

{
1

f (s,θq )

∂ f (s,θq )

∂s − 1
du(s;λ)

d(du(s;λ))
ds

}

= min
s∈[0,1]

{
1

f (s,θq )

∂ f (s,θq )

∂s − 1
f (s,θ)

∂ f (s,θ)

∂s

}
> 0,

where the inequality is guaranteed by (1). Thus, there exists λ > 0 such that for all
λ ∈ (0, λ), we have v′ > 0. ��
Remark 4 Consider any game �u .
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(i) If v(s) < (>)g(ŝu, θ∗
u (ŝu), θq) for all s ∈ (0, ŝu) (s ∈ (ŝu, 1)), then κ̃u =

g(ŝu, θ∗
u (ŝu), θq). Therefore, Proposition 1 holds, mutatis mutandis, replacing κ̃u

by g(ŝu, θ∗
u (ŝu), θq). Further, S∗(g(ŝu, θ∗

u (ŝu), θq)) = {ŝu} and thus, the optimal
standard is ex-post efficient at κ = g(ŝu, θ∗

u (ŝu), θq).
(ii) Suppose that v is strictly decreasing over some interval (s, s), with 0 < s < s < 1.

Then, there exists a prior κ ∈ (0,∞) and δ > 0 such that κ ′ < κ < κ ′′,
s′ ∈ S∗(κ ′), and s′′ ∈ S∗(κ ′′) imply that s′′ − s′ > δ.

Proof Part (i) is direct, so we proceed directly to prove part (ii). Let du(s) :=
d F(s, θ∗

u (s))/ds.
Case 1. Suppose du(s) > 0 over (0, 1). For all s ∈ (s, s), if s is a critical point of

V (·, θ∗
u (·), θq), then s is a local maximum and hence, s /∈ S∗(κ) for any κ ∈ (0,∞).

Let κ∗ := sup{κ ∈ (0,∞) : supS∗(κ) ≤ s} and κ∗ := inf{κ ∈ (0,∞) : inf S∗(κ) ≥
s}.

We observe that κ∗ = κ∗: if κ∗ < κ∗, then for all κ ∈ (κ∗, κ∗) we have that
S∗(κ) ∩ (s, s) �= ∅, contradicting that s ∈ (s, s) implies that s /∈ S∗(κ) for any
κ ∈ (0,∞). On the other hand, if κ∗ > κ∗, then for any κ ∈ (κ∗, κ∗), supS∗(κ) ≤ s
and inf S∗(κ) ≥ s, a contradiction.

Thus, for all κ ′ < κ∗ we have supS∗(κ ′) ≤ s, and for all κ ′′ > κ∗ we have
inf S∗(κ ′′) ≥ s. Hence the thesis holds for κ = κ∗ and all δ ∈ (0, s − s).

Case 2. Suppose du(s) ≤ 0 for some s ∈ (0, 1). Then, for all κ ∈ (0,∞),
dV (·, θ∗

u (·), θq; κ)/ds > 0 over (s − ε, s + ε) for some ε ∈ (0,min{s, 1 − s}).
Thus, s /∈ S∗(κ) for any κ ∈ (0,∞). Analogously to the argument in Case 1, we can
define κ ′∗ := sup{κ ∈ (0,∞) : supS∗(κ) ≤ s − ε} and κ ′∗ := inf{κ ∈ (0,∞) :
inf S∗(κ) ≥ s + ε}. The rest of the argument is analogous to Case 1, leading to the
statement that thesis holds for κ = κ ′∗ and all δ ∈ (0, 2ε). ��
Proof of Lemma 3 The proof that S∗ is weakly increasing is indirect and analogous to
the one in the proof of Lemma 2, so we omit it.

By definition (see footnote 22), κq ≤ F(s, θ∗
q (s))/F(s, θ), which is equivalent to

0 ≤ F(s, θ∗
q (s)) − κq F(s, θ), for all s ∈ (0, 1). Thus 0 ∈ S∗(κq) and since S∗ is

weakly increasing, S∗(κ) = {0} for all κ < κq . Also by definition, for all κ > κq ,
there exists s ∈ (0, 1) such that κ > F(s, θ∗

q (s))/F(s, θ), which is equivalent to
0 > F(s, θ∗

q (s)) − κ F(s, θ), and therefore 0 /∈ S∗(κ).
An analogous argument shows that 1 ∈ S∗(κq), S∗(κ) = {1} for all κ > κq and

that 1 /∈ S∗(κ) for all κ < κq .
Finally, the argument to prove that S∗ is strictly increasing over (κq , κq) is analo-

gous to the corresponding argument in the proof of Lemma 2. ��
Proof of Proposition 2. We start with the following lemma:

Lemma 6 Let (s∗
P , θ, θ∗

q ) be a SPNE of �q such that s∗
P ∈ (0, 1). The equilibrium

standard is harsh (soft) at if and only if F is strictly submodular (strictly supermodular)
at (s∗

P , θ∗
q (s∗

P )).

Proof Since s∗
P is an interior minimizer of V (·, θ, θ∗

q (·); κ), it satisfies v(s∗
P ) = κ .

Recall that Fθ (s, θ) is strictly negative for all s ∈ (0, 1) and θ ∈ �◦, thus
g(s∗

P , θ, θ∗
q (s∗

P)) > v(s∗
P ) = κ if and only if F is strictly submodular at (s∗

P , θ∗
q (s∗

P )).
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Since g(·, θ, θ∗
q (s∗

P )) is strictly increasing, either g(s, θ, θ∗
q (s∗

P )) = κ for some s < s∗
P ,

or the minimizer of V (·, θ, θ∗
q (s∗

P ); κ) is 0. Thus, s∗
P > s∗(θ, θ∗

q (s∗
P ); κ) if and only

if F is strictly submodular at (s∗
P , θ∗

q (s∗
P )). The argument for the case in which F is

strictly supermodular at (s∗
P , θ∗

q (s∗
P )) is analogous. ��

Now we establish that κ̃q ∈ (κq , κq). Observe that V (ŝq , θ, θ∗
q (ŝq); κ̃q) <

V (s, θ, θ∗
q (ŝq); κ̃q) < V (s, θ, θ∗

q (s); κ̃q), for all s ∈ [0, 1] \ {ŝq}, where the first
inequality follows from the fact that ŝq is the uniqueminimizer ofV (·, θ, θ∗

q (ŝq); κ̃q),33

and the second inequality follows from observing that V (s, θ, ·; κ̃q) is decreasing for
all s ∈ (0, 1) and ŝq is the unique maximizer of θ∗

q . Thus, S∗(̃κq) = {ŝq}, and since
in the proof of Lemma 3 it is shown that S∗ is strictly increasing over (κq , κq),
0 ∈ S∗(κq) and 1 ∈ S∗(κq), we conclude κ̃q ∈ (κq , κq).

Now we prove that the optimal standard is ex-post efficient for all κ ∈
(
0, κq

)
. Let

dq(s) := d F(s, θ∗
q (s))/ds. Notice that

κq ≤ lim
s→0

F(s, θ∗
q (s))/F(s, θ) = lim

s→0
dq(s)/ f (s, θ) ≤ lim

s→0
g(s, θ, θ∗

q (s)) = g(0, θ, θq).

Thus, κq ≤ g(0, θ, θq). The ex-post optimal standard is weakly increasing in κ and
s = 0 is the only ex-post optimal standard for κ = g(0, θ, θq) (see Sect. 2.4). Thus,
since κq ≤ g(0, θ, θq) and S∗(κ) = 0 for all κ < κq (Lemma 3), we have that the
optimal standard is ex-post efficient for all κ < κq .

The argument proving that the optimal standard is harsh for all κ ∈ (κq , κ̃q) is
analogous to the argument showing that the optimal standard is harsh for all κ ∈ (̃κu, κ)

in the proof of Proposition 1. Instead of Lemmata 2 and 5, we use Lemmata 3 and 6.
The arguments showing that the optimal standard is ex-post efficient for all κ ∈(

κq ,∞)
and soft for all κ ∈ (̃κq , κq) are analogous to the arguments showing that the

optimal standard is ex-post efficient for all κ ∈
(
0, κq

)
and harsh for all κ ∈ (κq , κ̃q),

respectively. Finally, by (7), if κ = κ̃q , the optimal standard is ex-post efficient. ��

Proofs and Ancillary material of Sect. 5

Proof of Lemma 4. Let V(s) := V (s, θ∗
u (s), θ∗

q (s)) and observe that

dV(s)

ds
= f (s, θ∗

u (s))
(

g(s, θ∗
u (s), θ∗

q (s)) − κ
)

+ Fθ (s, θ∗
q (s))

dθ∗
q (s)

ds
− κ Fθ (s, θ∗

u (s))
dθ∗

u (s)

ds

= f (s, θ∗
u (s))

(
g(s, θ∗

u (s), θ∗
q (s)) − κ

)
+ Fθ (s, θ∗

u (s))
dθ∗

u (s)

ds
(r(s) − κ)

for all s ∈ (0, 1) \ {ŝu}. The manager is soft (harsh) in an equilibrium with standard
s∗

P ∈ (0, 1) if g(s∗
P , θ∗

u (s∗
P ), θ∗

q (s∗
P)) < (>)κ . Thus, parts (i)-(ii) and (iii)-(iv) follow

from the first and second equalities, respectively, using Claim 1 and the fact that
readiness is a strategic complement (substitute) of the standard at s ∈ [0, 1] if and
only if (s, θ∗

i (s)) is located in the submodular (supermodular) region of F , for i = q, u.
��

33 Notice that by definition of κ̃q , ŝq is the ex-post optimal standard if fit candidates’ readiness is θ∗
q (ŝq ),

unfit candidates’ readiness is θ , and κ = κ̃q .
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Proof of Proposition 3: In the sequel, when convenient, we make explicit the depen-
dence of dq , v, r , and θ∗

q on the natural readiness of fit candidates, so, instead of writing
dq(s), v(s), r(s), and θ∗

q (s), we write dq(s; θq), v(s; θq), r(s; θq) and θ∗
q (s; θq),

respectively, for all s ∈ [0, 1] and θq ∈ �◦.34 The proof hinges on the following
lemmata:

Lemma 7 Assume Fθ (s, θ) = 0 for all s ∈ (0, 1). Then, there exists θq ∈ �◦ such

that for all θq ∈
(
θq , θ

)
, dq(s; θq) > 0 for all s ∈ [0, 1].

Proof The Maximum Theorem and the assumptions of the model on F and the cost
functions guarantee that mins∈[0,1] dq(s; θq) varies continuously with θq . Further,

Fθ (s, θ) = 0 for all s ∈ [0, 1] and, from the hypothesis, mins∈[0,1] f (s, θ) > 0. Thus,

there exists θq ∈ �◦ such that mins∈[0,1] dq(s; θq) > 0 for all θq ∈
(
θq , θ

)
. ��

Lemma 8 Assume that Fθ (s, θ) = 0 for all s ∈ (0, 1). Then, there exists θq ∈ �◦

such that for all θq ∈
(
θq , θ

)
, there exists ŝ(θq) ∈ (0, 1) such that, if (s∗

P , θ∗
u , θ∗

q )

is a SPNE of �, then the optimal standard is soft if s∗
P ∈ (0, ŝ(θq)) and harsh if

s∗
P ∈ (ŝ(θq), 1).

Proof First, direct computations yield

lim
(s,θq )→(s0,θ)

dv(s; θq)

ds
> lim

(s,θq )→(s0,θ)

dg(s, θ∗
u (s), θ∗

q (s; θq))

ds
(17)

for s0 = 0, 1. Since v(0; θq) = κ(θq) and v(1; θq) = κ(θq), there exist 0 < δ1 <

δ2 < 1 and θq1
∈ �◦ such that

v(s; θq)

{
> g(s, θ∗

u (s), θ∗
q (s; θq)) if s ∈ (0, δ1)

< g(s, θ∗
u (s), θ∗

q (s; θq)) if s ∈ (δ2, 1)

for all θq ∈
(
θq1

, θ
)
.

Second, by the log-supermodularity of F , Lemma 1, and direct computations, we
have

lim
(s,θq )→(ŝu ,θ)

dv(s; θq)

ds
< lim

(s,θq )→(ŝu ,θ)

dg(s, θ∗
u (s), θ∗

q (s; θq))

ds
. (18)

34 Recall that dq (s) was defined in the proof of Proposition 2: dq (s) := d F(s, θ∗
q (s))/ds.
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Since v(ŝu; θ) = g(ŝu, θ∗
u (ŝu), θ), there exist θq2

∈ �◦, δ3 ∈ (δ1, ŝu), and δ4 ∈
(ŝu, δ2) such that, for all θq ∈

(
θq2

, θ
)
, there exists ŝ(θq) ∈ (δ3, δ4) satisfying

v(s; θq)

⎧⎨
⎩

> g(s, θ∗
u (s), θ∗

q (s; θq)) if s ∈ (δ3, ŝ(θq))

= g(s, θ∗
u (s), θ∗

q (s; θq)) if s = ŝ(θq)

< g(s, θ∗
u (s), θ∗

q (s; θq)) if s ∈ (ŝ(θq), δ4).

Third, in game �u , for all s ∈ [δ1, δ3], either v(s; θ) > g(s, θ∗
u (s), θ) or du(s) ≤ 0,

and v(s; θ) < g(s, θ∗
u (s), θ), for all s ∈ [δ4, δ2]. Thus, if du > 0 on [δ1, δ3], then

v(s; θq)

{
> g(s, θ∗

u (s), θ∗
q (s; θq)) if s ∈ [δ1, δ3]

< g(s, θ∗
u (s), θ∗

q (s; θq)) if s ∈ [δ4, δ2]

for all large enough θq ∈ �◦. We used Weierstrass’ Theorem to establish that the

difference between v(s; θ) and g(s, θ∗
u (s), θ) is strictly greater than zero for all s ∈

[δ1, δ3], and the Maximum Theorem to establish that the difference between v(s; θq)

and g(s, θ∗
u (s), θ∗

q (s; θq)) is strictly greater than zero for all s ∈ [δ1, δ3], for θq close

enough to θ . An analogous argument applies for the interval [δ4, δ2]. On the other
hand, if du(s) < (=)0 for some s ∈ [δ1, δ3], then by Lemma 7, v(s; θq) is negative
(not defined) for large enough θq .

Hence v(·; θq) and g(·, θ∗
u (·), θ∗

q (·; θq)) cannot cross over [δ1, δ3] or [δ4, δ2] for all
θq ∈

(
θq3

, θ
)
, for a large enough θq3

∈ �◦.

Therefore, for all θq > θq := max
{
θq1

, θq2
, θq3

}
, ŝ(θq) is the only root of

v(·; θq) − g(·, θ∗
u (·), θ∗

q (·; θq)) over (0, 1), and for any equilibrium (s∗
P , θ∗

q , θ∗
u ), we

have v(s∗
P ; θq) > (<)g(s∗

P , θ∗
u (s∗

P ), θ∗
q (s∗

P ; θq)) if s∗
P < (>)ŝ(θq). Thus, the thesis

of the lemma holds. ��
Lemma 9 Assume Fθ (s, θ) = 0 for all s ∈ (0, 1). Then, there exists θq ∈ �◦ such

that for all θq ∈
(
θq , θ

)
, the thesis of Lemma 2 holds in �.

Proof From Lemma 7, F(·, θ∗
q (·; θq)) is strictly increasing for high enough θq . Thus,

the argument showing that S∗ is increasing in the proof of Lemma 2 applies here too.
We prove that S∗(κ(θq)) = {0} (the proof of the statement S∗(κ(θq)) = {1} is

analogous). First notice that

lim
(s,θq )→(0,θ)

dv(s; θq)

ds
= lim

s→0

dv(s; θ)

ds
> lim

s→0

dg(s, θ∗
u (s), θ)

ds
> 0. (19)

Thus, there exists θq1
∈ �◦ and δ > 0 such that for all θq ∈

(
θq1

, θ
)
,

V(0; κ(θq), θq) < V(s; κ(θq), θq) for all s ∈ (0, δ), where V(·; κ, θq) is the expected
loss to the manager V(s) for prior κ when the natural readiness of fit candidates is θq .
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Second, from Lemma 2, we know that limθq→θ V(0; κ(θq), θq) < limθq→θ

V(s; κ(θq), θq) for all s > 0. Let Ṽ(·, θq) := V(·; κ(θq), θq) and notice that

Ṽ(0, ·) and mins∈[δ,1] Ṽ(s, ·) are continuous functions. Thus, there exists θq2
such

that Ṽ(0, θq) < mins∈[δ,1] Ṽ(s, θq) for all θq > θq2
. Thus, Ṽ(0, θq) < Ṽ(s, θq)

for all s > 0 and θq > max
{
θq1

, θq2

}
; that is, S∗(κ(θq)) = {0} for all θq >

max
{
θq1

, θq2

}
.

From (7), for κ > κ(θq), we have dV(0; κ, θq)/ds < 0 and hence 0 /∈ S∗(κ).
Analogously, for κ < κ(θq), we have dV(1; κ, θq)/ds > 0 and, hence, 1 /∈ S∗(κ).

Finally, an argument analogous to that in the corresponding part of the proof of
Lemma 2 proves that S∗ is strictly increasing over S∗−1(0, 1) = (κ(θq), κ(θq)). ��

The proof of of Proposition 3 is analogous to the proof of Proposition 1, with ŝ(θq),

defined in Lemma 8, playing the role of ŝu
35: Lemma 8 plays the role of Lemmas 1

and 4, and Lemma 9 plays the role of Lemma 2. ��
Proof of Proposition 4: In the sequel, when convenient, we make explicit the depen-
dence of du , r , and v on the unfit candidates’ cost parameter λ, so, instead of writing
du(s), r(s), and v(s), we write du(s; λ), r(s; λ), and v(s; λ), respectively, for all
s ∈ [0, 1] and λ ∈ [0, 1].36 The proof hinges on the following lemmata:

Lemma 10 There exists λ1 > 0 such that for all λ ∈ [0, λ1), du(s; λ) > 0 for all
s ∈ [0, 1].
Proof The Maximun Theorem guarantees that mins∈[0,1] du(s; λ) varies continuously
with λ. Further, mins∈[0,1] du(s; λ) = mins∈[0,1] f (s, θ) > 0 for λ = 0. Thus, there
exists λ1 > 0 such that mins∈[0,1] du(s; λ) > 0 for all λ ∈ [0, λ1). ��
Lemma 11 There exists λ2 > 0 such that for all λ ∈ [

0, λ2
)
, there exists ŝ(λ) ∈ (0, 1)

such that if (s∗
P , θ∗

u (·; λ), θ∗
q ) is a SPNE of �(λ), then the optimal standard is harsh if

s∗
P ∈ (0, ŝ(λ)) and soft if s∗

P ∈ (ŝ(λ), 1).

Proof The proof is analogous to the proof of Lemma 8, using the fact that v(·; λ)

approaches to v(·; 0) (instead of v(·; θq) approaches to v(·; θ)) and g(·, θ∗
u (·; λ), θ∗

q (·))
approaches to g(·, θ, θ∗

q (·)) (insteadof g(·, θ∗
u (·), θ∗

q (·; θq)) approaches to g(·, θ∗
u (·), θ)),

as λ → 0 (instead of as θq → θ). ��
Lemma 12 There exists λ3 > 0 such that for all λ ∈ [

0, λ3
)
, the thesis of Lemma 3

holds in �(λ), mutatis mutandis, replacing κq and κq with κq(λ) and κq(λ), respec-
tively.

Proof From Lemma 10, F(·, θ∗
u (·; λ)) is strictly increasing for all λ < λ1. Then, an

argument analogous to the one in the proof of Lemma 3 applies with κq(λ) and κq(λ)

playing the role of κq and κq , respectively. ��
35 Case 1 in Part 1 in the the proof of Proposition 1 is not necessary here as the assumption f > 0 rules
out the possibility that κ(θq ) = ∞ for all θq ∈ �◦.
36 Recall that du(s; λ) was defined in the proof of Remark 3.
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Let κ̃q(λ) := g(ŝ(λ), θ∗
u (ŝ(λ); λ), θ∗

q (ŝ(λ))). Since limλ→0 ŝ(λ) = ŝq , we have
limλ→0 κ̃q(λ) = κ̃q . Similarly, limλ→0 κq(λ) = κq and limλ→0 κq(λ) = κq . Thus,

there exists λ4 > 0 such that κq(λ) < κ̃q(λ) < κq(λ) for all λ ∈ (0, λ4).
The above lemmata allow us to prove Proposition 4 with an argument analogous

to the one in the proof of Proposition 2. Lemma 11 plays the role of Lemma 1 and 4,
and Lemma 12 plays the role of Lemma 3. We omit the details. ��

Proofs and Ancillary material of Sect. 6

Proof of Remark 1. We provide the argument for the case s∗
P < s∗

N E (the case
s∗

P > s∗
N E is analogous). The manager is better off in the SPNE, because s∗

P ∈
argmins∈[0,1]{V (s, θ∗

u (s), θ∗
q (s))} and the BNE (s∗

N E , θuN E , θq N E ) satisfies θuN E =
θ∗

u (s∗
N E ) and θq N E = θ∗

q (s∗
N E ). The fact that the candidate is strictly better-off with

lower standards follows from the Envelope Theorem, because dUi (s, θ∗
i (s))/ds =

f (s, θ∗
i (s)) > 0 over s ∈ (0, 1), for i = u, q. ��

Proof of Corollary 1. First, we prove the uniqueness of the BNE of the static game,
when θq is large. It suffices to show that g(·, θ∗

u (·), θ∗
q (·; θq)) is strictly increasing for

large θq .
Notice that dg(s, θ∗

u (s), θ∗
q (s; θq))/ds = g(s, θ∗

u (s), θ∗
q (s; θq))ϕ(s; θq), where

ϕ(s; θq) := 1

f (s, θ∗
q (s; θq))

∂ f (s, θ∗
q (s; θq))

∂s
− 1

f (s, θ∗
u (s))

∂ f (s, θ∗
u (s))

∂s

+ m(s, θ∗
q (s; θq))

dθ∗
q (s; θq)

ds
− m(s, θ∗

u (s))
dθ∗

u (s)

ds
, (20)

for all s ∈ [0, 1]. Thus, dg(s, θ∗
u (s), θ∗

q (s; θq))/ds > 0 if and only if ϕ(s; θq) > 0.
The first line on the right hand side of (20) is strictly positive for all s ∈ [0, 1], due to
the MLRP, the hypothesis, and the fact that θ∗

q > θ∗
u . In addition, Fθ (·, θ̄ ) = 0 implies

limθq→θ̄ m(s, θ∗
q (s; θq))

dθ∗
q (s;θq )

ds = 0. By (5), we have that −m(s, θ∗
u (s)) dθ∗

u (s)
ds ≥ 0

for all s ∈ [0, 1]. Since ϕ(s; ·) is continuous, by the Maximum Theorem, we have
limθq→θ̄ mins∈[0,1] ϕ(s; θq) > 0.

Now we show that there exists θq ∈ �◦ satisfying that, for all θq ∈
(
θq , θ

]
,

there exists κ̃(θq) ∈ (κ(θq), κ(θq)) such that, for all κ ∈ (κ(θq), κ̃(θq)) and
SPNE (s∗

P , θ∗
u , θ∗

q (·; θq)) of �(θq), the BNE of �0(θq) is Pareto dominated by
(s∗

P , θ∗
u , θ∗

q (·; θq)).
Take θq to be the same as in Proposition 3. Consider an arbitrary initial advantage

θq > θq and prior κ ∈ (κ(θq), κ̃(θq)). From Proposition 3, if (s∗
P , θ∗

u , θ∗
q (·; θq)) is a

SPNEof�(θq), then themanager is soft at that equilibrium, and thus, κ = v(s∗
P ; θq) >

g(s∗
P , θ∗

u (s∗
P ), θ∗

q (s∗
P ; θq)). Since g(1, θ∗

u (1), θ∗
q (1; θq)) = κ(θq) > κ̃(θq) > κ , there

exists s ∈ (s∗
P , 1) such that g(s, θ∗

u (s), θ∗
q (s; θq)) = κ , by the Intermediate Value

Theorem.Hence, (s, θ∗
u (s), θ∗

q (s; θq)) is the BNEof�0(θq). This completes the proof.
��
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Proof of Corollary 2. First we show that under the hypothesis, there exists θq
′ ∈ �◦

and λ
′ ∈ (0, 1) satisfying that, for all

(
θq , λ

)
∈

(
θq

′, θ
]

×
[
0, λ

′)
, the BNE of

�0(θq , λ) is unique. As in the proof of Corollary 1, uniqueness follows from the fact

that for high enough θq and λ−1, the minimum with respect to s of the sum of the first

three terms on the right-hand side of (20) is positive, and so it is the last term.37

Now we fix θq > θq
′ and prove that there exists λ > 0 satisfying that for all

λ ∈ [0, λ), there exists κ̃q(λ) ∈ (κq(λ), κq(λ)) such that for all κ ∈ (̃κq(λ), κq(λ))

and SPNE (s∗
P , θ∗

u (·; λ), θ∗
q ) of �(θq , λ), the BNE of �0(θq , λ) is Pareto dominated

by (s∗
P , θ∗

u (·; λ), θ∗
q ).

Consider λ as in Proposition 4 and arbitrary λ < min
{
λ, λ

′}
and prior

κ ∈ (̃κq(λ), κq(λ)). From Proposition 4, if (s∗
P , θ∗

u (·; λ), θ∗
q ) is a SPNE of

�(θq , λ), then the manager is soft at that equilibrium, and thus, κ = v(s∗
P ; λ) >

g(s∗
P , θ∗

u (s∗
P ; λ), θ∗

q (s∗
P )).

If κ ≤ maxs∈[s∗
P ,1]

{
g(s, θ∗

u (s; λ), θ∗
q (s))

}
, then there exists s ∈ (s∗

P , 1] such

that κ = g(s, θ∗
u (s; λ), θ∗

q (s)). Thus, (s, θ∗
u (s; λ), θ∗

q (s)) is the BNE of �0(θq , λ).

If κ > maxs∈[s∗
P ,1]

{
g(s, θ∗

u (s; λ), θ∗
q (s))

}
, then κ > g(1, θ∗

u (1; λ), θ∗
q (1)), and thus,

(1, θ, θq) is the BNE of �0(θq , λ). ��

Proofs and Ancillary material of Sect. 7

Optimality of (s, p) mechanisms We now show that allowing for positive probabil-
ities that (i) a candidate reporting to be unfit is tested, and (ii) a candidate reporting
to be fit is outright hired or outright rejected, cannot decrease the manager’s expected
loss beyond what he can attain within the (s, p) class:

(i) Any mechanism that, with a strictly positive probability, asks a candidate
reporting to be unfit to take a test with standard s can be improved by other
mechanism that increases the probability of outright rejection of that candidate by
F(s, θ∗

u (s)) + Cu(θ∗
u (s)) times the probability that she is subjected to the test in the

former mechanism. Such a change would not affect the unfit candidate’s expected
payoff from reporting unfit and would decrease the fit candidate’s expected payoff
from reporting unfit, because F(s, θ∗

u (s)) + Cu(θ∗
u (s)) > F(s, θ∗

q (s)) + Cq(θ∗
q (s)).

That is, incentive compatibility would still hold. Finally, the manager would be strictly
better-off due to the higher probability of rejecting the unfit candidate.

(ii)Nowwe show that allowing for a strictly positive probability of outright rejection
or outright hiring of a candidate reporting to be fit cannot make the manager better-
off. Since the incentive compatibility constraint for the unfit candidate is binding, the
probability of rejecting a candidate who claims to be unfit is p = p1 + (1 − p1 −
p2)

(
F(s, θ∗

u (s)) + Cu(θ∗
u (s))

)
, where p1 (p2) is the probability of outright rejecting

(hiring) a candidate reporting to be fit, and s is the standard of the test. Hence, the

37 The sum of the first three terms on the right-hand side of (20) is greater than in the proof of Corollary 1
because θ∗

u (·; 1) is now replaced by θ∗
u (·; λ) with λ < 1.
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manager’s expected loss is an affine transformation of

p1 + (1 − p1 − p2)F(s, θ∗
q (s)) − κ p = p1VM (1)

+p2VM (0) + (1 − p1 − p2)VM (s), (21)

for all (s, p1, p2)with s ∈ [0, 1] and p1, p2, 1− p1− p2 ≥ 0. An argument parallel to
the one used in the proof of Lemma 3 proves that 0 is the unique minimizer (corresp.,
is a minimizer, is not a minimizer) of VM for all κ < κM (corresp., for κ = κM ,
for all κ > κM ). Similarly, 1 is the unique minimizer (corresp., is a minimizer, is
not a minimizer) of VM for all κ > κ M (corresp., for κ = κM , for all κ < κM ).
Thus, (21) implies that the mechanism (sM , pM ) = (0, 0) is optimal for all κ ≤ κM ,
(sM , pM ) = (1, 1) is optimal for all κ ≥ κM , and, for all κ ∈ (κ M , κ M ), there exists
s ∈ (0, 1) such that (sM , pM ) = (s, F(s, θ∗

u (s)) + Cu(θ∗
u (s))) is optimal.

Proof of Proposition 5. We proved part (i) in the previous paragraph. For part (ii), we
have that VM (s) < V(s) for all s ∈ (0, 1). Notice that κM ≤ κq(1) < κq(1) ≤ κM .
An argument parallel to the one in the proof of Lemma 3 reveals that, in �, 0 is the
unique minimizer (corresp., is a minimizer, is not a minimizer) of V for all κ < κq(1)
(corresp., for κ = κq(1), for all κ > κq(1)). Similarly, 1 is the unique minimizer
(corresp., is a minimizer, is not a minimizer) of V for all κ > κq(1) (corresp., for
κ = κq(1), for all κ < κq(1)). Thus, mins∈[0,1] VM (s) < mins∈[0,1] V(s) for all
κ ∈ (κM , κ M ).

Finally, we show that S∗
M is increasing. Consider κ ′ > κ , s ∈ S∗

M (κ), and s′ ∈
S∗

M (κ ′). Then,

F(s, θ∗
q (s)) − κ

(
F(s, θ∗

u (s)) + Cu(θ∗
u (s))

) ≤ F(s′, θ∗
q (s′)) − κ

(
F(s′, θ∗

u (s′)) + Cu(θ∗
u (s′))

)

F(s′, θ∗
q (s′)) − κ ′ (F(s′, θ∗

u (s′)) + Cu(θ∗
u (s′))

) ≤ F(s, θ∗
q (s)) − κ ′ (F(s, θ∗

u (s)) + Cu(θ∗
u (s))

)
.

Adding these inequalities yields

(κ ′ − κ)
[(

F(s, θ∗
u (s)) + Cu(θ∗

u (s))
) − (

F(s′, θ∗
u (s′)) + Cu(θ∗

u (s′))
)] ≤ 0,

which implies F(s, θ∗
u (s))+Cu(θ∗

u (s)) ≤ F(s′, θ∗
u (s′))+Cu(θ∗

u (s′)). By the Envelope
Theorem, F(·, θ∗

u (·)) + Cu(θ∗
u (·)) is strictly increasing; thus, s ≤ s′. ��

Proof of Proposition 6. Let v(·; θq , λ) := dq(·; θq)/du(·; λ), for all θq ∈ �◦ and λ ∈
(0, 1). We denote explicitly the dependence dependence of κq(λ) and κq(λ) on θq ,
writing κq(θq , λ) and κq(θq , λ), respectively, for all θq ∈ �◦ and λ ∈ (0, 1).

Let vM (s; λ) be defined as vM (s) with θ∗
u = θ∗

u (·; λ). By the log-supermodularity
assumption on the density of F and the Maximum Theorem,

lim
(θq ,λ)→(θ,0)

min
s∈[0,1]

dv(s; θq , λ)

ds
= lim

(θq ,λ)→(θ,0)
min

s∈[0,1]
dvM (s; λ)

ds
= min

s∈[0,1]
dg(s, θ, θ)

ds
> 0.

Thus, there exist θq and λ such that v(·; θq , λ) and vM (·; λ) are strictly increasing for

all (θq , λ) such that θq > θq and λ < λ. Further, v(s; θq , λ) = vM (s; λ) at s = 0, 1.
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Suppose θq > θq and λ < λ. For all κ ≤ κ M (θq , λ), sM = 0 and for all κ ≥
κM (θq , λ), sM = 1. Similarly, for all κ ≤ κq(θq , λ), s∗

P = 0 and for all κ ≥
κq(θq , λ), s∗

P = 1. Furthermore, for all κ ∈ (κM (θq , λ), κ M (θq , λ)), sM is the root
of vM (·; λ) = κ . Similarly, for all κ ∈ (κq(θq , λ), κq(θq , λ)), s∗

P is the root of
v(·; θq , λ) = κ . Since κM (θq , λ) ≤ κq(θq , λ) < κq(θq , λ) ≤ κ M (θq , λ), and over
(0, 1), v(s; θq , λ) > (=,<)vM (s; λ) if s < (=,>)ŝu(λ), we conclude s∗

P < (>)sM

if and only if κ ∈ (κM (θq , λ), v(ŝu(λ); θq , λ)) (κ ∈ (v(ŝu(λ); θq , λ), κ M (θq , λ))). ��
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