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Abstract
We consider optimal group testing of individuals with heterogeneous risks for an
infectious disease. Our algorithm significantly reduces the number of tests needed
compared to Dorfman (Ann Math Stat 14(4):436–440, 1943). When both low-risk
and high-risk samples have sufficiently low infection probabilities, it is optimal to
form heterogeneous groups with exactly one high-risk sample per group. Otherwise,
it is not optimal to form heterogeneous groups, but homogeneous group testing may
still be optimal. For a range of parameters including the U.S. Covid-19 positivity rate
for many weeks during the pandemic, the optimal size of a group test is four. We
discuss the implications of our results for team design and task assignment.
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1 Introduction

The idea of group testing originated in the 1940s, when the U.S. government needed to
save on the cost of screeningWorldWar II draftees for syphilis. Instead of testing each
soldier individually, which was too costly, Dorfman (1943) proposed to pool samples
of soldiers in groups and test them together to find out if at least one of the soldiers
in the combined sample was infected. As Dorfman wrote, group testing could “yield
significant savings in effort and expense when a complete elimination of defective
units is required.”

Allocation of tests has become an especially relevant economic problem during
the global coronavirus pandemic because of the scarcity of testing resources in many
countries. Group testing has been proposed as one important way to expand the testing
capacity and use the available testing resourcesmore efficiently and has been approved
by the FDA in July 2020.1 To improve group testing, our study takes into account
that a population needing tests is heterogeneous in terms of risk: for example, some
people are known to have been exposed to infected people and others are not; people
may differ in terms of if and when they tested negative in the past, and people may
have different levels of exposure depending on their living situations and workplace
settings.2 How does this heterogeneity affect the optimal testing of samples? Should
we group samples with similar or different risks together?

In this paper, we formalize these questions and answer them by studying a model in
which a decision maker, facing a population of high-risk and low-risk samples, aims
at minimizing the cost of testing while detecting all infected samples. We propose an
algorithm that modifies Dorfman (1943)’s algorithm (AD for short). In AD, a group of
samples is tested together first. Since tests are assumed to be perfect, a negative group
test clears all samples. If the group test is positive, each sample in the group is tested
individually. We modify AD so that if the group test is positive, then each sample
except the last one in the group is tested individually. If at least one of the individual
tests is positive, then the last sample is tested as well. But if all the individual tests
are negative, then the last sample is inferred to be positive and there is no need to
test it. Under our group-testing algorithm (denoted by AG), for a group consisting
of samples of heterogeneous risks, it is strictly better to test a high-risk rather than a
low-risk sample last since it increases the probability that there is no need to test the
last sample.

Given a heterogeneous population, what is the optimal testing schedule? To illus-
trate, suppose the group testing capacity is two, that is, up to two samples can be
tested together. Group testing is better than individual testing if the probability that a
group test is negative is high, so that no further testing is needed; otherwise individual
testing is better. Hence, if the probability of infection for low-risk samples is above a
certain threshold, then it is optimal to test all samples individually. If the probability

1 For a list of countries implementing a group testing strategy against COVID-19, see https://en.wikipedia.
org/wiki/List_of_countries_implementing_pool_testing_strategy_against_COVID-19.
2 In campus surveillance testing that many universities conducted in the the academic year 2020–2021, it is
recognized that people have different risks of exposure depending on residential setting or workplace envi-
ronment. See, for example, https://uhs.berkeley.edu/coronavirus/testing-covid-19/campus-surveillance-
testing.
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of infection for low-risk samples is below the threshold, however, then the optimal
testing schedule depends on the magnitude of the probability of infection for high-risk
samples. If it is high, then it is optimal to test the high-risk samples individually and the
low-risk samples using AG. But if it is low, then it is optimal to pool the high-risk and
low-risk samples together and test them using AG. (We call this mixing of different
risk types in group testing negative assortative matching, or NAM for short.)

It might seem somewhat surprising at first that NAMcan be optimal. After all, as we
show, testing homogeneous samples together achieves the lowest average probability
of positive group tests. However, there is an advantage of NAM which comes in the
second stage of AG after a positive group test. Recall that with AG, if the group test
turns out to be positive, then it is strictly better to test the low-risk sample first when
the two samples have different risks. When the two samples have the same risks, it is
irrelevant which sample to test first. These imply that there is gain to be made in the
second step of AG when the two samples are heterogeneous, making NAM optimal
when both low-risk and high-risk are sufficiently small.

We generalize this characterization for any testing capacity.We show that if amixed
group is part of an optimal testing schedule, then it contains only one high-risk sample.
Intuitively, the more high-risk samples are in a mixed group, the higher the number
of expected tests required after a positive group test, so the gain from a mixed instead
of a homogeneous group disappears if the group contains more than one high-risk
sample. NAM is robust in the sense that it is optimal for any testing capacity when the
probability of infection is small for all samples.

The main protocol we use has two variations compared to Dorfman (1943). First,
it explicitly incorporates heterogeneity of risks. This aspect has been studied little
in group testing. Our paper is the first one to provide a closed-form solution of the
optimal testing schedule for small testing capacity and a partial characterization for
arbitrary testing capacity under the assumption that each sample can be tested at most
twice. Second, if a group of samples is tested in a pool, and if the result is positive,
all samples are tested individually in Dorfman (1943). However, in our protocol, no
individual test for the last sample is required if all previous samples in this group have
tested negative. When there are no errors in testing, this second variation can save one
test in a group that contains exactly one positive sample. If errors happen with a high
probability in practice, this second variation might have limited applications. Below,
we decompose the gains from our procedure compared to Dorfman (1943) and show
that most of the gains can come from an explicit recognition of the heterogeneity of
risks. For example, a simulation with the probability of infection being 0.05 for the
low-risk individuals and 0.3 for the high-risk individuals and 80% of the population
being low-risk shows that AG saves around 13.3% of tests compared with AD that
ignores the heterogeneity of risk. The savings stem from both modifications of the
AD algorithm: Of the 13.3% reduction of tests, about 9.3% is due to the incorpora-
tion of heterogeneity of risk and 4% is due possibly avoiding the last individual test
in a group. Since information about a person’s risk is often readily available either
through observables (for example, presence/absence of symptoms, testing history,
living/working situations) or self-reporting, efficiency of group testing can be signif-
icantly improved by the adoption of the algorithm that we propose and the optimal
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sorting of samples. Overall, our analysis shows the importance of taking into account
heterogeneity of risk in the population when conducting group testing.

Due to the assumption of an infinite population, our optimization problem can
be written as a linear program. Even though we can solve the problem using estab-
lished techniques in polynomial time, here we establish qualitative features of the
solution which are robust to a range of parameters.3 In addition, for particular cases
(for example, sufficiently low infection probability), our results provide guidelines
for policymakers and for labs, without requiring each of them to formalize the prob-
lem and to run a linear programming solver. Finally, even though we have framed our
paper as characterizing optimal group testing with a population that has heterogeneous
probabilities of infection, the results derived have implications for task assignment and
team design in principal-agent relationships. We discuss various extensions in Sect. 5.
Related literature

As mentioned earlier, the idea of group testing dates back to Dorfman (1943).
Dorfman (1943) derives the optimal group size for an infinite population of samples
with homogeneous risk and perfect tests. In contrast to Dorfman (1943), our algorithm
is adaptive to test outcomes and we allow for heterogeneous infection probabilities.

The algorithm in Dorfman (1943) is still widely in use in public health today, for
example, for testing blood donations for HIV and hepatitis viruses (see, e.g., Apra-
hamian et al. 2016). Some papers have allowed for heterogeneous risk probabilities
(e.g., Hwang 1975), proposed further improvements on the group testing algorithm
(e.g., Du and Hwang 2000; Sterrett 1957) and characterized optimal group test design
under various objectives when tests are imperfect (Aprahamian et al. 2019). Ourmodel
also connects to the group testing literature in computer science and industrial engi-
neering (see, e.g., Black et al. (2012),Du andHwang (2000) and the references therein),
where the focus tilts towards comparing the (worst case) running time of different
group testing algorithms.

Since the outbreak of the coronavirus pandemic in 2020, a lack of testing capacity
has been a persistent problem in many countries and there has been renewed interest
in group testing. Gollier and Gossner (2020) study optimal group testing, allowing
for false positives and negatives; Augenblick et al. (2020) investigate how the optimal
group testing strategy changes with repeated testing, correlation of infection probabil-
ity between samples and uncertain prevalence rate, using amachine-learning approach.
In contrast to our study, these studies do not consider heterogeneous risk probabilities
in the population. Three recent papers allow individual heterogeneity, but do not con-
sider group testing and address questions different from ours. Ely et al. (2021) analyze
a (corona)-test allocation problem to individuals with heterogeneous risks. Deb et al.
(2022) also incorporate heterogeneous agents, but in their model, the agents are differ-
ent in terms of their beliefs about whether they are infected, and the paper combines
testing and transfers to address the question of whether agents should be tested and
how they should be incentivized. Makris (2021) considers a model of social distanc-
ing in which agents are heterogeneous with respect to infection-induced fatality risks.
The closest paper to our framework is Lipnowski and Ravid (2021) which considers

3 Many problems for which economists care about the qualitative properties, e.g, in mechanism design and
information design, can be rewritten as a linear program. For example, see Vohra (2011).
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testing a heterogeneous-risk population in groups. In their model, each agent can be
tested at most once and not every individual needs to be tested.4 In contrast to our
model, they assume that each sample can be tested at most once (whether in a group
or individually). Thus, they do not consider an adaptive group testing protocol after
a positive group test. In Lipnowski and Ravid (2021), negative assortative matching
between risk groups never arises. This is because the probability of an initial positive
group result is lower when testing homogeneous samples rather than heterogeneous
samples together in a group. This effect is also present in our model. However, after
a positive group test in our paper, testing continues within the group, and there are
potential gains to be made from including heterogeneous risk types in this later stage.
Thus, in contrast to Lipnowski and Ravid (2021), negative assortative matching can
be optimal in our model.

Another paper that allows for heterogeneous risks among the samples using Dorf-
man’s algorithm is Hwang (1975). Notably, in contrast to our model, Hwang (1975)
considers a finite number of samples, each of which can have a different risk prob-
ability. This raises the problem of how to group samples of heterogeneous risks, for
which Hwang develops a dynamic programming algorithm. Note that if the sample
population in Hwang (1975) were countably infinite as in our model, then the optimal
group testing using AD would have a very simple solution: only test homogeneous
risk types in a group. The argument is the same as in Lipnowski and Ravid (2021)
— testing samples in homogeneous groups minimizes the probability of a positive
group test, and hence, the number of subsequently required individual tests in the
non-adaptive AD. Hence, Hwang (1975) tackles the integer problem of the finite sam-
ple population assumption for AD.5 In contrast, our adaptive algorithm AG does not
require testing all samples after a positive group result. Therefore, the optimal testing
schedule may require testing heterogeneous risk types in a group even for a countably
infinite sample population, and not just as an integer problem effect of a finite sample
population assumption as in Hwang (1975).

2 Model

A decision maker (henceforth DM) faces a countably infinite set of samples (test
swabs).6 Each sample si (i ∈ N) is either infected or healthy. The samples consist of
two heterogeneous risk groups categorized by their probabilities of infection. A type
θ ∈ {h, �} sample has a probability of infection pθ where 1 > ph ≥ p� > 0. The

4 In contrast to our paper and most of the literature on group testing, Lipnowski and Ravid (2021) focus on
quarantine decisions: the decision-maker’s goal of testing is to maximize the number of uninfected agents
who are not quarantined.
5 While Hwang (1975) allows for several arbitrary risk types, he does not provide a closed-form expression
for how to form groups beyond the algorithm of his Theorem 1.
6 Wemake this assumption for expositional convenience. Alternatively, we could assume that the DM faces
a finite set of samples, but it would involve considering many special cases without generating additional
insights.
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fraction of low-risk samples in the overall population is α. The probability of being
infected is independent across samples.7

The decision maker has access to an infinite number of tests. She can test several
samples together (group testing) up to a capacity of n, or test each sample individually
(individual testing). For simplicity, we assume that the testing technology is perfect
for both group and individual testing. When multiple samples are tested together via
group testing, the test outcome is positive if and only if at least one of the samples
in the tested group is infected.8 Like Dorfman (1943) and many papers following it,
we impose the following feasibility assumption on the number of admissible tests per
sample:

Assumption 1 The decision maker can test each sample at most twice.

Repeated (that is, more than twice) testing of the same sample might be difficult
due to dilution of the initial sample so that detection becomes harder, due to complex-
ity considerations on procedures within a lab, or due to regulatory restrictions such
as CDC guidelines.9 In addition, solving for the optimal testing algorithm without
Assumption 1 makes the problem computationally complex.10

Tests are costly and we assume that the objective of the DM is to minimize the
expected number of tests per sample while identifying all infected samples. Before
we formalize this problem, we introduce some notation. Recall that the test capacity
is n, that is, up to n samples can be tested together in a group test. Let Sn be the set of
all groups up to size n. We describe each sample by its type and each group S by an
enumeration {si }ki=1 of the samples in it, where k = 1, . . . , n and si ∈ {�, h} for each
i . For example, for n = 2, the set of possible groups are {�, h, ��, hh, �h, h�}. Let |S|
be the cardinality of a group S ∈ Sn , for example, |��h| = 3. Similarly, let |S|� be the
cardinality of the �-types and |S|h be the cardinality of the h-types in S, for example,
|��h|� = 2 and |��h|h = 1. It will be convenient to partition the set Sn into (i) S�

n ,
a set containing only homogeneous groups consisting of low-risk types, (ii) Sh

n , a set
containing only homogeneous groups consisting of high-risk types, and (iii) Sm

n , a set
containing every mixed group:

Sn = S�
n ∪ Sh

n ∪ Sm
n .

2.1 Two algorithms

When there is only one sample to test in a group, that is, when the group S is singleton,
the only algorithm to use is the individual testing algorithm which we denote by AI.
To use individual testing protocol on a group S with |S| ≥ 2 is equivalent to first

7 We discuss the possibility of correlation in Sect. 5.3.
8 We discuss what happens if there are type I and type II errors in Sect. 5.2.
9 See https://www.cdc.gov/coronavirus/2019-ncov/lab/pooling-procedures.html.
10 We relax Assumption 1 in Sect. 5.4 by allowing each sample to be tested three times which substantially
increases the difficulty of the optimization problem. In fact, without an assumption on maximal tests per
sample, the computational complexity class of this problem even with homogeneous samples has not yet
been determined but conjectured to be hard in some complexity class (see Du and Hwang, 2000).

123

https://www.cdc.gov/coronavirus/2019-ncov/lab/pooling-procedures.html


Optimal group testing with heterogeneous risks 419

partitioning S into the singleton groups containing its elements, and then using the
individual testing protocol for each {si } for si ∈ S.

We define the group testing algorithm AG below only for non-singleton groups
S = {si }ki=1 where k = 2, . . . , n:

Algorithm (AG: Group Testing) Test samples in {si }ki=1 where si ∈ {�, h} together.
1. If negative, stop. Each sample in {si }ki=1 is healthy.

2. If positive, test each sample in {si }k−1
i=1 individually.

(a) If every sample in {si }k−1
i=1 is negative, stop. Only sk is infected.

(b) If at least one sample in {si }k−1
i=1 is positive, test sk and stop. If sk negative, only

the samples in {si }k−1
i=1 who tested positive are infected. Otherwise, the samples

in {si }k−1
i=1 who tested positive and sk are infected.

Our group testing protocol AG differs from Dorfman’s (1943) protocol AD in
that under AD, if the group test turns out to be positive, then all samples are tested
individually whereas under our protocol, if the group test turns out to be positive, we
test all but one sample individually. If the individual tests are all negative, then we do
not need to test the last sample and infer that it is infected.11

To find the optimal testing protocol under Assumption 1, we do not need to consider
other testing algorithms.After an individual test, theDMknowswhether that individual
is infected or not. After a group test, the DM can test each sample in the group only
one further time (due to Assumption 1). If she tests them next in a group instead of
separately, she might not learn whether the agent is positive or negative. This is ruled
out by assumption as the DM needs to identify all positive samples.

Let φS denote the average number of tests required per sample within group S with
the assumption that for |S| ≥ 2, samples in S are tested with algorithm AG. Trivially,
φS is 1 when |S| = 1. Next, consider |S| ≥ 2.

If the group test is negative (this happens with probability (1− p�)
|S|� (1− ph)|S|h ),

then the DM only requires one test. If the group test is positive, then the DM has to
start testing the samples individually and there are two possibilities: (i) there is at least
one positive sample among the first |S| − 1 individual tests, or (ii) the first |S| − 1
individual tests are negative. In case (i), the DM requires |S| + 1 test in total—the
initial group test and an individual test for every single sample in |S|. In case (ii), the
DM requires |S| tests in total as the last sample does not need to be tested in AG.

Thus, when testing a homogeneous group S consisting only of type θ samples with
pθ = p, the average number of tests required per sample is

φS = 1

|S|
[
(1− p)|S|+(1− p)|S|−1 p|S|+(1−(1− p)|S|−(1− p)|S|−1 p)(|S| + 1)

]

= 1 − (1 − p)|S| + 1

|S| (1 − p(1 − p)|S|−1). (1)

11 Finucan (1964) mentions a refinement of the AD protocol for a group of size two, of which our AG
protocol is a generalization. Moreover, Finucan (1964) considers only a homogeneous population where
the order of the different risk types is irrelevant.
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Next, consider the average number of tests per sample in a heterogeneous group
with AG. After a positive group test, the DM can only avoid testing all |S| individual
samples if the first |S| − 1 individual tests are negative. To maximize the probability
of this happening, a high risk sample should be tested last after a positive group test:

Lemma 1 In AG, for any mixed group, it is strictly better to test a high-risk, rather
than a low-risk sample, last following a positive group test result.

Using Lemma 1, the average tests per sample in a heterogeneous group S is

φS = 1

|S| [(1 − p�)
|S|� (1 − ph)

|S|h + (1 − p�)
|S|� (1 − ph)

|S|h−1 ph |S|

+
(
1 − (1 − p�)

|S|� (1 − ph)
|S|h − (1 − p�)

|S|� (1 − ph)
|S|h−1 ph

)
(|S| + 1)]

= 1 − (1 − p�)
|S|� (1 − ph)

|S|h + 1

|S| (1 − ph(1 − p�)
|S|� (1 − ph)

|S|h−1). (2)

2.2 Optimization problem of the DM

Let fS denote the fraction of the overall sample population that the DM tests in a group
S ∈ Sn . For example, if f��h = 0.6, then 60% of the overall sample population is
tested in the group {��h}. As |S|�/|S| = 2/3 of those are low risk (1/3 are high risk),
this requires that at least 40% of the sample population is of low risk (α ≥ 0.4), and at
least 20% is of high risk for f��h = 0.6 to be part of a feasible testing schedule. Since
the DM seeks to minimize the average number of tests per sample, her optimization
problem can be expressed as the following linear minimization problem subject to two
binding feasibility constraints,

min{ fS}S∈Sn

∑
S∈Sn

fSφS

subject to
∑

S∈S�
n

fS +
∑
S∈Sm

n

|S|�
|S| fS = α (3)

∑

S∈Sh
n

fS +
∑
S∈Sm

n

|S|h
|S| fS = 1 − α

fS ∈ [0, 1] for all S ∈ Sn . (4)

Note that in our optimization problem,we assume that for any group S with |S| ≥ 2,
algorithm AG is used. This is without loss of generality since if AI were better, then
the DM would have shifted the weight to fS such that |S| = 1. As this is a linear
program with a bounded objective function and a non-empty feasible constraint set, a
solution exists.

For any f = { fS}S∈Sn , if fS = 0 for all S with |S| ≥ 2, we say f is an individual
(IND) testing schedule; if fS > 0 for some S ∈ Sm

n , we say f is a negative assortative
matching (NAM) testing schedule; otherwisewe say f is a positive assortativematching
(PAM) testing schedule.
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3 Optimal testing with capacity two

In this section, we focus on a testing capacity of n = 2. This case is interesting in
its own right and serves as a building block for arbitrary testing capacity. For this
capacity, is it ever optimal to test two samples together with AG? And if yes, is it ever
optimal to choose a NAM testing schedule? To answer these, it is instructive to first
consider the optimal algorithm for samples with a homogeneous risk probability.

In what follows, let p̂ := 1
2 (3 − √

5) ≈ 0.38.

Lemma 2 (Homogeneous Population) Fix testing capacity n = 2. Consider an infinite
number of samples with homogeneous infection probability p ∈ (0, 1).

(i) AI (individual testing) is optimal if and only if p ≥ p̂.
(ii) AG (group testing) is optimal if and only if p ≤ p̂.

Proof of Lemma 2 For a singleton group S, the average number of tests per sample
with AI is φS = 1. According to (1), the average tests per sample in a homogenous
group S of size |S| = 2 with infection probability p is

φS = 1

2
(1 + 3p − p2).

Thus, a group S requires strictly less than one test on average per sample if and
only if 1 > 1

2 (1 + 3p − p2), or equivalently, p < p̂. �	
Intuitively, for group testing to be optimal, the probability of a positive group test

has to be sufficiently low, which happens for sufficiently low probability of infection.
If a group test is positive, the DM requires at least 2 tests for the group, which would
have made AI a better choice. This is consistent with the CDC guideline that “pooling
should be used only in areas or situations where the number of positive test results
is expected to be low – for example in areas with a low prevalence of SARS-CoV-2
infections.”

Lemma 2 is useful for our following main result in this section which characterizes
the optimal testing schedule for heterogenous population when the testing capacity is
two.

Proposition 1 (Optimal testing schedule with capacity two) Fix testing capacity n =
2.

(i) (IND) If p̂ ≤ p�, then it is optimal to test every sample individually.

(ii) (PAM) If p� ≤ p̂ and ph ≥ 1−p2�−p�

2(1−p�)
, then it is optimal to test all �-types with

AG and all h-types with AI.

(iii) (NAM) If p� ≤ p̂ and ph ≤ 1−p2�−p�

2(1−p�)
, then it is optimal to maximize the fraction

of samples in a mixed group S = {�h} and to test the remaining homogeneous
samples according to Lemma 2.

Figure 1 shows the three parameter regions divided according to the above result:
(i) all samples are tested individually (IND region); (ii) all low-risk samples are tested
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Fig. 1 Optimal testing schedule with capactiy n = 2

in groups of 2, while the high-risk samples are tested individually (PAM region); (iii)
the DM maximizes the number of heterogeneous groups which she tests in groups of
two (NAM region).

In region IND, the probability of infection for a low-risk sample is already so high
that testing two �-samples together is not profitable (see Lemma 2). Thus, the optimal
testing schedule consists only of individual tests: f� = α and fh = 1 − α.

Underwhich conditions does the optimal testing schedule involve a positive fraction
of mixed groups S = {�h} tested with AG? For this to be optimal, splitting up any
mixed groups into either homogeneous groups (with AG) or individual samples tested
with AI should not decrease the average number of expected tests per sample. With
testing capacity of 2, this boils down to whether the DM prefers to test four samples
{��hh} in two heterogeneous groups or separately for each risk-type (according to AI
or AG based on Lemma 2).

The difference between ph and p� determines whether PAM or NAM testing is
optimal. For ph sufficiently large, the DM prefers to test all low-risk samples with
AG, and all high-risk samples with AI. This is depicted in the PAM region, and
corresponds to a testing schedule f�� = α and fh = 1 − α.

For sufficiently low ph , NAM becomes optimal. It may seem somewhat surprising
at first that NAM can be optimal. We give some intuition here. Recall from Lemma 1
that with the AG protocol, if the group test turns out to be positive, then it is strictly
better to test the lower risk sample first if the two samples have different risks. If the
two samples have the same risks, it is irrelevant which sample to test first. This implies
that there are gains to be made in the second step of AG when the two samples are
heterogeneous, making NAM optimal when both p� and ph are sufficiently low, the
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Table 1 Optimal testing schedule in the NAM region

ph ≥ p̂ ph ≤ p̂

α < 1/2 f�h = 2α, fh = 1 − 2α f�h = 2α, fhh = 1 − 2α

α > 1/2 f�h = 2 − 2α, f�� = 2α − 1 f�h = 2 − 2α, f�� = 2α − 1

conditions for AG to be better than AI. Strikingly, this region where NAM is optimal
extends beyond the case when p� ≤ ph ≤ p̂: Fig. 1 shows that the NAM region
partially encompasses the region where ph > p̂. For such parameter constellations,
high-risk samples would be tested individually (AI) when tested among themselves,
but the DM is strictly better off testing them in groups with NAM in a population with
heterogeneous risks.

In theNAMregion, ifα = 1/2, then theDMcan form exclusivelymixed groups and
f�h = 1 is the optimal testing schedule. Otherwise, for α 
= 1/2, the optimal testing
schedule in the NAM region depends on (i) which risk-types are in the majority and
need to be tested separately after the DM maximizes the fraction of NAM groups
f�h = min{2α, 2(1−α)}, and (ii) the infection probability for these left-over samples
which determines whether it is optimal to test them with AI or AG according to
Lemma 2.

Table 1 summarizes all optimal test schedules that can arise in the NAM region.
To summarize, for any parameters p� and ph , the DM never requires more than two

different groups in the optimal testing schedule. The parameter α is only relevant for
determining the fraction of sampleswhich can bematched optimally via heterogeneous
groups, but not for determining if the optimal testing schedule is PAM or NAM.

4 Optimal testing with general capacity

Next, we consider the general case in which the DM can choose any group size below
some arbitrary testing capacity n ≥ 2. Theorem 1 summarizes the main results.

Theorem 1 Fix testing capacity n. In an optimal testing schedule, any mixed group
contains exactly one h-type sample. Moreover, for ph sufficiently low, any optimal
testing schedule

(i) consists of at most two different group types,
(ii) contains exactly one mixed group type,
(iii) contains groups of size n only.

The result that anymixed group contains exactly one h-type sample does not depend
on ph and follows immediately from Lemma 4 which we establish in Sect. 4.2. Of
course when ph is high, it is optimal to test high-risk samples individually. Therefore,
NAM arises only when ph is sufficiently low. In this case, all samples are tested at
capacity n. Moreover, the optimal schedule contains a mixed group with exactly one
h-type, and the remaining samples are tested in homogeneous groups. These follow
from Lemma 6 which is also established in Sect. 4.2. The proof of Lemma 6 provides
a precise bound on ph for these results to be satisfied.
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Table 2 Optimal group size for
a homogeneous population
depending on infection
probability p

Optimal group size p range in AG p range in AD

1 0.382–1 0.307–1

2 0.203–0.382 –

3 0.103–0.203 0.124–0.307

4 0.060–0.103 0.066–0.124

5 0.039–0.060 0.041–0.066

6 0.027–0.039 0.028–0.041

7 0.020–0.027 0.021–0.028

8 0.016–0.020 0.016–0.021

The remainder of this section provides intuition for the theorem and establishes
additional results.

4.1 Testing homogeneous samples

We start by considering the optimal testing algorithm if the DM has to test homoge-
neous samples with an infection probability of p. This problem arises for every risk
group separately under PAM, or if there are samples with the same risk probability
left over after forming as many mixed groups as possible.12

First, consider the unconstrained problem of finding the optimal homogeneous
group size absent a capacity constraint. An optimal group size solves

argmin
n∈N 1 − (1 − p)n + 1

n
(1 − p(1 − p)n−1). (5)

Table 2 shows the optimal group size as it varies in probability p, up to a group
size of 8. For comparison, it includes a column for the optimal group size with AD.
Under group testing, the number of tests is strictly lower than individual testing only
if the group result is negative. Otherwise, the number of tests is higher than that of
under individual testing. The larger the probability of being infected, the more likely
that a group test will turn out positive, and therefore, the number of tests under group
testing will exceed the number of tests under individual testing. To compensate for
this effect, optimal group size decreases in the probability of infection.

In mid-July 2020 (when the FDA approved the pooled testing for the coronavirus),
the positivity rate for the coronavirus tests in the U.S. averaged around 7%.13 If no
data about high or low risk is available, then exactly 4 samples should be grouped
together, both in our proposed algorithm AG as well as in AD. Notably, this exactly
corresponds to the maximal group size which the FDA approved.

The following result establishes that for a sufficiently small infection probability,
the testing capacity is a binding constraint.

12 Similarly, this is the DM’s problem if she does not know the risk group of each sample.
13 See https://coronavirus.jhu.edu/testing/individual-states.
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Lemma 3 (Binding test capacity for sufficiently low risk) Fix capacity n and a count-
ably infinite number of homogeneous samples with infection probability p. There exists
p̃ > 0, such that for all p ≤ p̃, testing n samples in a group S′ with |S′| = n requires
strictly fewer expected tests than any other group S containing fewer samples:

φS′ < φS for all S such that |S| < n.

4.2 Testing heterogeneous samples

We now consider testing heterogeneous samples. When more than two samples can
be tested together, then the DM can form different mixed groups. For example, with
test capacity of n = 4, there are six candidates for a mixed group: {�h}, {��h},
{�hh}, {���h}, {��hh}, and {�hhh}.14 Which of these can be part of an optimal testing
schedule? Strikingly, the next result shows that the answer is independent of p� and
ph , and is the same for every n: no mixed group is optimal if it contains two or more
high-risk samples.

Lemma 4 (Nomixed groupswithmore than one h-type) For all S ∈ Sm
n with |S|h > 1,

fS = 0 in any optimal testing schedule.

Lemma 4 drastically reduces the types of mixed groups which can arise in the
optimal testing schedule. For example, if the DM ever tests a mixed group containing
4 samples, it will be group {���h}; testing {��hh} or {�hhh} is never optimal.

The composition of a group S that is tested with AG determines (i) the probability
of a positive group test result, and (ii) the probability of requiring |S| − 1 individual
tests, which happens if the group tests positive and all but the last sample test negative.
To get an intuition for Lemma 4, we unravel the effects of (i) and (ii) under various
mixed groups.

Let λ(S) denote the probability that group S requires one test with AG, i.e., the
probability that group test result is negative. Similarly, let μ(S) denote the probability
that group S requires |S| tests with AG, i.e., the joint probability that the group test
result is positive and the first |S| − 1 samples tested individually are negative. These
probabilities are given by

λ(S) = (1 − p�)
|S|� (1 − ph)

|S|h , (6)

and

μ(S) =
{
p�(1 − p�)

|S|−1 if |S|� = |S|,
ph(1 − p�)

|S|� (1 − ph)|S|h−1 if |S|� < |S|. (7)

14 Recall that we identify a group with the enumeration of the samples in it. By Lemma 1, the only relevant
groups are those that have a high risk sample last in the enumeration. It is straightforward to see that any
two groups that are permutations of each other except for the last sample are equivalent to each other as
long as their last samples have the same risk types. Therefore, it is without loss to restrict attention to groups
which test all �-types first before testing the remaining h-types.
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Then, the average tests per sample (recall (2)) is given by

φS = 1

|S| [λ(S) + μ(S)|S| + (1 − λ(S) − μ(S)) (|S| + 1)] . (8)

An increase in λ(S) or μ(S) decreases φS . How do λ(S) and μ(S) vary with the
composition of S? As expected, λ(S) is increasing in |S|h : a higher number of high-
risk samples translates into a higher probability of the initial group test being positive.
This is illustrated in Fig. 2.

The probability of avoiding the last test is decreasing in |S|h , except at |S|h = 1,
a non-monotonicity that we will explain in detail later. This is intuitive. The last
sample is tested only when at least one of the non-last samples tests positive. When
the probability of any non-last sample being infected is higher, it is more likely that
this sample will test positive. This is illustrated in Fig. 3.

Suppose now contrary to the statement of Lemma 4 that there exists some mixed
group S with fS > 0 and |S| = j in the optimal testing schedule that contains k > 1
high-risk samples. We show that there exists a strictly profitable restructuring of the
S-groups into two groups S′ and S′′ of equal cardinality, one containing only one
high-risk sample and the other containing only high-risk samples. Choose S′ and S′′
with |S′| = |S′′| = j , |S′|h = 1 and |S′′|h = j . To preserve the total fraction of high-
and low-risk samples who were initially assigned to group S in the restructuring, we
can split j − 1 groups of type S into j − k groups of type S′ and k − 1 groups of type
S′′. This restructuring achieves two things:

(i) it increases the probability of a negative initial group test result since λ(S) <
j−k
j−1λ(S′) + k−1

j−1λ(S′′), and
(ii) it increases the probability of requiring exactly |S| tests sinceμ(S) <

j−k
j−1μ(S′)+

k−1
j−1μ(S′′).

Intuitively, (i) follows from the fact that λ is convex as a function of the number of
high risk samples its argument S contains, and (ii) follows from the fact that the same
is true for μ when S has at least one high-risk sample.

Together, both these effects lower the average tests per sample, as they both imply
that the probability of requiring |S| + 1 tests decreases. This can be seen in (8) as
φ(S) is decreasing in λ(S) and μ(S). Essentially, whenever there is more than one
high-risk sample in a group, there exists a strictly profitable restructuring that leads
to (i) a lower probability of the initial group test being positive, and (ii) fewer tests
conditional on a positive group test. This contradiction establishes Lemma 4.

The only mixed groups which are not ruled out by Lemma 4 in an optimal test
schedule are the groups containing exactly one high-risk sample. When does a mixed
group arise in an optimal testing schedule? The answer depends on the parameters
because of two countervailing forces.

A necessary condition for the optimal testing schedule to contain a mixed group S
with exactly one high-risk sample is that the S-groups cannot be profitably restructured
into other groups. The next result shows that restructuring into homogeneous groups
cannot be profitable when p� and ph are sufficiently close.
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Fig. 2 Probability λ of a negative group test for |S| = 5, p� = 0.05 and ph = 0.3

Fig. 3 Probability μ of requiring |S| tests for |S| = 5, p� = 0.05 and ph = 0.3

Lemma 5 Fix group size j . Then, for ph sufficiently close to p�, testing a mixed group
Sm with |Sm | = j and |Sm |h = 1 requires weakly fewer tests than restructuring the
samples into homogeneous groups of size j .

The restructuring of the mixed group of size j into homogeneous groups of size j
each leads to two countervailing effects:

(i) it increases the average probability of a negative group test result,
(ii) it decreases the average probability of requiring exactly j tests and increases the

average probability of requiring j + 1 tests.

The first effect is advantageous for the restructuring since a negative group test result
requires only one test in total. The second effect results in a higher probability that
the group requires j + 1 tests. This is disadvantageous for the restructuring. Lemma 5
says the second effect dominates when the risk types have sufficiently similar infection
probabilities.
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The first effect has been previously observed in the literature, e.g., by Lipnowski
and Ravid (2021). Consider the extreme case of degenerate probabilities p� = 0 and
ph = 1 and testing samples in pairs. In each mixed group {�h}, the probability of a
positive group test is 1. Restructuring twomixed groups into two homogeneous groups
{��} and {hh} yields probabilities 0 and 1 of a positive group test respectively, and
reduces by half the average probability of a positive group test.

Figure 3 illustrates the second effect. A mixed group containing only one high-
risk sample has the highest probability of requiring exactly j tests among all groups
of size j . Strikingly, the expected number of tests conditional on a positive group
test is higher in a homogeneous group with low-risk samples than in a mixed group
containing exactly one high-risk sample. Recall that μ is convex as a function of the
number of high risk samples its argument S contains when S has at least one high-risk
sample. It follows that the average probability of requiring j + 1 tests per group after
restructuring into homogeneous groups is higher than that of the mixed group (of size
j with exactly one high-risk sample), since the number of high-risk samples in the
mixed group is a convex combination of 0 and j which are the number of high-risk
samples in the homogeneous groups after the restructuring. Hence, any restructuring
(in our case into two homogeneous groups) leads to a higher probability of requiring
j + 1 tests.
To see the benefit of mixed groups conditional on a positive group test, consider

the extreme example with almost degenerate risk probabilities ph ≈ 1 and p� ≈ 0.
If the mixed group {��h} tests positive, then in expectation the DM requires only
approximately two additional tests. This is because by Lemma 1, the high-risk sample
is tested last, and the probability that the two low-risk samples test negative (which
avoids the final test) is almost one. If instead a homogeneous group {���} tests positive,
then the probability of avoiding the last test is approximately 1/3 and the expected
number of tests is higher than in the mixed group.15 In a mixed group with one high-
risk sample, a positive group result is disproportionately attributed to the high-risk
rather than the low-risk samples, and hence, the probability of avoiding the final test
is higher.

The following result establishes sufficient conditions for NAM to be optimal.

Lemma 6 (NAM optimal for small probabilities of infection) Fix testing capacity n.
There exists p > 0 such that for all ph < p, the optimal testing schedule contains at
most two types of groups, and

(i) maximizes the fraction fS for the mixed group S with |S| = n and |S|h = 1,
(ii) tests the remaining homogeneous samples in groups at capacity n.

This establishes that for any possible testing capacity, the optimal testing schedule
is NAM when infection probabilities are sufficiently small. Thus, the fact that the
optimal testing schedule in Sect. 3 contains mixed groups is not an artefact of a small
test capacity, but a relevant for any testing capacity n.

Given a population, let tAG be the average number of tests per sample in the optimal
testing schedule under AG (that is, the value function of the optimization problem in

15 The probability of avoiding the final test in this extreme case approaches limp�→0
p�(1−p�)

2

1−(1−p�)
3 = 1/3.

See the proof of Lemma A2 in the Appendix for further details.
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Sect. 2.2), tAD be the average number of tests per sample in the optimal testing schedule
under AD when heterogeneity of risk is ignored and t ′AD be the average number of
tests per sample in the optimal testing schedule under AD when heterogeneity of risk
is incorporated.When heterogeneity is ignored, we find the optimal size of a group test
under AD using the average probability of infection in the population and calculate the
average number of tests per sample. When heterogeneity is incorporated (we denote
this by AD′), we find the optimal sizes of group test for both the low-risk samples and
the high-risk samples, calculate the corresponding average number of tests per sample,
and then find the population average. Table 3 provides an example that compares the
optimal testing schedule under AG, AD′ and AD as we vary ph , with p� and α fixed.

It is worth noting that our protocol can lead to significant efficiency gains. For
example, as Table 3 illustrates, when p� = 0.05, ph = 0.3 and α = 0.8, the average
number of tests required per sample is 0.515 under AG and 0.594 under AD that
ignores heterogeneity of risk. Thus, our testing algorithm saves about 13.3% of tests.
Note that under AD that incorporates heterogeneity of risk, the average number of
tests required per sample is 0.539. Hence, of the 13.3% reduction of tests, about 9.3%
is due to the incorporation of heterogeneity or risk and 4% is due to the modification
in the algorithm.

5 Extensions and Discussion

5.1 More than two risk types

In this section, we consider an extension in which the samples consist of more than
two heterogeneous risk types. Let {1, . . . ,m} denote the set of risk types and let pθ

denote the infection probability for type θ . We assume without loss of generality that
the set of types is enumerated so that 0 < p1 < . . . < pm < 1. Let qθ denote the
fraction of type θ samples in the population.

We start by considering the case in which testing capacity is 2. We first show that

if pθ > min{ 1−2p1
1−p1

,
1−p21−p1
2(1−p1)

}, then it is optimal to test all θ types individually in any
optimal testing schedule.

Proposition 2 (Optimality of individual testing for high risk types) If pθ >

min{ 1−2p1
1−p1

,
1−p21−p1
2(1−p1)

}, then fθ = qθ .

Intuitively, if it is not optimal to group type θ with the lowest risk type, then it is
not optimal to group it with any other type either.

In what follows, let κ denote the highest type with pκ < p̂ where p̂ is as defined

in Sect. 3. Notice that 1−2p1
1−p1

= 1−p21−p1
2(1−p1)

when p1 = p̂, i.e., the cutoff probability of
infection for group testing in a homogeneous population (recall Lemma 2). Thus, pθ

satisfying the hypothesis of Proposition 2 must necessarily exceed p̂.
When κ = 2, Proposition 2 implies that all types θ ∈ {3, . . . ,m} are tested indi-

vidually and DM’s problem reduces to optimal testing when attention is restricted to
types 1 and 2. In particular, an analogous version of Proposition 1 continues to hold
with �-types and h-types in Proposition 1 replaced with type 1 and type 2, respectively.
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By Lemma 2, AG is the optimal algorithm for any homogeneous population θ ∈
{1, . . . , κ} since pθ ≤ pκ < p̂. Consequently, fθ = 0 for all θ ∈ {1, . . . , κ} in any
optimal testing schedule, since otherwise we can profitably regroup individuals into
homogeneous groups. If fθθ > 0 and fθ ′θ ′ > 0 for some θ, θ ′ ∈ {1, . . . , κ}, then
regrouping two homogeneous groups {θ ′θ} and {θ ′θ ′} into two heterogeneous groups
{θθ ′} decreases the number of required tests, i.e., 2φθθ ′ ≤ φθθ + φθ ′θ ′ . To see this,
note that

2(1 + p + 2p′ − p′ p) ≤ (1 + 3p − p2) + (1 + 3p′ − p′2)

for any p and p′ such that 1 ≥ p ≥ p′ ≥ 0. By taking p = max{pθ , pθ ′ } and
p′ = min{pθ , pθ ′ }, the left hand side of the above expression is the required number
of tests after regrouping, and the right hand side is the required number of tests before
regrouping. It follows that there can be at most one homogeneous group in an optimal
schedule when the probability of infection is sufficiently small for all types:

Proposition 3 (No individual tests and at most one homogeneous group for low infec-
tion probabilities) If pκ < p̂, then fθ = 0 for all θ ∈ {1, . . . , κ}. Furthermore, if
fθθ > 0 for some θ ∈ {1, . . . , κ}, then fθ ′θ ′ = 0 for all θ ′ 
= θ.

Since it is optimal to test all samples with types {1, . . . , κ} in groups, the feasibility
constraints for the DM’s problem in this case are given by fθθ ′ ∈ [0, 1] for all θ, θ ′
and

1

2

∑
θ ′ 
=θ

fθθ ′ + fθθ = qθ , (9)

for all θ ∈ {1 . . . , κ}. If κ ≥ 2 and qθ > 1
2 for some θ ∈ {1, . . . , κ}, i.e., if there

are at least two low-risk types and if there is a majority risk type among the low-risk
types, then it is not possible to find a feasible solution to the system of equations
given by (9) with fθθ = 0. In that case, the optimal testing schedule necessarily
includes a homogeneous group. Otherwise, i.e., if qθ ≤ 1

2 for all θ , one can find a
feasible solution with fθθ = 0 for all θ . In this case, it might be optimal to have no
homogeneous groups.

What happens when the testing capacity is higher than 2? The next result shows
that it is never optimal to test a mixed group of size three with three types present in
it.

Proposition 4 (No mixed group with three risk levels) If the testing capacity is n > 2,
then fi jk = 0 for any three distinct types i , j , k.

5.2 Imperfect tests

So far we assumed that the tests are perfect. That is, if a sample is not infected, then
the test result is negative with probability 1 and if a sample is infected, then the test is
positive with probability 1. Realistically, tests are imperfect and have some errors. In
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what follows, we compare the probability of errors under individual testing protocol
AI and group testing protocol AG.

Suppose k ≥ 1 is the number of samples in a test. Denote by x(k) the false positive
rate of the test (the conditional probability that the test result is positive given that all
samples in the test are uninfected) and y(k) the false negative rate (the conditional
probability that the test result is negative given that at least one sample in the test is
infected). Note that we assume here that y(k) depends only on k and does not depend
on how many samples are infected.16

Under the individual testing algorithm AI, for each sample si , the probability of a
false positive is x(1) and the probability of false negative is y(1).

Now consider the group testing algorithm AG. Under AG, a sample is found to be
false negative if it is infected but either the group test is negative or the group test
is positive but the subsequent individual test on this sample is negative. A sample is
found to be false positive if it is uninfected but the group test is positive and either (i)
the subsequent individual test on this sample is also positive or (ii) no individual test
on this sample was conducted but all other individual samples were tested negative
and therefore this sample is inferred to be positive.

Proposition 5 Suppose k ≥ 2 and x(k), y(k), y(1) ∈ (0, 1). The false positive rate is
strictly lower for any sample, except for the last one, under group testing protocol AG
than under individual testing protocol AI. The false negative rate is strictly higher for
any sample under AG than AI if y(k) ≥ y(1).

Under group testing, if the initial group test result is negative, then no more tests
are conducted, implying a higher false negative rate for a sample under AG than AI
if the false negative rate is increasing in the number of samples in a test. But at the
same time, AG lowers the false positive rate for any sample other than the last one
since to be found false positive, both the group test and the individual test have to be
(false) positive. For the last sample, however, the false positive rate could be higher
under AG since it can be found false positive when it is uninfected, but the group test
is positive and all the individual tests on other samples are negative and therefore it is
(mistakenly) inferred to be positive.

5.3 Correlated samples

Our paper has focused on heterogeneity in the probability of infection and for simplic-
ity we have assumed independence of infection probability across samples. Another
interesting dimension of heterogeneity may be correlation: For example, the infection
probability of people from the same household or same workplace may be correlated
but it is independent across households and workplaces. When conducting group test-
ing, should we pool independent or correlated samples together? In what follows, we
provide a simple example to illustrate that positive assortative matching (that is, pool-
ing positively correlated samples together) is optimal. Suppose there are two samples

16 Biology suggests that y(k) may be increasing in k because of the dilution of positive samples in a group
test, though this effect may be small if the number of samples in a group test is small. See, for example,
Cherif et al. (2020).
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with the joint distribution illustrated in Table 4 below (1 means infected and 0 means
healthy).

Table 4 Joint distribution of infection

1 0

1 p2 + δ p(1 − p) (1 − δ)p(1 − p)

0 (1 − δ)p(1 − p) (1 − p)2 + δ p(1 − p)

Under AG, if both samples are healthy, one test is conducted; if only one sample is
healthy, then with probability 1

2 , two tests are conducted, and with probability
1
2 , three

tests are conducted; if both samples are infected, then three tests are conducted. Hence,
the expected number of tests is given by

3[p2 + δ p(1 − p)] + 5

2
[(2(1 − δ)p(1 − p)] + (1 − p)2 + δ p(1 − p)

= 3p2 + (1 − p)2 + p(1 − p)(5 − δ).

Since the expected number of tests is strictly decreasing in δ, the correlation coef-
ficient between the two samples, it is better to pool together positively-correlated
samples than independent ones.17

5.4 Testingmore than two times

The preceding analysis relied on testing each samples no more than twice. This,
together with the assumption that each infected sample ought to be identified, reduces
the feasible testing algorithms to IND and AG. Next, we generalize the previous
analysis by allowing each sample to be tested at most three times.

Assumption 2 Each sample can be tested at most three times.

Just one additional test per sample substantially increases the admissible testing
protocols, complicating the analysis. To keep the analysis tractable, we also make the
following assumption:

Assumption 3 Retesting across groups is inadmissible.

This assumption says that if a sample has been group-tested, it cannot be retested
in a group test with another sample from a different group.18 This is practical to
implement in laboratories where different groups of samples might be split up to
be tested in different locations and reduces complexity by ruling out many retesting
configurations.

17 Augenblick et al. (2020) make a similar observation about how the expected number of tests decreases
in the correlation among samples in a group test, but do not discuss the implications for how to sort samples
when there is heterogeneity in correlation among samples in the population.
18 For example, if group {��h} and another group {��h} both test positive in a group test, one may not test
the two h-samples from the two different groups together in one follow-up group test. Instead, aside from
individual testing, only group tests {�h} or {��} within each group should be considered.
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Table 5 Tests per group in ADG and AGG

Sample composition Probability ADG AGG

s1, s2, s3 healthy (1 − p1)(1 − p2)(1 − p3) 1 1

s1, s2 healthy, s3 infected (1 − p1)(1 − p2)p3 3 2

s1, s3 healthy, s2 infected (1 − p1)p2(1 − p3) 4 4

s2, s3 healthy, s1 infected p1(1 − p2)(1 − p3) 3 5

s1, s2 infected, s3 healthy p1 p2(1 − p3) 5 5

s1, s3 infected, s2 healthy p1(1 − p2)p3 4 5

s2, s3 infected, s1 healthy (1 − p1)p2 p3 4 4

s1, s2, s3 infected p1 p2 p3 5 5

In what follows, we discuss the optimal testing algorithms when testing capacity
is n = 3. In this environment with n = 3, in addition to IND and AG, there are two
other algorithms to consider. Both of them start with the group test of three samples
{s1s2s3} and stop if the group test is negative (all three samples are healthy). If the
group test is positive, there are two protocols:

1. Dynamic Group-Testing Algorithm (ADG): Test s1 individually. If s1 is positive,
test {s2s3} with AG. If s1 is negative, test s2 individually. If s2 is negative, stop
(only s3 infected). If s2 is positive, test s3 individually.

2. Twice Group-Testing Algorithm (AGG): Test {s1s2} via AG. Test s3 individually
only if group {s1s2} is positive (if {s1s2} is negative, only s3 is infected).

Table 5 shows the number of tests for three ordered samples with infection prob-
abilities {p1, p2, p3} with ADG and AGG. The following expected number of tests
required per sample in ADG and AGG follows from the table:

φADG(p1, p2, p3) = 1

3
(1 + 2p1 + 3p2 − p1 p2 + (2 − p1)(1 − p2)p3), (10)

φAGG(p1, p2, p3) = 1

3
(1 + 4p1 + 3p2 − 3p1 p2 + (1 − p1)(1 − p2)p3) . (11)

Homogeneous samples.With homogeneous samples and n = 3, AGG is not optimal
for any infection probability p ∈ [0, 1]. To see this, suppose a homogeneous group
of size three is tested positive. Then, group-testing two of these samples cannot be
optimal: each sample is infected with probability at least 1/3, so a group with two
samples will be positive with probability above 5/9. Individual testing of the two
samples requires two tests, while grouping them together requires strictly more tests
in expectation.

In a homogeneous population, for a sufficiently low infection probability p, indi-
vidual testing is not optimal. Following a positive group test of three samples, suppose
that the individual test of sample s1 is positive. This, in turn, substantially reduces
the probability that s2 or s3 are positive. Hence, for sufficiently low p, group-testing
{s2s3} with ADG will dominate testing them individually following a positive test of
s1. On the other hand, unless p is sufficiently small, grouping only two samples and
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using AG might be the optimal testing schedule. The following result summarizes the
optimal testing algorithms for different infection probabilities.

Lemma 7 Let n = 3 be the testing capacity. Under Assumptions 2 and 3, there exist
p < p such that the optimal testing algorithm is

1. ADG if p ≤ p,
2. AG with group size 2 if p ∈ [p, p],
3. IND if p ≥ p.

The equations pinning down p ≈ 0.26 and p ≈ 0.35 can be found in the appendix.
Some of the insights in Lemma 7 can be generalized beyond capacity n = 3. First,
testing a sample in a group test more than once is optimal only if the belief about this
sample being infected following previous tests does not increase too much (as dis-
cussed in the case of AGG). Second, the adaptive nature of the retesting configuration
can be important, even under Assumption 3: for a certain parameter range, the optimal
testing algorithm requires that the retesting configuration depends on the outcome of
the previous tests (for example, in ADG, whether s2 and s3 are tested in a group or
individually depends on the test outcome of s1).

Heterogeneous samples. With a heterogeneous population, which mixed groups of
size three can arise in an optimal testing schedule? For AG, in Lemmas 1 and 4 we
have established that only {��h} is a viable candidate. For ADG and AGG, there are
six candidates to consider for each algorithm, three with one h-type in a group, and
three with two h-types.

ForADG,with the expected tests per sample given in (10),wehaveφADG(p�, p�, ph) <

φADG(ph, p�, p�) < φADG(p�, ph, p�) for 0 < p� < ph < 1. Hence, only
{��h} can arise. Similarly, we have φADG(ph, p�, ph) < φADG(p�, ph, ph) <

φADG(ph, ph, p�). Hence, {h�h} is the unique candidate for ADG among the groups
containing two h-types and one �-type. For AGG, among all six mixed groups, only
{��h} is a candidate. This is because φAGG(p�, p�, ph) < φAGG(p�, ph, p�) <

φAGG(ph, p�, p�) andφAGG(p�, ph, ph) < φAGG(ph, p�, ph) < φAGG(ph, ph, p�),
and φAGG(p�, ph, ph) > φADG(ph, p�, ph).

With four different mixed groups to consider, the set of possible initial groupings
and retesting configurations to consider increases substantially relative to our main
analysis which requires consideration of only one mixed group for any group size. A
numerical exercise shows that none of the four mixed groups can be ruled out since
each is optimal for some parameter range: For example, if α = 0.5, p� = 0.03 and
ph = 0.1, the optimal testing schedule consists of two mixed groups, each for one
of the two new algorithms: f AGG

��h = 0.5 and f ADG
h�h = 0.5. On the other hand, if

α = 0.5, p� = 0.08 and ph = 0.1, the optimal testing schedule only utilizes ADG:
f ADG
��h = 0.5 and f ADG

h�h = 0.5. Moreover, as shown in Lemma 7, AG can still be
optimal.

Characterizing the optimal testing algorithm when samples can be tested more than
three times is beyond the scope of our paper. In what follows, we briefly discuss the
challenges and what insight we can still apply from our analysis.

Suppose the samples can be tested more than three times and consider a K -stage
testing algorithm where at each stage, any retesting configuration (that is, the number
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of subgroups, their sizes and their members) is allowed. The problem becomes very
complicated very quickly as K increases because the number of possible retesting
configurations grows rapidly. Black et al. (2015) investigate this problem computa-
tionally and they show that if the initial group test contains N samples and the samples
are ordered by the probability of being positive in the retesting configurations, then a
K -stage algorithm has approximately (K − 1)N−1 possible retesting configurations.
For a large N , the computational time to find the optimal testing protocol is impractical
even for a small K . When there are two risk types, the number of possible retesting
configurations is smaller than (K − 1)N−1, but still very large for a large N .

Partly because of the large number of possible retesting configurations, relatively
simple algorithms have been proposed and analyzed by researchers and used in prac-
tice. A well-known example is the halving algorithm, which involves successively
splitting positive groups into two equal-sized halves. Positive groups are halved until
all groups test negatively or until individual testing occurs. Black et al. (2012) show
that ordering the samples according to risk probabilities when halving them into sub-
groups instead of treating them as homogeneous and halving them randomly reduces
the number of expected tests. Our analysis shows that further reduction is possible
from simple modifications of the algorithm. Following a positive group test and after
halving the group into two subgroups, we should first test the subgroup that has the
highest probability of a negative test. If it is negative, we can conclude that the other
subgroup will test positive and we either halve it further or start individual testing,
depending on the updated infection probabilities. When individual test of a mixed
group occurs, we should test those with the low risk first and leave the high-risk
sample last to minimize the expected number of tests.

5.5 Task assignment and team design

Our analysis of group testing with heterogeneous risks can be applied to other situa-
tions, for example, to task assignment and teamdesign in principal-agent relationships.
Specifically, suppose a principal, having heterogeneous priors about a set of agents
of uncertain abilities, can assign tasks and form teams to learn about their abilities.
We assume that the principal can learn each agent’s ability by assigning an individual
task, which is perfectly informative about the individual’s ability, or a team task. The
principal’s goal is to learn agents’ abilities using a minimal number of tasks.

Consider first the case in which all team tasks are disjunctive tasks, that is, the team
output is a success if at least one teammember is of high ability and a failure if all team
members are of low ability. Thus, following a failure the principal can infer that all
team members are of low ability but a success requires further learning to determine
the team members’ abilities. To cast this situation in our group-testing model, high
ability corresponds to an individual being infected and pi corresponds to the prior of
agent i having high ability. We call i a member of the underdog subgroup and j a
member of the favored subgroup if pi < p j . Applying the results of our paper, the
optimal team assignment consists of at most two different team compositions, and at
most one mixed team with exactly one member from the favored subgroup.
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Next consider the case in which all team tasks are conjunctive tasks, that is, the
team output is a failure if at least one team member is of low ability and a success if
all team members are of high ability. Thus, following a success the principal can infer
that all team members are of high ability but a failure requires further learning. As
such, low ability corresponds to an individual being infected and pi corresponds to
the prior of agent i having low ability. In this case, we call i a member of the underdog
subgroup and j a member of the favored subgroup if pi > p j . Again, the optimal
team assignment consists of at most two different team compositions, and at most one
mixed team with exactly one member now from the underdog subgroup.

In our analysis, we showed that group testing reduces the expected number of
tests only when the probability of infection is sufficiently low. Hence, if members
of the underdog subgroup have a high probability of having high ability, then only
conjunctive tasks are suitable as team tasks. If members of the favored group has a
low probability of having high ability, then only disjunctive tasks are suitable as team
tasks. In each of these environments, if the principal can choose the type of team task,
she would use conjunctive and disjunctive tasks, respectively.

A Omitted proofs

Proof of Lemma 1 Fix a mixed group S. The probability of a negative group test, (1−
p�)

|S|� (1− ph)|S|h , is independent of the order of individual tests following a positive
group test result. Since

(1 − p�)
|S|� (1 − ph)

|S|h−1 ph > (1 − p�)
|S|�−1(1 − ph)

|S|h p� ⇔ p� < ph,

the joint probability of a positive group test result and the first |S| − 1 individual
tests being negative in the second step is higher if a high risk sample is tested last
following a positive group test result. Hence, the probability of requiring a total of |S|
tests instead of |S| + 1 tests is strictly higher if a high-risk sample is tested last. �	
Proof of Proposition 1 The following result summarizes when NAM is optimal in a
testing schedule.Note that the highest fraction of samples that can be part of a S = {�h}
mixed group is twice the fraction of the minority risk type, min{2α, 2(1 − α)}.

Recall p̂ = 1
2 (3 − √

5).

Lemma A1 (i) If p̂ ≤ p� < ph, then f�h = 0 in any optimal testing schedule.
(ii) If p� < p̂ < ph, then f�h = min{2α, 2(1 − α)} in any optimal testing schedule

when ph ≤ p2�+p�−1
2(p�−1) , and f�h = 0 when ph >

p2�+p�−1
2(p�−1) in any optimal testing

schedule.
(iii) If p� < ph ≤ p̂, then f�h = max{2α, 2(1− α)} in any optimal testing schedule.
Proof of LemmaA1 By equation (2), the average number of tests per sample in a mixed
group of size 2 is

φ{�h} = 1

2
(1 + ph + 2p� − ph p�).
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(i): If ph > p� ≥ p̂, then 1 = φ{h} = φ{�} < φ{�h} implying that testing a mixed
group is worse than individually testing the samples in it. Hence, f�h = 0.

(ii): If p� < p̂ ≤ ph , then by Lemma 2, it is optimal to test high-risk samples with
AI and low-risk samples with AG. A mixed group cannot be optimal if we can
find a profitable restructuring. Consider restructuring twomixed groups {�h} into
of one homogeneous group {��} and two individual high-risk groups {h}. This
restructuring reduces the average number of tests per sample if and only if

2(1 + ph + 2p� − ph p�) > 1 + 1 + (1 + 3p� − p2�),

which holds if and only if ph >
p2�+p�−1
2(p�−1) .

(iii): If p� < ph < p̂, then by Lemma 2, AG is optimal for any homogeneous popula-
tion. Then, NAM is optimal if and only if restructuring two homogeneous groups
{��} and {hh} into two mixed groups {�h} reduces the average number of tests
per sample. This holds if and only if

2(1 + ph + 2p� − ph p�) ≤ (1 + 3p� − p2�) + (1 + 3ph − p2h),

which is always satisfied.

�	
Lemma A1 pins down the fraction of samples that belong to mixed groups {�h} in

any optimal testing schedule. Lemma 2 determines the remainder of the optimal testing
schedule, as all samples that are not tested in S = {�h} are tested in a homogeneous
group or individually. �	
Proof of Lemma 3 For n = 1, there is nothing to prove. Let n ≥ 2. For simplicity of
notation, in the rest of the proof let Sk be a homogeneous group containing k samples
with risk probability p.

First, note that by (1), under AG, increasing the group size from k to k + 1 ≤ n
strictly decreases the expected number of tests per sample iff

p(1 − p)k−1(1 + k + k2 − pk2) < 1. (A1)

Since lim p→0 p(1− p)k−1(1+k+k2− pk2) = 0 for every k, it follows that for every
2 ≤ k ≤ n − 1, there exists p̃(k) > 0 such that (A1) is satisfied for every p < p̃(k).

Second, note that by (1) testing group Sn withAG requires a fewer expected number
of tests per sample than testing each sample in it with AI whenever

(1 − p)n−1(n − np + p) > 1. (A2)

Since limp→0(1 − p)n−1(n − np + p) = n and n ≥ 2, there exists p̃(1) > 0 such
that for all p < p̃(1) the inequality (A2) always holds.

Finally, let p̃ = min{ p̃(1), p̃(2), . . . , p̃(n−1)}. Then, for every p < p̃, increasing
the group size by one up until the capacity n is reached strictly decreases the expected
number of tests per sample. �	
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Proof of Lemma 4 Suppose to the contrary that the optimal testing schedule contains
a positive fraction of mixed groups S such that S contains k > 1 high-risk samples.
Let j = |S|. We show that the restructuring j − 1 of these S groups into j − k groups
containing only one high-risk sample, and k−1 homogeneous groups containing only
high-risk samples strictly reduces the number of tests.

Let S′ and S′′ denote the size- j groups with |S′|h = 1 and |S′′|h = j . It suffices to
show that

φ(S) >
j − k

j − 1
φ(S′) + k − 1

j − 1
φ(S′′).

By (8), this is satisfied whenever

λ(S) <
j − k

j − 1
λ(S′) + k − 1

j − 1
λ(S′′) (A3)

and

μ(S) <
j − k

j − 1
μ(S′) + k − 1

j − 1
μ(S′′). (A4)

are satisfied. Note that (A3) is equivalent to

(1 − p�)
j−k(1 − ph)

k−1 <
j − k

j − 1
(1 − p�)

j−1 + k − 1

j − 1
(1 − ph)

j−1.

This holds by the weighted AM-GM equation. Likewise, (A4) is always satisfied. �	
Proof of Lemma 5 Consider three different groups Sm, S�, Sh , each containing j sam-
ples, with |Sm |h = 1, |S�|h = 0 and |Sh |h = j . Note that j of the Sm groups can
be restructured into ( j − 1) of the S� groups and one Sh group. The original testing
schedule with mixed groups yields a lower expected number of tests if

jφSm ≤ ( j − 1)φS� + φSh .

Plugging in equations (1) and (2) for the expected number of test per sample, the
inequality simplifies to

(1 − ph)
j−1(ph + j − ph j) ≤ (1 − p�)

j−1(p� + j − p� j + j(p� − ph)( j − 1)).
(A5)

This is satisfied with equality when ph = p�. Furthermore, the right hand side is
increasing in p� when ph − p� is sufficiently small. To see this, note that

∂(1 − p�)
j−1(p� + j − p� j + j(p� − ph)( j − 1))

∂ p�

= −(1 − p�)
j−2( j − 1)(1 − (ph − p�)( j − 1) j).
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This is negative whenever (ph − p�) < 1
( j−1) j . Thus, the inequality (A5) is satisfied

for ph sufficiently close to p�. �	
Lemma A2 Conditional on a positive test result, the expected number of tests is lower
in a mixed group with one high-risk sample than in that of a homogeneous group of
same size.

Proof Fix any group size k ≥ 2. Conditional on a positive group test, the probability
of avoiding the last test of a group S = {si }ki=1 with respective risk-types {pi }ki=1 is

Pr({si }k−1
i=1 healthy|positive group test) = Pr({si }k−1

i=1 healthy and sk infected)

Pr(positive group test)

= pk

k−1
i=1 (1 − pi )

1 − 
k
i=1(1 − pi )

.

Applying this equation, the probability of avoiding the last test in mixed group of
size k with one high-risk sample is

ph(1 − p�)
k−1

1 − (1 − p�)k−1(1 − ph)
,

and the probability of avoiding the last test in a homogeneous low-risk group of size
k is

p�(1 − p�)
k−1

1 − (1 − p�)k
.

Since p� < ph , we have

ph(1 − p�)
k−1

1 − (1 − p�)k−1(1 − ph)
>

p�(1 − p�)
k−1

1 − (1 − p�)k
.

Hence, a mixed group which tested positive is more likely to require k − 1 instead of
k additional tests than the homogeneous low-risk group. A similar argument shows
that a mixed group which tested positive is more likely to require k − 1 instead of k
additional tests than the homogeneous high-risk group as well. �	
Proof of Lemma 6 First, we establish that for ph sufficiently small, a mixed group that
is below capacity is never optimal.

Lemma A3 Fix capacity n. There exists p′ > 0 such that for all ph < p′, fS = 0 for
all S ∈ Sm

n−1 in any optimal testing schedule.

Proof of LemmaA3 For simplicity of notation, let Sa,b be a group containing a low-risk
and b high-risk samples. We show that for ph sufficiently small, it is strictly better for

123



Optimal group testing with heterogeneous risks 441

the DM to restructure k(k + 1) number of Sk−1,1 groups into (k − 1)(k + 1) number
of Sk,1 groups and one S0,k+1 groups, i.e., we show that

k(k + 1)φSk−1,1 > (k − 1)(k + 1)φSk,1 + φS0,k+1 .

From (2),

φSk,1 = 1 − (1 − p�)
k(1 − ph) + 1

k + 1
(1 − ph(1 − p�)

k)

is decreasing in k when ph is sufficiently low.Hence,φSk−1,1 > φSk,1 for ph sufficiently
low. From (1) and (2), we have φSk,1 = φS0,k+1 when ph = p�. Hence, when ph is
sufficiently low (which implies that it is sufficiently close to p� since ph > p�), we
have φSk−1,1 > φS0,k+1 . Hence,

k(k + 1)φSk−1,1 > (k − 1)(k + 1)φSk,1 + φS0,k+1

when ph is sufficiently low.
Hence, for every k ≤ n − 1, there exists p(k) such that for all ph < p(k),

the mixed group Sk−1,1 can be restructured into two groups, each containing one
more sample and each requiring fewer expected number of tests per sample. Let
p′:=min{p(2), p(3), . . . , p(n − 1)}. Then, for all ph < p′, a mixed group of capac-
ity lower than n requires more tests than restructuring it into a mixed group and a
homogeneous group at capacity n. �	

Next, we combine Lemmas 3, 5 and A3 to establish the proof of Lemma 6. Fix
capacity n. Let

p′′ = 1

(n − 1)n
. (A6)

If ph < p′′, then using the proof of Lemma 5, ph − p� is sufficiently close to p�

for any p� < ph such that forming mixed groups containing one high-risk sample is
better than homogeneous groups of the same size for any group size k ≤ n.

Define a lower bound p:=min{ p̃, p′, p′′}where the p̃ and p′ are givenbyLemmas3
and A3 respectively, and p′′ is given by (A6). Then, for all ph < p, in any optimal
testing schedule,

(i) homogeneous samples are tested at testing capacity n, i.e., fS = 0 for all S ∈
S�
n−1 ∪ Sh

n−1 (Lemma 3),
(ii) mixed groups are formed only at capacity n, i.e., fS = 0 for all S ∈ Sm

n−1
(Lemma A3),

(iii) the fraction fS for themixed group S at capacity n with |S|� = n−1 and |S|h = 1
is maximized. (Lemma 5).

Hence, for ph sufficiently low, the optimal testing schedule is NAM and contains at
most two groups: a mixed group at capacity n with exactly one high-risk sample, and
a homogeneous group at capacity of the type that cannot be feasibly tested in mixed
groups. �	
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Proof of Proposition 2 The expected number of tests in a group with type 1 and type θ

is given by

−p1 pθ + 2p1 + pθ + 1.

Restructuring a {1 θ} group into two individual tests results in strictly lower expected
number of tests when

−p1 pθ + 2p1 + pθ + 1 > 2

i.e., when pθ >
1−2p1
1−p1

. Since the expected number of tests in any group {θ ′ θ} for
θ ′ ∈ {2, . . . ,m} is higher than in {1 θ}, it is strictly profitable to restructure these
groups into two individual tests as well if pθ >

1−2p1
1−p1

.

If p1 < p̂, then
1−p21−p1
2(1−p1)

<
1−2p1
1−p1

. In that case, it is more profitable to restructure
two {1 θ} group tests into a {1 1} group test and two individual θ tests. Again, the
expected number of tests is lower with this restructuring. A similar argument shows
that it is also never optimal to test a θ type in a group with any other type θ ′ such that
θ ′ < p̂. �	
Proof of Proposition 4 Without loss of generality assume i < j < k. It suffices to show
that the regrouping of two {i jk} groups into an {i ik} group and an { j jk} group reduces
the expected number of tests. A straightforward extension of the AG algorithm and
Lemma 1 shows that given any three samples θ, θ ′, θ ′′, it is optimal to test the lowest
risk sample first and highest risk sample last in any group test under AG. Thus, the
expected number of tests for an {i jk} group is given by

3φi jk = (1 − pi )(1 − p j )(1 − pk) + 3(1 − pi )(1 − p j )pk
+ 4[1 − (1 − pi )(1 − p j )(1 − pk) − (1 − pi )(1 − p j )pk]

= 1 + 3pi + 3p j − 3pi p j + 2(1 − pi )(1 − p j )pk . (A7)

In the expression above, (1− pi )(1− pi )(1− pk) is the probability that no sample
is infected, in which case only one test is needed, (1− pi )(1− p j )pk is the probability
that only sample k is infected, in which case three tests are needed, and

(
1 − (1 − pi )(1 − p j )(1 − pk) − (1 − pi )(1 − p j )pk

)

is the probability that sample i or sample j are infected, in which case four test are
needed. The required number of tests per sample in each of the {θθk} groups for θ =
i, j is given in (2). Tedious but straightforward algebra shows that 2φi jk > φi ik+φ j jk ,
which suffices to establish the proposition. �	
Proof of Proposition 5 For sample si where i ∈ {1, . . . , k − 1}, the probability of a
false positive is

⎡
⎣

k∏
j=1, j 
=i

(1 − p j )x(k)x(1) + (1 −
k∏

j=1, j 
=i

(1 − p j ))(1 − y(k))x(1)

⎤
⎦ ,
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Since x(k) < 1 and 1 − y(k) < 1, this is strictly lower than x(1), the false positive
rate under AI.

For sample si where i ∈ {1, . . . , k − 1}, the probability of a false negative is
y(k) + (1 − y(k))y(1) > y(k) ≥ y(1). For sample sk , the probability of a false
negative is y(k) + (1 − y(k))zy(1) where z > 0 is the probability that all the (k − 1)
samples other than sk test negative on their individual tests following the positive
group test. Since y(k) + (1 − y(k))zy(1) > y(k) ≥ y(1), it follows that any sample
si where i ∈ {1, . . . , k} has a strictly higher false negative rate under AG than AI. �	

Proof of Lemma 7 Simplifying equations (11) and (10) for (p1, p2, p3) = (p, p, p)
yieldsφAGG(p, p, p) = 1/3(1+p(8+(−5+p)p)) andφADG = 1/3(1+p(7+(−4+
p)p)).Comparing this to the number of tests per sample in IND and AG for capacity 2
and 3 yields the result. In particular, p is pinned down by 1/3(2− p(7+(−4+ p)p)) =
0 (when φADG(p, p, p) = 1 = φ I N D) and p by 1/6(1 + p(−5 + (5 − 2p)p)) = 0

(when φADG(p, p, p) = φAG(p, p)). �	
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