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Abstract
Wepropose amodel of learningwhen experimentation is possible, but unawareness and
ambiguitymatter. In thismodel, complete lack of information regarding the underlying
data generating process is expressed as a (maximal) family of priors. These priors
yield posterior inferences that become more precise as more information becomes
available. As information accumulates, however, the individual’s level of awareness
as encoded in the state space may expand. Such newly learned states are initially seen
as ambiguous, but as evidence accumulates there is a gradual reduction of ambiguity.
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1 Introduction

State spaces and probabilities are ubiquitous in economic models. They provide an
unrivaled analytical tool to study situations in which uncertainty matters. Yet, it is not
always clear how state spaces and beliefs emerged. If such knowledge is founded upon
experience, how so?

Standard models of learning take for granted (an exogenously given) state space,
impose an objective prior, and update it using Bayes’ rule in face of new information.
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Practical problems, however, rarely fit this mould. For all intents and purposes, states
of the world are essentially abstract representations of resolutions of uncertainty.
Moreover, whereas Bayesian updating is an effective tool to sort out the probability
of the number of heads in a finite sequence of tosses of a fair coin, in many prac-
tical situations, it may not be possible to specify a prior probability. The standard
Bayesian machinery is ill-equipped to provide guidance when the new information is
surprising—and falls on a zero probability event—orwhen the new information contra-
dicts past experience—and cannot be categorized in any of the previously considered
events. Moreover, it leaves no room for confidence in the probability assessments
made.

This paper considers learning when there is incomplete information about the
structure of the state space, but further information can be obtained through experimen-
tation. We take for granted that the final objective of such analysis, after observations
have been made, is the choice among possible courses of action whose consequences
depend on the state of the world. For the present purposes, we are only concerned
with the assessment phase of the analysis: the process of building the state space on
the go and updating beliefs in a way that satisfies some basic principles of coherence
and consistency.

For the problem to be well-defined, we aim to answer two questions. First, we
need to sort out what constitutes a state of the world. If it is possible to learn new
sources of randomness, then the model should allow for extensions of the state space
to accommodate them. In particular, the model of the state space should permit two
operations:

1. Creation: when new states are added without changing the structure of old events;
and

2. Refinement: when old states turn into events that can be partitioned into more
richly described states.

Second, we need to work out how to form and update a prior belief on this space
that truly reflects complete ignorance. To answer the first question, we invoke the
approach of Karni and Vierø (2013, 2017);1 to answer the second, we propose an
imprecise version of the Dirichlet process prior, defined by Ferguson (1973, 1974).

More specifically, the theory presented here is adapted to the following kind of
problem. Suppose that an expert is challenged to express her opinions about possible
plans of action whose consequences depend on the unknown state of the world. Before
making her assessment, she has the opportunity to carry out a sequential experiment to
learn about possible states of theworld and their plausibility. Experiments are described
by an underlying stochastic process, that embodies the physical law governing the
machinery of the experiment. Ideally, the realizations of these sequential trials provide
a full description of the outcome, thus resolving all uncertainty regarding the state of
the world. However, the expert’s level of awareness restricts her perception of the
realized state of the world, she can only partially observe these realizations. Thus the
experimenter’s awareness level determineswhich events she can conceive and delimits
the boundaries of her conceivable state space. As new evidence becomes available, the

1 See also Pivato (2020).
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experimenter may discover new states. Consequently, her awareness level increases
and her conceivable state space expands.

Beliefs are represented by an evolving set of predictive distributions over future,
conceivable states of the world; inferences about events can be summarized by upper
and lower probabilities. As new states are discovered, probability mass may be shifted
from old, non-null events to the events just created. Moreover, newly learned events
are initially perceived as ambiguous. As evidence accummulates, however, the experi-
menter becomes more familiar with these events. The ambiguity associated with those
events gradually disappears and the assessment made by the individual converges to
their true posterior probability.

The resulting theory captures several desirable, intuitive features:

1. Rich class of stochastic environments: the model is able to capture a wide range
of data generating processes.

2. Internal consistency: the individual’s beliefs are revised in a coherent way.
3. External consistency: the evolution of beliefs reflects data (frequentist validation).
4. Possibility of surprises: the individual is cognizant of the possibility of conse-

quences and actions of which she is currently unaware, but which may be revealed
over time; as a result, learning never ends.

5. Event-specific ambiguity: ambiguity is related to lack of familiarity; newly learned
events are seen as more ambiguous than old events.

6. Large-sample confidence: as evidence accummulates, the ambiguity perceived by
the individual is gradually reduced and her confidence in her assessment increases.

Our approach relates to four different literatures. First, we provide a model of
learning that, in line withMarinacci (2002) and Epstein and Schneider (2007), accom-
modates ambiguous beliefs. Secondly, we explicitly model the process of inductive
reasoning implied by the dynamics of growing awareness described in Dominiak and
Tserenjigmid (2021) that utilizes the framework developed in Karni and Vierø (2013,
2017).2 Because ambiguity emerges endogenously, when information is surprising,
we provide a dynamic foundation for the unanimity rule preference representation
axiomatized in Bewley (2002) and Gilboa et al. (2010) as well as the partial “com-
parative likelihood relation” in Nehring (2009). Finally, we provide an axiomatization
of the model’s probability kernel, which can be compared to the result in Billot et al.
(2005).

There are three other papers that make the connection between levels of awareness
and perceptions of ambiguity. Halpern et al. (2010) introduces unawareness in the
context of a Markov decision problem and provides a characterization as to when the
individual can ‘learn’ to play nearly optimally. Kochov (2016), on the other hand,
proposes a ‘revealed preference’ test to distinguish between those contingencies the
individual is unaware of versus those she foresees but whose likelihood she perceives
as ambiguous. Grant et al. (2021) formalize a notion of coherent multiple priors and
derive a representation that corresponds to the usual unique prior but with less than full
awareness generates multiple priors. When information is received with no change in
awareness each element of the set of priors is updated according to Bayes rule. An

2 For other approaches to unawareness, please see Grant and Quiggin (2013) and Meier and Schipper
(2014).
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increase in awareness, however, leads to an expansion of the individual’s subjective
state space and a contraction in the set of priors.

The paper is organized as follows. Section 2 describes the underlying data generat-
ing process and how actions and consequences are discovered. Section 3 explains how
the individual’s conception of the world evolves in view of this acquired information.
Section 4 investigates the properties of the model. Section 5 explores the implications
of the results to the problem of consensus formation of beliefs. Finally, Sect. 6 dis-
cusses the Bayesian interpretation of the model. All the proofs are collected in the
Appendix.

2 The discovery process

First, we introduce the elements of the data generating process and the nature of the
observations made by the individual. Let T = {0, 1, . . . , t, . . .} denote time. There
exists a countable setA of actions, which corresponds to the set of alternatives that are
or may become known to the individual. There also exists a set C of consequences,
which we take to be a separable, completely metrizable space.

2.1 Underlying stochastic process

We are given a sequence

X1, X2, . . . , Xt , . . .

of random variables defined on the ambient probability space (�,F , μ) and tak-
ing values in the common measurable space (CA,B), where B denotes the Borel
σ -algebra on the metrizable product CA. If xt ∈ C

A is a realization of Xt , then
action a ∈ A is associated with the consequence (xt )a ∈ C, which we also denote
by a(xt ). We may also think of the action a as the sequence of random variables
(a(X1), a(X2), . . . , a(Xt ), . . . ) with range C. An element of CA specifies the unique
consequence associated with every possible action in A. A realization xt of Xt , being
an element of CA, thus resolves all uncertainty.

Throughout the paper, we assume the following stochastic dependence condition
on (Xt )t � 1, originally studied by Kallenberg (1988).

Definition 1 The sequence of random variables (Xt )t � 1 is said to be conditionally
exchangeable if for every n� 1

(X1, . . . , Xn, Xn+1) ∼ (X1, . . . , Xn, Xn+2),

where ∼ means “distributed as.”

We view conditional exchangeability as a structural judgement, that is, it is an
assessment regarding the structural properties of the underlying stochastic process,
which are the result of the design of the experiment. It is related to the more familiar
notion of exchangeability. Recall that a sequence of random variables (Xt )t � 1 is said
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to be exchangeable whenever every permutation of every finite subsequence has the
same distribution, i.e., for every n� 1

(Xk1 , . . . , Xkn ) ∼ (Xkσ(1) , . . . , Xkσ(n)
),

where σ : {1, . . . , n} → {1, . . . , n} is a permutation on {1, . . . , n}.
It is immediate that exchangeable sequences are conditionally exchangeable, but

the converse is true only under stationarity. Recall that a sequence of random variables
(Xt )t � 1 is said to be stationary whenever the distribution of finite subsequences is
invariant over time, i.e., for every k� 1

(X1, . . . , Xn) ∼ (Xk+1, . . . , Xk+n).

Bya result due toKallenberg (1988, Proposition 2.1) if a stationary sequence of random
variables is conditionally exchangeable, then it is exchangeable. Kallenberg (1988)
provides an example of a non-stationary, but conditionally exchangeable sequence that
is not exchangeable.

Furthermore, conditional exchangeability can be understood in terms of the martin-
gale aspect of the process (Xt )t � 1. In particular, Kallenberg (1988, Proposition 2.2)
shows that conditional exchangeability is equivalent to a property later coined as con-
ditionally identically distributed.

Let G = (Gt )t � 0 denote the nested sequence of sub-σ -algebras Gt of F such
that G0 = {∅,�} and Gt = σ(X1, . . . , Xt ) for every t � 1. That is, G is the filtration
induced or generated by the sequence of random variables (Xt )t � 1. It is the smallest
filtration with the property that Xt is Gt -measurable for every t � 1.

Definition 2 We say that (Xt )t � 1 is conditionally identically distributed with respect
to G (or G -c.i.d.) if the conditional expectation satisfies

Eμ[g(Xk)
∣
∣Gt ] = Eμ[g(Xt+1)

∣
∣Gt ] μ-a.s.

for every k > t � 0 and every bounded measurable g : CA → R.

Essentially, this property means that, at every time t , future realizations (Xk)k>t

are identically distributed conditional on past realizations (Xk)k≤t . We refer to Berti
et al. (2004) for examples of non-exchangeable, c.i.d. stochastic processes.

2.2 Discovery of actions and consequences

The individual in period 0 is aware of a nonempty, finite set A0 ⊆ A of actions, and
a nonempty, finite set C0 ⊆ C of consequences. We now describe how other actions
and consequences are discovered.
Discovery of actions

We suppose that actions inA are discovered over time, via a given nested sequence

A0 ⊆ A1 ⊆ · · · ⊆ At ⊆ · · · ⊆ A,
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where each At , t � 0, is a finite, nonempty set of actions. We think of A0 as the
individual’s prior knowledge of the available actions. At time t � 1, the individual
discovers or becomes aware of the set At\At−1 of additional actions. We do not
model how the sequence (At )t � 0 is realized. We leave open the possibility that the
sequence is a sample path of some independent stochastic process or the result of
some independent learning process. As an example, the actions in (At )t � 0 could
represent the sequence of treatment options for a particular illness as new alternatives
are discovered and made available to the specialist. Further, we do not assume that
all actions in A are eventually revealed to the individual. That is, it could be the case
that everything is intrinsically knowable, but our model also allows for “unknown
unknowns” that remain unknowable indefinitely.
Stochastic discovery of consequences

Throughout the rest of the section, we fix a sample path

x1, x2, . . . , xt , . . .

of realizations of (Xt )t � 1.
The realization xt sets the perfect level of description of the true state of the world.

What the individual observes, however, is restricted by her level of unawareness. If
x ∈ C

A, then we let x |At = (xa)a∈At . In period t , the individual’s information consists
of the finite history of all observations up to period t for the given sample path, which
can be written as:

x̂t = (x1|A1, x2|A2 , . . . , xt |At ).

3

In particular, the individual discovers consequences as she (partially) observes the
realizations of the collection of random variables a(Xt ), induced by the actions known
to her.4 Thus the set of consequences known to the individual is the set of all observed
consequences given the finite history x̂t . Formally, the set of consequences the indi-
vidual considers possible at the end of period t is given by

Ĉt := C0 ∪
{

t
⋃

k=1

{a(xk) : a ∈ Ak}
}

∪ {θt },

with Ĉ0 := C0 ∪ {θ0}. We interpret θt , for t � 0, as the intangible consequence
that represents the possibility of observing an outcome that is not in the set
C0 ∪ {⋃t

k=1{a(xk) : a ∈ Ak}
}

of known consequences. That is, we also allow for
the individual to conceive of the possibility that some actions may yield, in future

3 We mark variables that depend on the finite history of observations with a hat ( ·̂ ).
4 An alternative way to model the discovery of consequences is to assume that the individual chooses an
action each period and observes only the consequence associated to that chosen action. Our results can be
adapted to that case, under the additional assumption of independence across actions.
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periods, consequences which are as yet unknown to her in period t .5 Of course, we
assume that C ∩ {θ0, θ1, . . .} = ∅.

3 The inference problem

In this section, we explain how the individual’s perception of the state space evolves
over time. Recall that, given the sample path

x1, x2, . . . , xt , . . . ,

the information available to the individual at period t is the finite history

x̂t = (x1|A1 , x2|A2 , . . . , xt |At )

of all observations up to period t . Given this finite history of observations, the indi-
vidual’s conceivable state space expands to convey her increasing level of awareness.

3.1 Evolution of the set of conceivable states

Following the approach of Karni and Schmeidler (1991) and Karni and Vierø (2013,
2017), conceivable states represent the possible resolution of uncertainty restricted by
the awareness level of the individual. That is, having observed the finite history x̂t and
being aware of the consequences in Ĉt and actions in At , the individual can conceive
of states that are elements of the finite set

Ŝt := Ĉ At
t ,

which we refer to as the set of conceivable states (at the end of period t), for the given
history x̂t .

In particular, for every period t , the observation xt |At is understood as a conceivable
state in Ŝt , that is, xt |At = (a(xt ))a∈At ∈ Ŝt . Moreover, for every t � 1, the set of
conceivable states Ŝt−1 induces a partition of Ŝt , whereby each element in Ŝt−1 is
mapped to an event in Ŝt .

The following example illustrates how the conceivable state space evolves over
time and how conceivable states in previous periods are mapped to events in later
periods. Suppose that the individual is aware of one action a and one consequence c1
in period t − 1. The set Ŝt−1 comprises two states s1 and s2:

s1 s2
a c1 θt−1

In the next period, we consider three alternative scenarios. If At = {a} and a(xt ) =
c2, then a new, previously unknown consequence is revealed in period t . Hence, at the

5 Our analysis does not require the a priori introduction of the intangible consequences represented by θt .
However, this more general set-up brings the model in line with Karni and Vierø (2017).
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end of period t , the individual conceives of three states in Ŝt :

s1
︷︸︸︷

s2
︷ ︸︸ ︷

si1 si2 sii2
a c1 c2 θt

In this scenario, the state s1 in Ŝt−1 becomes si1, and the state s2 in Ŝt−1 is “split” into
si2 and sii2 . The partition of Ŝt induced by Ŝt−1 is thus {{si1}, {si2, sii2 }}.

If alternatively At = {a, b}, a(xt ) = b(xt ) = c1, then a new action is discovered
but no new consequence, and s1 and s2 correspond to events in Ŝt :

s1
︷ ︸︸ ︷

s2
︷ ︸︸ ︷

si1 sii1 si2 sii2
a c1 c1 θt θt
b c1 θt c1 θt

In this alternative scenario, s1 splits into si1, and sii1 and s2 splits into si2 and sii2 . The
partition of Ŝt induced by Ŝt−1 is thus {{si1, sii1 }, {si2, sii2 }}.

Finally, if At = {a, b}, a(xt ) = c1 and b(xt ) = c2, then the new set of conceivable
states Ŝt is:

s1
︷ ︸︸ ︷

s2
︷ ︸︸ ︷

si1 sii1 siii1 si2 sii2 siii2 siv2 sv
2 svi

2
a c1 c1 c1 c2 c2 c2 θt θt θt
b c1 c2 θt c1 c2 θt c1 c2 θt

In this case, the state s1 is split into si1, s
ii
1 and siii1 , and the state s2 is split into the

remaining six states. Therefore, the partition of Ŝt induced by the state space Ŝt−1
conceivable in the previous period is {{si1, sii1 , siii1 }, {si2, sii2 , siii2 , siv2 , sv

2 , s
vi
2 }}.

In a nutshell, there are two circumstances that surprise the individual and prompts
her to expand the set of states she believes to be possible:

i. the discovery of new consequences: formally, that corresponds to Ĉt−1\{θt−1}
being a proper subset of Ĉt\{θt }; and

ii. the discovery of new feasible actions: that corresponds to At−1 being a proper
subset of At .

The advantage of working with this canonical state space and its product structure
is that it distinguishes between the information deduced by logical inference—which
states can be conceived—and the information explicitly conveyed by the data—the
distributions over consequences induced by the actions. In particular, nothing suggests
to the individual that the drawings of consequences induced by different actions is
independent.However, aswill be shown in the next section, the individual’s (imprecise)
prior reflects her total ignorance regarding possible correlations between different
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actions. It is thus left to the evidence to reveal the true correlation structure among the
states.6

We now formalize the embedding illustrated by the previous examples for the
general structure of the states. For any pair of periods t and t ′, with t < t ′, we can
express the associated embeddings and projections as follows.

C
A

C
At ′

C
At

Ĉ
At ′
t ′ = Ŝt ′

Ĉ At
t = Ŝt

�����
�
�
�
�
�
�
��

�

�
� �

projAt ′

projAt projAt ϕt ′:t

ψt ′

ψt

For every period t , let κt : C → Ĉt denote the mapping that takes consequences in
C that are unknown in period t to θt in Ĉt , and keeps the other, known consequences
unchanged. That is,

κt (c) =
{

c if c ∈ Ĉt\{θt },
θt otherwise.

The mapping κt induces a natural embedding ψt : CAt → Ĉ At
t , whereby

ψt (x) = (κt (xa))a∈At .

Finally, for t < t ′, we define ϕt ′:t : Ŝt ′ → Ŝt as the unique mapping such that

ψt ◦ projAt
= ϕt ′:t ◦ ψt ′ .

Notice that, because Ĉt\{θt } ⊆ C, the mapping ψt is surjective. Moreover, because
At ⊆ At ′ , and Ĉt\{θt } ⊆ Ĉt ′ \{θt ′ }, it follows that ϕt ′:t is also surjective, and hence
it has a set-valued inverse. The partition of Ŝt ′ induced by Ŝt is the one given by the
collection of sets {ϕ−1

t ′:t (s) : s ∈ Ŝt }. In particular, for each state s ∈ Ŝt , the event

ϕ−1
t ′:t (s) ⊆ Ŝt ′ is the collection of conceivable states in Ŝt ′ into which the state s has

been “split.”

6 The first formal treatment of imprecise probability is from Boole (1854), who suggested it as a way to
reconcile the theory of logic, which can express complete ignorance, and the theory of probability.
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3.2 Evolution of beliefs

We now propose a prior, based on the Dirichlet process, that represents (almost)
complete ignorance with respect to the distribution μ.7

The Dirichlet process
The simplest and one of the most commonly used nonparametric statistical model

is the Dirichlet process, defined by Ferguson (1973, 1974).8 It was introduced as a
prior over probability distributions and, due to the tractability of the resulting posterior
inferences, it is widely employed for Bayesian nonparametric inference.

We use the following notation. If S is a separable, completelymetrizable space, then
let �(S) denote the set of Borel probability measures on S. For every s in S, let δs ∈
�(S) denote the (Dirac or degenerate) probability measure that assigns probability
one to s obtaining.

To describe the Dirichlet process, let G(α, β), with α > 0 and β > 0, denote the
Gamma distribution on R+, with Lebesgue density

βα

�(α)
xα−1e−βx ,

where �(α) is the complete gamma function. For G(α, β), α is called the shape
parameter and β is the scale parameter. The n-dimensional Dirichlet distribution with
parameter (α1, . . . , αn), with αk � 0 and

∑

k αk > 0, is the distribution of the random

vector
(

Z1∑

k Zk
, . . . , Zn∑

k Zk

)

taking values in the unit simplex �n−1, where

Zk
i.i.d.∼ G(αk, 1).

Definition 3 Let π be a finite non-null (probability) measure on (X,BX), where
BX is the Borel σ -algebra of subsets of X, and α > 0. Then a stochastic pro-
cess � is a Dirichlet process with base measure π and concentration parameter α,
denoted by � ∼ DP(α, π), if for every finite measurable partition {B1, . . . , Bn} of
X, the random vector (�(B1), . . . , �(Bn)) has a Dirichlet distribution with parameter
(απ(B1), . . . , απ(Bn)).

Under the Dirichlet process, data is assumed to be generated according to the law

� ∼ DP(α, π)

X1, X2, . . .
∣
∣�

i.i.d.∼ �.

7 Benavoli et al. (2015) propose a prior similar to the one we describe. They, however, apply it to Bayesian
hypothesis testing, obtaining a method with nice asymptotic properties and, at the same time, that is more
robust compared to the usual tests.
8 We refer to Ferguson (1973, 1974) for the first description of the Dirichlet process and its use in Bayesian
nonparametric inference.More recently, this literature expanded rapidly; we refer toWalker et al. (1999) and
Escobar and West (1995) for more modern treatments, as well as generalizations of the Dirichlet process.
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That is, the parameter that explains the data is the random measure � itself. The
Dirichlet Process is thus a probability distribution on �(X), the space of probability
measures over (X,BX). We record the following properties of the Dirichlet process.

Theorem 1 (Ferguson (1973,Theorem1),Ghosh andRamamoorthi (2003,Chapter 3))
Let (X1, . . . , Xt ) be i.i.d. samples from� and suppose� has a DP(α, π) distribution.
Then:

1. The conditional distribution of�given the finite sample (X1, . . . , Xt ) is aDirichlet
process with parameters (α + t, α

α+t π + 1
α+t

∑

k δXk ):

�
∣
∣ (X1, . . . , Xt ) ∼ DP

(

α + t,
α

α + t
π + 1

α + t

∑

k

δXk

)

.

2. The predictive distribution of the next observation Xt+1, given the finite sample
(X1, . . . , Xt ), is

P[Xt+1
∣
∣ X1, . . . , Xt ] = α

α + t
π + 1

α + t

t
∑

k=1

δXk .

We can re-write the predictive distribution of the next observation as

P[Xt+1
∣
∣ X1, . . . , Xt ] = α

α + t
π + t

α + t

∑t
k=1 δXk

t
.

We interpret this conditional distribution as follows. The term
∑

k δXk
t is the empirical

distribution and represents the contribution of experience. The term π represents the
initial guess. Thus the conditional distribution of the next observation is a weighed
average of the initial guess and the empirical distribution. The relative weights α

α+t
and t

α+t balance out our confidence on the prior beliefs versus the data.

The imprecise Dirichlet process
We extend the Dirichlet process to allow for ambiguity, arising from the lack of

information about the law of the underlying process, as well as from the incomplete-
ness of the observed data. Specifically, we construct a class of Dirichlet processes by
allowing the base measure π to vary in the set of probability measures.

From the perspective of the individual, in every period t � 0, prior uncertainty
regarding the probability law of the underlying stochastic process is expressed by the
following class of Dirichlet priors:

�̂t = {DP(α, π) : π ∈ �(Ŝt )},

for some fixed α > 0. That is, �̂t is the class of Dirichlet processes with common
parameter α that allows the base measure π to be any element of the set of probability
measures �(Ŝt ). For a fixed concentration parameter α > 0, the set �̂t combines all
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Dirichlet priors that the individual can conceive in a given period t , thus representing
her unconditional belief assessment over the conceivable state space Ŝt under the veil
of ignorance, before making any observations. We note that the base measure π in
the precise Dirichlet process DP(α, π) is interpreted as the initial guess. Therefore,
the set �̂t reflects complete ignorance about the law of the underlying process, since
the set of initial guesses is maximal: every conceivable (nontrivial) event E ⊆ Ŝt has
upper probability of 1 and lower probability of 0 in that set.

In subsequent periods t � 1, the individual updates these unconditional assessments
�̂t in light of the history of observations x̂t . However, when reassessing her beliefs,
the individual’s level of awareness increases over time. With the wisdom of hindsight,
she can conceive of many sample paths that are consistent with her observations x̂t .
She then updates her belief assessment conservatively, allowing for all those possible
sample paths.

More precisely, in period t , if the individual’s conceivable state space is Ŝt , then
she can conceive of all histories of length t , that is,

h = (h1, . . . , ht ) ∈ ×t
k=1 Ŝt ,

with hk ∈ Ŝt for every k = 1, . . . , t . Given observations x̂t , we let Ĥt ⊆ ×t
k=1 Ŝt

denote the set of histories that are conceivable in period t and consistent with the
finite history of observations x̂t , that is,

Ĥt = {

(h1, . . . , ht ) ∈ ×t
k=1 Ŝt : hk |Ak = (̂xt )k for k = 1, . . . , t

}

.

Notice that, since the state spacemay expand over time, usually there will bemore than
one history consistentwith x̂t . In particular, for every t � 2, if at least two consequences
are known, |Ĉt |� 2, and the individual becomes aware of at least one new action in
period t , so that At−1 ⊂ At , then there will be at least two different histories in Ĥt .
Moreover, regardless of the cardinality of the set Ĥt , the last observation (̂xt )t is xt |At ,
which is an element of Ŝt . Thus ht = xt |At for every h = (h1, . . . , ht ) in Ĥt .

The following theorem describes the individual’s posterior inferences in the pres-
ence of the ambiguity generated by growing awareness.

Theorem 2 Let (X1, . . . , Xt ) be i.i.d. samples from � and suppose � has one of the
distributions DP(α, π) in �̂t . Let also Ĥt denote the set of histories consistent with
the observations x̂t generated by �. Then:

1. The set of conditional distributions of �, given the histories Ĥt , is the set of
Dirichlet processes:

�̂t
∣
∣ Ĥt =

{

DP

(

α + t,
α

α + t
π + 1

α + t

∑

k

δhk

)

: π ∈ �(Ŝt ) and h ∈ Ĥt

}

.

2. The set of predictive distributions, given the set of histories Ĥt , is

P[Xt+1|At

∣
∣ Ĥt ] =

{

α

α + t
π + 1

α + t

t
∑

k=1

δhk : π ∈ �(Ŝt ) and h ∈ Ĥt

}

.
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Remark 1 Henceforth, we write P
∣
∣ Ĥt for the set of predictive distributions

P[Xt+1|At

∣
∣ Ĥt ] above.

Having observed x̂t , the individual can conceive of many finite histories h ∈ Ĥt .
Theorem2 says that she updates every prior in �̂t given every sample history consistent
with her observations.

Notice that the influence of the probability measures in �̂t , the individual’s uncon-
ditional assessment, on her conditional assessment �̂t

∣
∣ Ĥt is determined by the

hyperparameter α and the length of the history of observations she has seen, that
is, t . We shall interpret α as the learning parameter. Since the weight given to the
empirical distributions is t/(α + t), higher values of α are associated with a lower degree
of confidence of the individual on the accumulated data.9

We also note that the degree of imprecision of �̂t
∣
∣ Ĥt comes from two sources. The

first, not surprisingly, relates to the lack of prior information to guide the choice of the
base measure π of the (unconditional) Dirichlet prior DP(α, π). The second arises
from the lack of familiarity with the newly discovered events, since the discovery of
new actions in a subsequent period t increases the number of elements in the set of
conceivable histories Ĥt of length t that are consistent with the observed data x̂t .

The set of predictive distributions P
∣
∣ Ĥt represents the conditional assessment the

individual has about the next observation. For every event E ⊆ Ŝt , this conditional
assessment can be summarized by the upper probability

ρt (E) = max{ρ(E) : ρ ∈ P
∣
∣ Ĥt }

and the lower probability

ρ
t
(E) = min{ρ(E) : ρ ∈ P

∣
∣ Ĥt }.

Notice that if, for some k ≤ t , hk ∈ E for every h ∈ Ĥt , then ρ
t
(E) > 0. That is,

upon making the observation that event E has occurred at least once unambiguously,
for every conceivable history consistent with the observations, the individual’s revised
beliefs regarding E are bounded away from zero.

Remark 2 Given Theorem 2, it readily follows that for every pair of periods t > t ′:

P
∣
∣ Ĥt =

{(
α + t ′

α + t

)

π +
(
t − t ′

α + t

) t
∑

k=t ′+1

δhk

t − t ′
: h ∈ Ĥt , π ∈ �(Ŝt ) for which

there exists ν ∈ P
∣
∣ Ĥt ′ such that π

(

ϕ−1
t :t ′ (s)

)

= ν(s) for every s ∈ Ŝt ′
}

.

9 We refer to Walley (1996) and Raiffa and Schlaifer (1961) for discussions about possible choices of α.
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So, in particular, by taking t ′ = t − 1 we obtain the following equivalent recursive
definition for the individual’s predictive assessment in period t :

P
∣
∣ Ĥt =

{(
α + t − 1

α + t

)

π + δxt |At
α + t

: π ∈ �(Ŝt ) for which

there exists ν ∈ P
∣
∣ Ĥt−1 such that π

(

ϕ−1
t :t−1(s)

)

= ν(s) for every s ∈ Ŝt−1

}

.

4 Properties of themodel

In this section, we study the properties of themodel.We first provide a characterization
of the updating rule that generates the predictive distribution in Theorem 2–2.We then
study the large sample properties of the individual’s belief assessment.

4.1 Internal consistency

We begin by noting that in any period t � 0, if the decision maker’s conceivable state
space is S, then she can conceive of all future sample paths of any finite length n, that
is,

f = ( f1, . . . , fn) ∈ ×n
k=1S,

with fk ∈ S for every k = 1, . . . , n. Let Fn
S denote the set of all such conceivable

future sample paths of length n and set FS = ∪n� 1 F
n
S . In addition, let Ŝ∞ denote

the set of conceivable state spaces the individual will become aware of as a result of
the observations she will make. That is, Ŝ∞ = {Ŝt : t � 0}.

Adopting the nomenclature of Billot et al. (2005), we define a probabilistic belief
in period t to be a mapping ρS

t : �(S) × FS → �(S). Given a belief π ∈ �(S), we
interpret the probabilistic belief ρS

t (π; f ) as telling us how the individual anticipates
that such a beliefπ in period t would be revised as a result of observing the conceivable
future sample path f ∈ FS .

Weconsider the following axiomson the family of probabilistic beliefs {ρS
t : t � 0, S ∈

Ŝ∞}.
Axiom 1 (responsiveness) For every belief π ∈ �(S) and every future sample path
f = ( f1, . . . , fn) ∈ FS :

{ f1, . . . , fn} ⊆ supp ρS
t (π; f ) ⊆ suppπ ∪ { f1, . . . , fn}.

Axiom 2 (symmetric treatment [of previously unconsidered states]) For every pair of
state spaces S and S′ and every pair of beliefs π ∈ �(S), π ′ ∈ �(S′):
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ρS
t (π; s)(s) = ρS′

t (π ′; s′)(s′),

whenever s /∈ suppπ and s′ /∈ suppπ ′.

Axiom 3 (invariance) For every belief π ∈ �(S) and every future sample path f =
( f1, . . . , fn) ∈ FS :

ρS
t (π; f ) = ρS

t (π; σ f ),

where σ f = ( fσ(1), . . . , fσ(n)) and σ : {1, . . . , n} → {1, . . . , n} is a permutation of
{1, . . . , n}.
Axiom 4 (linearity in beliefs) For every pair of beliefs π, π ′ ∈ �(S) and every future
sample path f ∈ FS :

ρS
t (βπ + (1 − β)π ′; f ) = βρS

t (π; f ) + (1 − β)ρS
t (π ′; f ),

for every β ∈ [0, 1].
Axiom 5 (intertemporal coherence) For every pair of periods t < t ′, every belief
π ∈ �(S) and every future sample path f = ( f1, . . . , fn) ∈ Fn

S with n > t ′ − t :

ρS
t (π; f ) = ρS

t ′
(

ρS
t (π; f1, . . . , ft ′−t ); ft ′−t+1, . . . , fn

)

.

As the name suggests, Axiom 1 (responsiveness), requires that ρS
t assigns strictly

positive weight to every state that appears in the future sample path f . Furthermore, a
state s cannot be in the support of ρS

t (π; f ) if it is neither in the support of the belief
π nor in the future sample path f .

Axiom 2 (symmetric treatment), may be interpreted as requiring, should the
decision-maker observe next period a previously unconsidered state, that the (strictly
positive) weight that she anticipates being shifted to this previously unconsidered state
depends only on the period t in which this probabilistic belief is formed.

Axiom 3 (invariance) is an exchangeability property: future information is inter-
preted in the same way, regardless of the order in which it arrives. It reflects the
conditional exchangeability property of the underlying data generating process.

To explain the normative appeal of Axiom 4 (linearity in beliefs), recall that any
initial belief π may be expressed as the probability weighted sum

π =
∑

s∈S
π(s)δs .

That is, π is a weighted sum of the Dirac probability measures associated with each
element in its support. Noting that ρS

t (δs; f ) is the probabilistic belief the individual
anticipates she would have starting from the degenerate belief concentrated on the
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state s after observing the sample path f , we see from the repeated application of
Axiom 4 that

ρS
t (π; f ) =

∑

s∈S
π(s)ρS

t (δs; f ).

That is, the probabilistic belief ρS
t (π; f ) can be expressed as a mixture of the beliefs

in the set {ρS
t (δs; f ) : s ∈ S}with the weights corresponding to the weight she assigns

in her belief π to each particular state s.
Our final axiom, Axiom 5 (intertemporal coherence), is a consistency property. It

ensures that the family of probabilistic beliefs exhibits an appropriate “law of iterative
conditioning.”

Together, these five axioms characterize the anticipated revision of beliefs being
undertaken in accordance with a Dirichlet process.

Theorem 3 Suppose that |Ŝt |� 3 for some t � 0. Then the following are equivalent.

1. The family of probabilistic beliefs {ρS
t : t � 0, S ∈ Ŝ∞}, satisfies Axioms 1–5

(responsiveness, symmetric treatment, invariance, linearity in beliefs and intertem-
poral coherence).

2. In every period t � 0 and for each S ∈ Ŝ∞ the probabilistic belief ρS
t , takes

the following form: for each belief π ∈ �(S), each future sample path f =
( f1, . . . , fn) ∈ FS

ρS
t (π; f ) = α + t

α + t + n
π + n

α + t + n

n
∑

k=1

1

n
δ fk ,

where α� 0.

For any family of probabilistic beliefs satisfying the five axioms above, Theorem 3
implies that the individual’s conditional assessment in period t as specified in part 2

of Theorem 2 may be reexpressed in terms of the probabilistic belief ρ
Ŝt
0 as follows.

P
∣
∣ Ĥt =

{

ρ
Ŝt
0 (π; h) : h ∈ Ĥt , π ∈ �(Ŝt )

}

.

That is, we can view P
∣
∣ Ĥt as the set of probability beliefs the individual in period 0

would anticipate her assessment in period t would be, if she had been aware in period 0
of what her conceivable state space in period t would be, as well as what were all the
conceivable histories in Ĥt that would be consistent with her observations up to and
including period t .

Alternatively, employing the second of the equivalent expressions for P
∣
∣ Ĥt from

Remark 2, we obtain the recursive formulation given by:
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P
∣
∣ Ĥt =

{

ρ
Ŝt
t−1(π; xt |At ) : π ∈ �(Ŝt ) for which there exists ν ∈ P

∣
∣ Ĥt−1

such that π
(

ϕ−1
t :t−1(s)

)

= ν(s) for every s ∈ Ŝt−1

}

.

We conclude this section by comparing our probability assignment rule with the
similarity-based probability assignment rule introduced and axiomatized by Billot
et al. (2005). Formally, the intersection of our probability assignment rule and theirs is
the limiting case in which our learning parameter α is equal to zero and their similarity
weighting function is constant. That is, the case in which all the elements of any
“database” (the analog of our conceivable histories) in their setting are (considered)
equally similar. As there is no increasing awareness in their model, their probability
assignment is always precise.

4.2 External consistency

We now investigate whether, as the sample size increases, the decision maker’s assess-
ment regarding known events converges in somemeaningful sense to the true posterior
probability of the event, according to the data generating process.

The ambient sample space (�,F , μ) describes every possible outcome of all
sources of randomness. However, from the perspective of the individual, the particular
choice of this space is immaterial. The individual only cares about the sequence of
induced distributions defined by

μt (B) = μ(Xt ∈ B)

for every B in the σ -algebra B of Borel subsets of CA.
Furthermore, the individual’s perception of these distributions is restricted by her

current level of awareness, which has two implications. First, the individual can con-
ceive of the idea of the unknown, that is, she is cognizant of her unawareness. She can
thus conceive of random variables that may take the intangible value θt in period t .
Let C̃ = C ∪ {θ0, θ1, . . .} denote the set of extended consequences and consider the
set C̃A of functions from A into C̃. Endow C̃ with the σ -algebra C generated by the
union of the Borel σ -algebra on C and the discrete σ -algebra on {θ0, θ1, . . .}. Let
B̃ = σ(Ba : a ∈ A) denote the σ -algebra of subsets of C̃A generated by the cylinder
sets

Ba = proj−1
a (B)

for every set B in C and every action a ∈ A. We shall abuse notation and identify the
random variable Xt , which takes values in C

A, with the coextension of Xt that takes
values in the larger range space C̃A.

Second, in every period, the individual can only observe the realized consequences
associated with the actions in the set known to her. Because the individual can only
learn the distributions of consequences induced by the actions already discovered by
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her, learning is not uniform. To deal with this issue, take as given period t ′. The set
At ′ consists of all actions known to the individual in the given period t ′. Consider the
set C̃At ′ of functions from At ′ into C̃ and endow it with Bt ′ = σ(Ba : a ∈ At ′), that
is, the σ -algebra of subsets of C̃At ′ generated by the cylinder sets

Ba = proj−1
a (B)

for every set B in C and every a ∈ At ′ . If g : C̃At ′ → R is a bounded,Bt ′-measurable
function, then the individual’s (conditional) assessment of g in period t � t ′ is given
by the collection of conditional expectations

Eμ

[∑

g(ψt (Xt+1|At )|At ′ )ρ[ψt (Xt+1|At )]
∣
∣Gt

]

for every ρ ∈ P
∣
∣ Ĥt . There is learning if these assessments become closer to the true

expectation Eμ[g(Xt+1|At ′ )
∣
∣Gt ] as the sample size increases.10

Our main result, Theorem 4, formalizes these ideas. It conveys the sense in which
the individual learns in the long run. Essentially, it says that the limiting distribution
induced over consequences by the actions in At ′ and the individual’s assessment of this
distribution become indistinguishable from the point of view of integrating bounded,
measurable functions.

If (�,F , μ) is a measure space and (Xt )t � 1 is a sequence of random variables
with values in an arbitrary measurable space, then we can define the following notion
of countably generated sets of converging functions.

Consider a familyG of real-valued, measurable functions such that for every g ∈ G

there exists a random variable Vg such that

Eμ[g(Xt+1)
∣
∣Gt ] → Vg μ-a.s.

We say thatG is countably generated whenever it contains a countable subsetG0 such
that

Eμ[g(Xt+1)
∣
∣Gt ] → Vg μ-a.s.

uniformly for every g ∈ G if and only if the convergence happens uniformly for every
g ∈ G

0.

Theorem 4 Fix some t ′ � 1. If (Xt )t � 1 is conditionally exchangeable and G is a

countably generated family of bounded,Bt ′-measurable functions g : C̃At ′ → R, then
for every g ∈ G there exists a random variable Vg such that Eμ[g(Xt+1|At ′ )

∣
∣Gt ] →

Vg μ-a.s. and

1. Eμ

⎡

⎣ max
ρ∈P

∣
∣ Ĥt

∑

g(ψt (Xt+1|At )|At ′ )ρ[ψt (Xt+1|At )]
∣
∣
∣Gt

⎤

⎦ → Vg μ-a.s. and

10 We note that the function g could be any bounded, measurable function. In particular, if g is an indicator
function on an event, then the individual learns the probability of that event. If g is a payoff function over
the consequences of a particular action, then the individual learns the expected payoff of that action.
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2. Eμ

⎡

⎣ min
ρ∈P

∣
∣ Ĥt

∑

g(ψt (Xt+1|At )|At ′ )ρ[ψt (Xt+1|At )]
∣
∣
∣Gt

⎤

⎦ → Vg μ-a.s.

A useful feature of this model is that it is possible to measure the degree of impre-
cision or ambiguity of the individual’s beliefs for every event she is aware of. We
say that the degree of ambiguity associated with an event E ⊆ Ŝt in period t is the
difference between the upper and the lower probabilities:

�t (E) = ρt (E) − ρ
t
(E).

The following corollary is an easy consequence of Theorem 4. It establishes that
ambiguity is associated with lack of familiarity or information regarding conceivable
events. There is resolution of ambiguity over time, but it is only partial, in the sense
that the individual sees the events she just became aware of as more ambiguous.

Corollary 5 Fix some t ′ � 1 and let E ⊆ Ŝt ′ . Then for t > t ′,

�t (ϕt ′:t (E)) → 0 μ-a.s.

5 Merging of opinions

This section considers the problem of a group of agents who need to make a collective
decision involving the (uncertain) value of possible plans of action. Initially, their
beliefs may not be consistent, but they will have some opportunity to jointly gather
evidence regarding the stochastic outcome of each plan of action available before they
make a final decision.

The group consensus formation problem has been studied extensively. Among
Bayesians, there is a lot of controversy regardingwhich is the best procedure for aggre-
gating beliefs—many desirable properties lead to dictatorial aggregation rules [see
Genest and Zidek (1986) for a survey of classical aggregation methods and impossi-
bility theorems aswell asMongin (1995)]. Shafer (1986) andWalley (1991, Chapter 4)
propose belief aggregation methods, based on theories of imprecise probability, that
seem to perform better and avoid dictatorial rules (see also Crès et al. 2011). Going
beyond the realmof belief aggregation and into the territory ofmulti-Bayesian decision
problems does not help. These impossibility results carry through if one incorporates
preferences into the problem—as illustrated by Hylland and Zeckhauser (1979). For
surveys, we refer to Weerahandi and Zidek (1981, 1983), Zidek (1988) and Gilboa
et al. (2004) is a rare positive result in this area.

We focus on the aggregation rule determined by unanimity voting, whereby an
action is acceptable if and only if it is acceptable for every individual in the group. We
show that the beliefs of the members of the group merge with increasing information,
as a corollary of Theorem 4.

Consider a group of n individuals who must reach a consensus regarding the value
of each act or plan of action in a common, finite set of possible actions A. Suppose
that each individual i has a prior assessment of the expected value of each action in
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A. For the purposes of this section, the choice of the set A is arbitrary. For example,
it could happen that only actions “observable” by all individuals are considered. In
this case, A is the intersection of the individual sets of actions known by each expert,
that is, A = ∩n

i=1A
i . Alternatively, it could also happen that the individuals are set

out to find a cooperative solution to a complex problem, about which each expert
has only a partial understanding. In this case, they could have engaged in a pre-play
communication and agreed on the set that represents the combined knowledge of all
in the group. Then the appropriate description of the problem is to take A to be the
union of all individual sets of feasible acts, thus A = ∪n

i=1A
i . We also assume that

there is a common set C of consequences and that the group agrees with respect to
the return associated with each of these consequences. That is, there exists a bounded
and measurable function v : C → R that expresses the common value assigned by
all individuals to each consequence in C. Let C0 ⊆ C denote the finite subset of
consequences known to the experts in period 0.

We assume that each individual in the group is Bayesian andmakes inferences from
the observed data by updating a Dirichlet process prior. In period 0, expert i’s assess-
ment is represented by a Dirichlet prior on C

A with base measure π i
0, with support

on the set CA

0 , and common concentration parameter α > 0.11 The interpretation is
that π i

0 represents the initial guess of expert i and α represents the experts’ unanimous
confidence in their initial estimation.

The evolution of the experts assessment goes as follows. In period 0, expert i’s
belief is represented by the probability measure π i

0 ∈ �(CA). For every period t � 1,
after the group publicly observes the sample X1 = x1, . . . , Xt = xt , expert i updates
her assessment by computing the predictive probability under the Dirichlet posterior,
that is,

P
i
t [Xt+1 ∈ · ∣

∣ X1, . . . , Xt ] = α

α + t
π i
0[ · ] + 1

α + t

t
∑

k=1

δXk ( · ).

The group’s belief is then represented by the set of predictive probabilities

P
G
t

∣
∣ X1, . . . , Xt =

{

P
i
t [Xt+1 · ∣

∣ X1, . . . , Xt ] : i = 1, . . . , n
}

.

Notice that the group’s beliefs P
G
t

∣
∣ X1, . . . , Xt is a subset of the set of predictive

distributions P
∣
∣ Ĥt described in Theorem 2, when we let At = A for every period t .

Furthermore, each individual i evaluates action a by the expectation

E
i
t [a

∣
∣ X1, . . . , Xt ] =

∑

x∈suppPit
P
i
t [x

∣
∣ X1, . . . , Xt ] v ◦ a(x).

Therefore, the consensus of the group at t is represented by the lower and upper
expectations. That is, the aggregated opinion of the group is given by the pair of
functionals Et : CA → R and Et : CA → R, defined by

11 The assumption that the experts share a common concentration parameter α is made for simplicity and
it could be relaxed.
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Et (a) = min
{

E
i
t [a

∣
∣ X1, . . . , Xt ] : i = 1, . . . , n

}

,

and

Et (a) = max
{

E
i
t [a

∣
∣ X1, . . . , Xt ] : i = 1, . . . , n

}

.

The following result follows from Theorem 4. It establishes that the group’s lower
and upper expectations merge as the experts revise their opinions in view of the infor-
mation gathered over time.

Corollary 6 If (Xt )t � 1 is conditionally exchangeable, then for every action a

|Et (a) − Et (a)| → 0 μ-a.s.

Corollary 6 provides, to some extent, circumstances under which the common prior
assumption may be justified. It implies that the posterior beliefs of different agents
merge, after observing a sufficiently long history of past, public signals. The common
prior could be understood as the limiting posterior of agents who have been observing
the realization of a common signal for a sufficiently long time before the economic
interaction being studied begins.

It is worth noting that the argument proposed here avoids, at least partially, the short-
comings of alternative arguments in support of the common prior assumption.12 From
a Bayesian statistics point of view, even in the single-person decision problem, agents
need to assign positive probability to the true parameter. In the multi-person problem,
these results require that individuals agree onwhich events should be assigned positive
probability (mutual absolute continuity condition).13 These assumptions seem barely
weaker than the common prior assumption itself. By applying the consistency results
of our learning model, however, it is possible to show convergence of posterior beliefs
even when the individuals’ prior beliefs are mutually singular.

The common prior assumption has also been justified from a frequentist point of
view, by the argument that past experiences wash away differences in beliefs, because
limiting relative frequencies can be commonly learned. Corollary 6 has the same
flavor. It should be noted, however, that contrary to most of the results available, our
convergence results do not require stationarity of the underlying stochastic process.14

6 Bayesian interpretation

So far, the discussion focused on the classical Bayesian view that there is an objective
model of probability which explains the data. According to this view, there is a true
but unknown parameter that is to be estimated from the data. The prior assessments in

12 For a survey of such arguments, we refer to Morris (1995).
13 The absolutely continuous condition was suggested by Blackwell and Dubins (1962). Kalai and Lehrer
(1993) formalized this argument in a game theoretic setting, in which learning leads to Nash equilibrium.
14 See, for example, Kurz (1994).

123



468 S. Grant et al.

�̂t thus represent initial guesses about this parameter. Consistency matters to classical
Bayesians because they would like the posterior to converge in a meaningful way to
the true objective parameter as data accumulates.

An alternative view is the subjective view of probability, according to which there
is no such thing as an objective probability model. For a subjective Bayesian, prob-
abilities are nothing but a representation of degrees of belief. Here, we provide an
interpretation of the model that is compatible with this view.

Usually, an individual has some information about a statistical problem—perhaps
the order ofmagnitude of someparameter or somequalitative aspect of sampling.How-
ever, there is little reason to believe that an individual should have much confidence
in a sharply defined prior distribution, or that individuals with different backgrounds
should agree on all minute details of the model that explains the data. In particular, it is
much easier for subjective Bayesians to reach an agreement about qualitative features
of the process, such as conditional exchangeability, or hyper-parameters, such as the
concentration parameter α, than have a consensus about the whole prior distribution.
However, especially in high-dimensional problems, there is no guarantee that the opin-
ions of individuals with different subjective priors would eventually merge, no matter
how much data they have. From this point of view, consistency represents asymptotic
interpersonal agreement. Indeed, a model with nice frequentist properties is robust in
the sense that small variations in the specification of the prior will not lead to large
disagreements.

7 Discussion

The analysis presented in this paper has a number of limitations and poses questions
that are yet to be addressed. A central question has to do with whether or not the
learning process in the model can be extended to a model of preference updating over
time, in line with the axiomatization proposed by Kopylov (2016).

Our analysis assumes conditional exchangeability of the underlying stochastic pro-
cess. This guarantees asymptotic convergence of the learning process. The question not
addressed in the paper is whether or not conditional exchangeability can be weakened
to the case in which observed data are Cesàro summable. The relationship between
Cesàro summable sequences and exchangeable processes is well understood – see
for example Kingman (1978, Section 3-(c)). Such an approach will have the added
advantage of providing a non-probabilistic perspective on learning.

One of the open questions has to do with how the decision maker foresees future
sample paths, having observed past samples. How do we incorporate to the model a
decision maker that has the ability to theorize about plausible future sample paths?
The philosophical approach we have in mind for this is Zabell’s conception of “unan-
ticipated knowledge” (Zabell 1992, 2005). In our model, the decision maker can only
conceive counterfactual future experiments based on past observations. The limitation
of this approach is that the decisionmaker has no theory inmind for the data generating
process.

Finally, the model presented here allows for “awareness of unawareness” of
consequences. However, it does not incorporate the possibility of “awareness of

123



Learning under unawareness 469

unawareness” regarding future actions. We believe that our model can be general-
izad to allow for the possibility of learning “unanticipated actions” that are revealed
over time. The main difficulty is the interpretation of asymptotic results with such
generalization. In particular, how does one define and interpret a limiting process of
observed available actions? We think this is a potentially interesting avenue for future
research.
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Appendix

A Proof of Sect. 3.2

Proof of Theorem 2 1. From Theorem 1 (1), the set �̂
∣
∣ Ĥt is the set of all conditional

distributions of � that follows a DP(α, π) distribution, for every π ∈ �(Ŝt ) and
every finite sample history consistent with the observations x̂t .

2. From Theorem 1 (2), the set P[Xt+1vertAt

∣
∣ Ĥt ] is the set of all predictive distribu-

tions of the next observation, computed for every finite sample history consistent
with the observations x̂t . ��

B Proof of Sect. 4.1

Proof of Theorem 3 [1 ⇒ 2]
Fix some S ∈ Ŝ∞ for which |S|� 3. Denote by s1, s2 and s3 three distinct states in

S. Applying Axiom 1 (responsiveness), we have

{s2} ⊆ supp ρS
t (δs1; s2) ⊆ {s1, s2}

Thus it must be the case that for some β1
t ∈ [0, 1),

ρS
t (δs1; s2) = β1

t δs1 + (1 − β1
t )δs2 .

From repeated applications of Axiom 2 (symmetric treatment) we obtain:

ρS
t (δs′ ; s) = β1

t δs′ + (1 − β1
t )δs, for all pairs of states s′, s ∈ S.
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Next by repeatedly applying Axiom 4 (linearity in beliefs) it follows that for all p ∈
�(S) and all s ∈ S

ρS
t (π; s) = ρS

t

(
∑

s′∈S
π(s′)δs′ ; s

)

=
∑

s′∈S
π(s′)ρS

t (δs′ ; s)

=
∑

s′∈S
π(s′)

[

β1
t δs′ + (1 − β1

t )δs

]

= β1
t

∑

s′∈S
π(s′)δs′ + (1 − β1

t )δs
∑

s′∈S
π(s′)

= β1
t π + (1 − β1

t )δs .

By invokingAxiom5 (intertemporal coherence) and utilizingwhatwehave established
above, we see that

ρS
t (δs1; s2, s3) = ρS

t+1

(

ρS
t (δs1; s2); s3

)

= β1
t+1

[

β1
t δs1 + (1 − β1

t )δs2

]

+ (1 − β1
t+1)δs3

= β1
t+1β

1
t δs1 + β1

t+1(1 − β1
t )δs2 + (1 − β1

t+1)δs3

Similarly,

ρS
t (δs1; s3, s2) = β1

t+1β
1
t δs1 + β1

t+1(1 − β1
t )δs3 + (1 − β1

t+1)δs2

Since by Axiom 3 (invariance), ρS
t (δs1; s2, s3) = ρS

t (δs1; s3, s2), and {δs : s ∈ S}
forms a basis for �(S), it follows that

β1
t+1(1 − β1

t ) = (1 − β1
t+1) ⇒ β1

t+1 = 1

2 − β1
t

(1)

So, by setting α := β1
0/(1 − β1

0 )� 0, and applying expression (1) repeatedly, we obtain

β1
0 = α

α + 1
, β1

1 = α + 1

α + 2
, . . . , β1

t = α + t

α + t + 1

Thus,

1 − β1
t+1 = 1 − α + t + 1

α + t + 2
= 1

α + t + 2
,
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which plugging back into the expression for ρS
t (δs1; s2, s3), yields

ρS
t (δs1; s2, s3) = α + t

α + t + 2
δs1 + 2

α + t + 2

(
1

2
δs2 + 1

2
δs3

)

.

Furthermore, by repeated applications of Axiom 4 (linearity in beliefs) we have

ρS
t (π; s, s′) = α + t

α + t + 2
π + 2

α + t + 2

(
1

2
δs + 1

2
δs′
)

,

for all π ∈ �(S) and all s, s′ ∈ S.
We extend this result by induction. We assume that the representation holds for any

conceivable future sample path up to length n − 1. So in particular,

ρS
t (π; f1, . . . , fn−1) = βn−1

t π + (1 − βn−1
t )

n−1
∑

k=1

δ fk ,

where βn−1
t = (α + t)/(α + t + n − 1).

Applying Axiom 5 (intertemporal coherence), we obtain

ρS
t (δs; f1, . . . , fn) = ρS

t+n

(

ρS
t (δs; f1, . . . , fn−1); fn

)

= β1
t+n−1

(

βn−1
t δs + (1 − βn−1

t )

n−1
∑

k=1

δsk

)

+ (1 − β1
t+n−1)δt+n

By equating coefficients,

βn
t = β1

t+n−1 × βn−1
t

= α + t + n − 1

α + t + n
× α + t

α + t + n − 1

= α + t

α + t + n

and

1 − β1
t+n−1 = β1

t+n−1(1 − βn−1
t ) = 1

α + t + n
.

Finally, repeated applications of Axiom 4 (linearity in beliefs) yields

ρS
t (π; f1, . . . , fn) = α + t

α + t + n
π + n

α + t + n

n
∑

k=1

1

n
δ fk ,

as required.

123



472 S. Grant et al.

The feature that the parameter α does not depend on the conceivable state space S
readily follows from Axiom 2 (symmetric treatment).

[2 ⇒ 1] The proof is straightforward and is omitted. ��

C Proofs of Sect. 4.2

To prove the main result in Sect. 4.2, we need two lemmas. The first essentially shows
that the empirical average of any bounded and measurable function computed from
some fixed period t ′ onwards gets closer to the conditional expectation of that function.
The second lemma establishes that the decision maker’s assessment of that function
converges to the limiting conditional expectation.

Lemma 7 Take some t ′ � 1 and let g : CA → R be a bounded,B-measurable function.
If (Xt )t � 1 is conditionally exchangeable, then there exists a random variable Vg such
that

Eμ[g(Xt+1)
∣
∣Gt ] → Vg μ-a.s.

and for t � t ′

1

t − t ′ + 1

t
∑

k=t ′
Eμ[g(Xk+1)

∣
∣Gk] → Vg μ-a.s.

Proof of Lemma 7 Fix t ′ � 1 and let g : CA → R be a B-measurable function.
By Berti et al. (2004, Lemma 2.1), there exists a random variable Vg such that
Eμ[g(Xt+1)

∣
∣Gt ] → Vg μ-almost surely. For t � t ′, define

Yt =
t

∑

k=t ′

{

Vg − Eμ[Vg
∣
∣Gk]

k − t ′ + 1

}

.

The sequence (Yt )t � t ′ is a uniformly integrable martingale with respect to (Gt )t � t ′
and thus convergesμ-almost surely. Taking into accountBerti et al. (2004,Lemma2.1),
an application of Kronecker’s lemma gives

∣
∣
∣
∣
∣
Eμ[g(Xt+1)

∣
∣Gt ] − 1

t − t ′ + 1

t
∑

k=t ′
Eμ[g(Xk+1)

∣
∣Gk]

∣
∣
∣
∣
∣

= 1

t − t ′ + 1

∣
∣
∣
∣
∣

t
∑

k=t ′

{

Vg − Eμ[Vg
∣
∣Gk]

}

∣
∣
∣
∣
∣
→ 0 μ-a.s.

This concludes the proof of the lemma. ��
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Lemma 8 Take some t ′ � 1 and let g : C̃At ′ → R be a bounded, Bt ′-measurable
function. If (Xt )t � 1 is conditionally exchangeable, then there exists a randomvariable
Vg such that Eμ[g(Xt+1|At ′ )

∣
∣Gt ] → Vg μ-a.s. and

1. Eμ

⎡

⎣ max
ρ∈P

∣
∣ Ĥt

∑

g(ψt (Xt+1|At )|At ′ )ρ[ψt (Xt+1|At )]
∣
∣
∣Gt

⎤

⎦ → Vg μ-a.s.

2. Eμ

⎡

⎣ min
ρ∈P

∣
∣ Ĥt

∑

g(ψt (Xt+1|At )|At ′ )ρ[ψt (Xt+1|At )]
∣
∣
∣Gt

⎤

⎦ → Vg μ-a.s.

Proof For every t � t ′, define

Zt =
t

∑

k=t ′

{

g(Xk |At ′ ) − Eμ[g(Xk+1|At ′ )
∣
∣Gk]

k − t ′ + 1

}

.

The sequence (Zt )t � t ′ is a uniformly integrable martingale with respect to (Gt )t � t ′
and, thus, converges μ-almost surely to a random variable Z . Furthermore, if t � t ′,
then hk |At ′ = h′

k |At ′ = Xk |At ′ for every k� t ′ and h, h′ ∈ Ĥt . Thus,

max
ρ∈P

∣
∣ Ĥt

Eρ[g(ψt (Xt+1|At )|At ′ )] = max
ρ∈P

∣
∣ Ĥt

∑

g(ψt (Xt+1|At )|At ′ )ρ[ψt (Xt+1|At )]

= α + t ′ − 1

α + t

maxh∈Ĥt

{
∑t ′−1

k=1 g(hk |At ′ )
}

t ′ − 1
+ t − t ′ + 1

α + t

∑t
k=t ′ g(hk |At ′ )

t − t ′ + 1

= α + t ′ − 1

α + t

maxh∈Ĥt

{
∑t ′−1

k=1 g(hk |At ′ )
}

t ′ − 1

− α + t ′ − 1

α + t

∑t
k=t ′ g(hk |At ′ )

t − t ′ + 1
+

∑t
k=t ′ g(hk |At ′ )

t − t ′ + 1
.

Therefore, if Mg > 0 is the upper bound of |g|, then
∣
∣
∣
∣
∣
∣

Eμ

⎡

⎣ max
ρ∈P

∣
∣ Ĥt

Eρ[g(ψt (Xt+1|At )|At ′ )]
∣
∣Gt

⎤

⎦ − 1

t − t ′ + 1

t
∑

k=t ′
Eμ[g(Xk+1|At ′ )

∣
∣Gk]

∣
∣
∣
∣
∣
∣

≤ 2(α + t ′ − 1)

α + t
Mg +

∣
∣
∣
∣
∣

1

t − t ′ + 1

t
∑

k=t ′
(k − t ′ + 1)Zt

∣
∣
∣
∣
∣
.

An application of the Kronecker’s lemma yields that

∣
∣
∣
∣
∣

1

t − t ′ + 1

t
∑

k=t ′
(k − t ′ + 1)Zt

∣
∣
∣
∣
∣
→ 0 μ-a.s.
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and, because 2(α+t ′−1)
α+t → 0 surely, the desired convergence for g follows from

Lemma 7. The same argument applied to case (2) completes the proof. ��

We are ready to prove Theorem 4.

Proof of Theorem 4 For each bounded, Bt ′ -measurable function g : C̃At ′ → R, let
Ng ∈ F denote the set with μ(Ng) = 0 outside of which the convergence shown in
Lemma 8 does not happen. BecauseG is countably generated, there exists a countable
subsetset G0 of bounded, measurable functions on C̃

At ′ such that the convergence is
uniform for every g ∈ G if and only if it happens for every g ∈ G

0. Noting that
μ(∪g∈GNg) = 0 completes the proof. ��

References

Benavoli, A., Mangili, F., Ruggeri, F., et al.: Imprecise Dirichlet process with application to the hypothesis
test on the probability that X ≤ Y . J. Stat. Theory Pract. 9(3), 658–684 (2015)

Berti, P., Pratelli, L., Rigo, P.: Limit theorems for a class of identically distributed random variables. Ann.
Probab. 32(3), 2029–2052 (2004)

Bewley, T.F.: Knightian decision theory. Part I. Decis. Econ. Finance 25(2), 79–110 (2002)
Billot, A., Gilboa, I., Samet, D., et al.: Probabilities as similarity-weighted frequencies. Econometrica 73(4),

1125–1136 (2005)
Blackwell, D., Dubins, L.: Merging of opinions with increasing information. Ann. Math. Stat. 33(3), 882–

886 (1962)
Boole, G.: An Investigation of the Laws of Thought: On Which are Founded the Mathematical Theories of

Logic and Probabilities. George Boole’s Collected Logical Works, Walton and Maberly (1854)
Crès, H., Gilboa, I., Vieille, N.: Aggregation of multiple prior opinions. J. Econ. Theory 146(6), 2563–2582

(2011)
Dominiak, A., Tserenjigmid, G.: Ambiguity under growing awareness. J. Econ. Theory 199, 105256 (2022)
Epstein, L.G., Schneider, M.: Learning under ambiguity. Rev. Econ. Stud. 74(4), 1275–1303 (2007)
Escobar, M.D., West, M.: Bayesian density estimation and inference using mixtures. J. Am. Stat. Assoc.

90(430), 577–588 (1995)
Ferguson, T.S.: A Bayesian analysis of some nonparametric problems. Ann. Stat. 1(2), 209–230 (1973)
Ferguson, T.S.: Prior distributions on spaces of probability measures. Ann. Stat. 2(4), 615–629 (1974)
Genest, C., Zidek, J.V.: Combining probability distributions: a critique and an annotated bibliography. Stat.

Sci. 1(1), 114–135 (1986)
Ghosh, J.K., Ramamoorthi, R.V.: Bayesian Nonparametrics. Springer, Secaucus (2003)
Gilboa, I., Samet, D., Schmeidler, D.: Utilitarian aggregation of beliefs and tastes. J. Polit. Econ. 112(4),

932–938 (2004)
Gilboa, I., Macheroni, F., Marinacci, M., et al.: Objective and subjective rationality in a multiple prior

model. Econometrica 78(2), 755–770 (2010)
Grant, S., Quiggin, J.: Inductive reasoning under unawareness. Econ. Theory 54, 717–755 (2013). https://

doi.org/10.1007/s00199-012-0734-y
Grant, S., Guerdjikova, A., Quiggin, J.: Ambiguity and awareness: a coherent multiple priors model. BE J.

Theor. Econ. 21(2), 571–612 (2021)
Halpern, J.Y., Rong, N., Saxena, A.: Mdps with unawareness. In: Proceedings of the Twenty-Sixth Confer-

ence on Uncertainty in AI, pp. 228–235 (2010)
Hylland,A., Zeckhauser, R.: The impossibility ofBayesian group decisionmakingwith separate aggregation

of beliefs and values. Econometrica 47(6), 1321–1336 (1979)
Kalai, E., Lehrer, E.: Rational learning leads to Nash equilibrium. Econometrica 61(5), 1019–1045 (1993)
Kallenberg, O.: Spreading and predictable sampling in exchangeable sequences and processes. Ann. Probab.

16(2), 508–534 (1988)
Karni, E., Schmeidler, D.: Utility theory with uncertainty. In: Hildenbrand, W., Sonnenschein, H. (eds.)

Handbook of Mathematical Economics, pp. 1763–1831. Elsevier Science, New York (1991)

123

https://doi.org/10.1007/s00199-012-0734-y
https://doi.org/10.1007/s00199-012-0734-y


Learning under unawareness 475

Karni, E., Vierø, M.L.: “Reverse Bayesianism”: a choice-based theory of growing awareness. Am. Econ.
Rev. 103(7), 2790–2810 (2013)

Karni, E., Vierø, M.L.: Awareness of unawareness: a theory of decision making in the face of ignorance. J.
Econ. Theory 168, 301–328 (2017)

Kingman, J.F.C.: Uses of exchangeability. Ann. Probab. 6(2), 183–197 (1978)
Kochov, A.: A behavioral definition of unforeseen contingencies. J. Econ. Theory 175, 265–290 (2018)
Kopylov, I.: Subjective probability, confidence, and Bayesian updating. Econ. Theory 62(4), 635–658

(2016). https://doi.org/10.1007/s00199-015-0929-0
Kurz, M.: On the structure and diversity of rational beliefs. Econ. Theory 4(6), 877–900 (1994). https://doi.

org/10.1007/BF01213817
Marinacci, M.: Learning from ambiguous urns. Stat. Pap. 43(1), 143–151 (2002)
Meier, M., Schipper, B.C.: Bayesian games with unawareness and unawareness perfection. Econ. Theory

56, 219–249 (2014). https://doi.org/10.1007/s00199-013-0788-5
Mongin, P.: Consistent Bayesian Aggregation. J. Econ. Theory 66, 313–351 (1995)
Morris, S.: The common prior assumption in economic theory. Econ. Philos. 11(02), 227–253 (1995)
Nehring, K.: imprecise probabilistic belief as a context for decision-making under ambiguity. J. Econ.

Theory 144, 1054–1091 (2009)
Pivato, M.: Subject expected utility with a spectral state space. Econ. Theory 69, 249–313 (2020). https://

doi.org/10.2139/ssrn.3232039
Raiffa, H., Schlaifer, R.: Applied Statistical Decision Theory. Graduate School of Business Administration,

Harvard University, Division of Research (1961)
Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1986)
Walker, S.G., Damien, P., Laud, P.W., et al.: Bayesian nonparametric inference for random distributions

and related functions. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 61(3), 485–527 (1999)
Walley, P.: Statistical Reasoning with Imprecise Probabilities. No. 42 in Monographs on Statistics and

Applied Probability. Chapman and Hall (1991)
Walley, P.: Inferences from multinomial data: learning about a bag of marbles. J. R. Stat. Soc. Ser. B (Stat.

Methodol.) 58(1), 3–57 (1996)
Weerahandi, S., Zidek, J.V.: Multi-Bayesian statistical decision theory. J. R. Stat. Soc. Ser. A (Gen.) 144(1),

85–93 (1981)
Weerahandi, S., Zidek, J.V.: Elements of multi-Bayesian decision theory. Ann. Stat. 11(4), 1032–1046

(1983)
Zabell, S.L.: Predicting the unpredictable. Synthese 90(2), 205–232 (1992)
Zabell, S.L.: Symmetry and Its Discontents: Essays on the History of Inductive Probability. Cambridge

University Press, Cambridge (2005)
Zidek, J.V.: Group decision analysis and its application to combining opinions. J. Stat. Plan. Inference 20(3),

307–325 (1988)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1007/s00199-015-0929-0
https://doi.org/10.1007/BF01213817
https://doi.org/10.1007/BF01213817
https://doi.org/10.1007/s00199-013-0788-5
https://doi.org/10.2139/ssrn.3232039
https://doi.org/10.2139/ssrn.3232039

	Learning under unawareness
	Abstract
	1 Introduction
	2 The discovery process
	2.1 Underlying stochastic process
	2.2 Discovery of actions and consequences

	3 The inference problem
	3.1 Evolution of the set of conceivable states
	3.2 Evolution of beliefs

	4 Properties of the model
	4.1 Internal consistency
	4.2 External consistency

	5 Merging of opinions
	6 Bayesian interpretation
	7 Discussion
	Appendix
	A Proof of Sect. 3.2
	B Proof of Sect. 4.1
	C Proofs of Sect. 4.2
	References






