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Abstract
This paper provides four theorems on the existence of a free-disposal equilibrium in a
Walrasian economy: the first with an arbitrary set of agents with compact consumption
sets, the next highlighting the trade-offs involved in the relaxation of the compactness
assumption, and the last two with a countable set of agents endowed with a weighting
structure. The results generalize theorems in the antecedent literature pioneered by
Shafer–Sonnenschein in 1975, and currently in the form taken in He–Yannelis 2016.
The paper also provides counterexamples to the existence of non-free-disposal equi-
librium in cases of both a countable set of agents and an atomless measure space of
agents. One of the examples is related to oneChiakiHara presented in 2005. The exam-
ples are of interest because they satisfy all the hypotheses of Shafer’s 1976 result on
the existence of a non-free-disposal equilibrium, except for the assumption of a finite
set of agents. The work builds on recent work of the authors on abstract economies,
and contributes to the ongoing discussion on the modelling of “large” societies.
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1 Introduction

This paper presents

1. a technique, originally developed for Markov Processes and Statistical Deci-
sion Theory in Duanmu (2018), for extending theorems on finite models to
infinite (including uncountable) models, applied here to free-disposal and non-
free-disposal Walrasian equilibrium in exchange economies;

2. a novel model with a continuum of agents in which individual agents are not
necessarily negligible, local externalities can be readily formulated, and in which
we rely on convexity rather than monotonicity in order to focus our attention on
the presence of bads like atmospheric CO2 emissions;

3. a generalization to a continuum of agents of the state-of-the-art treatment of
externalities, price dependencies, discontinuities and nonconvexities in finite and
countably infinite economies developed in He and Yannelis (2016);

4. a weakening of the compactness assumptions on consumption sets in He and
Yannelis (2016);

5. counterexamples showing that the existence results do not extend to the atomless
measure space context without additional assumptions.

In recent work, Anderson et al. (2021), henceforth ADKU, presented a general
existence theorem for abstract economies with an arbitrary set of agents, each of
whose action sets lie in arbitrarily different locally convex topological vector spaces:
that result generalizes benchmark results of Carmona and Podczeck (2016) and He
and Yannelis (2016) from the finite or countably infinite agent context to uncountably
many agents. That generalization rested on a technique, originally developed in the
context of Markov Processes and Statistical Decision Theory by Duanmu (2018). In
this paper, we explore the application of the ADKU theorem and Duanmu technique
to the existence of Walrasian Equilibrium in exchange economies.
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Walrasian equilibrium theory with and without… 389

Of the many conceptual differences between abstract economies and exchange
economies, we focus on the notion of aggregation. In abstract economies, there is no
aggregation of consumptions and endowments, while in exchange economies, aggre-
gation is central to the definitions of allocation and Walrasian equilibrium. In finite
abstract and exchange economies as well as games, agents act independently, maxi-
mizing their preferences taking the environment (which may depend on the choices
of others) as given. In exchange economies, the choice is guided by prices; this makes
the equilibrium decentralized, in the sense that a social planner is not required to coor-
dinate the actions of different agents. In economies and games with a measure space
of agents, by contrast, agents’ choices must be measurable, and thus cannot be wholly
independent of each other.

ADKU provides a novel model of abstract economies with a continuum of agents in
which, because agents’ preferences are assumed continuous in the product topology,
each agent chooses independently and measurability of the collective choices is not
required. In this paper, we adapt that model to exchange economies with externalities
that are continuous in the product topology. Our notion of aggregation, arbitrary sums,
imposes no measurability requirement.1 In an atomless exchange economy, individual
agents are negligible. By contrast, in our continuum model with arbitrary sums, indi-
vidual agents need not be negligible. In particular, we can readily formulate a notion
of local externalities in which each agent’s welfare is affected by the choices of nearby
individual agents.

Aumann (1966) showed that the assumption of convexity of preferences can be
dispensed with in atomless exchange economies, due to the convexifying effects of
aggregation on the choices of individually negligible agents. Since agents need not be
negligible in our context, we cannot dispense with the convexity assumption, although
we can weaken it somewhat following He and Yannelis (2016). However, Aumann’s
paper requires the assumption that preferences are monotonic, an assumption that
neither we nor (He and Yannelis 2016; Shafer 1976; Shafer and Sonnenschein 1976)
require. While the monotonicity assumption is ubiquitous in Walrasian Equilibrium
Theory, it is antithetical to the presence of bads, commodities that are harmful to
most or all consumers. Hildenbrand (1970) works in a production economy. Instead
of monotonicity, he assumes free disposal in production, which guarantees that bads
(whether present in the endowments or generated as byproducts of production) can be
freely disposed at an equilibrium that purports to exactly equate supply and demand. In
an era of rapid climate change, somecommodities (notably atmosphericCO2 emission)
fall decidedly into the category of bads and can no longer be brushed aside as peripheral
or unimportant. The fact that the convexity assumption can be dispensed with in an
atomless continuum of agents is a nice dessert, but not the main course. It is our
strongly-held conviction that, in a world facing climate change, assuming convexity

1 Clearly, there is a tradeoff. Continuity in the product technology imposes constraints on primitives (pref-
erences), while measurability allows weaker constraints on primitives but requires stronger endogenous
constraints on outcomes.
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is a small price to pay for meaningfully incorporating bads.2

If preferences are stronglymonotonic, equilibriumprices are strictly positive and the
aggregate demand exactly equals the aggregate supply, so we obtain non-free-disposal
equilibrium. If one weakens the monotonicity assumption, one must consider free-
disposal as well as non-free-disposal equilibrium. In some settings, this is relatively
harmless. For example, atmospheric oxygen is essential for life, but the supply is
sufficient that everyone3 can get all they need. While atmospheric CO2 has doubled
since the pre-industrial era, the amount of oxygen used up in that doubling is negligible
compared to the supply, and no reasonably foreseeable technology could deplete the
supply of oxygen. For that reason, in a model containing goods like food, shelter, …,
and oxygen, society is perfectly happy with a free-disposal equilibrium in which the
demand for oxygen is strictly less than the supply, and the price of oxygen is zero.
However, if we add atmospheric CO2 to the model, then a free-disposal equilibrium
with a zero price for atmospheric CO2 emissions is a recipe for accelerating climate
change. A non-free-disposal equilibrium, or at least a reduced-disposal equilibrium,
with a negative price for atmosphericCO2 emissions, is required to stop or slow climate
change. At its heart, free-disposal of bads is a problem of incomplete markets, in that
some markets are not required to clear.

He and Yannelis (2016) assume that consumption sets are compact. With a finite
number of commodities, there is a standard technique, perfected and consolidated in
Debreu (1959), to first establish equilibrium in a truncated economy and then use
the continuity of preferences to extend to the case of unbounded consumption sets.
However, as He and Yannelis noted in their Remark 6, it is an open problem whether
their weakened continuity assumption suffices for this extension. Our Theorems 2 and
3 belowwork with continuity assumptions considerably weaker than in the antecedent
literature due to Debreu, Shafer, Sonnenschein and their followers, but stronger than
those assumed by He and Yannelis. These results are new for finite economies, and we
further extend them to economies with a continuum of agents aggregated by arbitrary
sums. However, whether the continuity assumption of He and Yannelis is sufficient to
dispense with the compactness assumption remains open.

We now turn to the central technical driver of this paper, the Duanmu (2018) tech-
nique for extending known results for finite models to models of arbitrary cardinality.
The Duanmu technique is a novel application of nonstandard analysis. Previous work
in nonstandard probability andmathematical economics focused primarily on studying
hyperfinite models, uncountable models that nonetheless satisfy all the formal prop-
erties of finite models. Scholars used the Loeb measure construction to convert these
hyperfinite models into standard measure-theoretic models whose properties could
be established, and then derived asymptotic properties for large finite models. Thus,

2 An anonymous referee kindly pointed out that the 1970s literature on mixed markets associated with
the names of Hildenbrand, Mertens, Dreze, Gabszewicz, Schmeidler, Shitovitz and others (Hildenbrand
1974 is a standard reference), makes the convexity assumption only on the atoms. It is important to bear
in mind that this literature concerns a setting without aggregated externalities in consumption and it is this
that necessitates the convexity assumption on all agents, be they atomic or non-atomic; see for example
Assumption A.2 in Khan and Vohra (1985) and their references.
3 Except individuals who need additional oxygen, from tanks or oxygen concentrators, due to illness or
disability. Oxygen concentrators and tanks should be treated as separate commodities from atmospheric
oxygen, and carry a positive price.
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a hyperfinite random walk becomes a Brownian motion, and this implies Donsker’s
Theorem. A Stieltjes integral with respect to a hyperfinite random walk becomes an
Itô Integral, and this implies Itô’s Lemma. Euler–Maruyama schemes on a hyperfinite
random walk become solutions of stochastic differential equations (SDEs), and this
leads to new standard theorems on strong solutions of SDEs. The nonstandard core
of a hyperfinite exchange economy equals the set of nonstandard equilibria, and this
leads to new standard theorems on the asymptotic behavior of the core. There aremany
other examples.

By contrast, Duanmu’s technique embeds a standard model of arbitrary cardinality
into a hyperfinite model. It has been known since the 1970s that this was possible,
but it was not understood that doing so could be very useful. While the previous
literature focused on using theorems that were true in the continuum (but false in finite
models) to obtain asymptotic properties of large finite models, Duanmu’s technique
uses theorems that are true in finite models to prove new theorems about models
of arbitrary cardinality. ADKU applied Duanmu’s technique to abstract economies,
this paper applies it to exchange economies with arbitrary sums, and we intend in
future work to apply it to exchange and production economies with a (not necessarily
atomless) measure space of agents.

Section 2 introduces basic notions of nonstandard analysis, and adds a primer on
aggregation over an uncountable set. Sections 3, 4 and 5 presents our main results: the
first with free disposal, the second without, and both with an arbitrary set of agents,
and the third with a countable set of agents endowed with a weighting structures. We
observe that Sect. 4 on economies without free-disposal is somewhat negative in tone
and spirit, but perhaps the examples it presents are as important as the positive result
in Sects. 3 and 5: these examples are inspired by those in Hara (2005, 2006, 2008) and
Manelli (1991). Section 6 is devoted to the proofs of the results, and Sect. 7 concludes
the paper by returning to the exciting possibilities opened by moving to the next
steps in the trajectory of Walrasian theory as laid out in this work: the investigation
of economies with continuum of agents and economies with an infinite number of
commodities.

2 Mathematical preliminaries

2.1 Basics of nonstandard analysis

For the necessary background to nonstandard analysis we refer the reader to Arkeryd
et al. (1996), Cutland et al. (1995) and Loeb and Wolff (2000).4 We begin this section
by a brief introduction to the relevant notation from nonstandard analysis.

We use ∗ to denote the nonstandard extension map taking elements, sets, functions,
relations, etc., to their nonstandard counterparts. In particular, ∗

R and ∗
N denote

the nonstandard extensions of the reals and natural numbers, respectively. Given a

4 See also Duanmu and Roy (2020) and Duanmu et al. (2018) for brief reviews, and to Khan and Sun (1997)
for a user-friendly version done for mathematical economists. The content of this subsection is taken from
Anderson et al. (2021).
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topological space (Y , T ) and let y ∈ Y , the monad of ∗y, denoted byμ(∗y)5 is defined
to be the set

⋂{∗U : y ∈ U ∈ T }. The near-standard points of ∗Y are points in the
monad of some standard points. We use NS(∗Y ) to denote the subset of near-standard
elements in ∗Y .

We let st : NS(∗Y ) → Y denote the standard part map taking near-standard ele-
ments to their standard parts. In both cases, the notation elides the underlying space Y
and the topology T , because the space and topology will always be clear from context.
We conclude this section with the following well-known result of Arkeryd et al. (1996,
Theorem 5.1).

Theorem (Arkeryd–Cutland–Henson) Let X be a topological space. A set A ⊂ X is
compact if and only if for each y ∈ ∗A, there is an x ∈ A such that y ∈ μ(∗x). In
particular, X is compact if every point of ∗X is near-standard.

2.2 Aggregation over uncountable sets

We start by introducing the following definition of arbitrary sum.

Definition 1 Let A be an arbitrary set and f be a non-negative real valued function
on A. Then

∑
a∈A f (a) is defined to be the supremum of the set of all finite sums

f (a1)+ f (a2)+. . .+ f (ak)where k ∈ N and a1, a2, . . . , ak are distinct elements in A.
When f is a vector-valued function, we apply the supremumproperty coordinate-wise.

Throughout this paper, we use
∑

to denote the arbitrary sum. Note that in the context
with which we shall use aggregation over an uncountable set in this work, a finite
arbitrary sumdoesnotnecessarily imply an essentially-countablemodel. For the reader
to appreciate this subtlety, we need the definition of a Walrasian equilibrium, and so
we return to the point once the definition is in place.

3 Walrasian equilibria with free disposal

In this section, we establish the existence of free-disposal Walrasian equilibrium for
exchange economies with possibly infinitely many agents, under similar assumptions
of He and Yannelis (2016, Theorem 2).

3.1 Compact consumption sets

Our definition of exchange economy follows from He and Yannelis (2016).

Definition 2 An exchange economy is E is a set of triples {(Xi , Pi , ei ) : i ∈ T }, where
1. T is an arbitrary set of agents;
2. Xi ⊂ R

l≥0 is the consumption set of agent i , and X = ∏
i∈T Xi with the product

topology;

5 We sometimes write μ(y) for the monad when the context is clear.
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3. Pi : X × Δ′ � Xi is the preference correspondence of agent i , where Δ′ = {p ∈
R
l : ‖p‖ = ∑l

k=1 |pk | ≤ 1} is the set of all prices;
4. ei ∈ Xi is the initial endowment of agent i , where e = ∑

i∈T ei 
= 0.

An exchange economy is said to have finite aggregate endowment if
∑

i∈T ei � ∞.

Given a price p ∈ Δ′, the budget set of agent i is Bi (p) = {xi ∈ Xi : p ·xi ≤ p ·ei }.
Let ψi (x, p) = Bi (p) ∩ Pi (x, p) for each i ∈ T , x ∈ X and p ∈ Δ′.

Definition 3 Let E = {(Xi , Pi , ei ) : i ∈ T } be an exchange economy with finite
aggregate endowment (

∑
i∈T ei < ∞). A free-disposal Walrasian equilibrium for the

economy E is (x̄, p̄) ∈ X × Δ′ such that

1. p̄ 
= 0;
2. For each i ∈ T , x̄i ∈ Bi ( p̄) and ψi (x̄, p̄) = ∅;
3.

∑
i∈T x̄i ≤ ∑

i∈T ei .

We now return to the point that that our assumption of a finite aggregate endowment
does not necessarily imply a countable model. In the context of a Walrasian economy,
while an agentmayhave zero endowment, this does not guarantee that at an equilibrium
(p, x), her consumption need be zero. If the equilibrium price system p is strictly
positive, the claim would indeed be true. However, given that our focus is on non-free-
disposal, and on commodities that are universally conceived of as being undesirable
and as “bads,” we are interested in prices in which some components are allowed to
be zero or negative. At equilibrium then, an agent with a zero endowment may well
end up consuming a non-zero vector! In particular, he or she may choose to consume
a positive amount of some bad with a negative price in order to finance the purchase
of a positive amount of some good. At any equilibrium, only a countable number of
agents will have non-zero consumption, but the countable set may well vary from
equilibrium to equilibrium.

There is a further point to be made regarding the equilibrium that we are consider-
ing. It is customary to define the free-disposal equilibrium as capturing a situation
where aggregate consumption is less than or equal to aggregate endowment, and
where the price-system is non-negative. A non-free-disposal equilibrium, then, is
where the aggregate consumption equals the aggregate endowment, and the price-
system is allowed to have negative components. However, this taxonomy misses out
an important third case. Consider an economy with two “bad” commodities, one of
which can be freely disposed of, and the aggregate consumption of the other is equal
to its endowment. Consider, for example, the freely disposed “bad” commodity to
possibly be CO2, while the second may be some composite of the ozone-depleting
chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs) that have been
phased out under the Montreal Protocol. In the resulting equilibrium, the price of CO2
is zero and it is freely-disposed, while the price of CFCs and HCFCs is sufficiently
negative to deter their production. Thus, our definition of free-disposal equilibrium
uses the same price space Δ′ that we use for the non-free-disposal case. We show the
existence of a free-disposal equilibrium in which the equilibrium price-system can be
non-negative if we wish, but there may be other potentially attractive (from a social
policy standpoint) equilibria in which some prices are negative.

He and Yannelis (2016) introduce the following “continuous inclusion property”.
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Definition 4 Let X and Y be convex subsets of R�.6 A correspondence F : X � Y is
said to have the continuous inclusion property (CIP) at x if there exists an open set Ox

containing x and a nonempty correspondence G : Ox � Y such that G(z) ⊂ F(z)
for every z ∈ Ox and con(G) has a closed graph, where “con” denotes the convex hull
operation applied separately to each x ∈ X .

Our first main result establishes the existence of a free-disposal Walrasian equilibrium
for exchange economies with an arbitrary set of agents and with a finite aggregate
endowment: it generalizes the following theorem of He and Yannelis (2016, Theo-
rem 2).

Theorem (He–Yannelis (Free-disposal)) Suppose T is a finite set. Let E =
{(Xi , Pi , ei ) : i ∈ T } be an exchange economy satisfying the following assumptions:
for each i ∈ T :

1. Xi is a nonempty, compact and convex subset of Rl≥0;

2. ψi has the CIP at each (x, p) ∈ X ×Δ withψi (x, p) 
= ∅ whereΔ = {p ∈ R
l≥0 :

∑l
k=1 pk = 1};

3. xi /∈ con(ψi (x, p)) for all (x, p) ∈ X × Δ.

Then E has a free-disposal Walrasian equilibrium.

We now present our result.

Theorem 1 Let E = {(Xi , Pi , ei ) : i ∈ T } be an exchange economy with finite
aggregate endowment. Suppose, for each i ∈ T :

1. Xi is a nonempty, compact and convex subset of Rl≥0;
2. ψi has the CIP at each (x, p) ∈ X × Δ with ψi (x, p) 
= ∅;
3. xi /∈ con(ψi (x, p)) for all (x, p) ∈ X × Δ.

Then E has a free-disposal Walrasian equilibrium. Moreover, there is at least one
equilibrium in which the price vector is an element of Δ.

Next we present two examples of economies that illustrate and supplement the
above theorem.7 The first pertains to an economywith local externalities and infinitely
many players, while the second depicts an economy with a continuum of equilibrium
allocations such that at any equilibrium, only a countable number of agents will have
non-zero consumption, but this countable set varies from equilibrium to equilibrium.

Example 1 The set of agents T is the set of integers Z. For each t ∈ T , let Xt = [0, 1]
so each Xt is a non-empty, compact and convex subset of R. The endowment for
agent t is et = 1

2|t | . Hence the economy has the finite aggregate endowment property.
The utility function of agent t is given by ut (x) = 2xt − ∑

k∈Z
xt+k
2|k| . Each player’s

consumption affects every other player, but the affects that of player t’s consumption

6 He and Yannelis (2016) prove their result for an abstract economy in the setting of locally convex
topological vector spaces: in this paper, we limit ourselves to finite-dimensional Euclidean spaces.
7 The two examples presented here are motivated by comments of two anonymous referees to whom the
authors are grateful.
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is greatest on those players closest to t , and diminishes rapidly for players further from
t . Note that the set of possible prices is Δ = {1}. Notice that in the term for k = 0 in
the sum, we have xt+0/20 = xt which cancels out half of the first term 2xt . Finally,
note that there is a unique equilibrium: xt = 1/2|t | for all t ∈ T and p = 1.

Example 2 The set of agents T is [0,∞). For each t ∈ T , let Xt = [0, 1]2 so each
Xt is a non-empty, compact and convex subset of R2. The endowment for agent t is
et = ( 1

2|t | ,
1
2|t | ) if t is an integer and et = (0, 0) otherwise. Hence the economy has

the finite aggregate endowment property. For x ∈ X = ∏
t∈T Xt , let x(i)t denote the

amount of the i-th commodity for agent t . There are two goods, so we must have the
set of prices equaling Δ′ = {p : ‖p‖1 ≤ 1}. The utility function of agent t is given
by ut (x) = x(1)t , and hence is independent of his/her consumption of commodity
2 as well as of the consumption of any other player. If the price of the second good
is positive, everyone consumes zero of it, and there is excess supply. If the price of
the second good is negative, everyone wants to consume an unbounded amount of
it and use the income generated to purchase an unbounded amount of good one, so
there is excess demand for both goods. So at equilibrium, the price of the second good
must be zero, and the price of the first good must be an arbitrary element α ∈ (0, 1],
since we normalize prices in Δ′. The demand set of agent t at the price (α, 0) is
{1/2}|t | × [0,∞) if t is an integer, {0} × [0,∞) otherwise. Given any allocation
{x(2)t : t ∈ T } of good 2, let x(1)t = e(1)t . Then x is an equilibrium allocation
of the economy corresponding to the price (α, 0). Note that only a countable agents
consume a positive amount; however, for every countable subset U ⊂ T , there is an
equilibrium allocation in which the set of agents with nonzero consumption of good
2 is exactly U . Thus, there are an uncountable number of equilibrium allocations.

3.2 Unbounded consumption sets

The existence proofs that are potentially relevant to this paper each come in two steps:
the first step for a compactified economy, and the second step showing the irrelevance
of the suitably-chosen compactification if it is properly chosen. The approach due
to Debreu is set in finite economies and fully exploits the convexity postulate on
preferences, whereas that due to Aumann, and Schmeidler and Hildenbrand following
him, is set in an atomless measure-theoretic economy, and has therefore no need to
assume convexity.8 Since we are not restricting ourselves to atomless economies, the
convexity assumption andDebreu’s approach is available to us, and it is interesting that
we can exploit it even in the context of economies with an arbitrary set of agents. But
there are subtleties here that ought to be noted. First, Debreu’s argument makes no use
of the continuity postulate in his second step; and second, his postulates on the given
(untruncated) economy translate trivially to analogous postulates for the truncated

8 Note that Debreu uses only one truncation and the notion of “asymptotic cones,” while the Aumann–
Schmeidler–Hildenbrand approach relies on a sequence of truncations and on versions and generalizations
of Fatou’s lemma. Aumann and Schmeidler also need to assume monotonicity, which is not required by
Debreu or Hildenbrand. However, Hildenbrand (1970), who works in a production economy, assumes free
disposal in production, an assumption that guarantees that bads (whether present in the endowment or
generated as byproducts of production) can be freely disposed. It should be noted that Florenzano (2003)
could be seen as possibly presenting a third approach that synthesizes the two categorized above.
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Fig. 1 The failure of the truncation argument under the CIP

one. The truncation technique works well when preferences have open fibers or open
graph; see Florenzano (2003) for extended illustration. This is no longer true under the
relaxed continuity postulate that we have so far been working with in this paper. This
is somewhat of a surprise: to restate it in specific terms, the CIP does not necessarily
carry over to the truncated consumption set.9 We present an example that demonstrates
this difficulty: it limits itself to an economywith a single agent and a single commodity
(Fig. 1).

Example 3 Let X = R+ and P : X � X defined as P(x) = {1/x} ∪ {1} if x > 0 and
rational, P(x) = {1/x} ∪ {0} if x is irrational, and P(0) = [1,∞). Consider a corre-
spondence F : X � X whose graph is {(x, y)|y = 1/x, x > 0} ∪ ({0} × [1,∞)}).
Then F has non-empty and convex values, and a closed graph (and also upper hemi-
continuous). Since F(x) ⊆ P(x), then P has the CIP.

Let A = [0, 1]. Consider any convex and compact set K containing A in its interior.
Then K = [0, b], b > a. Define the restricted correspondence P|K on the truncated
set K as P|K : K � K where P|K (x) = P(x) ∩ K . Then, P|K (0) = [1, b] and for
all x ∈ (0, 1/b), P|K (x) = {1} if x is rational and P|K (x) = {0} if x is irrational, and
for all x ≥ 1/b, P|K (x) = P(x). It is clear that P|K does not have the CIP at 0.

The example above shows that the preference correspondence in every truncated
choice set is not well-behaved and hence proofs based on truncation techniques cannot

9 See also He and Yannelis (2017) for further discussion on the properties of correspondences with the CIP.
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be used. Next, we present a simple result based on the strengthening of the CIP10

that fulfills the requirement that for each truncation of the economy, there exists a
large enough compact, convex consumption set containing it such that the preference
correspondence restricted to this covering consumption set has the CIP.

Definition 5 Let X , Y be two subsets of Rn . A correspondence F : X � Y has the
bounded continuous inclusion property if for each bounded subset A of X , there exists
a convex and compact set B containing A such that the restricted correspondence
F |B : B � Y has the CIP at each x ∈ B such that F |B(x) 
= ∅.
Theorem 2 Let E = {(Xi , Pi , ei ) : i ∈ T } be an exchange economy with finite
aggregate endowment (

∑
i∈T ei < ∞). Suppose, for each i ∈ T :

1. Xi is a nonempty, closed, bounded below and convex subset of Rl ;
2. ψi has the bounded CIP at each (x, p) ∈ X × Δ with ψi (x, p) 
= ∅;
3. xi /∈ con(ψi (x, p)) for all (x, p) ∈ X × Δ;
4. for all (x, p) ∈ X × Δ, yi ∈ Pi (x, p) and all λ ∈ (0, 1), there exists δ < λ such

that δyi + (1 − δ)xi ∈ Pi (x, p).

Then E has a free-disposal equilibrium.

Remark 1 He–Yannelis write: “We have imposed the compactness condition on the
consumption set. It is not clear to us at this stage whether this condition can be dis-
pensed with. [...] Consequently, relaxing the compactness assumption seems to be
an open problem.”11 Whereas we partially resolve this open problem in Theorem 2
above, it is important for the reader to appreciate that the example above is not a coun-
terexample to the existence of an equilibrium under the CIP: that remains an open
problem.12

4 Walrasian equilibria without free disposal

The existence of a non-free-disposal Walrasian equilibrium in an exchange economy
with finitely many agents under moderate regularity conditions is well-kown; see for
example Shafer (1976, Theorem2), Bergstrom (1976, Theorem2) andHe andYannelis
(2016, Theorem 4). It is natural to ask whether such an existence result extends to an
economy with infinitely many agents. We answer this question in the negative by
providing counterexamples. Consider first the following definition, now standard in
the literature.

Definition 6 A (non-free-disposal) Walrasian equilibrium13 for the exchange econ-
omy E = {(Xi , Pi , e(i)) : i ∈ T } is (x̄, p̄) ∈ X × Δ′ such that

10 The treatment of Podczeck and Yannelis referred to in Footnote 1 below does not proceed in this line of
development.
11 Please see He and Yannelis (2016, Remark 6 on page 506) and the accompanying text.
12 Shortly before the second version of this paper was submitted, we received a note from editor Yannelis
with a solution to this problem: Podczeck and Yannelis (2021, June 30).
13 Note that for his definition of a non-free-disposal equilibrium (x̄, p̄), Shafer (1976) requires that for
all i ∈ T , p̄ · x̄(i) = p̄ · e(i) instead of x̄(i) ∈ Bi ( p̄). It is trivial that these his definition is equivalent to
Definition 6 above.
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1. p̄ 
= 0;
2. For each i ∈ T , x̄(i) ∈ Bi ( p̄) and ψi (x̄, p̄) = ∅;
3.

∑
i∈T x̄(i) = ∑

i∈T e(i).

He and Yannelis (2016) establish the following result.14

Theorem (He–Yannelis (Non-free-disposal)) Let T be a finite set of agents. Let E be
an exchange economy satisfying the following assumptions: for each i ∈ T ,

1. Xi is a nonempty compact convex subset of Rl≥0;
2. ψi has the CIP at each (x, p) ∈ X × Δ′ with ψi (x, p) 
= ∅;
3. xi /∈ con(ψi (x, p)) for all (x, p) ∈ X × Δ′;
4. For each p ∈ Δ′ and each x in the set of feasible allocations A ={

x ′ ∈ X : ∑
t∈T x ′(t) = ∑

t∈T e(t)
}
, there exists t ∈ T such that Pt (x, p) 
= ∅.

Then E has a (non-free-disposal) Walrasian equilibrium.

The following example shows that the above theorem does not hold without addi-
tional assumptions when T is infinite.

Example 4 Let T = {0, 1, 2, . . . } be the set of agents. For each t ∈ T , let Xt = [0, 3]×
[0, 3] so each Xt is a non-empty, compact and convex subset of R2≥0. So there are two
items in this economy, we should refer them as the first item and the second item. The
endowment for agent t is e(t) = ( 1

2t ,
1
2t

)
. Hence the economy has the finite aggregate

endowment property. For x ∈ X = ∏
t∈T Xt , let x(i) denote the i-th coordinate of

x . The utility function of agent 0 is given by u0(x(0)) = (x(0))1 − (x(0))2, where
(x(0))1 and (x(0))2 denote the first and second coordinates of x(0), respectively. For
t > 0, the utility function of agent t is given by ut (x(t)) = (x(t))1 − (x(t))2

t .
The preference correspondence of agent t ∈ T generated by its utility function is

defined as Pt : X × Δ′ → Xt , where Pt (x, p) = {y(t) ∈ Xt : ut (y(t)) > ut (x(t))}.
Hence preference correspondences do not depend on prices or the actions of the
other agents. Note that, for each agent t , the preference correspondence Pt , induced
by a continuous utility function, has open graph. Moreover, for each agent t , the
endowment e(t) is in the interior of the consumption set Xt , and hence the budget
correspondence Bt is both upper and lower hemicontinuous. Hence, for each agent
t ∈ T , the correspondence ψt = Bt ∩ Pt satisfies the CIP (by the argument in
the proof of Corollary 1 in He and Yannelis 2016). In fact, it is straightforward to
verify that all assumptions of Theorem [He–Yannelis (Non-free-disposal)], except
for finiteness of T , are satisfied. We now show that there is no (non-free-disposal)
Walrasian equilibrium. Let the price vector be (p1, p2).

1. If p1 ≤ 0, then every agent demands 3 units of the first commodity. So there is
excess demand for the first commodity, hence such a price system cannot be an
equilibrium price.

14 It maybe worth pointing out to the reader that the theorem below can be proved in two alternative
ways, one involving the modified budget set of Bergstrom–Shafer, and the other with the budget set as
conventionally defined; see the last paragraph on page 507 of He and Yannelis (2016, Theorem 4). Please
note that in the statement of the theorem, unlike Conditions 1,2 and 3, Condition 4 has no reference to index
i .
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2. Suppose p1 > 0. Without loss of generality, we can set p1 = 1 via normalization.
Note that

– If p2 ≥ 0, then every agents demands 0 unit of the second commodity. So
there is excess supply for the second commodity, hence such a price system
cannot be an equilibrium price.

– If p2 < 0, then for every agent t > 1
|p2| , the “bad” commodity, commodity 2,

becomes less costly in terms of utility, hence agent t consumes 3 units of the
second commodity in order to consume highest possible amount of the first
commodity. Then agent t’ s excess demand for commodity 2 is positive, and as
t increases his excess demand of commodity 2 increases. Even though every
agent t < 1

|p2| sells their endowment of the second commodity and consumes
only commodity 1, the aggregate demand of the second commodity is infinite.
As there is excess demand for the second commodity, such a price system
cannot be an equilibrium price.

Therefore, there is no non-free disposal equilibrium.

Our second example, closely related to the example in Hara (2005), shows that the
second theorem of He–Yannelis for a non-free disposal setting reported above does not
hold, without additional assumptions in an economywith a measure space of agents.15

Example 5 Let T = (0, 1), endowed with the Lebesgue measure. There are two items
in this economy, we should refer them as the first item and the second item. For
each t ∈ T , let e(t) = (t, t) and Xt = [0, 1

t ] × [0, t + 1
t2

]. So each Xt is a non-

empty, compact and convex subset of R2≥0. Note that we also have
∫
e(t)dt = ( 12 ,

1
2 ).

The utility function for each agent t is ut (x) = (x(t))1 − t(x(t))2. The preference
correspondence of each agent is generated by its utility function. As in Example 4, it
can be verified that all assumptions of Theorem [He–Yannelis (Non-free-disposal)],
except for finiteness of T , are satisfied.

We now show that there is no (non-free-disposal) Walrasian equilibrium. Let the
price vector be (p1, p2).

1. If p1 ≤ 0, then agent t would demand ( 1t , 0). The aggregate demand for the first
item is infinite hence there is no equilibrium.

2. If p1 > 0, without loss of generality, we can set p1 = 1 via normalization. Note
that

– If p2 ≥ 0, then every agent demands 0 unit of the second item hence there is
excess supply of the second item. So there is no equilibrium.

– Suppose p2 < 0, consider those agents t with t < 1
|p2| . Then agent t’s demand

is ( 1t ,
(p2+1)t− 1

t
p2

). The aggregate demand for the first item is no less than
∫ 1

|p2 |
0

1
t dt = ∞. Hence there is no equilibrium.

15 We plan to address this question in forthcoming work.
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5 Weighted economies with a countable set of agents

For exchange economies with an infinite agent space, it is common to impose a
measure-theoretical structure on the agent space. In this section, we establish the exis-
tence of free and non-free-disposal equilibrium for such exchange economies with
a countable agent space endowed with a finite measure. Precisely, we consider the
following type of weighted exchange economies:

Definition 7 A weighted exchange economy E is a quadruple {(Xi , Pi , e(i), ν) : i ∈
T }, where:
1. T is a countable set;
2. ν is a probability measure on T ;
3. Xi ⊂ R

l≥0 is the consumption set of agent i , and X = ∏
i∈T Xi with the product

topology;
4. Pi : X × Δ′ � Xi is the preference correspondence of agent i ;
5. e(i) ∈ Xi is the initial endowment of agent i , where 0 <

∫
i∈T e(i)ν(di) < ∞;

We now give the definition of free and non-free-disposal equilibrium for weighted
exchange economies.

Definition 8 Let E = {(Xi , Pi , e(i), ν) : i ∈ T } be a weighted exchange economy
defined in Definition 7. A free-disposal Walrasian equilibrium is (x̄, p̄) ∈ X × Δ′
such that the following conditions are satisfied:

1. p̄ 
= 0;
2. x̄(i) ∈ Bi ( p̄) and ψi (x̄, p̄) = ∅ for almost all i ∈ T ;
3.

∫
x̄(i)ν(di) ≤ ∫

e(i)ν(di).

A non-free-disposal Walrasian equilibrium is (ȳ, q̄) ∈ X × Δ′ is a free-disposal
Walrasian such that

∫
ȳ(i)ν(di) = ∫

e(i)ν(di).

Our first major result of this section is the following:

Theorem 3 Let E = {(Xi , Pi , e(i), ν) : i ∈ T } be a weighted exchange economy
satisfying the following assumptions: for each i ∈ T :

1. Xi is a nonempty, compact and convex subset of Rl≥0;
2. ν({i}) > 0;
3. ψi has the CIP at each (x, p) ∈ X × Δ with ψi (x, p) 
= ∅;
4. x(i) /∈ con(ψi (x, p)) for all (x, p) ∈ X × Δ.

Then E has a free-disposal Walrasian equilibrium. Moreover, there is at least one
free-disposal equilibrium in which the equilibrium price is an element of Δ. Suppose,
in addition,

1. T is finite;
2. For each p ∈ Δ′ and each x in the feasible allocations A = {y ∈ X :∑

t∈T y(t)μ({t}) = ∑
t∈T e(t)μ({t})}, there exists t ∈ T such that Pt (x, p) 
= ∅.

Then E has a non-free-disposal Walrasian equilibrium.
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Our next result extends Theorem 3 to weighted economies in which some agents
may have weight zero.

Theorem 4 Let E = {(Xi , Pi , ei , ν) : i ∈ T } be a weighted exchange economy
satisfying the following assumptions: for each i ∈ T :

1. Xi is a nonempty, compact and convex subset of Rl≥0;
2. ψi has the CIP at each (x, p) ∈ X × Δ with ψi (x, p) 
= ∅;
3. xi /∈ con(ψi (x, p)) for all (x, p) ∈ X × Δ.

Then E has a free-disposal Walrasian equilibrium. Suppose, in addition,

1. T is finite;
2. For each p ∈ Δ′ and each x in the feasible allocations A = {y ∈ X :∑

t∈T y(t)μ({t}) = ∑
t∈T e(t)μ({t})}, there exists t ∈ T with μ({t}) > 0 such

that Pt (x, p) 
= ∅.
Then E has a non-free-disposal Walrasian equilibrium.

Remark 2 It is not difficult to show that every finite (countably) weighted economy is
isomorphic to a finite (countably) unweighted economy with finite aggregate endow-
ment. Therefore, in Theorems 3 and 4, the existence of a free-disposal equilibrium
follows from Theorem 1, and the existence of a non-free-disposal equilibrium fol-
lows from He and Yannelis (2016, Theorem 4). Hence, relaxation of the compactness
of the consumption sets follows from Theorems 2 and 3 above. However, the direct
measure-theoretic proofs that we provide are of independent interest.

Even though this paper is exclusively tailored to Walrasian theory, the importance
of the transitivity assumption for such a theory leads us to present a simple example of
a normal form game.16 The point is that the following game has no Nash equilibrium
in the canonical setting of a large non-anonymous game when all of the assumptions
of standard results are satisfied except that of transitivity.17

Example 6 The set of agents T is [0, 1] with Lebesgue measure. For each t ∈ T , let
Xt = {1, 2, 3}. The agents have the same preference relation, and each agent cares
only about her own action. For each t ∈ T and x, x ′, x ′′, x ′′′ ∈ X = ∏

i∈T Xi ,
(1, x−t ) � (2, x ′−t ) � (3, x ′′−t ) � (1, x ′′′−t ), and (1, x−t ) ∼ (1, x ′−t ), (2, x−t ) ∼
(2, x ′−t ), (3, x−t ) ∼ (3, x ′−t ). However, it is easy to see that this game has no Nash
equilibrium. Notice that the preference relation of each agent is continuous, com-
plete and non-transitive, and also it depends trivially on the average of the society’s
action. Hence, all assumptions of Theorem 2 of Schmeidler (1973) are satisfied except
transitivity.

16 We leave it to the reader to execute the routine transformation of this example for a game to into one for
a Walrasian economy.
17 The canonical result on a large non-anonymous game that we have in mind is of course Theorem 2 of
Schmeidler (1973) and its generalizations till 2000 comprehensively surveyed in Khan and Sun (2002).
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6 Proof of the Theorems

Proof of Theorem 1 We give a proof by using nonstandard analysis. We start by setting
up a few notations. For each t ∈ T , pick an element εt from Xt . We fix the collection
{εt : t ∈ T } of points for the rest of the section. It is not important which εt we pick
for each t ∈ T , any point suffices. Note that, by the transfer principle, we have a fixed
collection {∗εt : t ∈ ∗T } such that ∗εt ∈ ∗Xt for all t ∈ ∗T . For every B ⊂ T and
every x ∈ ∏

t∈B Xt , define the extension E(x) of x to be the point in
∏

t∈T Xt such
that E(x)t = xt for t ∈ B and E(x)t = εt for t /∈ B.

Definition 9 Let Fi : X � Xi be a correspondence and let B be a subset of T . The
restriction of Fi to B is a correspondence FB

i : ∏
t∈B Xt � Xi such that FB

i (y) =
Fi (E(y)).

We show that the restriction of a correspondence preserves upper hemicontinuity.

Lemma 1 Suppose Fi is a upper hemicontinuous correspondence from X to Xi . Then,
for every B ⊂ T , F B

i is also upper hemicontinuous.

Proof Fix B ⊂ T and a point x ∈ ∏
t∈B Xt . Let V be an open set containing FB

i (x) =
Fi (E(x)). As Fi is upper hemicontinuous, there exists a basic open set U containing
E(x) such that Fi (a) ⊂ V for every a ∈ U . Then πB(U ) is an open set containing x .
Note that, for every y ∈ πB(U ), E(y) is an element ofU . Thus, for every y ∈ πB(U ),
we have FB

i (y) = Fi (E(y)) ⊂ V . Hence, FB
i is upper hemicontinuous. ��

Lemma 2 Suppose Fi is a correspondence from X to Xi such that xi /∈ Fi (x) for every
x ∈ X. Then, for every B ⊂ T with i ∈ B and every y ∈ ∏

t∈B Xt , yi /∈ FB
i (y).

Proof Fix B ⊂ T with i ∈ B and pick y ∈ ∏
t∈B Xt . Then it is easy to see that

yi = E(y)i . Thus, we have yi = E(y)i /∈ Fi (E(y)) = FB
i (y). ��

We now show that, if a correspondence has closed graph, then so is its restriction.

Lemma 3 Suppose Fi is a correspondence from X to Xi that has a closed graph. Then,
for every B ⊂ T , F B

i also has a closed graph.

Proof Let (x, z) be a point in
∏

t∈B Xt × Xi such that z /∈ FB
i (x). This means that

z /∈ Fi (E(x)). As Fi has a closed graph, there is an open set U containing (E(x), z)
such that U is disjoint from the set {(a, b) ∈ X × Xi |b ∈ Fi (a)}. Let V be the
projection ofU to the set

∏
t∈B Xt × Xi . Note that V is an open set containing (x, z).

For every point (c, d) ∈ V , we have d /∈ Fi (E(c)) = FB
i (c). Thus, we conclude that

FB
i has a closed graph. ��
We now show that the restriction of a correspondence preserves the CIP.

Lemma 4 Let Fi be a correspondence from X to Xi that has CIP at every x ∈ X such
that Fi (x) 
= ∅. Then, for every B ⊂ T , F B

i has CIP at every y ∈ ∏
t∈B Xt such that

F B
i (y) 
= ∅.
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Proof Fix B ⊂ T and pick y ∈ ∏
t∈B Xt with FB

i (y) 
= ∅. Then we have E(y) ∈
∏

t∈T Xt and Fi (E(y)) = FB
i (y) 
= ∅. Thus, there exists an open set O around E(y)

and a non-empty correspondence G : O � Xi such that G(z) ⊂ Fi (z) for every
z ∈ O and con(G) has a closed graph. Without loss of generality, we assume that O is
a basic open set. Then πB(O) is an open set containing y, and for every a ∈ πB(O),
E(a) is an element in O . Let GB : πB(O) � Xi be GB(a) = G(E(a)). Then, GB is
clearly non-empty and, for every a ∈ πB(O), we have

GB(a) = G(E(a)) ⊂ Fi (E(a)) = FB
i (a).

We now show that con(GB) has a closed graph. For a ∈ πB(O), we have

con(GB)(a) = con(GB(a)) = con(G(E(a))) = con(G)(E(a)) = con(G)B(a)

By Lemma 3, as con(G) has a closed graph, we conclude that con(GB) has a closed
graph. Thus, FB

i has CIP at every y ∈ ∏
t∈B Xt such that FB

i (y) 
= ∅. ��
By saturation, let ST ⊂ ∗T be a hyperfinite set that contains T as a subset. For

every θ ∈ ST , define ∗ψ ST
θ : ∏

t∈ST
∗Xt × ∗Δ � ∗X θ to be

∗ψ ST
θ (x, p) = ∗ψθ(

∗E(x), p) = ∗Bθ (p) ∩ ∗Pθ (
∗E(x), p).

We consider the hyperfinite exchange economy {(∗X θ ,
∗PST

θ , ∗eθ ) : θ ∈ ST }. Then,
for θ ∈ ST , we have

1. ∗X θ is a nonempty, ∗compact and ∗convex subset of ∗
R
l≥0;

2. By the transfer of Lemma 4, ∗ψ ST
θ has the ∗CIP at each (x, p) ∈ ∏

t∈ST
∗Xt × ∗Δ

with ∗ψ ST
θ (x, p) 
= ∅;

3. By the transfer of Lemma 2, we have xθ /∈ ∗H(∗ψ ST
θ (x, p)) for all (x, p) ∈∏

t∈ST
∗Xt × ∗Δ.

By the transfer of Theorem [He–Yannelis (Free-disposal)], there exists a ∗free-disposal
Walrasian equilibrium for the hyperfinite exchange economy {(∗X θ ,

∗PST
θ , ∗eθ ) : θ ∈

ST }. That is, there exists (x̄, p̄) ∈ ∏
t∈ST

∗Xt × ∗Δ such that

1. For each θ ∈ ST , x̄θ ∈ ∗Bθ ( p̄) and ∗ψ ST
θ (x̄, p̄) = ∅;

2.
∑

t∈ST x̄t ≤ ∑
t∈ST

∗et .

Let ȳ ∈ X be such that ȳi = st(x̄i ) for every i ∈ T and let q̄ = st( p̄). Note that
q̄ ∈ Δ. We now show that (ȳ, q̄) is a free-disposal Walrasian equilibrium for E .
Claim 1 For each i ∈ T , ȳi ∈ Bi (q̄) and ψi (ȳ, q̄) = ∅.
Proof Note that x̄i ∈ ∗Bi ( p̄) = {z ∈ ∗Xi : p̄ · z ≤ p̄ · ei }. As q̄ · ȳi ≈ p̄ · x̄i and
p̄ · ei ≈ q̄ · ei , we conclude that ȳi ∈ Bi (q̄).

Suppose ψi (ȳ, q̄) is not empty for some i ∈ T . By the CIP, there exists a basic
open set O containing (ȳ, q̄) and a nonempty correspondence F : O � Xi such that
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F(z) ⊂ ψi (z) for every z ∈ O . Note that (∗E(x̄), p̄) ∈ ∗O . Thus, by the transfer
principle, we know that

∗ψ ST
i (x̄, p̄) = ∗ψ i (

∗E(x̄), p̄) 
= ∅.

As i ∈ ST , this is a contradiction. Thus, we have ψi (ȳ, q̄) = ∅ for every i ∈ T . ��
Claim 2

∑
i∈T ȳi ≤ ∑

i∈T ei .

Proof By the transfer principle, we have
∑

i∈T ei = ∑
t∈∗T

∗et . Thus, we have∑
t∈ST

∗et ≤ ∑
i∈T ei . As

∑
i∈T ei is finite, so is

∑
t∈ST

∗et . For every finite set
B ⊂ T , we have

∑

i∈B
ȳi ≈

∑

i∈B
x̄i ≤

∑

t∈ST
x̄t .

Thus, we have

∑

i∈T
ȳi �

∑

t∈ST
x̄t <

∑

t∈ST

∗et ≤
∑

i∈T
ei .

As both
∑

i∈T ȳi and
∑

i∈T ei are standard, we have
∑

i∈T ȳi ≤ ∑
i∈T ei . ��

By Claims 1 and 3, (ȳ, q̄) is a free-disposal Walrasian equilibrium for the exchange
economy E . ��

We now turn to the proof of Theorem 2 in two steps: first, a result for a finite
economy, and second, in keeping with a methodological innovation articulated in this
paper, uplifting the finite economy result to that with an arbitrary number of agents
using the methods of non-standard analysis.

Lemma 5 Let E = {(Xi , Pi , ei ) : i ∈ T } be an exchange economy where T is finite.
Let X = ∏

i∈T Xi . Suppose, for each i ∈ T :

1. Xi is a nonempty, closed, bounded below and convex subset of Rl ;
2. ψi (x, p) = Pi (x, p) ∩ Bi (p) has the bounded CIP;
3. xi /∈ con(ψi (x, p)) for all (x, p) ∈ X × Δ;
4. for all (x, p) ∈ X × Δ, yi ∈ Pi (x, p) and all λ ∈ (0, 1), there exists δ < λ such

that δyi + (1 − δ)xi ∈ Pi (x, p).

Then E has a free-disposal equilibrium.

We then define the set of attainable consumption set for each consumer.

Definition 10 An attainable state of an economy E = {(Xi , Pi , ei ) : i ∈ T } is x ∈ X
such that

∑
i∈T (xi − ei ) � 0. The attainable consumption set of consumer i is

X̂i = {xi ∈ Xi | ∃x−i ∈ X−i such that (xi , x−i ) is an attainable state}.

Let X̂ = ∏
i∈T Xi .
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Proof of Lemma 5 Step 1: Equilibrium in the Truncated Economy. Note that since ei
is finite and Xi is bounded below for all i , X̂i is a bounded set. Let K be compact and
convex set in R� containing in its interior X̂i for all i . Define

ÙXi = Xi ∩ K .

Define an economy ÛE = {(ÙXi , ÙPi , ei ) : i ∈ T } where ÙX = ∏
i∈T ÙXi and ÙPi :

ÙX ×Δ � ÙXi with ÙPi (x, p) = Pi (x, p)∩ ÙXi . Define Ùψ : ÙX ×Δ � ÙXi as Ùψi (x, p) =
ψi (x, p) ∩ ÙXi . By assumption (2), Ùψi has the CIP. Note that xi /∈ con(Ùψi (x, p)) for
all (x, p) ∈ ÙX × Δ.

By Theorem (He–Yannelis), there exists a free disposal equilibrium (x∗, p∗) for the
economy ÛE . Hence, p∗ ∈ Δ,

∑
i∈T (x∗

i − ei ) � 0, and for all i ∈ T , p∗ · x∗
i � p∗ · ei

and yi ∈ ÙPi (x∗, p∗) implies p∗ · yi > p∗ · ei .
Step 2: Equilibrium in the Original Economy. We next show that (x∗, p∗) is a free
disposal equilibrium for the economy E . Establishing the following is sufficient:
(∗) For every i ∈ T , xi ∈ Pi (x∗, p∗) implies p∗ · xi > p∗ · ei .
It is clear from step 1 that yi ∈ Pi (x∗, p∗) ∩ Xi ∩ K implies p∗ · yi > p∗ · ei .
Assume towards a contradiction that there exists xi ∈ Xi such that xi ∈ Pi (x∗, p∗)
and p∗ · xi � p∗ · ei . Since x∗

i is in the interior of K , one can find on the straight-line
segment [x∗

i , x ′
i ] a point x ′′

i different from x∗
i but sufficiently close to x∗

i to be in K .
By assumption (4), there exists x̂i ∈ [x∗

i , x ′′
i ] such that x̂i ∈ Pi (x∗, p∗). Note that

x̂i ∈ K , hence in ÙXi . Since p∗ · xi � p∗ · ei and p∗ · x∗
i � p∗ · ei , p∗ · x̂i � p∗ · ei .

This yields a contradiction. ��
We now extend Lemma 5 to the setting with an arbitrary agent space. We first

establish that a few key properties are preserved by restriction of correspondences.

Lemma 6 Let B be a subset of T with i ∈ B. Under the conditions of Theorem 2, the
correspondence ψ B

i : ∏
t∈B Xt × Δ � Xi has the bounded CIP.

Proof Pick a bounded set K ⊂ ∏
t∈B Xt × Δ. Without loss of generality, we assume

that K = K1 × K2, where K1 is a bounded subset of
∏

t∈B Xt and K2 is a subset of
Δ. Let K ′

1 = {E(x)|x ∈ K1}. Clearly, K ′
1 is a bounded subset of X , hence K ′

1 × K2
is a bounded subset of X × Δ. As ψi satisfies the bounded continuous property, there
is a compact and convex set V such that ψi |V : V � Xi has the CIP. The projection
V ′ of V into

∏
t∈B Xt × Δ is a compact and convex set. By Lemma 3, ψ B

i |′V has the
CIP, completing the proof. ��
Lemma 7 Let B be a subset of T with i ∈ B. Under the conditions of Theorem 2, for
all (x, p) ∈ ∏

t∈B Xt × Δ, all ai ∈ PB
i (x, p) and all λ ∈ (0, 1), there exists δ < λ

such that δai + (1 − δ)xi ∈ PB
i (x, p).

Proof Pick (x, p) ∈ ∏
t∈B Xt × Δ, ai ∈ PB

i (x, p) and λ ∈ (0, 1). Then there exists
δ < λ such that δai + (1 − δ)E(x)i ∈ Pi (E(x), p). As i ∈ B and PB

i (x, p) =
Pi (E(x), p), we conclude that δai + (1 − δ)E(x)i = δai + (1 − δ)xi ∈ PB

i (x, p),
hence obtaining the desired result. ��
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We are now at the place to prove Theorem 2.

Proof of Theorem 2 By saturation, let ST ⊂ ∗T be a hyperfinite set that contains T as a
subset. We consider the hyperfinite exchange economy {(∗X θ ,

∗PST
θ , ∗eθ ) : θ ∈ ST }.

Then, for θ ∈ ST , we have

1. ∗X θ is a nonempty, ∗closed, ∗bounded below and ∗convex subset of ∗
R
l≥0;

2. By the transfer of Lemma 6, ∗ψ ST
θ : ∏

t∈ST
∗Xt × ∗Δ � ∗X θ has the ∗bounded

CIP;
3. By the transfer of Lemma 2, we have xθ /∈ ∗con(∗ψ ST

θ (x, p)) for all (x, p) ∈∏
t∈ST

∗Xt × ∗Δ;

4. For all (x, p) ∈ ∏
t∈ST

∗Xt × ∗Δ, all aθ ∈ ∗PST
θ (x, p) and all λ ∈ ∗(0, 1), by the

transfer of Lemma 7, there exists δ < λ such that δaθ + (1− δ)xθ ∈ ∗PST
θ (x, p).

By the transfer of Lemma 5, the hyperfinite exchange economy {(∗X θ ,
∗PST

θ , ∗eθ ) :
θ ∈ ST } has a free-disposal equilibrium (x̄, p̄) ∈ ∏

t∈ST
∗Xt × ∗Δ. That is:

1.
∑

θ∈ST x̄θ ≤ ∑
θ∈ST

∗eθ ;

2. For all θ ∈ ST , p̄ · x̄θ ≤ p̄ · ∗eθ and ∗ψ ST
θ (x̄, p̄) = ∅.

As
∑

i∈T ei < ∞, by the transfer principle, we conclude that
∑

θ∈ST
∗eθ < ∞.

Thus, for all θ ∈ ST , x̄θ is near-standard. Let ȳ ∈ X be such that ȳt = st(x̄t ) for every
t ∈ T and let q̄ = st( p̄). Note that q̄ ∈ Δ. We now show that (ȳ, q̄) is a free disposal
Walrasian equilibrium for E . For every i ∈ T , we have q̄ · ȳi ≈ p̄ · x̄i ≤ p̄ · ∗ei ≈ q̄ ·ei .
Claim 3

∑
i∈T ȳi ≤ ∑

i∈T ei .

Proof By the transfer principle, we have
∑

i∈T ei = ∑
t∈∗T

∗et . Thus, we have∑
t∈ST

∗et ≤ ∑
i∈T ei . As

∑
i∈T ei is finite, so is

∑
t∈ST

∗et . For every finite set
B ⊂ T , we have

∑

i∈B
ȳi ≈

∑

i∈B
x̄i ≤

∑

t∈ST
x̄t .

Thus, we have

∑

i∈T
ȳi �

∑

t∈ST
x̄t <

∑

t∈ST

∗et ≤
∑

i∈T
ei .

As both
∑

i∈T ȳi and
∑

i∈T ei are standard, we have
∑

i∈T ȳi ≤ ∑
i∈T ei . ��

Claim 4 For all i ∈ T , ψi (ȳ, q̄) = ∅.
Proof Suppose ψi (ȳ, q̄) is not empty for some i ∈ T . Pick some bounded set K ⊂
X×Δ that contains (ȳ, q̄) as an interior point. By the bounded CIP, there exists a basic
open set O ⊂ K containing (ȳ, q̄) and a nonempty correspondence F : O � Xi such
that F(z) ⊂ ψi (z) for every z ∈ O . Note that (∗E(x̄), p̄) ∈ ∗O . Thus, by the transfer
principle, we know that

∗ψ ST
i (x̄, p̄) = ∗ψ i (

∗E(x̄), p̄) 
= ∅.
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As i ∈ ST , this is a contradiction. Thus, we have ψi (ȳ, q̄) = ∅ for every i ∈ T . ��
Combining Claims 3 and 4, we see that (ȳ, q̄) is a free-disposal equilibrium. ��
We now turn to the proof of Theorem 3

Remark 3 Before proving Theorem 3, we set up a few notations. For p ∈ R and
A ⊂ R

l , let pA denote the set {px : x ∈ A}. For a correspondence F : X � R
l and

p 
= 0, let pF : pX � R
l be the correspondence such that (pF)(x) = pF( 1p x).

Remark 4 Since we are assuming ν({t}) > 0 for all t ∈ T , if (x̄, p̄) is a free-disposal
Walrasian equilibrium, then x̄(t) ∈ Bt ( p̄) and ψt (x̄, p̄) = ∅ for all t ∈ T .

Proof of Theorem 3 Let νt = ν({t}) for every t ∈ T . Note that νt > 0 for every
t ∈ T . We consider the scaled exchange economy E ′ = {(X ′

t , P
′
t , e

′
t ) : t ∈ T },

where X ′
t = νt Xt , P ′

t = νt Pt and e′
t = νt e(t). Let X ′ = ∏

t∈T X ′
t . To be precise,

P ′
t : X ′ × Δ � X ′

t is a correspondence such that P ′
t (x, p) = νt Pt (y, p), where

yi = 1
νi
xi for all i ∈ T . The price set for E ′ is still Δ = {p ∈ R

l≥0 : ∑l
k=1 pk = 1}.

Given p ∈ Δ, the budget set of agent t is B ′
t (p) = {xt ∈ X ′

t : p · xt ≤ p · e′
t }. Note

that B ′
t (p) = νt Bt (p). Let ψ ′

t (x, p) = B ′
t (p) ∩ P ′

t (x, p) for each t ∈ T , x ∈ X ′ and
p ∈ Δ. Finally, if T is finite, let A′ = {b ∈ X ′ : ∑

t∈T b(t) = ∑
t∈T e′

t }.
Claim 5 ψ ′

t has the CIP at each (x, p) ∈ X ′ × Δ with ψ ′
t (x, p) 
= ∅.

Proof Pick (x, p) ∈ X ′ × Δ such that ψ ′
t (x, p) 
= ∅. Let y ∈ X be a point such that

yt = 1
νt
xt . By construction, we have ψ ′

t (x, p) = νtψt (y, p), hence ψt (y, p) 
= ∅.
Then there exists an open set U = V × O (y ∈ V and p ∈ O) and a nonempty
correspondence F : U � Xt such that

1. F(a, b) ⊂ ψt (a, b) for all (a, b) ∈ U ;
2. con(F) has a closed graph.

Without loss of generality, we can assume that V = ∏
t∈T Vt , where Vt is an open set

containing yt for all t ∈ T . Let V ′ = ∏
t∈T νt Vt and U ′ = V ′ × O . Then U ′ is an

open set containing (x, p). Define F ′ : U ′ � X ′
t to be a correspondence such that,

for every (a, b) ∈ U ′, F ′(a, b) = νt F(z, b), where zt = 1
νt
at for every t ∈ T . Clearly

F ′ is nonempty and F ′(a, b) ⊂ ψ ′
t (a, b) for all (a, b) ∈ U ′. It remains to show that

con(F ′) has a closed graph.
To show that con(F ′) has a closed graph, it is sufficient to show that, for every

(a, b) ∈ U ′, we have con(F ′)(a, b) = νtcon(F)(z, b), where zt = 1
νt
at for every t ∈

T . Clearly, we have F ′(a, b) ⊂ νtcon(F)(z, b). As νtcon(F)(z, b) is also convex, we
conclude that con(F ′)(a, b) ⊂ νtcon(F)(z, b). Let C be any convex set that contains
F ′(a, b) as a subset. Then 1

νi
C is a convex set containing F(z, b) as a subset, hence

containing con(F)(z, b) as a subset. Thus, we can conclude that νtcon(F)(z, b) ⊂ C ,
which implies that νtcon(F)(z, b) ⊂ con(F ′)(a, b). ��
Claim 6 For each t ∈ T , we have xt /∈ con(ψ ′

t (x, p)) for all (x, p) ∈ X ′ × Δ.

Proof Pick (x, p) ∈ X ′ × Δ. Let y ∈ X be a point such that yt = 1
νt
xt . Then we

have yt /∈ con(ψt (y, p)). By the same proof as in Claim 5, we have con(ψ ′
t (x, p)) =

νtcon(ψt (y, p)). Hence we conclude that xt /∈ con(ψ ′
t (x, p)). ��
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Claim 7 For each p ∈ Δ′ and a in the set of feasible allocations A′ = {b ∈ X ′ :∑
t∈T b(t) = ∑

t∈T e′
t }, there exists t ∈ T such that P ′

t (a, p) 
= ∅.

Proof Pick p ∈ Δ′ and a ∈ A′. Let x ∈ X be such that xi = 1
νi
ai . We can conclude

that x ∈ A = {y ∈ X : ∑
t∈T y(t)μ({t}) = ∑

t∈T e(t)μ({t})}. Thus, there exists
t ∈ T such that Pt (x, p) 
= ∅. Note that P ′

t (a, p) = νt Pt (x, p) 
= ∅, completing the
proof. ��

We first establish the existence of a free-disposal Walrasian equilibrium. It is
straightforward to verify that each X ′

t is a nonempty, convex and compact subset
of Rl≥0. By Claims 5 and 6, and Theorem 1, there exists a free-disposal Walrasian
equilibrium (x̄, p̄) ∈ X ′ × Δ for the scaled economy E ′. That is, we have

1. for each t ∈ T , x̄t ∈ B ′
t ( p̄) and ψ ′

t (x̄, p̄) = ∅;
2.

∑
t∈T x̄t ≤ ∑

t∈T e′
t .

As
∑

i∈T e′
i = ∑

i∈T ν({i})e(i) = ∫
e(i)ν(di) < ∞, both

∑
i∈T x̄i and

∑
i∈T e′

i are
well-defined countable sums. Let ȳ ∈ X be such that ȳ(t) = 1

νt
x̄t .

Claim 8 (ȳ, p̄) is a free-disposal Walrasian equilibrium for E .

Proof As B ′
i ( p̄) = νi Bi ( p̄), we conclude that ȳ(i) ∈ Bi ( p̄). Similarly, we have

ψ ′
i (x̄, p̄) = νiψ(ȳ, p̄). Hence we conclude that ψi (ȳ, p̄) = ∅. Finally, we know that

∫

ȳ(i)ν(di) =
∑

i∈T
x̄i ≤

∑

i∈T
e′
i =

∫

e(i)ν(di),

completing the proof. ��
Thus, by Claim 8, E has a free-disposal Walrasian equilibrium.
We now establish the existence of non-free-disposal Walrasian equilibrium, under

two additional assumptions:

1. T is finite;
2. For each p ∈ Δ′ and x in the set of feasible allocations A = {y ∈ X :∑

t∈T y(t)μ({t}) = ∑
t∈T e(t)μ({t})}, there exists t ∈ T such that Pt (x, p) 
= ∅.

By Claims 5, 6 and 7, and Theorem [He–Yannelis (Non-free-disposal)], there exists
a non-free-disposal Walrasian equilibrium (ā, q̄) ∈ X ′ × Δ′ for the scaled economy
E ′. That is, we have

1. ‖q̄‖ 
= 0;
2. For each t ∈ T , āt ∈ B ′

t (q̄) and ψ ′
t (ā, q̄) = ∅;

3.
∑

t∈T āt = ∑
t∈T e′(t).

Let b̄ ∈ X be such that b̄t = 1
νt
āt .

Claim 9 (b̄, q̄) is a non-free-disposal Walrasian equilibrium for E .
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Proof As B ′
i (q̄) = νi Bi (q̄), we conclude that b̄(i) ∈ Bi (q̄). Similarly, we have

ψ ′
i (ā, q̄) = νiψ(b̄, q̄). Hence we conclude that ψi (b̄, q̄) = ∅. Finally, we know

that

∑

t∈T
b̄tνt =

∑

t∈T
āt =

∑

t∈T
e′
t =

∑

t∈T
etνt ,

completing the proof. ��
Thus, by Claim 9, E has a non-free-disposal Walrasian equilibrium. ��
Finally, we provide a proof of Theorem 4.

Proof of Theorem 4 Let T ′ = {i ∈ T : ν({i}) > 0}. Note that ν(T ′) = 1. Pick εt ∈ Xt

for every t /∈ T ′. For y ∈ ∏
t∈T ′ Xt = X ′, let E(y) be the point in X = ∏

t∈T Xt such
that

1. E(y)t = yt for all t ∈ T ′;
2. E(y)t = e(t) for all t /∈ T ′.

For each θ ∈ T ′, define ψT ′
θ : X ′ × Δ � Xθ to be

ψT ′
θ (x, p) = ψθ(E(x), p) = Bθ (p) ∩ Pθ (E(x), p).

Let A′ = {y ∈ X ′ : ∑
t∈T ′ ytνt = ∑

t∈T ′ etνt }. The sub-economy E ′ =
{(Xθ , PT ′

θ , eθ , ν) : θ ∈ T ′} has the following properties:

Lemma 8 ψT ′
θ has the CIP at each (x, p) ∈ X ′ × Δ such that ψT ′

θ (x, p) 
= ∅.

Lemma 9 xθ /∈ con(ψT ′
θ (x, p)) for all (x, p) ∈ X ′ × Δ.

Lemma 10 Suppose T is finite. For each p ∈ Δ′ and x ∈ A′, there exists θ ∈ T ′ such
that PT ′

θ (x, p) 
= ∅.
Proof Pick some p ∈ Δ′ and x ∈ A′. Then we have E(x) ∈ A. Thus, there exists
θ ∈ T ′ such that Pθ (E(x), p) 
= ∅. So we can conclude that PT ′

θ (x, p) 
= ∅. ��
Consider the sub-economy E ′, for each θ ∈ T ′:

1. Xθ is a nonempty, compact and convex subset of Rl≥0;
2. ν({θ}) > 0;
3. By Lemma 8, ψT ′

θ has the CIP at each (x, p) ∈ X ′ × Δ such that ψT ′
θ (x, p) 
= ∅;

4. By Lemma 9, we have xθ /∈ con(ψT ′
θ (x, p)) for all (x, p) ∈ X ′ × Δ.

Under additional assumptions, for each θ ∈ T ′, the sub-economy E ′ has the following
properties:

1. T ′ is finite;
2. By Lemma 10, for each p ∈ Δ′ and x ∈ A′, there exists θ ∈ T ′ such that

PT ′
θ (x, p) 
= ∅.

123



410 R. M. Anderson et al.

By Theorem 3, the sub-economy E ′ has a free-disposal equilibrium (x̄, p̄). Under
additional assumptions, E ′ also has a non-free-disposal equilibrium (ā, q̄).

Claim 10 (E(x̄), p̄) is a free-disposal equilibrium of E .
Proof For each i ∈ T ′, we have E(x̄)i = x̄i ∈ Bi ( p̄). For each i ∈ T ′, we also have:

ψi (E(x̄), p̄) = ψT ′
i (x̄, p̄) = ∅.

As ν(T ′) = 1, we conclude that E(x̄)i ∈ Bi ( p̄) and ψi (E(x̄), p̄) = ∅ for almost all
i ∈ T . Note that we have:

∑

i∈T
ν({i})E(x̄)i =

∑

i∈T ′
ν({i})x̄i ≤

∑

i∈T ′
ν({i})ei =

∑

i∈T
ν({i})ei ,

completing the proof. ��
Claim 11 (E(ā), q̄) is a non-free-disposal equilibrium of E .
Proof By the same argument as in Claim 10, we conclude that E(ā)i ∈ Bi (q̄) and
ψi (E(ā), q̄) = ∅ for almost all i ∈ T . Finally, we have

∑

i∈T
E(ā)iνi =

∑

i∈T ′
āiνi =

∑

i∈T ′
eiνi =

∑

i∈T
eiνi , (1)

completing the proof. ��
ByClaim 10, (E(x̄), p̄) is a free-disposalWalrasian equilibrium forE . ByClaim11,

(E(ā), q̄) is a non-free-disposal Walrasian equilibrium of E . ��

7 Concluding remarks

This paper has had many strands which the reader has to put together to obtain a
coherent and unified view: to be sure, the principal result is a theorem on the existence
of Walrasian equilibrium with an arbitrary set of agents, externalities in consump-
tion and price-dependent preferences that are convex and continuous precisely where
those conditions are needed, but not necessarily everywhere, and with or without
free disposal of commodities. The issue is how this theorem is framed by the two
counterexamples pertaining to economies without free disposal and with or without
measure-theoretic structures. And to fully appreciate how far we can go in a measure-
theoretic setting, we have a result that we could only prove with the infinite number of
agents severely restricted to a countable set. The fact that the setting allows weighted
markets is hardly a consolation. In any case, what we should like to emphasize in
this concluding section is our determination to take the vision of Walrasian theory
articulated here as a launching pad for a deeper investigation into the relaxation of
the free-disposal postulate with consumption externalities in the canonical rendering
of an uncountable number agents; namely with an atomless measure space and/or a
hyperfinite set of agents. This is a topical task that is surely urgent for our times.
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