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Abstract
A decision-maker receives an informative signal each period and is randomly required
to make a terminal action based on the signals received so far. The decision-maker is
restricted to use a (stochastic) finite automaton no larger than a given size to process
information. In contrast to the existing literature that focuses on very low probabil-
ity of termination, I consider information structures with a (nearly) revealing signal,
in which analytical solutions are available for all probability values of termination.
Results from that model reveal two robust predictions regarding constrained optimal
behaviour. First, it is optimal to ignore small (in terms of informativeness) signals. Sec-
ond, when deterministic schemes are optimal, big signals with similar strengths should
be treated similarly; otherwise, randomization takes a lexicographic order according
to the strengths of the signals. I also identify a new behavioural bias, information
stubbornness, according to which the decision maker does not respond to further
informative signals after seeing a nearly revealing signal. As a result, the decision-
maker can persistently choose the wrong action even after an unbounded number of
informative signals.

Keywords Imperfect recall · Bounded rationality · Bounded memory ·
Absent-minded · Behavioural biases

JEL Classification D8 · D9

1 Introduction

Recently there has been a surge of interests in behavioural biases in economic agents’
decision-making processes. One way to understand such biases is to introduce fric-
tions/capacity constraints in the agent’s ability to process information, and derive
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behavioural biases as the endogenous responses to those constraints. In particular,
Hellman and Cover (1970) and its recent incarnation, Wilson (2014), derive con-
strained optimal decision rules under limited memory modelled by finite automata
constrained by a given number of memory states.1 Wilson (2014) shows that a con-
strained decision-maker (DM) only responds to extreme signals but ignores any others,
and a positive extreme signal moves one memory state up and a negative one moves
one down (although the movements can be randomized), regardless of their relative
strengths. However, these results are obtained at the limit case where the expected
time horizon for a decision is infinitely far away relative to the memory capacity, and
it is not obvious whether or which of these results are robust when the expected time
horizon is bounded away from that limit.

In this paper, I revisit these results for a class of information structures that allow
for tractable analysis. I adopt the same framework as (Wilson 2014), which features
two possible states of nature, H and L . In each period the DM receives an informative
signal, and there is a chance that she has to make a terminal decision.Without memory
constraints, the optimal decision rule is to take the optimal action with respect to the
posterior from the signals received so far according to the Bayes’ rule. Instead, a
memory constraint is imposed so that only decision rules that are implementable by
a finite automaton of a given size are allowed. This consists of finitely many memory
states and a transition rule that governs its evolution by specifying the next state to
go to (which can be randomized) conditional upon the signal received. Each memory
state is associated with an action, which would be taken if a terminal action is called
for when the DM happens to land on that memory state.

Wilson (2014) focuses on the limit case where the probability of terminal action, η,
vanishes. Assuming that the distribution of signals has a full support, she proves two
salient features of the optimal finite automaton of a given size for η sufficiently small.
First, small signals are ignored in the sense that they do not trigger a transition to
a different memory state. Surprisingly, however, all signals but the most informative
signal in either direction are small signals, and hence the optimal automaton only
reacts to extreme signals. Second, the memory states can be ranked in the sense that
the extreme signal (the high signal) that increases the posterior on H would cause
a transition to a higher memory state, and the extreme signal that decreases it (the
low signal) would cause a downward transition. Here comes the second surprise: any
transition can only occur between adjacent memory states (although sometimes with
different probabilities), even though the high signal and the low signal can have very
different relative strengths in terms of Bayesian updating.

In contrast to Wilson (2014), I consider arbitrary termination probability for a class
of information structures that allow for tractable analysis. First I show that the decision
problem in Wilson (2014) with memory constraints implies intrinsic biases: no finite
automaton can implement the unconstrained optimal decision rule under the full-
support condition. This makes the model intractable and only asymptotic results are

1 There is a long history of using finite automata to model economic agents. Earlier works include (Rubin-
stein 1986) on repeated games. Kalai and Solan (2003) show that randomization is necessary in general
Markov decision problems when confining implementation to finite automata. More recently, Monte and
Said (2014) extends the analysis of Hellman and Cover (1970) to changing worlds where state of nature
may switch over time.

123



Forgetful updating and stubborn decision-makers 783

available as η vanishes. In contrast, if one of the signals fully reveals one of the states
of nature, then the unconstrained optimum is implementable with a finite automaton,
whose size depends on the prior belief. A two-signal information structure with one
of then being fully revealing is called a “model of breakthroughs,” with the revealing
signal being the “breakthrough” signal.2

In the model of breakthroughs I obtain analytical solutions for all η’s. In particular,
in any optimal finite automaton, the revealing signal, say the low signal, will cause a
transition to the lowest memory state which is absorbing. I then show that this feature
remains for the constrained optimal finite automatonwhen the low signal is sufficiently
informative, but it does not need to be fully revealing. This new behavioural bias,
called information stubbornness, is not included inWilson (2014)’s results, although I
also maintain the full-support condition. This feature is proved using results from the
model of breakthroughs and themodifiedmulti-self consistency, a concept invented by
Piccione and Rubinstein (1997) and then extended byWilson (2014) to the framework
here. Multi-self consistency implies that in the optimal finite automaton, each memory
state is associated with a posterior (potentially biased) belief, and both the optimal
action and optimal transitions are determined by a version of “sequential rationality”
according to those beliefs. This necessary condition for optimality then traces biases
in behaviour back to the biases in the associated beliefs. A key observation here is that
these beliefs are continuous in the underlying parameters governing the information
structure. Since it is strictly optimal to transit to the lowest memory state when the
low signal is fully revealing, the main part of the proof shows that it remains so when
the low signal is sufficiently informative.

Information stubbornness highlights a new behavioural bias implied by limited
memory. Without memory constraints, the DMwould revert to the action correspond-
ing to state of nature H when she receives sufficiently many high signals. In contrast,
the constrained optimal rule dictates the action corresponding to L once a low signal
is received, without responding to any signals thereafter, despite the fact that they are
informative. Furthermore, the result also differs significantly from those in Wilson
(2014), who shows that any transition can only occur between adjacent memory states
at the limit where η is arbitrarily close to zero. In contrast, information stubbornness
implies that the transition “jumps” from any memory state to the lowest one when a
low signal is received, and it stays there thereafter.

Besides information stubbornness, I obtain two other analytical features of the
constrained optimal rule by adding a third signal to the model of breakthroughs. First,
I consider the situation where the third signal is sufficiently uninformative, and show
that it is optimal to completely ignore it in the constrained optimal rule. This result
is consistent with Wilson (2014)’s result for η close to zero but here it is generalized
to all η in my environment. Thus, besides information stubbornness, the bias “sticky
information” identified in Wilson (2014) still holds here. Second, I consider the case
where the twounrevealing signals have similar strengths in themodel of breakthroughs.
In contrast toWilson (2014), the DM treats signals of similar strengths similarly, albeit
in a lexicographical order. When randomization is optimal, the stronger signal is more

2 This terminology is borrowed from Che and Mierendorff (2019).
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fluid—it moves the memory state to the next until the weaker one is completely sticky.
However, both signals can be fluid even for η arbitrarily small.

2 Themodel

The model is essentially (Wilson 2014). There are two states of nature, θ ∈ {H , L},
and the prior probability over θ = H is P0(H) = p0. The model has an unbounded
number of periods, and in each period, with probability η the DM has to choose
between two actions, a ∈ A = {aH , aL}, with utility function u(a, θ) given by

u(aH , H) = uH > 0, u(aL , L) = uL > 0, u(aH , L) = 0 = u(aL , H).

Once the action is chosen the game is over. With probability 1−η the game continues.
Note that the chance to choose the terminal action is exogenously given.

The state of nature, however, is not observable to the DM. Instead, the DM can
observe a sequence of signals, which is i.i.d. conditional on the state of nature. Here
I focus on information structures with two signal, S = {h, �}. A decision rule is a
function D : S∗ → A, where S∗ = ⋃∞

t=0 S
t is the set of all partial histories of signal

realizations, including the empty one. The decision rule maps each possible partial
history of signal realizations to the terminal action if the DM is called upon to make
one. The unconstrained optimal rule can be fully characterize by the posterior, p: the
optimal decision is to take aH whenever p > p∗ ≡ uL/(uH + uL) and to take aL

whenever p < p∗. The posterior is computed according to the Bayes rule, for which
it is convenient to work with likelihood ratios. Define

ρ0 = p0
1 − p0

, ρ∗ = p∗

1 − p∗ = uL

uH
, and ξ(s) = μH

s

μL
s

for both s = h, �. (1)

I normalize the labels so that ξ(h) > 1 > ξ(�). I use ρ to denote the likelihood ratio
p/(1− p) for a generic posterior p on H , and from ρ and signal s, the likelihood ratio
for the new posterior is ρ′ = ρξ(s). Hence, h increases the posterior on H while �

increases the posterior on L .

Finite automata and implementation

Given the set of signals, S, a stochastic finite-state automaton (SFSA) consists of a
list M = 〈Q, τ, d, g〉, where Q is the set ofmemory states, τ : Q×S → �(Q) is the
transition rule, d : Q → �(A) is the action rule, and g ∈ �(Q) is the distribution
over initial states. I use τ(q, s; q ′) to denote the transition probability from q to q ′ when
receiving s, and d(a; q) to denote the probability of taking action a at memory state
q when called upon for terminal action. When the finite automaton is deterministic
(abbreviated as DFSA), I use τ(q, s) = q ′ to denote the transition rule and d(q) = a to
denote the decision rule. The following result fully characterizes the signal structures
for which a finite automaton can implement the unconstrained optimum.
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Forgetful updating and stubborn decision-makers 785

Proposition 2.1 Suppose that ξ(h) < ∞ and that η ∈ (0, 1). Then, the unconstrained
optimum is implementable with a finite automaton if and only if ξ(�) = 0.

Proposition 2.1 is proved by the use of theMyhill–Nerode Theorem (Nerode 1958),
which gives a full characterization of what finite automata of a given size can do in
terms of partitions of the partial histories.3 For self-containment I give the relevant
version of the theorem in the Appendix. Proposition 2.1 then shows that except for the
case where one of the two signals fully reveals the state of nature, no finite automa-
ton can implement the unconstrained optimum, and hence the constrained optimal
behaviour must exhibit some biases relative to the full rationality benchmark.

The impossibility result can be easily extended to more than two signals, as more
signals can only make the problem more complicated. As a benchmark, in the next
section I study a model where the �-signal does fully reveal the state of nature, and in
Section 4 I use the results from there to characterize the constrained optimal behaviour
when the �-signal is not fully revealing but only nearly so.

3 Amodel of breakthroughs

Here I consider the case where μH
h = 1, that is, ξ(�) = 0.4 Later I will extend the

analysis to allow for μH
h < 1. To simplify notation, denote μL

� ≡ μ with μ ∈ (0, 1).
A low signal, �, fully reveals the state of nature L (hence a breakthrough), while a high
signal, h, only gradually increases the posterior on H . Without memory constraint,
the optimal rule would dictate that action aL to be taken whenever an �-signal appears
and thereafter, while aH is taken only after sufficiently many h-signals without seeing
any �-signal. As shown later, this can be implemented by a finite automaton with
sufficiently many memory states. I will also characterize the constrained optimal rule
when memory is constrained.

First, suppose that ρ0 ≥ ρ∗, where the likelihood ratios are defined in (1). In
this case, the unconstrained optimum can be implemented by a two-state DFSA with
Q = {qH , qL }, qo = qH , τ(qH , h) = qH , τ(qH , �) = qL , τ(qL , h) = qL = τ(qL , �),
and d(qH ) = aH and d(qL) = aL , as depicted in Fig. 1. Thus, the memory state qL is
self-absorbing for both signals, and the action is aL ; qH is absorbing only for signal-h,
and the action is aH . This DFSA, labelled Mb

2 , with qH as the initial state, implements
the unconstrained optimum: since p0 ≥ p∗, it is optimal to take aH when receiving
high signals, and it is optimal to switch to aL and continue using that whenever a low
signal is received. Note that this implementation does not depend on η.

Now suppose that ρ0 < ρ∗. In this case, the unconstrained optimum can still be
implemented by a DFSA, but its size depends on the distance between ln ρ0 and ln ρ∗
relative to ln ξ(h). In particular, let

3 I am grateful to Pathikrit Basu for pointing out that the Myhill–Nerode Theorem can be useful for this
result.
4 By assuming that μθ

s > 0 for all s and for both θ = H , L , Wilson (2014)’s analysis excludes this case.
However, as we will see below, this is not a trivial case and it helps us solve some of the cases under the
full support condition, but gives a rather different implications than what Proposition 4 in Wilson (2014)
suggests.
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Fig. 1 The DFSA, Mb
2 , that

implements unconstrained
optimum when p0 ≥ p∗

Fig. 2 The DFSA, Mb
N+2, that implements unconstrained optimum when p0 < p∗

N = N (ρ0) ≡
⌈
ln ρ∗ − ln ρ0

ln ξ(h)

⌉

. (2)

Then, the optimal DFSA requires N + 2 states, given by Q = {qH , qL , q1, . . . , qN },
τ(qL , �) = qL = τ(qL , h), τ(qi , h) = qi+1 and τ(qi , �) = qL for i = 1, . . . , N − 1,
τ(qN , h) = qH and τ(qN , �) = qL , and τ(qH , h) = qH and τ(qH , �) = qL , as
depicted in Fig. 2, with q1 as the initial memory state. The action rule is given by
d(qL) = d(qi ) = aL for all i = 1, . . . , N , and d(qH ) = aH . This DFSA, labelled
Mb

N+2, implements the unconstrained optimum for all η ∈ (0, 1). When N = 0, this
is equivalent to Mb

2 , and hence we can set N (ρ0) = 0 in for ρ0 ≥ ρ∗.
These results then show that whether the memory constraint, |Q| ≤ K , binds or

not depends only on ρ0 but not on η, and it binds if and only if K < N (ρ0) + 2.
Conversely, for a given K , let ρK

0 be the smallest ρ0 such that N (ρ0) + 2 ≤ K . Then,
the memory constraint is binding if and only if ρ0 < ρK

0 . The following proposition
shows that strict randomization is optimal if and only if the memory constraint is
binding and the optimal SFSA is not trivial. In fact, it shows that the following SFSA
is optimal, which deviate fromMb

K by having τ(qi , h; qi ) = α = 1−τ(qi , h; qi+1) for
i = 1, . . . , K − 2, where qK−1 = qH , while all the other transitions follow the same
rule as Mb

K . This SFSA is denoted by Mb
K (α) and Mb

K = Mb
K (0), and Fig. 3 depicts

Mb
K (α) for K = 5. Finally, define ML as the finite automaton with one memory state

that takes action aL all the time.
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Fig. 3 Mb
K (α) with K = 5

Proposition 3.1 Suppose that ξ(�) = 0 and ξ(h) ∈ (0, 1). For each K ≥ 3 and
η ∈ (0, 1), there exists ρ

0
> 0 such that the smallest optimal SFSA is

⎧
⎪⎨

⎪⎩

Mb
N (ρ0)+2 if ρ0 ≥ ρK

0 ,

Mb
K (α) for some α ∈ (0, 1) if ρ0 ∈ [ρ

0
, ρK

0 ),

ML if ρ0 ≤ ρ
0
.

(3)

Moreover, ρ
0
converges to zero as η goes to zero.

Proposition 3.1 gives a full characterization of optimal SFSA in the model of break-
throughs. The optimal SFSA identified uniquely determines the constrained optimal
decision rule in each case (except at ρ0 = ρ

0
), and is the smallest SFSA to implement

the corresponding rule. It shows that strict randomization is optimal if and only if the
memory constraint binds, that is, ρ ∈ (ρ

0
, ρK

0 ). For lower priors, the optimal rule is

to take aL all the time, which reflects the fact that randomization cannot fully substi-
tute for efficient learning. The lower bound for priors under which randomization is
optimal, ρ

0
, does depend on η, although its upper bound, ρK

0 , does not. At the thresh-

old ρ
0
, MK

b (α∗) under optimal α∗ and ML give exactly the same ex ante payoffs.

However, as η converges to zero, the payoff from Mb
K (α) for any α < 1 converges to

p0uH + (1 − p0)uL , the highest payoff possible, and this implies that ρ
0
converges

to zero. To my knowledge this is the first complete characterization of constrained
optimal rules for a class of information structure for all η and for all priors.

4 Information stubbornness

In this section I show information stubbornness when � is sufficiently informative, but
not fully revealing, according to which it is optimal for the DM to ignore any further
signals once an �-signal is received—hence the stubbornness. To this end, I first need
some structural results fromWilson (2014) to characterize optimal rule under memory
constraint. Given a state of nature θ and a memory state q ∈ Q, the expected payoff
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accumulated from q when called to act conditional on θ is then

ηg(q)

[
∑

a∈A

d(a; q)u(a, θ)

]

+ η(1 − η)
∑

q1,s1∈S
g(q1)τ (q1, s1; q)μθ

s1

[
∑

a

d(a; q)u(a, θ)

]

+ η(1 − η)2
∑

q1,q2∈Q,s1,s2∈S
g(q1)τ (q1, s1; q2)μθ

s1

τ(q2, s2; q)μθ
s2

[
∑

a

d(a; q)u(a, θ)

]

+ .....

= f (q|θ)

[
∑

a

d(a; q)u(a, θ)

]

,

(4)

where

f (q|θ) =
∞∑

T=1

η(1 − η)T−1

⎡

⎣
∑

(q1,...,qT−1),(s1,...,sT−1),qT =q

g(q1)
T−1∏

t=1

μθ
st τ(qt , st ; qt+1)

⎤

⎦ .

(5)

As noted in Wilson (2014), f (q|θ) is the stationary distribution under the transition
probability from q ′ to q given by

T θ (q ′; q) =
∑

s∈S
[ηg(q) + (1 − η)μθ

s τ(q ′, s; q)]. (6)

Wilson (2014), extending (Piccione and Rubinstein 1997), then defines the “belief”
associated with memory state q ∈ Q as

p(q) = p0 f (q|H)

p0 f (q|H) + (1 − p0) f (q|L)
and p(q, s)

= p0 f (q|H)μH
s

p0 f (q|H)μH
s + (1 − p0) f (q|L)μL

s
, (7)

with the associated likelihood ratios given by

ρ(q) = ρ0 f (q|H)/ f (q|L) and ρ(q, s) = ρ(q)ξ(s).

To characterize optimal SFSA, I use Vq(θ) to denote the continuation value when the
current memory state is at q conditional state of nature θ , which is characterized by
the following recursive equations:

Vq(θ) = η
∑

a∈A

d(a; q)u(a, θ) + (1 − η)
∑

s∈S,q ′∈Q
μθ
s τ(q, s; q ′)Vq ′(θ). (8)
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Forgetful updating and stubborn decision-makers 789

Following (Wilson 2014), twomemory states q and q ′ are called equivalent if Vq(θ) =
Vq ′(θ) for both θ = H , L .5

Proposition 4.1 Suppose that M is an optimal SFSA with memory constraint K and
without equivalent states. Then, we rank the memory states in M according to

ρ(q1) ≤ ρ(q2) ≤ · · · ≤ ρ(qK ),

with the convention that if ρ(qi ) = ρ(qi+1) then Vqi (H) ≤ Vqi+1(H). Let �V θ
i, j =

V θ
qi − V θ

q j
.

1. �V H
i, j < 0 and �V L

i, j > 0 for all i < j , and �V H
j,i/�V L

i, j ≥ �V H
k, j/�V L

j,k for
all i < j < k.

2. Define ρ̄i = �V L
i,i+1/�V H

i+1,i , i = 1, . . . , K − 1. Then, in M,

(a) for each qi ,

ρ(qi ) ∈ [ρ̄i−1, ρ̄i ]; (9)

(b) τ(q, s; qi ) > 0 only if

ρ(q, s) ∈ [ρ̄i−1, ρ̄i ], (10)

where ρ̄0 = 0 and ρ̄K = ∞;
(c) d(qi ; ah) > 0 only if ρ(qi ) ≥ ρ∗ and d(qi , a�) > 0 only if ρ(qi ) ≤ ρ∗.

Proposition 4.1 follows directly from Corollary 1 and Lemma 1 in Wilson (2014).
For self-containment, however, a full proof of Proposition 4.1 can be found in the
Online Appendix. As in Wilson (2014), the proof is mainly based on an extended
version of the multiself consistency proposed by Piccione and Rubinstein (1997), and
I prove that version in the Online Appendix as well. Proposition 4.1 states that in
the optimal SFSA, the DM essentially uses the beliefs ρ(q) to decide the optimal
transition and the optimal actions if called upon. Note that Proposition 4.1 applies
to all information structures, including the model of breakthroughs and information
structures that feature full supports.

Now I turn to information stubbornness and consider the case where μH
h < 1 but

close, and hence the signal � is no longer a breakthrough but still a strong signal for
state of nature L . Recall the threshold ρ

0
given by Proposition 3.1.

Proposition 4.2 For each K ≥ 3, η ∈ (0, 1), and ρ0 > ρ
0
, there exists ε > 0 such

that for all μH
h ∈ (1 − ε, 1], any optimal SFSA transits to the lowest memory state

after � from any memory state, which is absorbing.

According to Proposition 4.2, for any given η ∈ (0, 1) and ρ > ρ
0
, for a range of

information structures that satisfy full-support, when receiving signal � it is optimal to

5 As argued in Wilson (2014), one can obtain the same ex ante expected payoffs by merging equivalent
states into a single memory state.
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790 T-W. Hu

transit all theway back to qL for allmemory states in any optimal SFSA. This is in great
contrast to the conclusion from Wilson (2014), where transition only occurs between
adjacent memory states for small η’s. The difference lies in the order according to
which the limit is taken. In Wilson’s case it is to fix μH

h < 1 and to take η to zero, in
my case it is to fix η (no matter how small) and to consider μH

h close to one.
Proposition 4.2 also implies that the DM’s behaviour exhibits behavioural biases

relative to the full-rationality benchmark. In particular, consider a situation where the
DM receives an �-signal at an early stage and hence is stuck in the memory state qL .
Her belief then stays the same, regardless of the signals she receives afterwards. In
contrast, a Bayesian DM would shift her beliefs upwards if more h-signals come. In
fact, if the underlying state of nature is H , then the constrained DM would almost
surely get stuck with a biased belief fully convinced of L , while the Bayesian DM’s
belief would almost surely converge to H . Note that the result holds for any given
K . This finding also highlights a difference between modelling limited memory by
finite automata and by bounded recall. In models of bounded recall, only most recent
experiences count.6 In contrast, here the �-signal can occur some time ago while the
DM remains stubborn.

The result is proved by showing that the optimal SFSA takes the form given by (3)
in the relevant range of priors. Since Proposition 3.1 also ensures uniqueness, by con-
tinuity one only needs to check against small deviations to the transition probabilities
in the optimal SFSA. This is guaranteed essentially by the continuity of the beliefs
identified in Proposition 4.1 applied to the model of breakthroughs. The proof verifies
that when μH

h = 1, it is strictly optimal to transit to qL for all memory states, and this
optimality is maintained when μH

h is close to one by continuity.

Three signals

Here I extend the results to information structures with three signals where S =
{h, h′, �}. For expositional simplicity I only consider the case where μH

h + μH
h′ = 1,

i.e., �-signal fully reveals state of nature L as in the model of breakthroughs but signals
h and h′ both increase the posterior on H . However, all the results here can be extended
to the casewhereμH

h is close to one, as in Proposition 4.2. I use two benchmark cases to
illustrate how different strengths of the signals h and h′ affect optimal randomization.
I normalize the parameters so that ξ(h) > ξ(h′), that is, h-signal is a stronger signal
than h′. When η is close to zero, Wilson (2014) shows that transition can only happen
when receiving h but not h′. Here I show that this is true for all η when ξ(h′) is
sufficiently close to one, that is, when h′-signal is very uninformative. In contrast to
her result, however, for ξ(h′) close to ξ(h), I show that it is optimal not to ignore
h′, but randomization may occur. I also characterize how the randomization is shared
between h and h′.

To state these results, I fix ξ(h) but vary ξ(h′) to be between 1 and ξ(h), and I
do so by parametrizing the conditional probabilities as follows. Fix μH

h = 1 − ν =
1 − μH

h′ ∈ (0, 1) and fix 1 − μL
h = 1 − μ = μL

� + μL
h′ ∈ (0, 1) with μ > ν. For

6 For a recent example of models of bounded recall, see Barlo et al. (2009) in the context of repeated games.
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Forgetful updating and stubborn decision-makers 791

a given pair μ > ν, I vary μL
h′ within the interval [(1 − μ)ν/(1 − ν), ν]. Note that

μ > ν implies that ξ(h) = (1− ν)/(1− μ) > 1. For all μL
h′ ∈ ((1− μ)ν/(1− ν), ν),

ξ(h′) < ξ(h). When μL
h′ = ν, ξ(h′) = 1, that is, h′-signal is uninformative but h-

signal is informative. When μL
h′ = (1 − μ)ν/(1 − ν), ξ(h′) = ξ(h) > 1 and both

signals are equally informative.
In the two extreme cases the optimal SFSA is characterized almost in exactly the

same way as in Proposition 3.1. When ξ(h′) = 1, Proposition 3.1 directly applies by
amending the SFSA so that τ(q, h′) = q for all q, that is, the h′-signal is completely
ignored. In the other extremewhere ξ(h′) = ξ(h), the result still holds butwith a sightly
more subtle modification: randomization at qi under the optimal SFSA, Mb

K (α), can
be split arbitrarily between the two signals as long as

μH
h τ(qi , h; qi ) + μH

h′ τ(qi , h
′; qi ) = α,

and τ(qi , h; qi ) + τ(qi , h; qi+1) = 1 = τ(qi , h
′; qi ) + τ(qi , h

′; qi+1),
(11)

for all i = 1, . . . , K − 2, with qK−1 = qH . That is, the average probability of staying
at qi is equal to α across the signals h and h′. Note that when α = 0 is optimal this
implies τ(qi , h; qi ) = 0 = τ(qi , h′; qi ). Let Mb

K (β, β ′) denote the SFSA such that
τ(qi , h; qi ) = β and τ(qi , h′; qi ) = β ′ for all i = 1, . . . , K − 2, with qK−1 = qH .
Note that Mb

K (β, 1) implies that h′-signal is ignored everywhere. Note also that, since
ξ(h) is the same in both extreme cases, the unconstrained optimal decision rule is
implementable if and only if ρ0 ≥ ρK

0 , where ρK
0 is determined in exactly the same

way as in Section 3 (that is, ρK
0 is the lowest ρ0 such that N (ρ0) ≤ K − 2, with

N (ρ0) given by (2)). Interestingly, however, forμL
h′ slightly below ν, the unconstrained

optimal rule is not implementable even for ρ0 ∈ (ρK
0 , ρ∗), since for ξ(h′) very close

to one, it will require more than K h′ -signals to cross ρ∗ from ρ0. For ρ0 < ρK
0 ,

the constraint K will be binding for both extreme cases. Note that we still have the
threshold ρ

0
below which taking aL all the time is the constrained optimal rule, but

that threshold would depend on μL
h′ . We have the following proposition.

Proposition 4.3 Suppose that μH
h = 1 − ν = 1 − μH

h′ ∈ (0, 1) and that 1 − μL
h =

1 − μ = μL
� + μL

h′ ∈ (0, 1) with μ > ν.

1. For each ρ0 ∈ (ρ
0
, ρ∗), there exists ε > 0 such that for all μL

h′ ∈ [ν − ε, ν], the
optimal SFSA takes the form Mb

K (α, 1), i.e., h′ is ignored.
2. For each ρ0 ∈ (ρ

0
, ρK

0 ), there exists ε > 0 such that for all μL
h′ ∈

(
ν(1−μ)
1−ν

,
ν(1−μ)
1−ν

+ ε], the optimal SFSA takes the form Mb
K (β, β ′) with optimal

β ′ = τ(qi , h′; qi ) > 0 for all i . Moreover, in the optimal Mb
K (β, β ′), β > 0 only

if β ′ = 1.

Proposition 4.3 only considers priors in the range (ρ
0
, ρ∗). For ρ0 ≥ ρ∗, Mb

2 is still
optimal. For ρ0 < ρ

0
, it is still optimal to use ML . For priors in between, Proposition

4.3 (1) shows that it is optimal to ignore signal-h′ when it is sufficiently uninformative,
i.e., when ξ(h′) is close to the unity. Note that this implies a different kind of biases
when the memory constraint is binding. Indeed, when ρ0 > ρK

0 but close and when
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ξ(h′) > 1 but close, a rational DM will take action aH after seeing sufficiently many
h′’s but not the constrained DM, who would stay at q1 and take action aL . This result
extends Wilson’s (2014) result that small signals should be ignored, but here it is
shown for all η’s in information structures that are close to the breakthroughs.

Proposition 4.3 (2) deals with the case where ξ(h′) is close to ξ(h) but slightly
lower. Note that for ρ0 ≥ ρK

0 , the unconstrained optimal rule is still implementable
when ξ(h′) is sufficiently close to ξ(h). According to Proposition 4.3 (2), for lower
ρ0, randomization is optimal and it would first occur when receiving h′ before it
occurs when receiving h; in other words, randomization between staying in the current
memory state and the next when receiving the more informative signal h can happen
only when it is optimal to ignore the less informative signal, h′. Note that this last
point essentially follows from the characterization result, Proposition 4.1, according
to which β = τ(qi , h; qi ) ∈ (0, 1) implies that ρ(qi , h) = ρ(qi )ξ(h) = q̄i for all
i = 1, .., K − 2, which in turn implies that ρ(qi , h′) = ρ(qi )ξ(h′) < q̄i .

Proposition 4.3 only considers the two extreme cases. For the case where K = 3,
the model becomes tractable and we have the following proposition.

Proposition 4.4 Suppose that μH
h = 1 − ν = 1 − μH

h′ ∈ (0, 1) and that 1 − μL
h =

1− μ = μL
� + μL

h′ ∈ (0, 1) with μ > ν, and that K = 3. For each μL
h′ ∈ (

ν(1−μ)
1−ν

, ν),

there exists ρ
0
and ρ̃0 ∈ [ρ

0
,

ρ∗
ξ(h)

) such that the optimal SFSA is MK
b (β, β ′) with

⎧
⎪⎨

⎪⎩

β = 0 = β ′ if ρ0 ∈ [ ρ∗
ξ(h′) , ξ

∗),
β = 0 and β ′ > 0 if ρ0 ∈ (ρ̃0,

ρ∗
ξ(h′) ),

β > 0 and β ′ = 1 if ρ0 ∈ (ρ
0
, ρ̃0).

(12)

According to Proposition 4.4, the optimal SFSA is Mb
K (β, β ′) in the three-signal

environment under the model of breakthroughs whenever the memory constraint is
binding (for priors not low; otherwise ML is optimal). Note that when ρ0 ≥ ρ∗/ξ(h′)
the unconstrained optimal rule is implementable. For lower priors, the second line in
(12) shows that at q1 both h and h′ are fluid signals, and neither is ignored. This is in
contrast to Wilson’s (2014) result where only extreme signals are fluid, and note that
for this result I do not really need ξ(�) = 0 but only need �-signal to be sufficiently
informative as in Proposition 4.2.

5 Conclusion

An important point in Wilson (2014) is to establish that potential behavioural biases
are in fact rational responses to decision-makers’ imperfections in information pro-
cessing abilities. Here I demonstrated that these implications do depend not only on
the constraints imposed by such imperfections, but also the underlying environment,
such as the probability of terminal actions. My results suggest that two behaviour
implications are robust: first, it is almost universally true that constrained optimal rule
ignores small signals; second, the DM should treat big signals according to their infor-
mativeness, and, when it comes to optimal randomization, use a lexicographical order.
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Moreover, a novel behavioural prediction is identified here, information stubbornness,
and I have shown that this is a robust feature of the constrained optimal rule when there
is a sufficiently informative signal, regardless of the expected horizon of the decision
problem. This bias shows that a single experience can lock in a memory-constrained
decision-maker’s belief without responding to future informative signals.

Finally, results in the paper are proved mainly based on the extended principle of
modified multiself consistency proposed by Piccione and Rubinstein (1997). Hence,
I suspect that most of them would survive in environments where that principle also
holds true. For example, the result that small signals are ignored only depend on the
fact that the belief associated with a memory state according to the modified multi-
self consistency lies strictly within the boundaries given by Proposition 4.1, which is
a direct consequence of multi-self consistency under binary states of nature.

Appendix: Proofs

Before the proof of Proposition 2.1, I first give a version of theMyhill–Nerode theorem
adopted to the framework in the paper. To do so, I need to introduce some concepts
first. A relation over the set of partial histories of signal realizations, R ⊂ S∗ ×S∗, is
called right-invariant if

xRy ←→ (x ◦ z)R(y ◦ z) for all x, y, z ∈ S∗, (13)

where ◦ denotes concatenation. Given a decision rule D, LD
θ denotes the set of partial

histories under which action aθ is taken, θ = H , L .

Theorem 5.1 (Myhill–Nerode Theorem) The rule D can be implementable by aDFSA
iff there is a right-invariant equivalence relation R with finitely many equivalence
classes such thatLD

θ is a union of some of those equivalence classes for both θ = H , L.

The equivalence classes correspond to the memory states in the corresponding
DFSA, and the equivalence classes that make up LD

θ consist of those action states
where action aθ is taken, for both θ = H , L . Thus, the DFSA gives a finite partition
of partial histories that captures the finiteness of the DM’s memory capacity. The
right-invariance condition captures the fact that if the DFSA enters the same memory
state after two different partial histories, then it will end up in the same memory state
(although not necessarily the same as the original one) after any consecutive partial
history.

Proof of Proposition 2.1

Note that the “if” part is proved in the analysis of the model of breakthroughs. For
the “only if” part, under the assumption of two signals with ξ(h) ∈ (1,∞) and
ξ(�) ∈ (0, 1), I show that under the unconstrained optimal rule D, any right-invariant
equivalence relation R such that LD

θ is a union of some of those equivalence classes
for both θ = H , L , it must have infinitely many equivalence classes. The “only if”
part then follows from the Myhill–Nerode theorem.
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Now, let R be such an equivalence relation. Without loss of generality I assume that
ρ0 ≤ ρ∗. Now, I construct an infinite sequence of partial histories, x1, x2, . . . , xn, . . .
and show that each has to be of a different equivalence class. The construction is
simple: each xn consists of mn h-signals, with the sequence {mn}∞n=1 determined as
follows. Let m1 be the smallest integer m ≥ 1 such that

ln(ρ0) + m ln[ξ(h)] > ln(ρ∗).

Given mn , mn+1 is the smallest integer m such that

(m − mn) ln[ξ(h)] > − ln[ξ(�)]. (14)

This implies that mn strictly increases with n. Now we show that, for each n ≥ 2, xn

must belong to a different equivalence class other than the one xi belongs to for all
i < n. To see this, let k be the smallest integer such that

ln(ρ0) + mn−1 ln[ξ(h)] + k ln[ξ(�)] < ln(ρ∗).

This implies that D(xi ◦ y) = aL for all i < n, where y consists of k �-signals.
However, by (14),

ln(ρ0) + mn ln[ξ(h)] + k ln[ξ(�)]
> ln(ρ0) + mn−1 ln[ξ(h)] + (k − 1) ln[ξ(�)] ≥ ln(ρ∗),

and hence D(xn ◦ y) = aH . Thus, by right-invariance, xn must belong to a different
cell than xi for all i < n.

Proof of Proposition 3.1

We first show that any optimal SFSA takes the form of Mb
K (α1, . . . , αK−2), in which

σ(qi , h)(qi ) = αi = 1 − σ(qi , h)(qi+1) for i = 1, . . . , K − 2 with qK−1 = qH ,
with other transitions the same as Mb

K . Note that M
b
K (α) is a special case where α1 =

....αK−2 = α. We may assume that there are no redundant states. By Proposition 4.1,
we can rank the memory states. For notational consistency, I use qL to denote the
one with the lowest associated belief and qH the highest, and rank the others by
ρ(q1) ≤ ρ(q2) ≤ .... ≤ ρ(qK−2). Now, since an �-signal sends the posterior to zero,
it follows that ρ(qL) = 0, and for qL it is optimal to stay at qL after any signal. For
other memory state, since receiving h can only trigger a transition to go up or to stay,
Vqi (θ) only depends on Vq j (θ) for j > i , while ρ(qi ) only depends on transitions
from q j with j < i . Thus, we can take ρ(qi ) as the prior and look for the optimal
SFSA with K − i memory states, and use the necessary conditions in Proposition 4.1
to characterize the optimal SFSA. Note that at qH , the highest memory state, it is
optimal to stay there and take action aH after seeing h-signal.

This allows for an induction argument starting from i = K − 2 and then working
backwards. We first show by induction that the optimal SFSA the transitions from
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qi , . . . , qK take the form Mb,K−i+1(αi , . . . , αK−2) (part (a)), and then we show that
the optimal SFSA has α1 = α2 = ... = αK−2 = α ∈ (0, 1) (part (b)).
(a) For i = K − 2 this is immediate, as the only possible transition is either staying
in qK−2 or going to qH after seeing an h-signal. Suppose that it holds for i + 1 ≤
K − 2, and in the optimal SFSA the transitions from qi+1, . . . , qK−2 take the form
Mb,K−i (αi+1, . . . , αK−2). Below in (b) we prove that it is optimal to have αi+1 =
· · · = αK−2. This, by a simple computation from the corresponding value functions,
implies that for all j = i + 1, . . . , K − 3, ρ̄ j+1/ρ̄ j is constant and

1 < ρ̄ j+1/ρ̄ j ≤ ξ(h), with equality iff αi+1 = 0 = · · · = αK−2, (15)

that is, ρ̄ j+1/ρ̄ j = ξ(h) iff it is the DFSA Mb,K−i . Moreover, we have ρ(qi+1) <

ρ̄i+1: otherwise, ρ(qi+1) = ρ̄i+1 and hence ρ(qi+1, h) = ρ̄i+1ξ(h) > ρ̄i+1, that is,
αi+1 = 0 and, by (15), this implies that the transitions follow the DFSA Mb,K−i

and, furthermore, ρ(qi+1, h) = ρ̄i+1ξ(h) = ρ̄i+2. This last equality also implies that
from qi+1 following signal h there is indifference between moving to qi+2 and qi+3,
implying that there is a redundant updating state. This concludes that ρ(qi+1) < ρ̄i+1.

Now, ρ(qi+1) < ρ̄i+1 implies, by (15), that ρ(qi+1)ξ(h) < ρ̄i+2. Since ρ(qi ) ≤
ρ(qi+1) and ρ(qi , h) = ρ(qi )ξ(h) ≤ ρ(qi+1)ξ(h) < ρ̄i+2, by Proposition4.1, from
qi and an h-signal, randomization can only occur between qi and qi+1, or between
qi+1 and qi+2, but not both. Now we show that if the latter happens, then we can
eliminate qi+1 without affecting the ex ante expected payoff and there is a redundant
state; as a result, only the former matters and hence the optimal SFSA takes the form
Mb,K−i+1(αi , . . . , αK−2) from qi on. To see this, suppose, by contradiction, that the
optimal SFSA randomizes between qi+1 and qi+2 from qi after h. This implies that
ρ(qi ) < ρ(qi+1), and that, by Proposition4.1, ρ(qi , h) = ρ̄i+1, which in turn implies
that ρ(qi+1, h) > ρ(qi , h) = ρ̄i+1. By Proposition4.1 the last inequality implies that
αi+1 = 0, and by the symmetry noted above, in Mb,K−i (αi+1, . . . , αK−2) we have
αi+1 = ... = αK−2 = 0. That is, we have a deterministic scheme from qi+1 on.
Moreover, this also implies that at prior ρ(qi ), Mb,K−i and Mb,K−i−1 give exactly
the same payoff, and hence qi+1 is a redundant state.

(b)Here I show that it is optimal to set α1 = · · · = αK−2 ∈ (0, 1). First we compute
the value functions under Mb

K (α1, . . . , αK−2):

Vqi (H) =
⎡

⎣
K−2∏

j=i

1 − α j

1 − (1 − η)α j

⎤

⎦ (1 − η)K−i−1uH ; (16)

VqH (L) = (1 − η)μuL

1 − (1 − η)(1 − μ)
; (17)

Vqi (L) =
⎧
⎨

⎩
1 −

⎡

⎣
K−2∏

j=i

1 − α j

1 − (1 − μ)(1 − η)α j

⎤

⎦ η(1 − η)K−i−1(1 − μ)K−i−1

1 − (1 − η)(1 − μ)

⎫
⎬

⎭
uL .

(18)
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Note that this implies that the ex ante payoff, p0Vq1(H)+(1− p0)Vq1(L), is symmetric
in (α1, . . . , αK−2) and supermodular, and hence it is optimal to set αi = α for all i .
By doing so, the ex ante payoff is

F(α) = p0

[
1 − α

1 − (1 − η)α

]K−2

(1 − η)K−2uH + (1 − p0)

×
{

1 −
[

1 − α

1 − (1 − μ)(1 − η)α

]K−2
η(1 − η)K−2(1 − μ)K−2

1 − (1 − η)(1 − μ)

}

uL .

(19)

Thus,

F ′(α) = p0

[
1 − α

1 − (1 − η)α

]K−3 −(K − 2)η(1 − η)K−2uH

[1 − (1 − η)α]2 (20)

+(1 − p0)

[
1 − α

1 − (1 − μ)(1 − η)α

]K−3 (K − 2)η(1 − η)K−2(1 − μ)K−2uL

[1 − (1 − η)(1 − μ)α]2 .

(21)

Thus, F ′(α) > 0 at α = 0 if and only if

p0
1 − p0

<
uL

uH
(1 − μ)K−2,

that is, if and only if the memory constraint is binding. Since the best DFSA is Mb
K =

Mb
K (0) (other than taking aL all the time), this shows that strict randomization is

better. Note that this also shows that Mb
K (α) is the optimal SFSA for a range of priors

below ρK
0 . Finally, I show the existence of ρ

0
above which taking aL all the time is

not optimal. For each ρ0 ≤ ρK
0 , letW (ρ0) be the payoff from Mb

K (α)with the optimal
α. By the Theorem of Maximum, W (ρ0) is continuous in ρ0. Now, at ρ0 = ρK

0 , since
Mb

K implements the unconstrained optimum, we have W (ρK
0 ) > (1 − p0)uL , the

latter being the payoff from taking aL always. Now, W (ρ0) ≥ (1− p0)uL if and only
if F(α∗) ≥ (1 − p0)uL , and by (19), this is equivalent to

ρ0 ≥
[

1 − (1 − η)α∗

1 − (1 − μ)(1 − η)μ∗α∗

]K−2
η(1 − μ)K−2

1 − (1 − η)(1 − μ)
ρ∗.

But we also know that α∗ satisfies the FOC with F ′(α∗) = 0, and by (20), this is then
equivalent to

1 ≥ 1 − (1 − μ)(1 − η)α∗

1 − (1 − η)α∗
η

1 − (1 − η)(1 − μ)
.
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Since α∗ strictly decreases with ρ0, there exists a unique ρ
0

< ρK
0 such thatW (ρ0) >

(1− p0)uL for all ρ0 ∈ (ρ
0
, ρK

0 ]. Finally, from (19) it is straightforward to verify that

lim
η→0

F(α) = p0u
H + (1 − p0)u

L

for any α ∈ [0, 1) and hence ρ
0
converges to zero as η approaches zero.

Proof of Proposition 4.2

Let η ∈ (0, 1) be given. When μH
h = 1, from Proposition 3.1 for any ρ > ρ

0
the

optimal SFSA is Mb
K (α) with if ρ0 < ρK

0 , and the optimal SFSA is Mb
N (ρ0)+2 if

ρ0 ≥ ρK
0 . Note that in the latter case, when K > N (ρ0) + 2, there can be multiplicity

of optimal SFSA up to redundant memory states (i.e., one can split qi to qi,1 and qi,2
with identical transition and action rule as qi , and hence with Vqi,1(θ) = Vqi,2(θ) for
both θ = H , L). I prove the results in two parts, first for ρ0 < ρK

0 and the second for
ρ0 ≥ ρK

0 .
Part (i) I show that if ρ0 < ρK

0 , then for a range of μH
h below one the optimal SFSA

still takes the form of Mb
K (α). To prove this, I first show that small deviations from

Mb
K (α) are not optimal. More precisely, consider each SFSA (with K memory states)

as a vector of all transition probabilities and action probabilities, and consider the
distance between them as the maximum difference across those probabilities, and I
show that there exists ε0 such that optimal SFSA takes the form of Mb

K (α) among
SFSA that deviate from those within distance ε0.

To simplify notation, denote μH
h by 1− ε and μL

� by μ. Since the beliefs ρ(qi ) and
the value functions Vqi (θ) are all continuous inμH

h and sincewhenμH
h = 1, inMb

K (α)

we have ρ(qL) = 0, it follows that for small deviation of the transition probabilities,
we still have ρ(qi , �) < q̄0 for μH

h slightly below one. Thus, by Proposition 4.1,
optimal SFSA has to take the form of Mb

K (α1, . . . , αK−2). We can then compute the
continuation values for Mb

K (α1, . . . , αK−2): VqL (H) = 0, VqL (L) = uL , and

Vqi (H) =
⎡

⎣
K−2∏

j=i

1 − α j

1 − (1 − η)(1 − ε)α j

⎤

⎦ [(1 − η)(1 − ε)]K−i−1uH ; (22)

VqH (L) = (1 − η)μuL

1 − (1 − η)(1 − μ)
, VqH (H) = ηuH

1 − (1 − η)(1 − ε)
; (23)

Vqi (L) =
⎧
⎨

⎩
1 −

⎡

⎣
K−2∏

j=i

1 − α j

1 − (1 − μ)(1 − η)α j

⎤

⎦ η(1 − η)K−i−1(1 − μ)K−i−1

1 − (1 − η)(1 − μ)

⎫
⎬

⎭
uL .

(24)
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By the same arguments as before, it is optimal to set αi = α for all i , and hence

F(α) = p0

[
1 − α

1 − (1 − η)(1 − ε)α

]K−2

[(1 − η)(1 − ε)]K−2uH (25)

+(1− p0)

{

1−
[

1−α

1 − (1 − μ)(1 − η)α

]K−2
η(1 − η)K−2(1 − μ)K−2

1 − (1 − η)(1 − μ)

}

uL .

(26)

The function F(α) is quasi-concave in α ∈ [0, 1], and hence its local optimum is con-
tinuous in ε. To see this, note that, disregarding some constants, F ′(α) is proportional
to

F ′(α) � − (1 − α)N−1

[1 − (1 − η)(1 − ε)α]N+1

[
ρ0

ρ∗ ξ(h)N
]

+ (1 − α)N−1

[1 − (1 − η)(1 − μ)α]N+1

=
[

(1 − α)N−1

[1 − (1 − η)(1 − ε)α]N+1

] { [1 − (1 − η)(1 − ε)α]N+1

[1 − (1 − η)(1 − μ)α]N+1 −
[

ρ0

ρ∗ ξ(h)N
]}

,

and it can be verified that the second term in the last equation strictly decreases with
α whenever ε < μ, and hence can have at most one solution to F ′(α) = 0 besides
α = 1. Note that α = 1 is excluded by the fact that at ε = 0, the optimal SFSA is
Mb

K (α∗) with α∗ ∈ [0, 1), and hence it is cannot be optimal for ε small.
Now, let ε be small so that we have local optimality. To ensure global optimality,

consider the set of SFSA M that does not take the form Mb
K (α1, . . . , αK−1) and is

at least ε0-distance from any of those, denoted by D. This set is compact, and, when
μH
h = 1,

WMb
K (α∗) > max

M∈D WM . (27)

By continuity again, there exists ε1 ∈ (0, ε] such that for any μH
h ∈ [1 − ε, 1], (27)

still holds.
Part (ii) Here I show that if ρ0 > ρK

0 , then optimal SFSA takes the form Mb
N+2 with

N = N (ρ0) for a range of μH
h below one. The proof follows the same outline as in

(i), but now I need to handle replicate memory states as K > N (ρ0) + 2. To do that,
notice that in any replica of Mb

N+2 the beliefs for any replica of qL and qi remains the
same for i = 1, . . . , N as their correspondents, but the replica for qH can be higher.
However, whatever that belief may be, it is finite and p(qH , �) = 0 when μH

h = 1
and hence it is still optimal to transit to qL for a range of μH

h below one.

Proof of Proposition 4.3

Proof of (1). Here I consider μL
h′ = ν − ε for ε small. Let ρ0 ∈ (ρ

0
, ρ∗) and K be

given.When ε = 0, the optimal SFSA isMb
min{N (ρ0)+2,K }(β, 1) for appropriate β. One

can then compute the value functions and associated beliefs, which are very similar to
those computed in the Proof of Proposition 3.1, and in the optimal SFSA, ρ(qi ) < ρ̄i
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for all i . Using the same arguments as in the Proof of Proposition 4.2 and continuity
of the beliefs and value functions, we can restrict attention to local deviations in the
same sense as in the Proof of Proposition 4.2. But this then implies that ρ(qi , h′) < ρ̄i
under any local deviations and for ε small, as a result, by Proposition 4.1, the optimal
SFSA has the form of Mb

K (β, β ′) with β ′ = 1. The fact that it is optimal to have
symmetric transition probabilities across memory states follow the same arguments
as in Proposition 3.1.
Proof of (2).Here I considerμL

h′ = ν(1−μ)
1−ν

+ε for ε small. Let ρ0 ∈ (ρ
0
, ρK

0 ) be given.

When ε = 0, the optimal SFSA takes the form Mb
K (β, β ′). Note that when ε = 0,

the optimal β and β ′ are not determined individually but only the joint transition
probabilities as given by (11) are uniquely determined. Using the same arguments as
in the Proof of Proposition 4.2 and continuity of the beliefs and value functions, for ε

small, by Proposition 4.1 we can restrict attention to SFSA in the form of Mb
K (β, β ′).

The fact that it is optimal to have symmetric transition probabilities across memory
states follow the same arguments as in Proposition 3.1.

Now I study the optimal β and β ′ for ε small, which, as we will see below, are
uniquely determined for ε > 0. Let

αH = μH
h β + μH

h′ β ′
j = (1 − ν)β + βν, and αL

= μL
h β + μL

h′β ′

μL
h + μL

h′
=

(1 − μ)β +
(

ν(1−μ)
1−ν

+ ε
)

β ′

(1−μ)
1−ν

+ ε
.

Now, the continuation values can be computed in the same way. In particular, Vqi (H)

still takes the form of (16), but with α replaced by αH , and Vq1(L) still takes the form
of (18), but with α replaced by αL . Thus, the expected payoff from Mb

K (β, β ′) is now

F(β, β ′) = p0

[
(1 − αH )(1 − η)

1 − (1 − η)αH

]K−2

uH

+(1 − p0)

⎧
⎨

⎩
1 −

[
(1 − η)(

1−μ
1−ν

+ ε)(1−αL)

1 − (
1−μ
1−ν

+ ε)(1 − η)αL

]K−2
η

1 − (1 − η)(
1−μ
1−ν

+ ε)

⎫
⎬

⎭
uL ,

Taking derivatives, we have

∂F

∂β
= p0

[
(1 − η)(1 − αH )

1 − (1 − η)αH

]K−3
(−K + 2)η(1 − η)uH

[1 − (1 − η)αH ]2 (1 − ν) (28)

+(1 − p0)

[
(1 − η)(

1−μ
1−ν

+ ε)(1 − αL)

1 − (
1−μ
1−ν

+ ε)(1 − η)αL

]K−3

(K − 2)η(1 − η)uL

[1 − (1 − η)(
1−μ
1−ν

+ ε)αL ]2 (1 − μ),
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and

∂F

∂β ′ = p0

[
(1 − η)(1 − αH )

1 − (1 − η)αH

]K−3
(−K + 2)η(1 − η)uH

[1 − (1 − η)αH ]2 ν (29)

+(1 − p0)

[
(1 − η)(

1−μ
1−ν

+ ε)(1 − αL)

1 − (
1−μ
1−ν

+ ε)(1 − η)αL

]K−3

(K − 2)η(1 − η)uL

[1 − (1 − η)(
1−μ
1−ν

+ ε)αL ]2
[
ν(1 − μ)

1 − ν
+ ε

]

.

Now, for any ε > 0, since the first terms in both (28) and (29) are negative but the
second terms are positive and since

1 − ν

1 − μ
>

ν
[

ν(1−μ)
1−ν

+ ε
] = 1 − ν

1 − μ + (1 − ν)ε
,

∂F
∂β ′ = 0 implies that ∂F

∂β
< 0, that is, if optimal β ′ < 1, optimal β = 0. Moreover,

this shows that whenever ρ0 ≤ ρK and hence at αH = αL = 0, ∂F
∂β ′ ≥ 0 when ε = 0.

Thus, for any ε > 0, ∂F
∂β ′ > 0 under β = β ′ = 0 and hence optimal β ′ > 0.

Proof of Proposition 4.4

Without loss of generality, rank the memory states so that ρ(qL) < ρ(q1) < ρ(qH ),
and assume that from some memory state after seeing �-signal it transits to qL and
d(qL) = aL . This implies that ρ(qL) = 0, and by Proposition 4.1 it follows that it is
optimal to transit toqL fromanymemory state after an �-signal.Also, inq1, after seeing
signal-h or h′ the transition cannot go down. Moreover, d(qH ) = aH for otherwise
there is no variation in actions. This also implies that qo = q1. If d(q1) = aH , then
q1 and qH become equivalent memory states. So d(q1) = aL . It then follows that the
optimal SFSA takes the form Mb

3 (β, β ′).
For ρ0 ∈ [ ρ∗

ξ(h′) , ρ
∗), one h′-signal is sufficient to convince the DM to take action

aH and hence the unconstrained optimal rule can be implemented by Mb
3 (0, 0). So

considerρ0 <
ρ∗

ξ(h′) .We can then compute the ex ante expected payoffs fromMb
3 (β, β ′)

for any μL
h′ ∈ (

ν(1−μ)
1−ν

, ν), which is given by

F(β, β ′) = p0

[
(1 − αH )(1 − η)

1 − (1 − η)αH

]

uH

+(1 − p0)

{

1 −
[

(1 − η)(1 − μ + μL
h′)(1 − αL )

1 − (1 − μ + μL
h′)(1 − η)αL

]
η

1 − (1 − η)(1 − μ + μL
h′)

}

uL ,
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where αH = (1 − ν)β + νβ ′ and αL = [(1 − μ)β + μL
h′β ′]/(1 − μ + μL

h′). Thus,

∂F

∂β
= p0

−η(1 − η)(1 − ν)uH

[1 − (1 − η)αH ]2 + (1 − p0)
(K − 2)η(1 − η)(1 − μ)uL

[1 − (1 − η)(1 − μ + μL
h′)αL ]2 ,

(30)

and

∂F

∂β ′ = p0
−η(1 − η)νuH

[1 − (1 − η)αH ]2 + (1 − p0)
(K − 2)η(1 − η)μL

h′uL

[1 − (1 − η)(1 − μ + μL
h′)αL ]2 .

(31)

Now, let

ρ̃0 =
[

1 − (1 − η)ν

1 − (1 − η)μL
h′

]2
ρ∗

ξ(h)
< ρ3

0 = ρ∗

ξ(h)
, (32)

where the inequality follows from the fact that μL
h′ < ν. Now, it is straightforward to

verify, using (30) and (31), that for all ρ0 > ρ̃0, the only solutions to the FOC’s for
β and β ′ is to have β = 0 and β ′ > 0, and that optimal β ′ strictly increases as ρ0
decreases from ρ3

0 and hits one before ρ0 reaches ρ̃0. Similarly, for ρ0 > ρ̃0, optimal
β > 0 and β ′ = 1. Finally, ρ

0
is determined in a similar way as in the proof of

Proposition 3.1, and, in case ρ
0

< ρ̃0 given by (32), take ρ̃0 = ρ
0
.
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