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Abstract

A decision-maker receives an informative signal each period and is randomly required
to make a terminal action based on the signals received so far. The decision-maker is
restricted to use a (stochastic) finite automaton no larger than a given size to process
information. In contrast to the existing literature that focuses on very low probabil-
ity of termination, I consider information structures with a (nearly) revealing signal,
in which analytical solutions are available for all probability values of termination.
Results from that model reveal two robust predictions regarding constrained optimal
behaviour. First, it is optimal to ignore small (in terms of informativeness) signals. Sec-
ond, when deterministic schemes are optimal, big signals with similar strengths should
be treated similarly; otherwise, randomization takes a lexicographic order according
to the strengths of the signals. I also identify a new behavioural bias, information
stubbornness, according to which the decision maker does not respond to further
informative signals after seeing a nearly revealing signal. As a result, the decision-
maker can persistently choose the wrong action even after an unbounded number of
informative signals.

Keywords Imperfect recall - Bounded rationality - Bounded memory -
Absent-minded - Behavioural biases

JEL Classification D8 - D9

1 Introduction

Recently there has been a surge of interests in behavioural biases in economic agents’
decision-making processes. One way to understand such biases is to introduce fric-
tions/capacity constraints in the agent’s ability to process information, and derive
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behavioural biases as the endogenous responses to those constraints. In particular,
Hellman and Cover (1970) and its recent incarnation, Wilson (2014), derive con-
strained optimal decision rules under limited memory modelled by finite automata
constrained by a given number of memory states.! Wilson (2014) shows that a con-
strained decision-maker (DM) only responds to extreme signals but ignores any others,
and a positive extreme signal moves one memory state up and a negative one moves
one down (although the movements can be randomized), regardless of their relative
strengths. However, these results are obtained at the limit case where the expected
time horizon for a decision is infinitely far away relative to the memory capacity, and
it is not obvious whether or which of these results are robust when the expected time
horizon is bounded away from that limit.

In this paper, I revisit these results for a class of information structures that allow
for tractable analysis. I adopt the same framework as (Wilson 2014), which features
two possible states of nature, H and L. In each period the DM receives an informative
signal, and there is a chance that she has to make a terminal decision. Without memory
constraints, the optimal decision rule is to take the optimal action with respect to the
posterior from the signals received so far according to the Bayes’ rule. Instead, a
memory constraint is imposed so that only decision rules that are implementable by
a finite automaton of a given size are allowed. This consists of finitely many memory
states and a transition rule that governs its evolution by specifying the next state to
go to (which can be randomized) conditional upon the signal received. Each memory
state is associated with an action, which would be taken if a terminal action is called
for when the DM happens to land on that memory state.

Wilson (2014) focuses on the limit case where the probability of terminal action, 1,
vanishes. Assuming that the distribution of signals has a full support, she proves two
salient features of the optimal finite automaton of a given size for n sufficiently small.
First, small signals are ignored in the sense that they do not trigger a transition to
a different memory state. Surprisingly, however, all signals but the most informative
signal in either direction are small signals, and hence the optimal automaton only
reacts to extreme signals. Second, the memory states can be ranked in the sense that
the extreme signal (the high signal) that increases the posterior on H would cause
a transition to a higher memory state, and the extreme signal that decreases it (the
low signal) would cause a downward transition. Here comes the second surprise: any
transition can only occur between adjacent memory states (although sometimes with
different probabilities), even though the high signal and the low signal can have very
different relative strengths in terms of Bayesian updating.

In contrast to Wilson (2014), I consider arbitrary termination probability for a class
of information structures that allow for tractable analysis. First I show that the decision
problem in Wilson (2014) with memory constraints implies intrinsic biases: no finite
automaton can implement the unconstrained optimal decision rule under the full-
support condition. This makes the model intractable and only asymptotic results are

! Thereisa long history of using finite automata to model economic agents. Earlier works include (Rubin-
stein 1986) on repeated games. Kalai and Solan (2003) show that randomization is necessary in general
Markov decision problems when confining implementation to finite automata. More recently, Monte and
Said (2014) extends the analysis of Hellman and Cover (1970) to changing worlds where state of nature
may switch over time.
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available as 7 vanishes. In contrast, if one of the signals fully reveals one of the states
of nature, then the unconstrained optimum is implementable with a finite automaton,
whose size depends on the prior belief. A two-signal information structure with one
of then being fully revealing is called a “model of breakthroughs,” with the revealing
signal being the “breakthrough” signal.?

In the model of breakthroughs I obtain analytical solutions for all 5’s. In particular,
in any optimal finite automaton, the revealing signal, say the low signal, will cause a
transition to the lowest memory state which is absorbing. I then show that this feature
remains for the constrained optimal finite automaton when the low signal is sufficiently
informative, but it does not need to be fully revealing. This new behavioural bias,
called information stubbornness, is not included in Wilson (2014)’s results, although I
also maintain the full-support condition. This feature is proved using results from the
model of breakthroughs and the modified multi-self consistency, a concept invented by
Piccione and Rubinstein (1997) and then extended by Wilson (2014) to the framework
here. Multi-self consistency implies that in the optimal finite automaton, each memory
state is associated with a posterior (potentially biased) belief, and both the optimal
action and optimal transitions are determined by a version of “sequential rationality”
according to those beliefs. This necessary condition for optimality then traces biases
in behaviour back to the biases in the associated beliefs. A key observation here is that
these beliefs are continuous in the underlying parameters governing the information
structure. Since it is strictly optimal to transit to the lowest memory state when the
low signal is fully revealing, the main part of the proof shows that it remains so when
the low signal is sufficiently informative.

Information stubbornness highlights a new behavioural bias implied by limited
memory. Without memory constraints, the DM would revert to the action correspond-
ing to state of nature H when she receives sufficiently many high signals. In contrast,
the constrained optimal rule dictates the action corresponding to L once a low signal
is received, without responding to any signals thereafter, despite the fact that they are
informative. Furthermore, the result also differs significantly from those in Wilson
(2014), who shows that any transition can only occur between adjacent memory states
at the limit where 7 is arbitrarily close to zero. In contrast, information stubbornness
implies that the transition “jumps” from any memory state to the lowest one when a
low signal is received, and it stays there thereafter.

Besides information stubbornness, I obtain two other analytical features of the
constrained optimal rule by adding a third signal to the model of breakthroughs. First,
I consider the situation where the third signal is sufficiently uninformative, and show
that it is optimal to completely ignore it in the constrained optimal rule. This result
is consistent with Wilson (2014)’s result for 7 close to zero but here it is generalized
to all  in my environment. Thus, besides information stubbornness, the bias “sticky
information” identified in Wilson (2014) still holds here. Second, I consider the case
where the two unrevealing signals have similar strengths in the model of breakthroughs.
In contrast to Wilson (2014), the DM treats signals of similar strengths similarly, albeit
in a lexicographical order. When randomization is optimal, the stronger signal is more

2 This terminology is borrowed from Che and Mierendorff (2019).
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fluid—it moves the memory state to the next until the weaker one is completely sticky.
However, both signals can be fluid even for n arbitrarily small.

2 The model

The model is essentially (Wilson 2014). There are two states of nature, 6 € {H, L},
and the prior probability over 6 = H is Po(H) = po. The model has an unbounded
number of periods, and in each period, with probability  the DM has to choose
between two actions, a € A = {a’’, a’}, with utility function u(a, 6) given by

u(aH,H)=uH > 0, u(aL,L)=uL > 0, u(aH,L) =O=u(aL,H).

Once the action is chosen the game is over. With probability 1 — 1 the game continues.
Note that the chance to choose the terminal action is exogenously given.

The state of nature, however, is not observable to the DM. Instead, the DM can
observe a sequence of signals, which is i.i.d. conditional on the state of nature. Here
I focus on information structures with two signal, S = {h, £}. A decision rule is a
function D : §* — A, where S* = [ J;2, §” is the set of all partial histories of signal
realizations, including the empty one. The decision rule maps each possible partial
history of signal realizations to the terminal action if the DM is called upon to make
one. The unconstrained optimal rule can be fully characterize by the posterior, p: the
optimal decision is to take a whenever p > p* = u’/wf + u’) and to take a”
whenever p < p*. The posterior is computed according to the Bayes rule, for which
it is convenient to work with likelihood ratios. Define

po . pt _ut i

= , pf=——=—, and =
= P T u £(s) 2

00 for both s = h, £. @))]

I normalize the labels so that £(h) > 1 > £(£). I use p to denote the likelihood ratio
p/(1 — p) for a generic posterior p on H, and from p and signal s, the likelihood ratio
for the new posterior is p’ = p&(s). Hence, h increases the posterior on H while £
increases the posterior on L.

Finite automata and implementation

Given the set of signals, S, a stochastic finite-state automaton (SFSA) consists of a
list M = (Q, 7,d, g), where Q is the set of memory states, T : Q xS — A(Q) is the
transition rule, d : Q — A(A) is the action rule, and g € A(Q) is the distribution
over initial states. Tuse 7(g, s; ¢") to denote the transition probability from ¢ to ¢’ when
receiving s, and d(a; g) to denote the probability of taking action a at memory state
q when called upon for terminal action. When the finite automaton is deterministic
(abbreviated as DFSA), Tuse 7(g, s) = ¢’ to denote the transition rule and d(g) = a to
denote the decision rule. The following result fully characterizes the signal structures
for which a finite automaton can implement the unconstrained optimum.
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Forgetful updating and stubborn decision-makers 785

Proposition 2.1 Suppose that £ (h) < oo and that n € (0, 1). Then, the unconstrained
optimum is implementable with a finite automaton if and only if £(€) = 0.

Proposition 2.1 is proved by the use of the Myhill-Nerode Theorem (Nerode 1958),
which gives a full characterization of what finite automata of a given size can do in
terms of partitions of the partial histories.> For self-containment I give the relevant
version of the theorem in the Appendix. Proposition 2.1 then shows that except for the
case where one of the two signals fully reveals the state of nature, no finite automa-
ton can implement the unconstrained optimum, and hence the constrained optimal
behaviour must exhibit some biases relative to the full rationality benchmark.

The impossibility result can be easily extended to more than two signals, as more
signals can only make the problem more complicated. As a benchmark, in the next
section I study a model where the ¢-signal does fully reveal the state of nature, and in
Section 4 I use the results from there to characterize the constrained optimal behaviour
when the ¢-signal is not fully revealing but only nearly so.

3 A model of breakthroughs

Here I consider the case where /,L}Il{ = 1, that is, £(¢) = 0.4 Later I will extend the
analysis to allow for uf < 1. To simplify notation, denote Mé‘ = p with u € (0, 1).
A low signal, ¢, fully reveals the state of nature L (hence a breakthrough), while a high
signal, &, only gradually increases the posterior on H. Without memory constraint,
the optimal rule would dictate that action a” to be taken whenever an £-signal appears
and thereafter, while a’! is taken only after sufficiently many %-signals without seeing
any f-signal. As shown later, this can be implemented by a finite automaton with
sufficiently many memory states. I will also characterize the constrained optimal rule
when memory is constrained.

First, suppose that pg > p*, where the likelihood ratios are defined in (1). In
this case, the unconstrained optimum can be implemented by a two-state DFSA with
Q=1{qn.qr}.9° = qun.t(qu. h) = qu,t(qu, £) = qr.7(qL, h) = qL = T(qL. D),
and d(qy) = a® andd(q;) = a’, as depicted in Fig. 1. Thus, the memory state ¢ is
self-absorbing for both signals, and the action is a’; ¢ is absorbing only for signal-#,
and the action is a® . This DFSA, labelled M. b , with gy as the initial state, implements
the unconstrained optimum: since py > p*, it is optimal to take a/ when receiving
high signals, and it is optimal to switch to a and continue using that whenever a low
signal is received. Note that this implementation does not depend on 7.

Now suppose that pg < p*. In this case, the unconstrained optimum can still be
implemented by a DFSA, but its size depends on the distance between In pp and In p*
relative to In £ (/). In particular, let

3 Tam grateful to Pathikrit Basu for pointing out that the Myhill-Nerode Theorem can be useful for this
result.

4 By assuming that ,u? > 0 for all s and for both & = H, L, Wilson (2014)’s analysis excludes this case.
However, as we will see below, this is not a trivial case and it helps us solve some of the cases under the
full support condition, but gives a rather different implications than what Proposition 4 in Wilson (2014)
suggests.
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Fig.1 The DFSA, MY, that
implements unconstrained

/
optimum when py > p* /_\
qr qH
h, ¢ h

Fig.2 The DFSA, M ][i, o> that implements unconstrained optimum when pg < p*

In p* —In po—‘ )

=N = [ Iné(h)

Then, the optimal DFSA requires N + 2 states, given by O = {gx,q1,q1,---,9N},
(gL, £) = qL = t(qL, h), T(qi, h) = gi+1 and 7(q;, £) = g, fori =1,..., N — 1,
t(gn,h) = qu and T(gn,¢) = qr, and ©(gu,h) = qu and T(qnu, ) = qL, as
depicted in Fig. 2, with g; as the initial memory state. The action rule is given by
d(qr) = d(g;) = a’ foralli = 1,..., N, and d(qy) = a™. This DFSA, labelled
M Ili, 4o» implements the unconstrained optimum for all € (0, 1). When N = 0, this
is equivalent to Mé’ , and hence we can set N (pg) = 0 in for py > p*.

These results then show that whether the memory constraint, |Q| < K, binds or
not depends only on pp but not on 7, and it binds if and only if K < N(pp) + 2.
Conversely, for a given K, let p(f be the smallest pg such that N(pg) +2 < K. Then,
the memory constraint is binding if and only if pp < ,oé( . The following proposition
shows that strict randomization is optimal if and only if the memory constraint is
binding and the optimal SFSA is not trivial. In fact, it shows that the following SFSA
is optimal, which deviate from Mlb( by having t(g;, h; q;) = ¢« = 1—1(qi, h; gi+1) for
i=1,...,K —2,where gx—1 = gy, while all the other transitions follow the same
rule as Mlb(. This SFSA is denoted by Mlb( () and M2 = M% (0), and Fig. 3 depicts
M Ib( (o) for K = 5. Finally, define M as the finite automaton with one memory state
that takes action a’ all the time.
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Fig.3 MY (e) with K =5

Proposition 3.1 Suppose that E(£) = 0 and &(h) € (0, 1). For each K > 3 and
n € (0, 1), there exists Py > 0 such that the smallest optimal SFSA is

b . K
My (poy+2 ifpo > pg
My (@) for some a € (0,1) if po € [pys o) 3)
M if po = p,-

MOVEOV@I‘, converges to zero as oes to zero.
0 g ng

Proposition 3.1 gives a full characterization of optimal SFSA in the model of break-
throughs. The optimal SFSA identified uniquely determines the constrained optimal
decision rule in each case (except at pg = 20), and is the smallest SFSA to implement
the corresponding rule. It shows that strict randomization is optimal if and only if the
memory constraint binds, that is, p € (p o’ pé{ ). For lower priors, the optimal rule is

to take a® all the time, which reflects the fact that randomization cannot fully substi-
tute for efficient learning. The lower bound for priors under which randomization is
optimal, p 0 does depend on n, although its upper bound, pé{ , does not. At the thresh-

old Py MbK (a*) under optimal a™ and M give exactly the same ex ante payoffs.

However, asn converges to zero, the payoff from My b (&) for any < 1 converges to

H 1 (1 — po)u’, the highest payoff possible, and this implies that p,, converges
to zero. To my knowledge this is the first complete characterization of constralned
optimal rules for a class of information structure for all 1 and for all priors.

4 Information stubbornness

In this section I show information stubbornness when ¢ is sufficiently informative, but
not fully revealing, according to which it is optimal for the DM to ignore any further
signals once an £-signal is received—hence the stubbornness. To this end, I first need
some structural results from Wilson (2014) to characterize optimal rule under memory
constraint. Given a state of nature # and a memory state ¢ € Q, the expected payoff
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accumulated from ¢ when called to act conditional on 6 is then

ng(q) [Z d(a; q)u(a, 9)} +n(l=n) Y glqTqr, s 9,

acA q1.51€S

[Zd(a; Qu(a, 9)} +a=m> Y glaDTq s )l
a q1.92€Q.51,92€S (4)

7(q2, $2; Q)Mfz [Z d(a; q)u(a, 9):| I

= f(ql6) [Zd(a; Qu(a, 6)} :

where

o] T-1
f@oy="> na-mn’! { > glan) [ | ule@. si; q,m} :
T=1

(G15-59T=1)5 (515,57 —1),9T7=4 1=1
(5

As noted in Wilson (2014), f(g|0) is the stationary distribution under the transition
probability from ¢’ to g given by

%" )= [nglq)+ 1 —nultq. s: ] (6)
seS

Wilson (2014), extending (Piccione and Rubinstein 1997), then defines the “belief”
associated with memory state g € Q as

@) = Pof (q\H) and p(q. 5)
pof@IH) + (1= po) f@IL) :

_ VRIS o
pof(qlH)uH + (1 — po) f(glL)pnL’

with the associated likelihood ratios given by

p(q) = pof(qlH)/f(gIL) and p(q,s) = p(q)§(s).
To characterize optimal SFSA, I use V, (6) to denote the continuation value when the

current memory state is at ¢ conditional state of nature 6, which is characterized by
the following recursive equations:

V@) =n) da;qua )+ —n > wltlq,s;gWy@®). ®)

acA s€S,q'€Q
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Forgetful updating and stubborn decision-makers 789

Following (Wilson 2014), two memory states g and ¢’ are called equivalent if V() =
V,(0) forboth = H, L.

Proposition 4.1 Suppose that M is an optimal SFSA with memory constraint K and
without equivalent states. Then, we rank the memory states in M according to

p(q1) < p(q2) <--- < p(gk),

with the convention that if p(q;) = p(qi+1) then Vg;(H) < Vg, (H). Let AVIQJ =
V9 _ V@
qi q;
H L : : H L H L
1. AVg,j < 0 and AVI-J > Oforalli < j, and AVj’l-/AVI-’j > AVk,j/AVj’kfor
alli < j <k.

2. Define p; = AVE

l,i+]/AV‘

1

Mo ni=1,...,K =1 Then, in M,

(a) for each g,
p(qi) € [pi-1, pil; ©)
(b) 7(g.s:qi) > 0only if
p(q,s) € [pi-1, pil, (10)

where py = 0 and px = o0,
(c) d(gi;a™) > 0only if p(qi) = p* and d(g;,a*) > 0 only if p(q;) < p*.

Proposition 4.1 follows directly from Corollary 1 and Lemma 1 in Wilson (2014).
For self-containment, however, a full proof of Proposition 4.1 can be found in the
Online Appendix. As in Wilson (2014), the proof is mainly based on an extended
version of the multiself consistency proposed by Piccione and Rubinstein (1997), and
I prove that version in the Online Appendix as well. Proposition 4.1 states that in
the optimal SFSA, the DM essentially uses the beliefs p(q) to decide the optimal
transition and the optimal actions if called upon. Note that Proposition 4.1 applies
to all information structures, including the model of breakthroughs and information
structures that feature full supports.

Now I turn to information stubbornness and consider the case where /LZI < 1 but
close, and hence the signal £ is no longer a breakthrough but still a strong signal for
state of nature L. Recall the threshold Py given by Proposition 3.1.

Proposition 4.2 For each K > 3, n € (0, 1), and py > Py there exists € > 0 such

that for all /LZI € (1 — €, 1], any optimal SFSA transits to the lowest memory state
after £ from any memory state, which is absorbing.

According to Proposition 4.2, for any given € (0, 1) and p > Py for a range of
information structures that satisfy full-support, when receiving signal £ it is optimal to

5 As argued in Wilson (2014), one can obtain the same ex ante expected payoffs by merging equivalent
states into a single memory state.
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790 T-W.Hu

transit all the way back to g7, for all memory states in any optimal SFSA. This is in great
contrast to the conclusion from Wilson (2014), where transition only occurs between
adjacent memory states for small n’s. The difference lies in the order according to
which the limit is taken. In Wilson’s case it is to fix Mf < 1 and to take n to zero, in
my case it is to fix 1 (no matter how small) and to consider ,u;:’ close to one.

Proposition 4.2 also implies that the DM’s behaviour exhibits behavioural biases
relative to the full-rationality benchmark. In particular, consider a situation where the
DM receives an £-signal at an early stage and hence is stuck in the memory state gy .
Her belief then stays the same, regardless of the signals she receives afterwards. In
contrast, a Bayesian DM would shift her beliefs upwards if more /-signals come. In
fact, if the underlying state of nature is H, then the constrained DM would almost
surely get stuck with a biased belief fully convinced of L, while the Bayesian DM’s
belief would almost surely converge to H. Note that the result holds for any given
K. This finding also highlights a difference between modelling limited memory by
finite automata and by bounded recall. In models of bounded recall, only most recent
experiences count.® In contrast, here the ¢-signal can occur some time ago while the
DM remains stubborn.

The result is proved by showing that the optimal SFSA takes the form given by (3)
in the relevant range of priors. Since Proposition 3.1 also ensures uniqueness, by con-
tinuity one only needs to check against small deviations to the transition probabilities
in the optimal SFSA. This is guaranteed essentially by the continuity of the beliefs
identified in Proposition 4.1 applied to the model of breakthroughs. The proof verifies
that when M;f] = 1, it is strictly optimal to transit to g7, for all memory states, and this
optimality is maintained when p }7 is close to one by continuity.

Three signals

Here I extend the results to information structures with three signals where § =
{h, 1, £}. For expositional simplicity I only consider the case where ,uf + ,uf, =1,
i.e., £-signal fully reveals state of nature L as in the model of breakthroughs but signals
h and K’ both increase the posterior on H. However, all the results here can be extended
to the case where y,;? is close to one, as in Proposition 4.2. T use two benchmark cases to
illustrate how different strengths of the signals & and &’ affect optimal randomization.
I normalize the parameters so that &£(h) > &(h'), that is, h-signal is a stronger signal
than /’. When 7 is close to zero, Wilson (2014) shows that transition can only happen
when receiving & but not 4’. Here I show that this is true for all n when &(h') is
sufficiently close to one, that is, when A’-signal is very uninformative. In contrast to
her result, however, for &(h’) close to £(h), I show that it is optimal not to ignore
k', but randomization may occur. I also characterize how the randomization is shared
between /i and 1’

To state these results, I fix £(h) but vary £(h’) to be between 1 and &(h), and I
do so by parametrizing the conditional probabilities as follows. Fix ,u,lj =1—-v=
1—pfl €0, Dandfix 1 —pf =1—pu=pk+pf € (0,1) with u > v. For

6 Forarecent example of models of bounded recall, see Barlo et al. (2009) in the context of repeated games.
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Forgetful updating and stubborn decision-makers 791

a given pair u© > v, [ vary M;L,/ within the interval [(1 — w)v/(1 — v), v]. Note that
u > vimplies that £(h) = (1 —v)/(1 — u) > 1. For all /,L}Il‘/ e (1 —wyv/(1—v),v),
&) < &(h). When M;I;, = v, £(h’) = 1, that is, h'-signal is uninformative but /-
signal is informative. When p,ﬁ, = (1 — wyv/( —v), &) = &(h) > 1| and both
signals are equally informative.

In the two extreme cases the optimal SFSA is characterized almost in exactly the
same way as in Proposition 3.1. When & (k") = 1, Proposition 3.1 directly applies by
amending the SFSA so that 7(gq, h') = ¢ for all g, that is, the 4’-signal is completely
ignored. In the other extreme where £ (h') = & (h), the result still holds but with a sightly
more subtle modification: randomization at ¢; under the optimal SFSA, M 2 (a), can
be split arbitrarily between the two signals as long as

wr (g by i) + upt(qi h's i) = a, an

and t(q;, h; i) + T(qi, b; qiv1) = 1= t(qi, h's gi) + T(qi, Bs i),
foralli =1,..., K —2, withgx_1 = qg. That is, the average probability of staying
at g; is equal to « across the signals i and i’. Note that when o = 0 is optimal this
implies t(g;, h; q;) = 0 = ©(q;, h'; q;). Let Mlb< (B, B") denote the SFSA such that
t(qi,h;qi) = Band 1(q;, h'; q;) = B/ foralli = 1,..., K — 2, withgx_1 = gp.
Note that M Ib{ (B, 1) implies that h’-signal is ignored everywhere. Note also that, since
&(h) is the same in both extreme cases, the unconstrained optimal decision rule is
implementable if and only if pg > ,oé{ , where ,oé( is determined in exactly the same
way as in Section 3 (that is, ,05( is the lowest pg such that N(pg) < K — 2, with
N (pop) given by (2)). Interestingly, however, for u,];, slightly below v, the unconstrained
optimal rule is not implementable even for pp € (pé( , 0™, since for £(h’) very close
to one, it will require more than K &’ -signals to cross p* from pg. For pg < ,oé( ,
the constraint K will be binding for both extreme cases. Note that we still have the
threshold p, 0 below which taking a’ all the time is the constrained optimal rule, but

that threshold would depend on ,u}Ll,. We have the following proposition.

Proposition 4.3 Suppose that ,u,gl =1l-v=1- ,LL}III, € (0,1) and that 1 — p,}f =
l—u:,ué—i—uﬁ, € (0, 1) with u > v.

1. For each pgy € (20’ %), there exists € > 0 such that for all M;I,‘r € [v — €, V], the
optimal SFSA takes the form M% (a, 1), i.e., h' is ignored.
2. For each py € (po, ,05(), there exists € > 0 such that for all “}IZ’ €

("(l 1) "(1 “) + €], the optimal SFSA takes the form Mb (B, B") with optimal

1—v >

B = 1(qi, h ;qi) > 0 for all i. Moreover, in the optimal MK(ﬂ, B, B > 0 only
ifB = 1.

Proposition 4.3 only considers priors in the range (P> p*). For py > p*, Mzb is still
optimal. For pg < p, 0 it is still optimal to use My . For priors in between, Proposition
4.3 (1) shows that it is optimal to ignore signal-4’ when it is sufficiently uninformative,
i.e., when £(R’) is close to the unity. Note that this implies a different kind of biases
when the memory constraint is binding. Indeed, when py > p(f but close and when
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£(h') > 1 but close, a rational DM will take action a’ after seeing sufficiently many
h'’s but not the constrained DM, who would stay at ¢1 and take action a’. This result
extends Wilson’s (2014) result that small signals should be ignored, but here it is
shown for all ’s in information structures that are close to the breakthroughs.

Proposition 4.3 (2) deals with the case where &(h') is close to &(h) but slightly
lower. Note that for pg > pé( , the unconstrained optimal rule is still implementable
when & (k) is sufficiently close to &(%). According to Proposition 4.3 (2), for lower
00, randomization is optimal and it would first occur when receiving 4’ before it
occurs when receiving /; in other words, randomization between staying in the current
memory state and the next when receiving the more informative signal /2 can happen
only when it is optimal to ignore the less informative signal, &’. Note that this last
point essentially follows from the characterization result, Proposition 4.1, according
to which 8 = t(q;, h; ¢i) € (0, 1) implies that p(g;, h) = p(qi)é(h) = ¢; for all
i =1,.., K — 2, which in turn implies that p(g;, h') = p(g;)E(h') < G;.

Proposition 4.3 only considers the two extreme cases. For the case where K = 3,
the model becomes tractable and we have the following proposition.

Proposition 4.4 Suppose that 1f! =1 —v =1—uf € (0,1) and that 1 — pf; =
1—pu=uk+puk €0, 1) with > v, and that K = 3. For each puf, € (U=

I—v >

there exists £y and py € [30’ %) such that the optimal SFSA is Mf (B, B) with

p=0=4p if 0o € [y, €9,
B=0and B >0 if po € (0. gy): (12)

B>0andp" =1 ifpo e (p, Po)

According to Proposition 4.4, the optimal SFSA is M [b< (B, B') in the three-signal
environment under the model of breakthroughs whenever the memory constraint is
binding (for priors not low; otherwise M is optimal). Note that when py > p*/&(h')
the unconstrained optimal rule is implementable. For lower priors, the second line in
(12) shows that at ¢; both & and &’ are fluid signals, and neither is ignored. This is in
contrast to Wilson’s (2014) result where only extreme signals are fluid, and note that
for this result I do not really need £(¢) = O but only need £-signal to be sufficiently
informative as in Proposition 4.2.

5 Conclusion

An important point in Wilson (2014) is to establish that potential behavioural biases
are in fact rational responses to decision-makers’ imperfections in information pro-
cessing abilities. Here I demonstrated that these implications do depend not only on
the constraints imposed by such imperfections, but also the underlying environment,
such as the probability of terminal actions. My results suggest that two behaviour
implications are robust: first, it is almost universally true that constrained optimal rule
ignores small signals; second, the DM should treat big signals according to their infor-
mativeness, and, when it comes to optimal randomization, use a lexicographical order.

@ Springer



Forgetful updating and stubborn decision-makers 793

Moreover, a novel behavioural prediction is identified here, information stubbornness,
and I have shown that this is a robust feature of the constrained optimal rule when there
is a sufficiently informative signal, regardless of the expected horizon of the decision
problem. This bias shows that a single experience can lock in a memory-constrained
decision-maker’s belief without responding to future informative signals.

Finally, results in the paper are proved mainly based on the extended principle of
modified multiself consistency proposed by Piccione and Rubinstein (1997). Hence,
I suspect that most of them would survive in environments where that principle also
holds true. For example, the result that small signals are ignored only depend on the
fact that the belief associated with a memory state according to the modified multi-
self consistency lies strictly within the boundaries given by Proposition 4.1, which is
a direct consequence of multi-self consistency under binary states of nature.

Appendix: Proofs

Before the proof of Proposition 2.1, I first give a version of the Myhill-Nerode theorem
adopted to the framework in the paper. To do so, I need to introduce some concepts
first. A relation over the set of partial histories of signal realizations, R C S* x §*, is
called right-invariant if

XRy <— (xoz)R(yoz) forallx,y,z € S*, (13)

where o denotes concatenation. Given a decision rule D, /.ZHD denotes the set of partial
histories under which action a? is taken, § = H, L.

Theorem 5.1 (Myhill-Nerode Theorem) The rule D can be implementable by a DFSA
iff there is a right-invariant equivalence relation R with finitely many equivalence
classes such that ££) is a union of some of those equivalence classes for both® = H, L.

The equivalence classes correspond to the memory states in the corresponding
DFSA, and the equivalence classes that make up EBD consist of those action states
where action a? is taken, for both § = H, L. Thus, the DFSA gives a finite partition
of partial histories that captures the finiteness of the DM’s memory capacity. The
right-invariance condition captures the fact that if the DFSA enters the same memory
state after two different partial histories, then it will end up in the same memory state
(although not necessarily the same as the original one) after any consecutive partial
history.

Proof of Proposition 2.1

Note that the “if”” part is proved in the analysis of the model of breakthroughs. For
the “only if” part, under the assumption of two signals with £(h) € (1, 00) and
£(2) € (0, 1), I show that under the unconstrained optimal rule D, any right-invariant
equivalence relation R such that Eé) is a union of some of those equivalence classes
for both & = H, L, it must have infinitely many equivalence classes. The “only if”
part then follows from the Myhill-Nerode theorem.
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Now, let R be such an equivalence relation. Without loss of generality I assume that
po < p*. Now, I construct an infinite sequence of partial histories, x\,x2, . x", ..
and show that each has to be of a different equivalence class. The construction is
simple: each x" consists of m,, h-signals, with the sequence {m,}°° | determined as

follows. Let m | be the smallest integer m > 1 such that

In(po) +mIn[&(h)] > In(p®).

Given m,,, m, 4 is the smallest integer m such that
(m —my) In[§(h)] > —In[§(E)]. (14)

This implies that m,, strictly increases with n. Now we show that, for each n > 2, x"
must belong to a different equivalence class other than the one x* belongs to for all
i < n. To see this, let k be the smallest integer such that

In(po) + myu—1 In[€ ()] + kIn[£(0)] < In(p™).

This implies that D(x' oy) = a’ for all i < n, where y consists of k £-signals.
However, by (14),

In(po) + my In[€(h)] + k In[£(€)]
> In(po) +mu—1 In[E()] + (k — D In[E(O)] = In(p™),

and hence D(x" oy) = a'l . Thus, by right-invariance, X" must belong to a different
cell than x* forall i < n.

Proof of Proposition 3.1

We first show that any optimal SFSA takes the form of M Ib( (a1, ...,0g_2),in which
o(qi,h)(gi) = o =1 —0(qi,h)(gi+1) fori = 1,..., K — 2 with gx—1 = qn,
with other transitions the same as M Ib(. Note that M }'} () is a special case where o] =
....00g —72 = oo. We may assume that there are no redundant states. By Proposition 4.1,
we can rank the memory states. For notational consistency, I use g to denote the
one with the lowest associated belief and gy the highest, and rank the others by
p(q1) < p(q2) < .... < p(gx—2).- Now, since an ¢-signal sends the posterior to zero,
it follows that p(gr) = 0, and for gy, it is optimal to stay at g7, after any signal. For
other memory state, since receiving A can only trigger a transition to go up or to stay,
Vg (8) only depends on V,(0) for j > i, while p(g;) only depends on transitions
from g; with j < i. Thus, we can take p(q;) as the prior and look for the optimal
SFSA with K — i memory states, and use the necessary conditions in Proposition 4.1
to characterize the optimal SFSA. Note that at gy, the highest memory state, it is
optimal to stay there and take action a? after seeing h-signal.

This allows for an induction argument starting from i = K — 2 and then working
backwards. We first show by induction that the optimal SFSA the transitions from
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Gi» .., qk take the form M K—=1*+1(o; ... ag_») (part (a)), and then we show that
the optimal SFSA has o) =y = ... = ag—2 = o € (0, 1) (part (b)).

(a) Fori = K — 2 this is immediate, as the only possible transition is either staying
in gg—» or going to gy after seeing an h-signal. Suppose that it holds for i 4+ 1 <
K — 2, and in the optimal SFSA the transitions from g;41, ..., gx—> take the form
MPK=i(q; 1, ..., ax_2). Below in (b) we prove that it is optimal to have ;4| =
.-+ = ag—3. This, by a simple computation from the corresponding value functions,
implies that forall j =i +1,..., K — 3, pj4+1/p; is constant and

1< ,5]‘_;,_1//3]' < &(h), withequality iff ;41 =0="--+ = ag_2, (15)

that is, pj+1/p; = &(h) iff it is the DFSA M?K~7 Moreover, we have p(gi+1) <
pit1: otherwise, p(gi+1) = p;+1 and hence p(giy1,h) = pir16(h) > piy1, thatis,
a;+1 = 0 and, by (15), this implies that the transitions follow the DFSA M» K~
and, furthermore, p(qi+1, h) = pi+1&€(h) = pi42. This last equality also implies that
from g;+1 following signal & there is indifference between moving to g; > and g;+3,
implying that there is a redundant updating state. This concludes that p(gi+1) < Pi+1-

Now, p(gi+1) < pi+1 implies, by (15), that p(gi+1)§(h) < piy2. Since p(q;) <
p(gi+1) and p(gi, h) = p(gi)&(h) < p(qi+1)6(h) < piy2, by Proposition4.1, from
¢; and an h-signal, randomization can only occur between ¢g; and ¢;+1, or between
¢i+1 and gj42, but not both. Now we show that if the latter happens, then we can
eliminate g;41 without affecting the ex ante expected payoff and there is a redundant
state; as a result, only the former matters and hence the optimal SFSA takes the form
MY K=+, .. ag_p) from g; on. To see this, suppose, by contradiction, that the
optimal SFSA randomizes between g;+1 and g;, from ¢; after 4. This implies that
p(qi) < p(qi+1), and that, by Proposition4.1, p(g;, h) = pj+1, which in turn implies
that p(qi+1, h) > p(qi, h) = pi+1. By Proposition4.1 the last inequality implies that

ai+1 = 0, and by the symmetry noted above, in MK (i1, ...,ax—2) we have
dj+1 = ... = ag—2 = 0. That is, we have a determi_nistic schenu_a from ¢; 41 on.
Moreover, this also implies that at prior p(g;), M> " and M>K~~1 give exactly
the same payoff, and hence ¢, is a redundant state.
(b) Here I show thatitis optimal toseto; = --- = ag—2 € (0, 1). First we compute
the value functions under M [}’( (a1, ...,0g_2):
K—2 | — o
Vi (H) = —L [ = (16)
4 }:[, 1— (1 —na;
(1 — nput
Vau (L) = ; (17)
I—A—-—md—w
K-2 ; ;
1 —a; 1— K—i—1 1— K—i—1
Vo ={1-| ] % (A Ut ul
=0 = =na; =1 =md—p)
(13)
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Note that this implies that the ex ante payoft, po Vy, (H)+(1— po) Vy, (L), is symmetric
in (a1, ..., ax—7) and supermodular, and hence it is optimal to set o; = « for all i.
By doing so, the ex ante payoff is

K-2
F(a) = po [m] (1- n)’“zu” + (1 — po)

y 1_[ -« T‘z nd = 2 -w 2],
I= (== mne I= (=~ u

(19)
Thus,
o l—a 757 —(k =21 — K2k
F(“)_”O[l—(l—n)a] (1= —naP? 0
1 po) [ I —a ]“ (K =201 =X 201 — K2k
Clr=a=ma=mne [1— (1 —n( - pal
D

Thus, F'(«) > 0 at o = 0 if and only if

Po

u* K-2
<—T—-w" 7,
1 —po H

that is, if and only if the memory constraint is binding. Since the best DESA is M2 =
M Ib( (0) (other than taking a® all the time), this shows that strict randomization is
better. Note that this also shows that M ];< () is the optimal SFSA for a range of priors
below p(f . Finally, I show the existence of p, 0 above which taking a” all the time is
not optimal. For each pg < ,o(f ,let W(pp) be the payoff from M Ib< (ov) with the optimal
a. By the Theorem of Maximum, W (pg) is continuous in pg. Now, at pp = pé( , since
M ,b( implements the unconstrained optimum, we have W(pé( ) > (1 — po)uL, the
latter being the payoff from taking a® always. Now, W (pg) > (1 — po)u’ if and only
if F(a*) > (1 — po)u’, and by (19), this is equivalent to

>[ 1= (= ma* }“ n(—w*=2 .
=T -—p—npuwe] 1-U-nl-w""

But we also know that o* satisfies the FOC with F’(a*) = 0, and by (20), this is then
equivalent to

JI=d=wd—=me* n
T I=0=mer 1= =-m-pw
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Since o* strictly decreases with pg, there exists a unique Py < pé( such that W (pg) >
(1— po)uL forall pg € (BO’ pé( ]. Finally, from (19) it is straightforward to verify that

lim F(a) = pou’” + (1 — po)u®
n—0

forany o € [0, 1) and hence p , converges to Zero as 1) approaches zero.

Proof of Proposition 4.2

Let n € (0, 1) be given. When uf = 1, from Proposition 3.1 for any p > Py the
optimal SFSA is M% (a) with if pg < pf, and the optimal SFSA is Mf,( o2 i
Po > pé( . Note that in the latter case, when K > N (pg) + 2, there can be multiplicity
of optimal SFSA up to redundant memory states (i.e., one can split ¢; to ¢; 1 and g; 2
with identical transition and action rule as g;, and hence with V, , (8) = V,, ,(0) for
both & = H, L). I prove the results in two parts, first for pg < ,06( and the second for
po = pk.

Part (i) I show that if pg < p, then for a range of u}! below one the optimal SFSA
still takes the form of M ﬁ’( (). To prove this, I first show that small deviations from
M Ib( (or) are not optimal. More precisely, consider each SFSA (with K memory states)
as a vector of all transition probabilities and action probabilities, and consider the
distance between them as the maximum difference across those probabilities, and I
show that there exists €p such that optimal SFSA takes the form of M Ib{ (o) among
SFSA that deviate from those within distance €.

To simplify notation, denote u{f by 1 — ¢ and ,uf by w. Since the beliefs p(g;) and
the value functions V,, (9) are all continuous in x/ and since when ! = 1,in M% (o)
we have p(gr) = 0, it follows that for small deviation of the transition probabilities,
we still have p(g;, £) < go for ,uf slightly below one. Thus, by Proposition 4.1,

optimal SFSA has to take the form of M ,b< (a1, ..., 0g—2). We can then compute the
continuation values for M%(ozl, sk 2): Ve, (H) =0,V (L) = ul, and
K-2 | —a.
Vg (H) = ! [(1—m =) (22)
e l:[il—(l—n)(l—e)aj
(1 — mpu* nu'!
Vau (L) = s Vau(H) = ; (23)
I—A—-—md—w =1 -=n—¢)
K-2 i i
v =11- | T] 1 —a; n(1—m*=a — k!
“ L= (1= —na; L= (1= —p

(24)
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By the same arguments as before, it is optimal to set o; = « for all i, and hence

-« K2 K-2 H
F@ =iy | =m0 = ol 5)
1-a 2 - 2a-ws2]
Hl_pO){1_[1—(1—/0(1—71)0!} —a-na-m "

(26)

The function F'(«) is quasi-concave in « € [0, 1], and hence its local optimum is con-
tinuous in . To see this, note that, disregarding some constants, F’(c) is proportional
to

, N (1 —a)N-1 £0 N (1 -
Fi(a) >~ _[] —(1=n(1— S)O(]NJrl [Eé(h) ] + [1—-—0a0—-=na- M)(X]NJrl
_[ (1 —a)N-! ]{[1_(1_n)(1_8)a]N+] _[@E(h)zv:“
Tl =A==V ] [T = (1= — pa]N+! pr* ’

and it can be verified that the second term in the last equation strictly decreases with
a whenever ¢ < u, and hence can have at most one solution to F’(a) = 0 besides
a = 1. Note that « = 1 is excluded by the fact that at ¢ = 0, the optimal SFSA is
M ];< (a™) with o™ € [0, 1), and hence it is cannot be optimal for & small.

Now, let ¢ be small so that we have local optimality. To ensure global optimality,
consider the set of SFSA M that does not take the form MIb( (a1, ...,0g—1) and is
at least €p-distance from any of those, denoted by D. This set is compact, and, when
uil =1,

Wy, > max Wy,. 27

b
k@) 7 MeD

By continuity again, there exists ¢; € (0, €] such that for any uf e[l —e¢g 1], (27)
still holds.

Part (ii) Here 1 show that if pg > ,o(f , then optimal SFSA takes the form M j[f, 4o With
N = N(pp) for a range of uf below one. The proof follows the same outline as in
(i), but now I need to handle replicate memory states as K > N(pg) + 2. To do that,
notice that in any replica of M K, 4 the beliefs for any replica of g7, and g; remains the
same fori = 1, ..., N as their correspondents, but the replica for gy can be higher.
However, whatever that belief may be, it is finite and p(gy,£) = 0 when ,uf =1
and hence it is still optimal to transit to g, for a range of ,u,’f below one.

Proof of Proposition 4.3

Proof of (1). Here I consider M;L,/ = v — ¢ for ¢ small. Let pg € (ﬁo’ p*) and K be

given. When ¢ = 0, the optimal SFSA is Mrl;in{ N(oo)+2.K} (B, 1) for appropriate 8. One
can then compute the value functions and associated beliefs, which are very similar to
those computed in the Proof of Proposition 3.1, and in the optimal SFSA, p(g;) < p;
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for all i. Using the same arguments as in the Proof of Proposition 4.2 and continuity
of the beliefs and value functions, we can restrict attention to local deviations in the
same sense as in the Proof of Proposition 4.2. But this then implies that p(g;, h’) < p;
under any local deviations and for ¢ small, as a result, by Proposition 4.1, the optimal
SFSA has the form of M% (B, ') with p’ = 1. The fact that it is optimal to have
symmetric transition probabilities across memory states follow the same arguments
as in Proposition 3.1.

Proof of (2). Here I consider uf, = ”(1 “) +e for e small. Let po € (p,, Py X) be given.

When ¢ = 0, the optimal SFSA takes the form M2 v (B, B’). Note that when ¢ = 0,
the optimal 8 and B’ are not determined individually but only the joint transition
probabilities as given by (11) are uniquely determined. Using the same arguments as
in the Proof of Proposition 4.2 and continuity of the beliefs and value functions, for &
small, by Proposition 4.1 we can restrict attention to SFSA in the form of M [l’( B, B).
The fact that it is optimal to have symmetric transition probabilities across memory
states follow the same arguments as in Proposition 3.1.

Now I study the optimal 8 and B’ for ¢ small, which, as we will see below, are
uniquely determined for ¢ > 0. Let

o = ufl B+ pp By = (1 —v)B + Bv, and a*
phBrubp (- wB+ (22 +e) p
nk+ pk G ¢

Now, the continuation values can be computed in the same way. In particular, V,, (H)
still takes the form of (16), but with « replaced by afl and Vg, (L) still takes the form
of (18), but with « replaced by a’-. Thus, the expected payoff from M ;b( (B, B) is now

. [a-afha-p1F7?
nﬁﬁ>—o{7;5t5?7} ’
1= M2+ ey 1—ah) ]
+U—m)1—[( nG +e)( q n o
1= (=2 + &)1 — mat L= (=2 +e)
Taking derivatives, we have

_ _ H K-3 _ _ H

ar _ [(1 n(l —a )} (=K +2)n(l —nu I—v) @8

ap 1= (1 —=mna [1—1=mat)?

(I —mE2 4o —ah]
1— (52 + &)1 — nak
(K —2)n(1 — nut

+(1 = po) [

1=,
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and

- _ H K-3 . . H
oF [(1 nl —a )] (=K +2)n(1 —nu 29)

g 1 —(1—naH [1—<1—n)aH]2
A —mE2 4o -—a)]®
1_
+( pO)[l—(1“+e)(l Dl

(K —2)n(1 — nu* [V(l ) }
1 +e.
M- -m(EL+ealtPl 1-v

Now, for any ¢ > 0, since the first terms in both (28) and (29) are negative but the
second terms are positive and since

1—v v 1—v
> = 9
1—pn [v(l “)—i—e] 1—p+ (1 —=v)e

8/3’ = 0 implies that < 0, that is, if optimal ,3’ < 1, optimal 8 = 0. Moreover,

this shows that whenever 0o < pk and hence at o = ol =0, a_ﬁ/ > 0 when e = 0.

Thus, for any ¢ > 0, 2 a_ﬂ’ > 0 under B = B’ = 0 and hence optimal 8’ > 0.

Proof of Proposition 4.4

Without loss of generality, rank the memory states so that p(qr) < p(q1) < p(gH),
and assume that from some memory state after seeing £-signal it transits to g7 and
d(qr) = a. This implies that p(g;) = 0, and by Proposition 4.1 it follows that it is
optimal to transit to g;, from any memory state after an £-signal. Also, in g1, after seeing
signal-h or /' the transition cannot go down. Moreover, d(qy) = a' for otherwise
there is no variation in actions. This also implies that ¢° = ¢1. If d(q;) = a’!, then
g1 and gy become equivalent memory states. So d(g1) = a’. It then follows that the
optimal SFSA takes the form M2(B, B).

For 00 € [+ E(h’) , p*), one h’-signal is sufficient to convince the DM to take action
A and hence the unconstrained optimal rule can be implemented by M3 50, 0). So

consider py < Ef;/ We can then compute the ex ante expected payoffs from Mé’ (B, B")

v(—w)

forany,uﬁ,e( = v ,

v) which is given by

N (l—OlH)(l—ﬂ) H
FB,B)=p [W]u
(A =m = p+pp)d e n .
+(1 — 1— ’
( pO){ { 1= —p+up)d=—mpal [ 1=A = —pn+puk) "
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where o = (1 = v)B 4+ vB and a® = [(1 — W B + k. B'1/(1 — w+ uf). Thus,

IF _ po—n(l - —vu’ 1= po) (K =2)n(1 = (1 — p)u”
p [ =1 —mef] [1— = —p+ pp)al?’
(30)
and
oF _ —n—mw (1 — oy K =D - My ut
o~ I — (1 — et po [1— (1= —p+pk)al?
€)Y
Now, let
1 (1 ) 2 * *
- =ny
fo = e . (32)

< 9
I—(—npuk | &m E(h)

where the inequality follows from the fact that ,ué, < v. Now, it is straightforward to
verify, using (30) and (31), that for all py > po, the only solutions to the FOC’s for
B and B’ is to have B = 0 and B’ > 0, and that optimal B’ strictly increases as pg
decreases from ,08 and hits one before pg reaches pg. Similarly, for pg > pg, optimal
B > 0 and B’ = 1. Finally, £ is determined in a similar way as in the proof of
Proposition 3.1, and, in case Py < po given by (32), take pg = Py
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