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Abstract
We extend to multiple private commodities the seminal model by Bergstrom et al. (J
Public Econ 29:25–49, 1986) on the private provision of public goods. Considering
the relative value of the aggregate donations, we define a notion of equilibrium and
show its existence.Weanalyze the effects of resource redistributions on the equilibrium
outcome, identifying conditions that guarantee neutrality.We study some further prop-
erties of the contribution equilibrium, and provide a strategic market game approach,
defining a sequence of non-cooperative games whose equilibria converge to an equi-
librium of the economy.
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JEL Classification D00 · D50 · D40 · H00

1 Introduction

Society faces awide range of public and social issues forwhich it often becomes neces-
sary to receive adequate funding and contributions. The difficulties in obtaining public
support for the goals or an insufficient public budget make private donations worth
considering. For instance, several health or environment-related institutions, among
others, request contributions from citizens to provide goods and services that entail
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characteristics of public goods.1 Individuals’ contributions are also acknowledged for
the preservation of historical buildings, museums, or cultural heritage.2

The issue of private contributions to social objectives has receivedmuch attention in
the economics literature. Bergstrom et al. (1986), henceforth BBV, state a pioneering
model of non-cooperative provision of public goods, giving rise to plenty of research
papers.3 The insightful BBV’s approach explores a scenario in which a private good
can either be consumed or donated for public aims. Thus, the authors analyze a game-
theoretic model where the strategy of each player is their voluntary contribution to
provide a public good.4

The BBV’s work assumes just one private commodity and a public good, becom-
ing a partial equilibrium model. Thus, one finds a variety of extensions for more
general settings. Specifically, to analyze relative price modifications, a collection of
papers considers several private goods that can be consumed or used as inputs by
firms producing one public good, privately financed. See, for instance, Villanacci and
Zenginobuz 2005; 2006; 2007; 2012, and Faias et al. (2014, 2015).5

The above references select a technology that transformsmultiple private commodi-
ties into a public good. This detailing is crucial from both the production mechanism
and the market viewpoints. Hence, the way to generalize BBV’s model is not unique,
and the consequences of relative price variations rely on the technology considered
and, in particular, on their returns to scale.

This paper deviates from production requirements by proposing a different exten-
sion of BBV’s model. Our approach is inspired by the fact that people often contribute
bundles of goods to social causes that impact the lives of others. We find organiza-
tions that channel individual donations, pursuing goals that increase the welfare of
society. Citizens donate food, clothes, shoes, furniture, books, toys, wheelchairs, and
medicines, among other private commodities, to charity organizations that deliver
them to people in need. Specifically, food banks play a role in providing food security
to a portion of the disadvantaged population. In other situations, such as wars and
natural disasters (wars, floods, earthquakes) material goods are also requested to help
the victims. Our scheme focuses on these private contributions originating positive
externalities understood as public goods.

In this way, we present a general equilibriummodel, where individuals are endowed
with multiple private commodities and decide both consumption plans and a part of
their initial bundle to contribute to a public good. That is, as in BBV’s paper, private
resources can either be consumed or donated. A vector of prices defines the budget sets
and the percentage donated of the total endowment worth. Indeed, the public good
enters the utility function of every consumer as the relative value of the aggregate
bundle of donations at the current prices. Then, taking into account the voluntary

1 To mention a few: Cancer Associations in different countries, MSF international, Greenpeace, World
Wildlife Fund,...
2 Recent events highlighting the importance of such contributions are the Brazilian National Museum fire
in 2018 or the Notre Dame fire in 2019.
3 Based on this proposal, one also finds models studying voluntary public good provision in different
frameworks where information issues play a role (see Barbieri 2023, and Lamprecht and Thum 2023).
4 They show equilibrium existence, and present a comparative statics study about wealth distributions.
5 Faias et al. (2020) recapitulate some basic results.
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contributions of the others, all the information an agent needs to decide is in the prices
of private commodities.6 Consequently, we define a notion of contribution equilibrium
showing its existence and interpreting it in monetary terms.

Furthermore, the analysis of individuals’ contributions to public goods includes a
remarkable result, referred to as the neutrality theorem, which was first established
by Warr (1983), extended by BBV, and has inspired considerable literature. It states
that any reallocation of income among contributors, whenever they do not lose more
than their current donations, maintains the original private consumption and generates
identical public goods. This neutrality result relies on the assumption of one private
commodity and one public good, which allows a common measure in monetary units
for all the variables, as different works highlight.7

We describe a counter-example showing that the repercussion of relative prices is
also the key to non-neutrality. However, we find conditions on resource redistribution
that guarantee neutrality. Explicitly, for each of the multiple private commodities, no
contributor loses more than the amount given for the public good, which is a natural
extension of the requirement in BBV’s paper. The proof is constructive, stating how
individual donations are modified to get the same outcome for every redistribution.
Moreover, we prove that the previous condition is sufficient but not necessary for
neutrality. We also confirm that a weaker assumption, requiring the value of the real-
location of endowments enough to purchase the original equilibrium private bundles,
does not ensure neutrality. The example showing it allows us to identify further neces-
sary conditions for the equilibrium to be neutral when facing resource reassignments.

Regarding Pareto optimality, the contribution equilibrium, in general, is not effi-
cient. The inefficiency comes from the positive externality underlying the public good,
which leads to market failure. Despite this, if we fix the value of the total donations,
the corresponding equilibrium consumption allocation is efficient since, as we show,
it is a Walrasian outcome of the resulting exchange economy.

We remark that the definition of the equilibrium solution, the existence result, and
the studied properties do not explain the formation of the prices. To overcome this
point, we present a game describing the mechanism leading to equilibria and focusing
on price formation. We follow the adaptation proposed by Dubey and Geanakoplos
(2003) from the seminal game by Shapley and Shubik (1977). Despite that, the market
game we consider differs from theirs, provided the presence of donations requires
reformulating the rules for price formation and the allocation of private commodities.
The strategies are bids to buy consumption goods and to contribute for social pur-
poses, and the payoff functions depend on the consumption bundles and the aggregate
donations. Our market game allows us to show the convergence of a sequence of Nash
equilibria to a contribution equilibrium of the economy.

The examples, the obtained results, and the game approach we state exhibit the
contrasts, revealing the conceptual differences, between the extension of the BBV’s

6 Hence, our proposal reduces the problem of equilibrium prices in as many dimensions as the number of
public goods considered in the mentioned models with production.
7 When the model contemplates multiple private commodities, Villanacci and Zenginobuz (2007, 2012)
show that the relative prices and the returns to scale properties of the technologies transforming private
commodities into a public good are relevant for the impact of resources redistribution on the equilibrium.
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model that we propose and those previously addressed in the related works, which
consider private commodities as inputs for producing public goods.

The remainder of this paper is structured as follows. In Sect. 2, we define the
contribution equilibrium concept stating its existence. In Sect. 3, we interpret our
non-cooperative solution in monetary terms and state an example, for which we elab-
orate on a comparative statics study about redistributions of endowments. In Sect. 4,
we analyze neutrality. In Sect. 5, we deduce other properties of the equilibrium. In
particular, we define an n-types atomless economy that, as equilibria are concerned,
is equivalent to the initial economy with n consumers. This coincidence is helpful in
Sect. 6, where we associate a market game with the original economy obtaining a con-
vergence result for the contribution equilibrium. In Sect. 7, we state some concluding
remarks. A final Appendix contains all the proofs.

2 Themodel and contribution equilibrium

Let us consider an economy E with a finite number � of private goods and a set N of n
consumers. Each individual i ∈ N = {1, . . . , n} is endowed with a vector ωi ∈ IR�+ of
private goods. The role of endowments in the economy is two-fold. Namely, resources
can be used for private consumption and as donations for social and public purposes.

A price system p = (ph, h = 1, . . . , �) ∈ IR�+, specifies the prices for the � private
commodities. Given a price vector p ∈ IR�+, consumers choose private consumption
bundles and voluntary contributions to provide a public good.8 These private contri-
butions are given as part of their endowments and each consumer decides her donation
given the contributions of others. The public good enters in the consumers’ preferences
as the percentage value of the endowments that they decide to donate concerning the
value of the original total resources. Thus, each consumer i has a preference relation
represented by the utility function Ui : IR�+1+ → IR. The first � coordinates of a vec-
tor in the domain IR�+1+ specify the private consumption bundle, whereas the last one
indicates the relative value of the total donations at the current prices.9

To be precise, given a price system p and a vector (e j , j ∈ N , j �= i) of voluntary
contributions, each consumer i solves the problem:

max
(x,e)∈IR�+×[0,ωi ]

Ui (x, p̂ · ē−i + p̂ · e)
s.t . p · x + p · e ≤ p · ωi

where p̂ = p/(p · ω̄), being ω̄ = ∑n
i=1 ωi , and ē−i = ∑

j �=i e j . This notation will
be used along the paper.

8 We can consider only one public good or that individuals contribute to multiple public goods without
deciding the distribution of donations among them. Thus, a variant of the model could also contemplate the
case in which each one decides a vector of contributions corresponding to a variety of social objectives.
9 Addressing different scenarios, otherworks considering price-dependent preference include, for instance,
Pollack (1977), Balasko (2003), Correia-da-Silva andHervés-Beloso (2008), more recently, Cea-Echenique
et al. (2017), Podczeck and Yannelis (2022), and Reck and Seibold (2022), among others.
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Definition A contribution equilibrium for the economy E is a price system p, a private
consumption allocation x = (xi , i ∈ N ), and a collection of contributions e = (ei , i ∈
N ) such that,

∑n
i=1 xi + ē ≤ ∑n

i=1 ωi , with ē = ∑n
i=1 ei , and (xi , ei ) solves the

problem of consumer i, for every i ∈ N .

In our model, decisions on both consumption and contributions are not modified as
long as the relative prices remain the same. The percentage adjustment of the values
of the private contributions provides a consistent measure in real terms, which takes
values in the unit interval [0, 1]. In this way, the relative prices guide the allocations
of private consumption and donations, and all the information agents need to decide
is in prices.

To show the existence of equilibrium we state the following standard assumptions
for every i ∈ N :
(A.1) Interiority of endowments. ωi ∈ IR�++.

(A.2) Continuity, monotonicity, and convexity of preferences. Ui is a continuous,
non-decreasing, and quasi-concave function.10

Theorem 2.1 Under assumptions (A.1) and (A.2), a contribution equilibrium exists.

To prove this theorem, we define a pseudo-game, a tool used to obtain existence
results in various contexts.11 The participants are the consumers and a Walrasian
auctioneer. The strategies and payoffs of the players lead to a correspondence whose
fixed point is an equilibrium of the economy. The Maximum Theorem and Kakutani’s
fixed point theorem are applied. For it, we use assumptions (A.1) and (A.2).

Let Bi (p) = {(xi , ei ) ∈ IR�+ × [0, ωi ] such that p · xi + p · ei ≤ p · ωi } be the
individual i’s budget set at prices p. Moreover, given a price system p and a vector
of contributions e = (ei , i ∈ N ), let Ĝ(p, e) = p̂ · ∑

i∈N ei . We stress that the
individual budget restrictions and Ĝ(·, e) are homogeneous of degree zero. That is,
Bi (λp) = Bi (p) and Ĝ(λp, e) = Ĝ(p, e) for every λ > 0. Therefore, if (p∗, x∗, e∗)
is an equilibrium, then (λp∗, x∗, e∗) is also an equilibrium. It implies that, regarding
prices, only relative prices matter, as in general equilibrium models. Then, without
loss of generality, we can consider normalized prices. In particular, in the proof of the
existence result, we look for equilibrium prices in the simplex of IR�+.

3 Equilibrium inmonetary terms

We can rewrite the notion of equilibrium by considering that consumers decide to
donate part of the value of their endowments to contribute to supporting a public
good. That is, given a price system p ∈ IR�+, each consumer i chooses an amount
mi ∈ [0, p · ωi ] to donate, given the value of the contributions of other individuals.
Formally, given a price p and a vector (m j , j ∈ N , j �= i) of monetary contributions,
each consumer i solves the problem:

10 The quasi-concavity property required is as follows: If Ui (A) �= Ui (B), then Ui (λA + (1 − λ)B) >

min{U (A),U (B)}.
11 See, for instance, Ichiisi (1983) and Hervés-Beloso et al. (2012), among others.
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max
(x,m)∈IR�+1+

Ui
(
x, m̂−i + m̂

)

s.t . p · x + m ≤ p · ωi

(M)

where m̂−i =
∑

j �=i m j

p · ω̄
, and m̂ = m

p · ω̄
.

Definition A monetary equilibrium for the economy E is a price system p, a private
consumption allocation x = (xi , i ∈ N ), and a vector m = (mi , i ∈ N ) of monetary
contributions to public goods, such that, there is a collection of bundles (ei , i ∈ N )

for which the following conditions hold:
(i) ei ∈ [0, ωi ] for every i, and p · ei = mi .

(ii) (xi ,mi ) solves the problem (M) for every consumer i ∈ N .

(iii)
∑n

i=1 xi + ē ≤ ∑n
i=1 ωi , with ē = ∑n

i=1 ei .

Note that the monetary equilibrium is equivalent to the contribution equilibrium
notion, in the following sense:

• If (p, x,m) is a monetary equilibrium, then (p, x, e) is a contribution equilibrium
for any e decentralizing m at prices p.

• If (p, x, e) is a contribution equilibrium, then (p, x,m), with mi = p · ei , is a
monetary equilibrium.

The following example illustrates the contribution equilibrium and its relationship
with the concept in monetary terms as we have specified. Moreover, we present a
comparative statics study that analyses the impact of redistributions of endowments.

An example. Let us consider an economy with two consumers, 1 and 2, and two
private commodities. Both individuals have the same utility function U (x, y,G) =
ln x + ln y + lnG, where G is the variable corresponding to the public good that
is obtained from private contributions of resources. Agent 1 has endowments ω1 =
(ωx

1 , ω
y
1 ) = (1, 2) while agent 2 is endowed with ω2 = (ωx

2 , ω
y
2 ) = (2, 1). An

equilibrium is given by p∗ = (1, 1), the private consumption bundle α∗ = (6/5, 6/5)
for both consumers and any private donation vectors e∗

1 = (a, b), e∗
2 = (b, a) such

that e∗
1 + e∗

2 = (3/5, 3/5). That is, the value of the aggregate contribution is 1/5
of p∗ · (3, 3), i.e., 20% of the value of the total resources. The equivalent monetary
equilibrium is given by the previous prices and consumption bundles, and contributions
m1 = m2 = 3/5.We remark that this equilibrium can be decentralized by a continuum
of private donations, as previously stated.

Let � be the set of redistributions of endowments that allow both individuals to
consume the equilibrium bundle at p∗. That is,

� = {ω̂ = (ω̂1, ω̂2) ∈ IR2+ × IR2+ | ω̂1 + ω̂2 = (3, 3) and

p∗ · ω̂i = ω̂x
i + ω̂

y
i ≥ 12/5, i = 1, 2}.

For any redistribution of endowments ω̂ ∈ �, we have that p∗ = (1, 1) and
α∗ = (6/5, 6/5) remain as the equilibrium price and private bundle for both agents,
respectively, and the equilibrium contributions are the collection of vectors e(ω̂) =
(e1(ω̂), e2(ω̂)) ∈ [0, ω̂1] × [0, ω̂2] given by:
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e(ω̂) = {
(ê1, ê2) ∈ [0, ω̂1] × [0, ω̂2] | ê1 + ê2 = e∗

1 + e∗
2 = (3/5, 3/5),

êx1 + êy1 = p∗ · ω̂1 − 12
5 , and êx2 + êy2 = p∗ · ω̂2 − 12

5

}
.

Therefore, any redistribution in � leads to the same equilibrium outcome. To illus-
trate this point graphically, we partition � into three subsets, as represented in Fig. 1.

Fig. 1 Resources redistributions in � = �1 ∪ �2 ∪ �3. �1 =
{
ω̂ ∈ � | ω̂x

1 < 3/5 or ω̂
y
2 < 3/5

}
, �2 =

{
ω̂ ∈ � | ω̂x

1 , ω̂
y
1 ∈ [3/5, 12/5]

}
, and �3 =

{
ω̂ ∈ � | ω̂

y
1 < 3/5 or ω̂x

2 < 3/5
}

We remark that for redistributions in both �1 and �3, unlike �2, the new resource
allocation restricts the potential individual contributions compatible with the original
equilibrium. The following graphs represent the implications of the reallocations of
resources on the equilibrium donations.

(a) (b) (c)

Fig. 2 Effects on contributions of redistributions in a �1, b �2, and c �3
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Figure2b illustrates the effect of redistributions in�2.Along the solid line, the value
of the endowment remains the same for both consumers, i.e., p∗ω̂i = p∗ωi = 3, for
i = 1, 2. Then, e(ω̂) = e(ω) for every ω̂ ∈ �2. We deduce that the equilibrium
contributions are not modified and are given by any (ê1, ê2) such that ê1 + ê2 =
(3/5, 3/5), and êx1+êy1 = êx2+êy2 = 3/5. If the redistribution lies to the right (resp. left)
of the solid line, the wealth of individual 1 increases (resp. decreases) while the wealth
of individual 2 decreases (resp. increases). Although the value of donations increments
(resp. becomes smaller) for individual 1 and reduces (resp. becomes larger) for agent
2, the total contribution is not altered. The reasoning for redistributions in either �1
or �3 is analogous to the previous one, taking into account that for reallocation in
�1 ∪ �3 both agents have less than 3/5 of some good. In this case, the restrictions on
possible contributions given by the new endowments become binding, as represented
in Fig. 2a, c, respectively.

Therefore, in this example, when the redistributions of endowments allow consum-
ing the equilibrium bundle at the equilibrium prices, the set of admissible contributions
can be represented in an Edgeworth box, considering 3/5 as the upper bound for both
commodities. The Figs. 3 and 4 illustrate the equilibrium contributions obtained from
each block of the � partition.

Fig. 3 Redistributions in �. α, β ∈ �1, a, b, c ∈ �2, δ, γ ∈ �3 Edgeworth box: 3 × 3

(a) (b) (c)

Fig. 4 Equilibrium donations e = (e1, e2) for redistributions in �1, �2, and �3. Figure a–c, respectively.
Three Edgeworth boxes: 3/5 × 3/5

123



Contributing with private bundles to public goods 809

For every ω̂ ∈ �, the value of the aggregate equilibrium contribution is 20% of
the value of the total resources, regardless of the underlying continuum of donations.
However, if a reallocation ω̂ is in �1 ∪ �3, then the collection e(ω̂) of equilibrium
contributions shrinks because some coordinate of ω̂ is smaller than 3/5. Note also
that when one moves from the diagonal to the boundary of the set �, the length of
the segment that determines the equilibrium contributions becomes smaller, and if the
redistribution is in the boundary of �, then the equilibrium donation is just a point.

To summarize, in this example we find a family of redistributions of endowments
that do not alter the equilibrium outcome. The approach in monetary terms is a help to
identify the reallocations of resources that lead to this neutrality feature. On the other
hand, the comparative statics analysis specifies how the modifications of the initial
allocation affect the set of contributions that decentralize the equilibrium. The fact
that both consumption commodities have the same price becomes crucial so that the
equilibrium outcome is not modified. We elaborate on this issue in the next section,
where we show that when prices are different, the previous redistributions of endow-
ments do not guarantee the same equilibrium. This supports the intuition that relative
prices matter for the resulting private contributions.

4 Neutrality

In the particular case of one private commodity and one public good, Bergstrom et al.
(1986) obtain the so-called neutrality theorem that generalizes the invariance result of
Warr (1983). Under convexity of preferences, this result states that income redistribu-
tions where no consumer loses more than her original contribution will induce a new
equilibrium with the same total public good provision and where each consumer has
precisely the same individual consumption as she had before.

In this section, we extend the neutrality result to our framework. For it, the redis-
tributions considered are those where, for each private commodity, every consumer
cannot lose more than their original contribution. This requirement is a natural exten-
sion of the one in BBV.

Let E(ω̃) denote the economy which coincides with the original one E except for
the endowments that are ω̃ instead of ω.

Theorem 4.1 (Neutrality). Let (p∗, x∗, e∗) be a contribution equilibrium for the econ-
omy E . Let ω̃ be a redistribution of endowments such that ω̃i ≥ ωi − e∗

i for every i
and ω̃i = ωi for all non-contributing consumers. Then, there exists a vector of vol-
untary contributions to the public good (ẽi , i = 1 . . . , n) such that (p∗, x∗, ẽ) is a
contribution equilibrium for the economy E(ω̃) and p∗ · ∑n

i=1 e
∗
i = p∗ · ∑n

i=1 ẽi .

The proof we provide is constructive. Indeed, we show that (p∗, x∗, ẽ) is a contri-
bution equilibrium for the economy E(ω̃), being ẽi = e∗

i +ω̃i −ωi , for each consumer
i ∈ N .

In what follows, we present a non-neutrality example that allows deepening the
study of the assumptions about the redistributions that ensure neutrality. For instance,
we show that the condition that, for each private commodity, every consumer cannot
lose more than their original contribution to the public good, cannot be weakened by
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requiring that the values of reallocated endowments allow each individual to consume
their original equilibrium bundle.

A non-neutrality example. Let us consider an economy with two consumers, 1
and 2, two private commodities, x and y, and a public good G obtained from private
contributions. Each consumer i has the utility function Ui given by U1(x, y,G) =
ln x+ln y+lnG andU2(x, y,G) = 2 ln x+ln y+lnG, respectively. The endowments
areω1 = (1, 2) andω2 = (2, 2).Acontribution equilibrium is given by the price vector
p∗ = (1, 3/4), the private consumption bundles α∗

1 = (1, 4/3), α∗
2 = (2, 4/3), and

contributions e∗
1 = e∗

2 = (0, 2/3). Thus, G∗ = 1/6 at equilibrium.
Let � be the set of all redistributions such that at prices p∗ allow both individuals

to attain their equilibrium private consumption bundle, which is defined as follows

� =
{
ω̃ = (ω̃1, ω̃2) ∈ IR2+ × IR2+ | ω̃1 + ω̃2 = (3, 4), p∗ · ω̃i ≥ p∗ · α∗

i , i = 1, 2
}

.

For every ω̃ ∈ �, one deduces that p∗ is an equilibrium price for the economy E(ω̃).

However, not all the redistributions in � lead to the same equilibrium consumption
allocation and contributions. To prove it, let us consider the partition of � given by
�L = {ω̃ ∈ � | ω̃x

1 ≤ 2} and �R = {ω̃ ∈ � | ω̃x
1 > 2}, as represented in the Fig. 5

below.

Fig. 5 Non-neutrality for redistributions in �R
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If ω̃ belongs to �L , then we obtain that (p∗, α∗, e(ω̃)) is an equilibrium for E(ω̃),

being e1(ω̃) = (
0, 4

3 (p
∗ · ω̃1 − 2)

)
and e2(ω̃) = (

0, 4
3 (p

∗ · ω̃2 − 3)
)
.12 We have

e1(ω̃) + e2(ω̃) = (0, 4/3) and, in turn, the equilibrium result is the same as in the
original economy.

If ω̃ belongs to �R, an equilibrium price in the economy E(ω̃) is p∗ = (1, 3/4)
leading to the consumption allocations αi (ω̃) = (xi (ω̃), yi (ω̃)) and private contribu-
tions ei (ω̃) = (

exi (ω̃), eyi (ω̃)
)
, i = 1, 2, as functions of ω̃, given by

αi (ω̃) =

⎧
⎪⎨

⎪⎩

(
p∗·ω̃1
2 ,

2p∗·ω̃1
3

)
if i = 1

(
p∗·ω̃2
2 ,

p∗·ω̃2
3

)
if i = 2

ei (ω̃) =
⎧
⎨

⎩

(0, 0) if i = 1
(
0, p∗·ω̃2

3

)
if i = 2

Note that at prices p∗, consumption clears the market of commodity x in the
original economy. Thus, to obtain neutrality after a redistribution, the corresponding
equilibrium contribution has to involve only the commodity y. When ω̃ ∈ �R, we
have that there is no c ∈ (

0, ω̃y
1

]
such that 2+ 3

4c = p∗ ·ω̃1 = ω̃x
1 + 3

4 ω̃
y
1 . Precisely, the

fact that the relative equilibrium prices differ from one states reasons why if ω̃ ∈ �R,

then the endowments restrictions to contributions is binding for agent 1, avoiding the
decentralization of the value p∗ · (ω̃ − α∗

1) via a possible non-null gift, resulting in
non-neutrality.

Therefore, in the statement of the Theorem 4.1, the assumption ω̃i ≥ ωi − e∗
i for

all i cannot be replaced by the weaker one requiring redistributions that the agents’
consumption bundles be in their budget sets at p∗, which is a necessary but not
sufficient condition to attain neutrality. Moreover, when there is no donation of a good
at the original equilibrium, as in this particular scenario, neutrality requires that the
resource reallocations lead to consuming the total endowment of such a good. It is also
a necessary assumption that is not sufficient for obtaining neutrality, as this example
shows through the redistributions in �R .

On the other hand, �L includes the set of redistributions verifying the hypothesis
in our neutrality result, represented by the black segment in Fig. 5, where both agents
have 1 unit of x and at least 4/3 of y. In these cases, applying Theorem 4.1 we obtain
that ẽyi = ω̃

y
i − 4

3 , i = 1, 2, defines equilibrium contributions for E(ω̃). Since not only
the redistribution in the above-stated segment but also those in �L lead to neutrality,
we deduce that the assumption we find suffices to obtain neutrality nevertheless it is
not a necessary condition.

5 Some other properties of the equilibrium

Wedeepen the study of our equilibriumconcept following two different directions. The
first way establishes links with the equilibria of associated pure exchange economies.
The second one presents a characterization of the equilibrium notion by consider-
ing a continuum approach to the framework with a finite number of consumers. In

12 Note that p∗ · ω̃1 ∈ [2, 3] and p∗ · ω̃2 ∈ [3, 4] for any ω̃ ∈ �.
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the following section, we elaborate on the atomless description from a game theory
perspective.

In the model we address, every private contribution and price vector specifies the
relative value for the donations. On the other hand, when the consumer i gives ei ∈
[0, ωi ] for the public good, her resources become ωi − ei . Thus, a vector of gifts
e = (e1, . . . , en) determines a pure exchange economy E∗(e), where each consumer
i ∈ N is characterized by endowments ωi − ei , and a utility function Vi defined as

Vi (x, p) = Ui

(
x, p

p·ω̄ · ∑n
i=1 ei

)
, for each price p.13

Proposition 5.1 If (p∗, x∗, e∗) is a contribution equilibrium for the original economy
E, then (p∗, x∗) is a Walrasian equilibrium for the associated exchange economy
E∗(e∗).

The converse of the previous result is not true. To show this, consider the economy
in the example presented in Section 3, with two consumers who have the same utility
function U (x, y,G) = xyG and endowments ω1 = (1, 2), and ω2 = (2, 1). Let e
be the private contributions given by e1 = (0, 1), and e2 = (0, 0). The equilibrium
for the associated exchange economy E∗(e) is given by the prices p = (1, 3/2) and
the allocation that assigns (5/4, 5/6) to consumer 1 and (7/4, 7/6) to consumer 2.
However, the previous prices, private consumption bundles, and contributions do not
define an equilibrium for the original economy. To prove it, note that the bundle
(4/3, 8/9) and any donation (a, b) ∈ [0, ω1] such that a + 3b

2 = 4/3 belong to the
budget set for individual 1 at prices p = (1, 3/2) and lead to a better situation for such
agent.

A remark on efficiency. When we consider just one private commodity, all the
variables are measured in terms of such good, and our model becomes the one by
BBV’s. Thus, the equilibria may be inefficient. To see this, consider two consumers,
each of them endowed with 1/2 unit of a private good. Preferences for consumers 1
and 2 are represented by the utility functions U1(x,G) = xG2 and U2(x,G) = xG,

respectively, where x denotes consumption of the private commodity and G is the
amount of public good. The contributions g1 = 3/10 and g2 = 1/10 define a Nash
equilibrium, that leads to utility levels U∗

1 = U1(1/5, 2/5) and U∗
2 = U2(2/5, 2/5)

for each consumer, and it is not efficient. Both agents are better off by increasing their
contributions in 1/20. To be precise, U1(3/20, 1/2) > U∗

1 and U1(7/20, 1/2) > U∗
2 .

Despite this, we can obtain a restricted efficiency property as follows. Consider a
contribution equilibrium (p∗, x∗, e∗) for the economy E, and let us denote G = p∗

p∗·ω̄ ·
∑n

i=1 e
∗
i . Then, applying the previous Proposition 5.1, we deduce that the allocation

of private goods x∗ is efficient for the exchange economy where each agent i is
characterized by endowments ωi − e∗

i and a utility function Vi (·) = Ui (·,G).

In the rest of this section, we present the second direction of the study of equilibrium
that we refer to as a continuum approach. For this, given the finite economy E, let us
consider an associated economy Ec with a continuum of consumers represented by

13 If preferences are separable, in the sense thatUi (x,G) = Ui (x)+ Hi (G), then as far as the equilibrium
of E∗(e) is concerned we can consider without loss of generality that Vi (x, p) = Ui (x). It is an analogous
situationwhen the original preferences have the property thatUi (a,G) ≥ Ui (b,G) if andonly ifUi (a, Ĝ) ≥
Ui (b, Ĝ), whatever G, Ĝ may be.
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the real interval I = [0, n], endowed with the Lebesgue measure, denoted by μ. Each
consumer i in the economy E is represented in Ec by the real interval Ii = [i − 1, i) if
i �= n, and consumer n is represented by In = [n − 1, n]. Each consumer t ∈ Ii has
endowment ωt = ωi and preference relation to private consumption, and the value of
contributions to the provision of public goods represented by the utility function Vt
defined below.

To define utility functions Vt , one requires some notation. Let e : [0, n] → R
�+

be a function which specifies a private contribution to public goods e(t) ∈ [0, ωt ] for
every consumer t . We write ei = ∫

Ii
e(t)dμ(t) and e−i = ∫

I\Ii e(t)dμ(t). Thus, for
a price system p, the utility function of an agent t ∈ Ii is given by Vt (x, e, p) =
Ui (x, p̂ · (e−i + e(t))), with p̂ = p

p·ω̄ . That is, in the continuum each individual
is unaffected by the contributions of others of her type and acts as a representative
member of her type.

The definition of a contribution equilibrium for the continuum economy is straight-
forward – almost all agentsmaximize given prices, and feasibilitymust be satisfied – so
we do not provide a formal statement. Next, we show that, concerning the equilibrium
solution, the continuum and the discrete treatment can be considered equivalent.

Proposition 5.2 A contribution equilibrium for the finite economy induces an equilib-
rium for the continuum economy and the converse.

(i) If (p∗, x∗, e∗) is an equilibrium for the economy E, then (p∗, x, e) is a contribution
equilibrium for the economy Ec, where x(t) = x∗

i and e(t) = e∗
i for every t ∈ Ii .

(ii) Reciprocally, if (p, x, e), is an equilibrium for the economy Ec, then (p, xi , ei , i =
1, . . . , n) is an equilibrium for the economy E, where xi = ∫

Ii
x(t)dμ(t) and

ei = ∫
Ii
e(t)dμ(t) for every i = 1, . . . , n.

6 Amarket game approach

In this section, we provide strategic foundations for the contribution equilibrium con-
cept. We follow a variant of the originally considered by Shapley and Shubik (1977),
where trade uses a commodity as ameans of payment. Specifically, we adapt the games
that Dubey and Geanakoplos (2003) state, with a continuum of players but n different
types.

Given the economy E with contributions to public goods, we define an auxiliary
game with a continuum of players, represented by the interval I = [0, n], but n types.
The set I , endowed with the Lebesgue measure, is divided into n disjoint intervals
given by Ii = [i − 1, i), i = 1, . . . , n − 1, and In = [n − 1, n]. Each player t ∈ Ii is
characterized by an endowment ωt = ωi , and the utility function Ut = Ui . Note that
ω̄ = ∑n

i=1 ωi = ∫
I ωt dμ(t).

There is a “trading-post” for each private commodity h ∈ {1, . . . , �}. Each agent
t ∈ I puts up her endowment ωt,h at post h. Besides, players can borrow from a bank
a certain amount of money M, at zero interest for their bids at each post to purchase
private commodities and contribute to the public good. Hence, the strategy set is the
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same for each player t ∈ I and is defined as


 =
{
(ρ,m) ∈ [0, M]2�, such that

∑�
h=1 ρh + ∑�

h=1 mh ≤ M
}

,

where ρh and mh are the amounts a player would like to spend in the private good h
and contribute with commodity h for public purposes.

The strategy sets of these games differ from Dubey and Geanakoplos (2003) since
players bid not only to buy private goods but also to contribute for social purposes.
It requires reformulating the rules for price formation and the allocation of private
commodities. In this setting, the payoff functions depend on private consumption
bundles and aggregate donations, as we precise below.

A strategy profile is ameasurable function θ : I −→ 
 such that θt = (ρt ,mt ) ∈ 


for each t ∈ I . An external agent bids ε > 0 at each post to ensure that trade occurs.
Thus, given a profile of strategies θ , the price of the private good h is defined as
follows:

ph(θ) =
∫
I (ρt,h + mt,h)dμ(t) + ε

∫
I ωt,hdμ(t)

.

Given a profile θ, let θ−t denotes the vector of strategies of all players except t .
Note that p(θ) = p(θ−t , s) for every s ∈ 
, that is, the strategy of a single player
does not affect prices.

The amounts of each private good h ∈ {1, . . . , �} that end up being consumed and
donated to the public good by each player t are determined by xt,h(θ) = ρt,h/ph(θ)

and et,h(θ) = min
{
mt,h/ph(θ), ωt,h

}
, respectively. Since the parameter ε guarantees

the strict positivity of every price, the consumption allocation and the donation rules
are well-defined.

The payoff function for each player t ∈ Ii is

�t (θ) = Ut

(

xt (θ),G−i (θ) + p(θ)

p(θ) · ω̄
· et (θ)

)

− max{0, dt (θ)},

whereG−i (θ) = p(θ)
p(θ)·ω̄ ·∫I\Ii et (θ)dμ(t), anddt (θ) =

�∑

h=1

(
ρt,h + mt,h − ph(θ)ωt,h

)
.

The term max{0, dt (θ)} in the payoff functions stands for a penalty that is effective
in case of defaulting on the loans.14

In this way, for each integer M we have a game that we denote by G(M). Next,
we first state an existence result for Nash equilibrium for every G(M), and then, we
obtain a contribution equilibrium of the economy as the limit of a Nash equilibrium
sequence, when M increases.

Theorem 6.1 Assume that (A.1) and (A.2) hold. Then, there exists a Nash equilibrium
for the game G(M).

14 This will guarantee that budget constraints hold when M increases.
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Remark Note that if θ is a Nash equilibrium, then mt,h
ph(θ)

≤ ωt,h for almost all player
t ∈ I and each private commodity h. To show our point, assume that there is h and
A ⊂ I , with μ(A) > 0, such that mt,h

ph(θ)
> ωt,h for every t ∈ A. Then, each consumer

t ∈ A can increase her payoff by deviating unilaterally and choosing any strategy θ̂t =
(ρ̂t , m̂t ) such that ρ̂t,h = ρt +ε and m̂t,h = mt,h −ε ≥ ωt,h ph(θ̂t , θ−t ) = ωt,h ph(θ),

with ε > 0. In this case, dt (θ) = dt (θ̂t , θ−t ), and all the other outcomes remain the
same as well, except the consumption of commodity h for the consumer t ∈ A that
increases.

We also point out that the definition of the resource allocation mechanism
leads to feasible assignments. Namely, for each strategy profile θ, with θt =
(ρt ,mt ) ∈ 
, and every commodity h, we have

∫
I xt,h(θ)dμ(t) + ∫

I et,h(θ)dμ(t) =
1

ph(θ)

(∫
I

(
ρt,h + mt,h

)
dμ(t)

) ≤ ∫
I ωt,hdμ(t).

To move from Nash to contribution equilibrium, we follow the steps provided by
Dubey and Geanakoplos (2003), DG, going from Nash to Walras. Despite the sim-
ilarities with DG, the donations in our game affect strategies and payoffs, implying
technical difficulties to overcome. Specifically, some required boundedness properties
of the variables and the feasibility of the outcomes, among others, are not straightfor-
ward. In particular, the property of the Nash equilibrium stated in the previous remark
plays a role.

Theorem 6.2 Assume that (A.1) and (A.2) hold. For each natural number M, let θM
be a symmetric Nash equilibrium for G(M). Let (pM/‖pM‖, xM , eM ) be the corre-
sponding sequence of prices, consumption allocations and private contributions given
by such sequence of Nash equilibria. Then, there exists a subsequence that converges
to a price system p, an allocation x and private contributions e, such that (p, x, e)
defines a contribution equilibrium for the economy E .

It is worth mentioning that the market game approach and the results in this section
reflect the main differences between the extensions we propose of BBV’s model to
multiple private commodities and those addressed by considering a production system
for public goods in the previous literature.

7 Some final remarks

This paper contains two proofs showing the existence of the contribution equilibrium
we have defined. The first follows the standard procedure of obtaining equilibrium
as a fixed point of a correspondence. The second one focuses on a game theoretical
perspective, where the equilibrium is a limit of a sequence of Nash equilibria. The
construction of the non-cooperative games illustrates the price formation mechanism
and the rules for allocating commodities for consumption and donations to a public
good.15

The payoff functions of the specified market games include a penalty that infers
a cardinal character to the utility functions. However, except for the market game

15 The problem of collective goods provision has also been analyzed within a general equilibrium model,
using the cooperative solution of the core (see Basile et al. 2021, and the references therein).
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approach, the rest of this work can be written by considering preference relations
without requiring a cardinal property of their representation.

On the other hand, since only relative pricesmatter, any norm in IR� can be applied to
normalize prices. To be precise, regarding the equilibrium, we can assume that prices
belong to the simplex of IR�+, or take a private commodity as numeraire. Moreover,
the normalization can be stated by a reference commodity bundle, for instance, the
total endowment or any other selected vector of private goods.

Finally, we stress that both the reallocation of the initial resources and the relative
prices play an important role when we attempt to study neutrality issues.
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Appendix

Proof of Theorem 2.1 Given the total endowments ω̄, let B[0, κ] be the closed ball in
IR� centered at the origin and with radius κ = 2‖ω̄‖. Let us consider the compact
sets K = B[0, κ] ∩ IR�+, Wi = [0, ωi ], X = Kn, and W = ∏

i∈N Wi . Let us also
consider prices p for commodities in the simplex of IR�+ denoted by �. In this cases,
we have that ‖p‖ = ∑�

h=1 ph = 1, for every p ∈ �. For each i = 1, . . . n, define
the following function Fi and correspondence Bi :

Fi :X × W × �→IR
(x, e, p) →Ui (xi , p̂ · ē)

Bi :X × W × ��K × Wi

(x, e, p) �{(z, g) ∈ K × Wi | p · z + p · g ≤ p · ωi }

From assumptions (A.1) and (A.2), we deduce that every Fi is continuous, and Bi
takes non-empty compact values and is upper and lower hemicontinuous (uhc and
lhc).

Let us also define the following functions and correspondences:

Fn+1 :X × W × �→IR Bn+1 :X × W × ���

(x, e, p) →∑n
i=1 p · (xi + ei − ωi ) (x, e, p) ��

Fn+1 is continuous. Since Bn+1 is constant, it is upper hemicontinuous (uhc) and
lower hemicontinuous (lhc). Applying the Maximum Theorem to Fi and Bi , i =
1, . . . , n, we obtain that the following correspondences �i , i = 1, . . . , n, �n+1 are
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uhc and takes non-empty and compact values.

�i : X × W × � � K × Wi

(x, e, p) � argmax {Ui (z, p̂ · ē−i + p̂ · g), (z, g) ∈ Bi (x, e, p)},

�n+1 : X × W × � � �

(x, e, p) � argmax

{
n∑

i=1
q · (xi + ei − ωi ), q ∈ �

} ,

The quasi-concavity of Ui guarantees that �i takes convex values for each i ∈ N .

Moreover, Fn+1 is linear in p and then it is concave. Thus, �n+1 also takes convex
values.

Let the correspondence � = ∏n+1
i=1 �i : X × W × � � X × W × �, which

is upper hemicontinuous and takes non-empty, compact and convex values. Applying
Kakutani’s theoremwe have that� has a fixed point, that is, there exists (x∗, e∗, p∗) ∈
�(x∗, e∗, p∗). To finish the proof, we will show that (p∗, x∗, e∗) is an equilibrium for
the economy E .

Summing up the budget constraints we have
∑n

i=1 p
∗ · (x∗

i + e∗
i ) ≤ ∑n

i=1 p
∗ · ωi .

On the other hand, since p∗ ∈ �n+1(x∗, e∗, p∗), we have 0 ≥ ∑n
i=1 p

∗ · (x∗
i +

e∗
i − ωi ) ≥ p · ∑n

i=1(x
∗
i + e∗

i − ωi ), for all p ∈ �. This implies, in particular,
0 ≥ p∗ · ∑n

i=1(x
∗
i + e∗

i − ωi ) ≥ bh · ∑n
i=1(x

∗
i + e∗

i − ωi ), where bh is the vector
in � with all the coordinates zero except the hth that is 1. Thus, taking prices as the
standard basis of IR� one has that

∑n
i=1 x

∗
i + ∑n

i=1 e
∗
i ≤ ∑n

i=1 ωi .

It remains to prove that (x∗
i , e∗

i ) maximizes Ui (xi , p̂∗ · ē∗−i + p̂∗ · ei ) in the budget
set Bi (p∗) = {(xi , ei ) ∈ IR�+ × Wi | p∗ · xi + p∗ · ei ≤ p∗ · ωi }. Assume that for
some consumer i there is (xi , ei ) ∈ Bi (p∗) such that Ui (xi , p̂∗ · ē∗−i + p̂∗ · ei ) >

Ui (x∗
i , p̂∗ · ē∗−i + p̂∗ · e∗

i ) = U∗
i . For each λ ∈ (0, 1) let xλ = λx∗

i + (1 − λ)xi ,
and eλ = λe∗

i + (1 − λ)ei .16 By the convexity of preferences in (A.2), we obtain
Ui (xλ, p̂∗ · ē∗−i + p̂∗ · eλ) > U∗

i , for every λ ∈ (0, 1). We can take λ close enough to
1 such that xλ ∈ K . This is in contradiction with (x∗

i , e∗
i ) ∈ �i (x∗, e∗, p∗). �


Proof of Theorem 4.1 For each consumer i, let us define ẽi = e∗
i + ω̃i − ωi . Note

that ẽi ∈ [0, ω̃i ] and p∗ · x∗
i + p∗ · ẽi = p∗ · ω̃i . By construction, we have that∑n

i=1 ẽi = ∑n
i=1 e

∗
i provided that

∑n
i=1 ω̃i = ∑n

i=1 ωi . In which follows we show
that (p∗, x∗, ẽ) is a contribution equilibrium for the economy E(ω̃). It remains to
check that for every consumer i the bundle (x∗

i , ẽi ), solves the following individual
problem:

max(x,e)∈IR�+×[0,ω̃i ] Ui (x, M̃−i + p̂∗ · e)
such that p∗ · x + p∗ · e ≤ p∗ · ω̃i

where M̃−i = p̂∗ · ∑
j �=i ẽ j , and p̂∗ = p∗/(p∗ · ω̄).

16 Note that Wi is a convex set.
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Let �ωi = ω̃i − ωi , M∗ = p̂∗ · ∑n
i=1 e

∗
i , and M∗−i = p̂∗ · ∑

j �=i e
∗
j . There are

two possible cases:

(i) Consider that p∗ · �ωi ≤ 0. Assume that (x∗
i , ẽi ) does not solve i’s optimization

problem. Hence, there is (x, e) ∈ IR�+×[0, ω̃i ] such that p∗ ·x+ p∗ ·e = p∗ ·ω̃i and
Ui (x, M̃−i + p̂∗ ·e) > Ui (x∗

i , M∗).Let us takeμ = p∗ ·e− p∗ ·ẽi + p∗ ·e∗
i and note

that p∗ · x +μ = p∗ ·ωi . There is a unique β ∈ [0, 1] such that p∗ ·ωi − p∗ · x =
β p∗ · ωi . Let γ = βωi ∈ [0, ωi ]. By construction, (x, γ ) is in the budget set of
consumer i in the original economy E and p∗ · ē∗−i + p∗ · γ = p∗ · ¯̃e−i + p∗ · e.
This is in contradiction with the fact that (p∗, x∗, e∗) is a contribution equilibrium
for the economy E .

(ii) Consider the case p∗ ·�ωi > 0.As in (i), assume that there is (x, e) ∈ IR�+×[0, ω̃i ]
such that p∗ · x+ p∗ ·e = p∗ · ω̃i andUi (x, M̃−i + p̂∗ ·e) > Ui (x∗

i , M∗). For each
λ ∈ (0, 1), let xλ = λx∗

i + (1− λ)x and mλ = λp∗ · e∗
i + (1− λ)p∗ · (e − �ωi ).

Since i is a contributor, mλ > 0 for λ close enough to 1. We remark that, by
construction, we can deduce that p∗ · xλ + mλ = p∗ · ωi and M∗−i + m̂λ =
λM∗ + (1 − λ)

(
M̃−i + p̂∗ · e

)
, being m̂λ = mλ/(p∗ · ω̄). Moreover, for each

λ ∈ (0, 1) there is a unique βλ such that p∗ · (ωi − xλ) = βλ p∗ · ωi . Now, take
eλ = βλωi .

Therefore, for λ close enough to 1, consumer i can choose (xλ, eλ) in the economy

E where, givenM∗−i , leads to the outcome
(
xλ, λM∗ + (1 − λ)

(
M̃−i + p̂∗ · e

))
.

By convexity of preferences, agent i prefers this outcome rather than (x∗
i , M∗),

which is in contradictionwith the fact that (p∗, x∗, e∗) is a contribution equilibrium
for the original economy E . �


Proof of Proposition 5.1 Note that
∑n

i=1 x
∗
i + ∑n

i=1 e
∗
i = ∑n

i=1 ωi implies that x∗ is
a feasible allocation in the economy E∗(e∗), where endowments are ω̃i = ωi − e∗

i ,

for each consumer i ∈ N . Moreover, p∗ · x∗
i ≤ p∗ · ω̃i , for every i ∈ N . Assume that

for some individual j ∈ N there is y such that p∗ · y ≤ p∗ · ω̃ j , and Vj (y, p∗) >

Vj (x∗
j , p

∗). This implies that (x∗
j , e

∗
j ) does not solve the agent j’s problem at prices

p∗ in the original economy, which is a contradiction with the fact that (p∗, x∗, e∗) is
an equilibrium for E . �


Proof of Proposition 5.2 Let (p∗, x∗, e∗) be an equilibrium for economyE . If (p∗, x, e)
is not an equilibrium for Ec, then there exists a positive measure subset of consumers
A, with A ⊂ Ik for some k ∈ N and there exist x̂(t) and ê(t) ∈ [0, ωk], such that
p∗ ·(x̂(t)+ ê(t)) ≤ p∗ ·ωk andUk(x̂(t), p̂∗ ·(e∗−i + ê(t))) > Uk(x∗, p̂∗ ·e∗), for all t ∈
A, being p̂∗ = p∗/(p∗ · ω̄). Let x̂k = 1

μ(A)

∫
A x̂(t)dμ(t) and êk = 1

μ(A)

∫
A ê(t)dμ(t).

Then by convexity of preferences, Uk(x̂k, p̂∗ · (e∗−k + êk)) > Uk(x∗
k , p̂

∗ · e∗), which
is in contradiction with the fact that (p∗, x∗, e∗) is an equilibrium for E .

To show the converse, suppose that (p, xi , ei , i = 1, . . . , n) is not an equilibrium
for E, and let p̂ = p/(p · ω̄). Then, there is (x̂k, êk) ∈ Bk(p), such that Uk(x̂k, p̂ ·
(e−k + êk)) > Uk(xk, p̂ ·e), for some k ∈ N . The convexity of preferences guarantees
the existence of A ⊂ Ik withμ(A) > 0 such thatUt (x̂k, p̂ · (e−k + êk)) > Ut (x(t), p̂ ·

123



Contributing with private bundles to public goods 819

(e−k + e(t))), for all t ∈ A,which contradicts the fact that (p, x, e), is an equilibrium
for Ec.17 �

Proof of Theorem 6.1 Given a type-symmetric profile of strategies, θ = (θ1, ..., θn) ∈

n, consider the best reply correspondence for any player t ∈ Ii ,

�t (θ) = argmax
θt∈


�t (θt , θ−t ) = argmax
(ρt ,mt )∈


�t ((ρt ,mt ), θ−t )

= argmax
θt∈


{
Ui

(
xt (θ),G−i (θ) + p(θ)

p(θ)·ω̄ · et (θ)
)

− max{0, dt (θ)}
}

where θt = (ρt ,mt ), xt,h(θ) = ρt,h
ph(θ)

, et,h(θ) = min
{

mt,h
ph(θ)

, ωt,h

}
for each h ∈

{1, . . . , �}, and dt (θ) =
�∑

h=1

(
ρt,h + mt,h − ph(θ)ωt,h

)
.

Symmetry implies that �t = �i for all t ∈ Ii . Since θt = (ρt ,mt ) does not
modify p(θ) it follows that xt (θ), and dt (θ) are linear in θt . Moreover, et,h(·, θ−t ) is
concave.18 We obtain that G−i (θ) + p(θ)

p(θ)·ω̄ · et (θ) is concave in θt .

Since the utility function Ui is non-decreasing and quasi-concave, we deduce that
�i (·, θ−t ) is quasi-concave in θt = (ρt ,mt ). This implies that �i (·, θ−t ) is convex-
valued provided that 
 is convex. Since each payoff function �i is continuous and

 is compact and convex, by the Maximum Theorem we have that �i is upper semi-
continuous and compact-valued. We get the same conclusions for the correspondence
� = (�1, ..., �n). Kakutani’s theorem guarantees that � has a fixed point, that is a
Nash equilibrium of the game. �

Proof of Theorem 6.2 Since θM is a symmetric Nash equilibrium for the game G(M),

we have θM,t = θM,i = (ρM,i ,mM,i , ) for every t ∈ Ii . This equilibrium defines the
price pM = p(θM )which leads to the consumption allocations, contributions, and net
deficits (xM , eM , dM ) = (x(θM ), e(θM ), d(θM )) = (xM,i , eM,i , dM,i i ∈ N ). By the
remark preceding this Theorem 6.2, we have eM,i,h(θ) = mM,i,h

pM,h(θ)
≤ ωi,h, and then

GM = G(θM ) = 1
pM ·ω̄

∑n
i=1

∑�
h=1 mM,i,h = pM

pM ·ω̄ · ∑n
i=1 eM,i .

Note that GM ≤ 1 for every M . Moreover, the definition of the game ensures
that

∫
I xM,t dμ(t) + ∫

I eM,t dμ(t) = ∑n
i=1 xM,i + ∑n

i=1 eM,i ≤ ω̄ = ∑n
i=1 ωi =

∫
I ωt dμ(t).19 Thus, the value of equilibrium contributions GM and the consumption

bundles allocated to consumers xM are bounded.
Note also that if a player t ∈ Ii deviates from θM and selects the strategy θ = 0, then

her payoff becomes Ui (0,G−i (θM )) ≥ Ui (0, 0), with G−i (θM ) = pM
pM ·ω̄

∑
j �=i eM,i .

This implies that Ui (ω̄, 1) − dM,i+ ≥ �i (θM ) = Ui (xM,i ,GM ) − dM,i+ ≥ Ui (0, 0)

17 The contradictions are obtained by using the García-Cutrín and Hervés-Beloso (1993) Lemma, which
is based on the mean value of the integral. When the utility functions are concave we can apply Jensen’s
inequality instead. Note that the concavity of the utility functions implies the required convexity of prefer-
ences.
18 To be precise, et,h(·, θ−t ) is constant for every mt,h ≥ ωt,h ph(θ) and is linear otherwise. Then,
p(θ) · et (·, θt ) is concave since it is a sum of concave functions.
19 Note that xM,i,h = ρM,i,h

pM,h
, eM,i,h ≤ mM .i

pM,h
and pM,h =

∑n
i=1

(
ρM,i,h+mM,i,h

)+ε
∑n

i=1 ωi,h
.
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and, consequently, dM,i+ = max{0, dM,i } is bounded from above by Ui (ω̄, 1) −
Ui (0, 0).

For each M, consider the subsets of types of consumers who are in deficit
and those who are in surplus, defined as DM = {

i ∈ N |dM,i > 0
}
and SM ={

i ∈ N |dM,i < 0
}
, respectively. The same argument as in DG allows us to obtain∑

i∈SM −dM,i = ε� + ∑
i∈DM

dM,i and conclude that dM,i is bounded.

Then, the sequence
(

pM
‖pM‖ , xM , eM , dM

)

M
has a convergent subsequence, whenM

goes to infinity, with limit (p, x, e, d), and we write xM,i → xi , eM,i → ei , dM,i →
di , for each type i and pM

‖pM‖ → p. We will show that (p, x, e) is a contribution
equilibrium.

Since eM,i ≤ ωi for every i and M, we have ei ≤ ωi for every i ∈ N , and GM

converges to p
p·ω̄ · ē. Given that ε� > 0, reasoning as in DG, we deduce that the set

SM is nonempty, and pM · (ωi − ei ) > M for i ∈ SM implies that ‖pM‖ → ∞
when M → ∞. It follows that dM,i

‖pM‖ = pM
‖pM‖ · (xM,i − ωi + eM,i ) → 0, and then

p · xi + p · ei = p · ωi , for every i ∈ N .

To finish the proof, we show that Ui (z,
p
p·ω̄ · (ē−i + g)) ≤ Ui (xi ,

p
p·ω̄ · ē) for any

(z, g) in the budget set Bi (p), for every i ∈ N . For it, take a bundle (z, g) ∈ Bi (p),
and for each λ ∈ (0, 1), consider the strategy θ̃M,i (λ) = (ρ̃M (λ), m̃M (λ)) ∈ 


given by ρ̃M,h(λ) = λpM,hzh and m̃M,h(λ) = λpM,hgh, for each h ∈ {1, . . . , �}.
Since �i (θM ) ≥ �i (θM,−i , θ̃M,i ) and θM incurs at least as much penalty, we have
Ui (xM,i ,GM ) ≥ Ui (λz,

p
p·ω̄ ·(ē−i+λg)), for every λ ∈ (0, 1) and allM large enough.

Passing to the limit, we conclude Ui (xi ,
p
p·ω̄ · ē) ≥ Ui (z,

p
p·ω̄ · (ē−i + g)). �
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