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Abstract
When participating in school choice, students may incur information acquisition costs
to learn about school quality. This paper investigates how two popular school choice
mechanisms, the (Boston) ImmediateAcceptance and theDeferredAcceptance, incen-
tivize students’ information acquisition. Specifically, we show that only the Immediate
Acceptance mechanism incentivizes students to learn their own cardinal and others’
preferences. We demonstrate that information acquisition costs affect the efficiency of
each mechanism and the welfare ranking between the two. In the case where everyone
has the same ordinal preferences, we evaluate the welfare effects of various informa-
tion provision policies by education authorities.
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1 Introduction

When choosing a school, students often have imperfect information on their own
preferences over candidate schools, partly because it is difficult to assess the potential
educational outcomes for each school (Dustan et al. 2015).More importantly, acquiring
this information can be costly, if a student faces too many choices, or must acquire
information on a large number of factors, such as academic performance, teacher
quality, school facilities, extra-curricular activities offered, and peer quality.

The literature on matching and school choice, however, typically assumes that all
students have perfect knowledge about their own preferences, at least their ordinal
ones. Relaxing this assumption, our study extends the literature by investigating how
school choice mechanisms incentivize student information acquisition and how infor-
mation provision by educational authorities affects efficiency. Specifically, we focus
on two widely used mechanisms, the (Boston) Immediate-Acceptance (hereafter IA)
and the Gale-Shapley Deferred-Acceptance (hereafter DA) mechanisms. By taking
into account both the benefits and costs of information acquisition, this study provides
a more comprehensive evaluation of the mechanisms and as a result, provides some
guidance for the design of school choice or other matching markets.

Our first contribution is to show that IA and DA provide heterogeneous incentives
for students to acquire information. In a setting with unknown preferences and costly
information acquisition,weprove that both the strategy-proofDAand thenon-strategy-
proof IA incentivize students to acquire information on their own ordinal preferences.
However, we find that only the non-strategy-proof mechanism induces students to
learn their own cardinal preferences with which IA can sometimes be more efficient
than DA (Abdulkadiroğlu et al. 2011; Troyan 2012). IA’s lack of strategy-proofness
also implies that information on others’ preferences can be useful for the purpose
of competing with other students. As such, the acquisition of information on others’
preferences may be individually rational but socially wasteful, a disadvantage of a
non-strategy-proof mechanism.

Although the above results may seem obvious, to the best of our knowledge, they
have not yet been formalized in the literature.More importantly, they lead to new impli-
cations for the study of the mechanisms. For example, the welfare comparison of the
two mechanisms is sensitive to costly information acquisition. Taking into account
endogenous information acquisition, we provide two numerical examples showing
that the cost of information acquisition affects student welfare in equilibrium. In both
examples, IA achieves higher student welfare than DAwhen students’ cardinal prefer-
ences are private information (i.e., zero information acquisition cost), a finding similar
to Abdulkadiroğlu et al. (2011) but in a setting with students having potentially hetero-
geneous ordinal preferences. As the cost of acquiring information on own preferences
increases, the welfare advantage of IA diminishes to zero in the first example, while
the welfare ranking between the twomechanisms flips in the second example for some
cost configurations.

Extending thesefindings, our second contribution is to present some implications for
the design of information provision policies. For example, a possible policy interven-
tion is to provide information freely. We investigate the welfare effects of information
provision by education authorities. Specifically, we consider four sets of policies with
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increasing information provision. The least informative policy forbids everyone from
acquiring any information beyond the distribution of preferences. The second policy
informs everyone about her own ordinal preferences, and the third reveals one’s own
cardinal preferences. The most informative policy makes everyone’s cardinal prefer-
ences common knowledge. The information on a student’s own preferences might be
provided through presentation materials on schools (Hastings and Weinstein 2008) or
by targeting disadvantaged population (Hoxby and Turner 2015). The information on
others’ preferences can be (indirectly) provided by publishing everyone’s applications
and allowing one to revise her own application upon observing others’ strategies, as
has been done in the school choice context in Amsterdam (De Haan et al. 2015) and
North Carolina (Dur et al. 2018), as well as in the college admissions context in Inner
Mongolia, China (Gong and Liang 2017).

In a settingwhere students have the sameordinal preferences,we analyze symmetric
equilibrium under the four information provision policies. We show that the ex ante
student welfare under DA is invariant to the policies while providing information on
one’s own cardinal preferences improves welfare under IA.

Interestingly, we find that provision of information on others’ preferences has
ambiguous effects under IA, implying that sometimes providing more information
on others’ preferences can be welfare-decreasing under IA. The reason is that, know-
ing there is fierce competition for a school, students who prefer that school may shy
away from applying to it, and other students may be assigned that school with a posi-
tive probability. As a result, relative to the case with cardinal preferences being private
information, there is a loss in (ex ante) student welfare evaluated before the realization
of each student’s type.

We illustrate this welfare loss in an example with three students and three schools,
{s1, s2, s3}, with the details in “Appendix A.5.5”. Each student’s cardinal preferences,
(v1, v2, v3), are i.i.d. and equal to (1, 0.1, 0) with probability 3/4 and (1, 0.9, 0) with
probability 1/4. When cardinal preferences are private information, a symmetric equi-
librium strategy is to submit rank-order list (s1, s2, s3) for students of type-(1, 0.1, 0)
and submit (s2, s1, s3) for those of type-(1, 0.9, 0). Therefore, whenever the realized
game has at least one student of type-(1, 0.9, 0), s2 will never be assigned to a student
of type-(1, 0.1, 0). In contrast, when cardinal preferences are common knowledge, in
a realized game that has one student of type-(1, 0.1, 0) and two of type-(1, 0.9, 0),
a type-(1, 0.9, 0) student may shy away from applying to s2 because of the compe-
tition from the other student of the same type. Specifically, a symmetric equilibrium
strategy in this realized game is to submit rank-order list (s1, s2, s3) for the student of
type-(1, 0.1, 0) and, for those of type-(1, 0.9, 0), submit (s2, s1, s3) with probability
16/19 and (s1, s2, s3) with probability 3/19. As a result, in this realized game, there
is a positive probability that the student of type-(1, 0.1, 0) is assigned s2. This lowers
the ex ante welfare that is evaluated before the realization of each student’s type.

The paper proceeds as follows. Section 2 reviews the related literature on infor-
mation acquisition and/or school choice. Section 3 presents the theoretical results on
information acquisition, and Sect. 4 discusses those on information provision. Sec-
tion 5 discusses possible extensions and concludes.
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2 Literature review

This study contributes to the matching literature. Typically, this literature assumes that
agents know their preferences (Gale and Shapley 1962; Roth and Sotomayor 1990;
Abdulkadiroğlu and Sönmez 2003). One exception is Chade et al. (2014), who con-
sider the case where colleges observe signals of students’ ability but do not have the
possibility to acquire information. Allowing the possibility of information acquisi-
tion, Lee and Schwarz (2012) and Rastegari et al. (2013) study settings where firm
preferences over workers are not completely known and are revealed only through
interviews.

The theoretical papers that address endogenous information acquisition inmatching
include Bade (2015) and Harless and Manjunath (2015). In the context of house
allocations, Bade finds that the unique ex ante Pareto optimal, strategy-proof, and
non-bossy allocation mechanism is that of serial dictatorship. However, in their study,
Harless andManjunath (2015) prove that the top-trading-cyclesmechanism dominates
the serial dictatorship mechanism under progressive measures of social welfare. Both
papers focus on ordinalmechanisms.1 Aswe showbelow, in any strategy-proof ordinal
mechanism, students have no incentives to learn their cardinal preferences beyond the
ordinal ones, while information on cardinal preferences can be welfare-improving,
especiallywhen students have similar ordinal preferences (Abdulkadiroğlu et al. 2011).
Lastly, in an ongoing study, Artemov (2016) considers an environment similar to our
experimental setting to compare the performance of IA and DA.

Another unique feature of our study is the acquisition of information on others’
preferences, which is in contrast with other studies that focus on the acquisition of
information on one’s own preferences. One exception in this body of literature is Kim
(2008), who considers a common-value first-price auction with two bidders, one of
whom learns her opponent’s signal.

Our setting does not have pre-determined priorities. When students do have such
priorities, e.g., priorities determined by siblings’ school attendance or test score, they
may have incentives to acquire information on others’ preferences and priorities under
DA as shown in Grenet et al. (2019) and Immorlica et al. (2020). The intuition is that
others’ preferences andpriorities help a student assess the probability of being accepted
by each school and that a student does not need to learn about schools that will never
accept her.

In practice, students or their parents in school choice might acquire information
through their social networks. For example, families in Boston, e.g., the West Zone
Parents Group, used to share their knowledge about schools and discuss strategies to
rank schools with each other (Pathak and Sönmez 2008). Recently, several experimen-
tal studies of school choice have examined peer information sharing within networks
(Ding and Schotter 2017) or through intergenerational advice (Ding and Schotter
2019). When information is shared within a network, some isolated students under
DA receive lower payoffs compared to their well-connected counterparts (Ding and
Schotter 2017). When the school choice game is played as an intergenerational game,
in which each student can play only once and can pass advice on to the next generation,

1 An ordinal mechanism only requires agents to reveal their ordinal preferences.
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student play does not converge to the dominant strategy equilibrium under DA (Ding
and Schotter 2019). In sum, these studies indicate that acquiring information through
social networks may lead to uneven outcomes, indicating that information provision
by a trusted authority may help level the playing field.

In addition to the matching literature, information acquisition is considered in other
fields, e.g., bargaining (Dang 2008), committee decisions (Persico 2004; Gerardi and
Yariv 2008; Guo 2019), contract theory (Crémer et al. 1998; Crémer and Khalil 1992),
finance (Barlevy andVeronesi 2000; Hauswald andMarquez 2006; VanNieuwerburgh
and Veldkamp 2010), and law and economics (Lester et al. 2009). In particular, there is
a large theoretical literature on the role of information acquisition inmechanismdesign,
especially in auction design, e.g., Persico (2000), Compte and Jehiel (2007), Crémer
et al. (2009), Shi (2012), surveyed inBergemann andValimaki (2006). Notably, Berge-
mann andValimaki (2002) show that theVickrey-Clark-Grovesmechanismguarantees
both ex ante and ex post efficiency in every private value environment.

3 Information acquisition

In this section, we outline a theoretical model of endogenous information acquisition
for one’s own and others’ preferences under two common school choice mechanisms,
the Immediate and Deferred Acceptance mechanisms.

3.1 The setup

Our model begins with a finite set of students, I , to be assigned to a finite set of
schools, S, through a centralized school choice mechanism. S is supplemented by
a “null school” or outside option, s0, and S ≡ S ∪ s0. For each s ∈ S, there is
a finite supply of seats, qs ∈ N, and the total capacity is no more than the total
number of students,

∑
s∈S qs ≤ |I |, while qs > 0 for all s. By assumption, qs0 ≥ |I |.

Furthermore, we assume that schools rank students by a post-application uniform
lottery without pre-defined priorities (single tie-breaking). Therefore, students do not
know its realization when they enter the mechanism. An example of this setting is the
middle school choice in Beijing (He 2017). This assumption rules out pre-determined
priorities in school choice, such as sibling and neighborhood priorities, and therefore
there is no information acquisition about priorities.2 We leave this generalization for
future work.

Student i’s valuations of schools are an i.i.d. draw from a distribution, F , denoted
by a vector Vi = [

vi,s
]

s∈S , where vi,s ∈ [
v, v

]
, 0 < v < v, is i’s von Neumann-

Morgenstern utility of school s. For notational convenience, we assume that vi,s0 = 0
for all i , which implies that every school in S is acceptable to everyone. Therefore,
this is an independent-private-value model, and we discuss how our results generalize
to common- and interdependent-value models in Sect. 5.

2 This assumption is also imposed in the model studied by Abdulkadiroğlu et al. (2011). In principle, an
education authority can effectively inform a student about her pre-determined priorities (if any), whereas
informing her about her preferences over schools is less straightforward and more costly.
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Further, student preferences are strict: For any pair of distinct schools s and t
in S, vi,s �= vi,t for all i with probability one. We therefore define strict ordinal
preferences P on S such that s Pi t if and only if vi,s > vi,t . We also augment the set
of all possible strict ordinal preferences P with a “null preference” Pφ ≡ ∅ denoting
that one has no information on her ordinal preference, expressed as P̄ = P ∪ ∅ .
The distribution of V conditional on P is denoted by F (V |P), while the probability
mass function of P implied by F is G (P|F) (P is finite). We impose a full-support
assumption on G (P|F), i.e., G (P|F) > 0, ∀P ∈ P , indicating that every strict
ordinal preference ranking is possible given the distribution of cardinal preferences.
Necessarily, G(Pφ |F) = 0.

In our model, the value of the outside option and the distribution of preferences,
F(V ) and thus G(P|F), are always common knowledge. However, in contrast to
previous models of school choice, we introduce an information-acquisition stage for
each i to learn her own preferences (Pi and/or Vi ) or others’ preferences (V−i ) before
entering the mechanism. Because of the independent-private-value nature, learning
about others’ preferences is only for the purpose of gaming or competing with other
students.

Remark 1 Other than the full-support assumption on G, the distribution functions of
preferences (F and G) are rather flexible. For example, G can put a close-to-one
probability that a particular school, s, is the most-preferred school for a student; this
corresponds to the case in which students have a good idea about which school is their
most preferred. Moreover, since G is common knowledge, it also implies that school s
is also the most popular school among all students. This becomes known to students
as they know G.

3.2 School choice mechanisms

We focus on two mechanisms popular in both research literature and practice: the
Boston Immediate Acceptance and the Gale-Shapley Deferred Acceptance mecha-
nism.

The Immediate Acceptancemechanism (IA) asks students to submit rank-ordered
lists (ROL) of schools. Together with the pre-announced capacity of each school, IA
uses pre-defined rules to determine the school priority ranking over students and
consists of the following rounds:

Round 1. Each school considers all students who rank it as their first choice and
assigns its seats temporarily in order of their priority at that school until either there
is no seat left at that school or no such student left.

Generally, in:
Round (k > 1). The kth choice of the students who have not yet been assigned is

considered. Each school that still has available seats assigns the remaining seats to
students who rank it as kth choice in order of their priority at that school until either
there is no seat left at that school or no such student left.

The process terminates after any round k when either every student is assigned a
seat at some school, or the only students who remain unassigned have listed no more
than k choices.
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Fig. 1 Acquiring information on one’s own preferences

The Gale-Shapley Deferred Acceptance mechanism (DA) can be either student-
proposing or school-proposing. We focus on the student-proposing DA mechanism
in this study. Specifically, the mechanism collects school capacities and students’
ROLs for schools. With strict rankings of schools over students that are determined
by pre-specified rules, it proceeds as follows:

Round 1. Every student applies to her first choice. Each school rejects the least
ranked students in excess of its capacity and temporarily holds the others.

Generally, in:
Round (k > 1). Each student who is rejected in Round (k−1) applies to the highest-

ranked school in her ROL that has not rejected her. Each school pools together new
applicants and those on hold from Round (k − 1). It then rejects the least ranked
students in excess of its capacity. Those who are not rejected are temporarily held.

The process terminates after any Round k when no rejections are issued. Each
school is then matched with those students it is currently holding.
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3.3 Acquiring information on own preferences

We first investigate the incentives to acquire information on one’s own value. The tim-
ing of the game and the corresponding information structure are described as follows
and also in Fig. 1:

(i) Nature draws individual valuation Vi , and thus ordinal preferences Pi , from F(V )

for each i , but i knows only the value distribution F(V );
(ii) Each individual i decides whether to acquire a signal on her ordinal preferences;

If yes, she decides how much to invest in information acquisition, denoted by
α ∈ [0, ᾱ].

(iii) If ordinal preferences are learned, she then chooses the investment, β ∈ [0, β̄], to
acquire a signal on her cardinal preferences.

(iv) Regardless of the information acquisition decision or outcome, every student plays
the school choice game under either IA or DA.

We differentiate between the learning of ordinal and cardinal preferences, as the
former represents acquiring coarse information about the schools, whereas the latter
represents obtaining more detailed information and therefore is more costly. In a
similar vein, the literature on one-sided and two-sided matching usually assumes that
agents know their own ordinal preferences (Roth and Sotomayor 1990), while cardinal
preferences being possibly unknown due to “limited rationality” (Bogomolnaia and
Moulin 2001).

3.3.1 Technology of information acquisition

Information acquisition in ourmodel is covert. That is, i knows that others are engaging
in information acquisition, but does not know what information they have acquired.

The information acquisition process consists of two stages (see Fig. 1): i first pays a
direct cost α to acquire a signal on the ordinal preference, ω1,i ∈ P̄ .3 With probability
a (α), she learns perfectly, ω1,i = Pi ; by contrast, with probability 1 − a (α) she
learns nothing, ω1,i = Pφ . In the second stage, having learned ordinal preferences
Pi , i may pay another direct cost, β, to learn her cardinal preferences by acquiring a
signal ω2,i ∈ V̄ , where V̄ ≡ [v, v]|S| ∪ V φ . Here, with probability b (β), she learns
her cardinal preferences, ω2,i = Vi ; by contrast, with probability 1− b (β), she learns
nothing, ω2,i = V φ , where V φ denotes no cardinal preference information.

The technologies a (α) and b (β) are such that a (0) = b (0) = 0, limα→∞ a (α) =
limβ→∞ b (β) = 1, a′, b′ > 0, a′′, b′′ < 0, and a′ (0) = b′ (0) = +∞.4

The total cost of information acquisition is c (α, β), such that the total costs are
weakly above the sum of the two direct costs, i.e., c (α, β) ≥ α + β. Moreover,
c (0, 0) = 0; cα, cβ > 0; cαβ, cαα, cββ ≥ 0 for all (α, β); cα (0, 0) < +∞; and
cβ (α, 0) < +∞ for all α ≥ 0. Given these restrictions, we limit our attention to

3 We call α a direct cost, because α may bring an indirect cost by affecting the cost of acquiring information
on cardinal preferences. This is detailed below when we allow the total cost to be a function of the direct
costs.
4 The infinitemarginal productivity at zero input is consistentwith, for example, theCobb-Douglas function.
When necessary, we define 0 · ∞ = 0.
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α ∈ [0, ᾱ] and β ∈ [
0, β̄

]
, where c(ᾱ, 0) = c(0, β̄) = v, so that c (α, β) does not

exceed the maximum possible payoff (v).
After the two-stage information acquisition, the information i has is summarized

by signals ωi = (
ω1,i , ω2,i

) ∈ P̄ × V̄ . If i pays (α, β), the distribution of signals is
H (ωi |α, β), as outlined below:

H
(
ωi = (

Pφ, V φ
) |α, β

) = 1 − a (α) , (learning nothing)
H
(
ωi = (

Pi , V φ
) |α, β

) = a (α) (1 − b (β)) , (learning ordinal but not cardinal)
H (ωi = (Pi , Vi ) |α, β) = a (α) b (β) , (learning both ordinal and cardinal).

Together, they imply that H (ωi = (P, V ) |α, β) = 0, if (P, V ) /∈ {(Pφ, V φ),

(Pi , V φ), (Pi , Vi )}. In other words, an agent cannot receive anything other than the
three types of signals.

Upon observing signal ωi , the posterior distributions of cardinal and ordinal pref-
erences are:

F (V |ωi ) =
⎧
⎨

⎩

F (V )

F (V |Pi )

1Vi

if ωi = (
Pφ, V φ

)
,

if ωi = (
Pi , V φ

)
,

if ωi = (Pi , Vi ) ;
G (P|ωi ) =

⎧
⎨

⎩

G (P|F)

1Pi

1Pi

if ωi = (
Pφ, V φ

)
,

if ωi = (
Pi , V φ

)
,

if ωi = (Pi , Vi ) ;

where 1Vi (or 1Pi ) is the probability distribution placing probability 1 on point Vi (or
Pi ).

3.3.2 Game of school choice with information acquisition

In our model, after observing the signal ωi , students enter the school choice game
under either DA or IA. Each student i submits an ROL denoted by Li ∈ P such that
sLi t if and only if s is ranked above t .5 When i submits Li and others submit L−i ,
the payoff is represented by:

u (Vi , Li , L−i ) =
∑

s∈S

as (Li , L−i ) vi,s ≡ A (Li , L−i ) · Vi ,

where as (Li , L−i ) is the probability that i is accepted by s, given (Li , L−i ), and
A (Li , L−i ) is the vector of the probabilities determined by themechanism.We further
distinguish between two types of mechanisms: strategy-proof and non-strategy-proof.
A mechanism is strategy-proof if:

u (Vi , Pi , L−i ) ≥ u (Vi , Li , L−i ) , ∀Li , L−i , and ∀Vi ;

that is, reporting true ordinal preferences is a dominant strategy. It is well-known that
the student-proposing DA is strategy-proof (Dubins and Freedman 1981; Roth 1982),
while IA is not (Abdulkadiroğlu and Sönmez 2003).

5 We restrict the set of actions to the set of possible ordinal preferences, P . In other words, students are
required to rank all schools in S. The analysis can be straightforwardly extended to allowing ROLs of any
length.
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Under either mechanism, a symmetric Bayesian Nash equilibrium is defined by
a tuple (α∗, β∗ (P, α∗) , σ ∗ (ω)) such that, for all i :

(i) A (possibly mixed) strategy σ ∗ (ω) : P̄ × V̄ → Δ(P),

σ ∗ (ω) ∈ argmax
σ

{∫ ∫ ∫

u
(
V , σ, σ ∗ (ω−i )

)
d F (V |ω) d F (V−i |ω−i ) d H

(
ω−i |α∗−i , β

∗−i

)
}

.

With her own signal ω, everyone plays a best response, recognizing that others
have paid

(
α∗−i , β

∗−i

)
to acquire information. This leads to a value function given

(
ω, α∗−i , β

∗−i

)
:

Π
(
ω, α∗−i , β

∗−i

)

≡ maxσ

{∫ ∫ ∫
u
(
V , σ, σ∗ (ω−i

))
d F (V |ω) d F

(
V−i |ω−i

)
d H

(
ω−i |α∗−i , β

∗−i

)}
.

(ii) Acquisition of information on cardinal preferences β∗ (P, α∗) : P × [0, ᾱ] →[
0, β̄

]
, ∀P ,

β∗ (P, α∗) ∈ argmax
β

{
b (β)

∫
Π
(
(P, V ) , α∗−i , β

∗−i

)
d F (V |P)

+ (1 − b (β)) Π
((

P, V φ
)
, α∗−i , β

∗−i

)− c (α∗, β)

}

.

Here, β∗ (P, α∗) is the optimal decision given that one has learned her ordinal
preference (P) after paying α∗ to acquire P .

(iii) Acquisition of information on ordinal preferences α∗ ∈ [0, ᾱ],

α∗ ∈ argmax
α

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a (α)

∫
⎡

⎣
b (β∗ (P, α))

∫
Π
(
(P, V ) , α∗−i , β

∗−i

)
F (V |P)

+ (1 − b (β∗ (P, α))) Π
((

P, V φ
)
, α∗−i , β

∗−i

)

−c (α, β∗ (P, α))

⎤

⎦ dG (P|F)

+ (1 − a (α))
[
Π
((

Pφ, V φ
)
, α∗−i , β

∗−i

)− c (α, 0)
]

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

.

The above expression has already taken into account that the optimal β equals
zero if one obtains a signal ω1 = Pφ in the first stage: β∗(Pφ, α) = 0 for all α.

Given the above, we can now state our existence result in Lemma 1.

Lemma 1 Under DA or IA, a symmetric Bayesian Nash equilibrium exists.

This also leads to our first proposition:

Proposition 1 (Information acquisition incentives: own preferences) In any symmetric
Bayesian Nash equilibrium (α∗, β∗ (P, α∗) , σ ∗ (ω)) under DA or IA, the following is
true:

(i) α∗ > 0, i.e., students always have an incentive to learn their ordinal preferences;
(ii) under DA, β∗ (P, α∗) = 0 ∀P, α∗, i.e., there is no incentive to learn cardinal

preferences;
(iii) under IA, there exists a preference distribution F such that β∗ (P, α∗) > 0 for

some P.
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Remark 2 Similar to the results for DA, students have no incentive to learn their own
cardinal preferences under a strategy-proof mechanism that elicits only ordinal pref-
erences, for example, top-trading cycles. Moreover, these results also apply to the
school-proposing DA in our setting because it is equivalent to the student-proposing
DA when students are only prioritized by a single post-applicant lottery.6

3.4 Acquiring information on others’preferences

We now consider a student’s incentive to acquire information on others’ preferences.
Here,we assume that everyone knows exactly her own cardinal preferences (Vi ) but not
others’ preferences (V−i ), and that the distribution ofVi , F (Vi ), is commonknowledge
with the same properties as before. The purpose of such a setting is to highlight the
incentive to collect information for strategic purposes, above and beyond the incentive
to learn one’s ownpreferences. The process and technology for information acquisition
are depicted in Fig. 2.

To acquire information, student i may pay δ to acquire a signal of V−i , ωi,3 ∈
V̄(|I |−1). With probability d (δ), she learns perfectly, ω3,i = V−i ; with probability
1 − d (δ), ω3,i = V φ

−i , i.e., she learns nothing. The distribution of signals and the
posterior distribution of preferences are:

K
(
ω3,i = V φ

−i |δ
)

= 1 − d (δ) ,

K
(
ω3,i = V−i |δ

) = d (δ) ,

K
(
ω3,i = V ′−i |δ

) = 0 if V ′−i /∈ {V−i , V 0−i };
F
(
V−i |ω3,i

) =
{

F (V−i )

1V−i

if ω3,i = V φ
−i ;

if ω3,i = V−i .

The technology has the following properties: d (0) = 0, limδ→∞ d (δ) = 1, d ′ > 0,
d ′′ < 0, and d ′ (0) = ∞. The cost for information acquisition is e (δ) such that
e (0) = 0, e′, e′′ > 0 and e′ (0) < ∞. Similarly, we restrict our attention to δ ∈ [0, δ̄],
where e

(
δ̄
) = v.

Information acquisition is again covert. We focus on a symmetric Bayesian Nash
equilibrium, (δ∗ (V ) , σ̄ ∗ (ω3, V )), where:

(i) A (possibly mixed) strategy σ̄ ∗ (ω3, V ) : V̄(|I |−1) × V → Δ(P), such that

σ̄ ∗ (ω3,i , Vi
) ∈ argmax

σ̄

{∫ ∫

u
(
Vi , σ̄ , σ̄ ∗ (ω3,−i , V−i

))
d F

(
V−i |ω3,i

)
d K

(
ω3,−i |δ∗−i

)
}

.

That is, given one’s own signal ω3,i , everyone plays a best response, recognizing
that everyone has paid δ∗ to acquire information (denoted as δ∗−i ). We further
define the value function given

(
ω3,i , δ

∗−i

)
and Vi as:

Φ
(
Vi , ω3,i , δ

∗−i

) = max
σ̄

{∫ ∫

u
(
Vi , σ̄ , σ̄ ∗ (ω3,−i , V−i

))
d F

(
V−i |ω3,i

)
d K

(
ω3,−i |δ∗−i

)
}

.

6 On the contrary, a mechanism that directly elicits and uses information on cardinal preferences, e.g.,
Kovalenkov (2002), incentivizes students to learn about their own cardinal preferences, even if the mecha-
nism is strategy-proof.
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Fig. 2 Acquiring information on others’ preferences

(ii) Acquisition of information on others’ preferences δ∗ (V ) : V̄ → [
0, δ̄

]
, ∀V :

δ∗ (Vi ) ∈ argmax
δ

{

d (δ)

∫

Φ
(
Vi , V−i , δ

∗−i

)
d F (V−i )

+ (1 − d (δ))Φ
(

Vi , V φ
−i , δ

∗−i

)
− e (δ)

}
.

Here, δ∗ (Vi ) is the optimal information acquisition strategy.

The existence of such an equilibrium can be proven by similar arguments in the
proof of Lemma 1, and the properties of information acquisition in equilibrium is
summarized as follows:

Proposition 2 (Information acquisition incentives: others’ preferences) Suppose
(δ∗ (V ) , σ ∗ (ω3, V )) is an arbitrary symmetric Bayesian Nash equilibrium under a
given mechanism. We have:

(i) δ∗ (V ) = 0 for all V under DA;
(ii) There always exists a preference distribution F such that δ∗ (V ) > 0 under IA

for V in some positive-measure set.
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Table 1 Distribution of student
preferences (F)

Probability Preferences: (vi,1, vi,2)

p1 = 1.7
3 (1, 0.15)

p2 = 0.85
3 (1, 0.7)

p3 = 0.15 (0.15, 1)

Remark 3 Similar to the results for DA, students have no incentive to learn others’
preferences under a strategy-proof mechanism that elicits either ordinal or cardinal
information from students, for example, top-trading cycles and the school-proposing
DA in our setting.

In short, this result provides another perspective on strategy-proofness as a desider-
atum in market design: a strategy-proof mechanism makes the school choice game
easier to play by reducing the incentive to acquire information on others’ preferences
to zero.

3.5 Welfare effects of information acquisition: two examples

By considering the cost of information acquisition, our setting shows that the wel-
fare comparison between the two mechanisms is sensitive to information acquisition.
Below,we provide two numerical examples. As information acquisition becomesmore
costly, the welfare advantage of IA diminishes in the first example, while the welfare
order between IA and DA flips in the second example.

Neither example allows students to acquire information on others’ preferences
due to computational difficulties in solving for an equilibrium.7 We allow students to
acquire their own ordinal preferences and then possibly their own cardinal preferences.
The following three information structures are useful for our discussion: (i) uninformed
(UI) in which every student only knows the distribution of preferences, (ii) ordinally
informed (OI) in which everyone’s own ordinal preferences are private information,
and (iii) cardinally informed (CI) in which everyone’s own cardinal preferences are
private information. In all three information structures, the preference distribution is
common knowledge.

Example 1: The advantage of IA over DA diminishes with information acquisition
costs. Let us start with an example in which IA dominates DA in welfare given the
information structure being either CI or OI. There are two schools. Each school has
one seat, and student preference distribution is described in Table 1. There are three
students, and each student’s preferences are an i.i.d. draw from the distribution.8

7 Note that the possibility of acquiring information on others’ preferences only affects IA’s welfare perfor-
mance, but not DA’s.
8 In both examples, in keeping with the theoretical model, we allow cardinal preferences to be i.i.d. draws
from a join distribution that induces a full-support distribution of ordinal preferences. This thus differs from
Abdulkadiroğlu et al. (2011) who assume common ordinal preferences across students.
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Table 2 Distribution of student
preferences (F)

Probability Preferences: (vi,1, vi,2)

p1 = 0.1 (1, 0.45)

p2 = 0.8 (1, 0.9)

p3 = 0.1 (0.1, 1)

With the information structure UI, students submit (s1, s2) in equilibrium under
either IA or DA and receive 0.44 in terms of expected utility. However, with either OI
or CI, IA dominates DA in a symmetric Bayesian Nash equilibrium.9

The technology of information acquisition is the same in Sect. 3.3 (in particular,
Fig. 1), and there is no possibility of acquiring information on others’ preferences.

We further specify that a(α) =
√

α

k (for ordinal information) and b(β) =
√

β

10k2
(for

cardinal information).10 The total cost function is c(α, β) = α + β + 10kαβ. To see
how welfare changes with information acquisition, we let k be one of the 17 values
{0, 0.05, 0.09, 0.15, . . . , 100,∞}. Between 0.05 and 100, k increases on a logarithmic
scale. When k = 0, there is no cost to acquire information on either ordinal or cardinal
preferences; when k = ∞, it is impossible to acquire any information.

For a given k under a mechanism, we solve for a symmetric Bayesian Nash equi-
librium as defined in Sect. 3.3 and calculate ex ante equilibrium payoffs (net of
information acquisition costs). Figure 3 depicts how the efficiency of each mecha-
nism is affected by information acquisition costs.

When k = 0 (free information), the information structure is CI (i.e., cardinal
preferences are private information), and IAdelivers higherwelfare thanDA.However,
when k increases, the welfare advantage of IA decreases and essentially disappears
when k ≥ 1.30. This is because students invest less in information acquisition and
thus more frequently fail to acquire information. The welfare performance of DA also
decreases when the cost becomes higher. The two mechanisms converge to the same
equilibrium outcome as k → ∞ (i.e., impossible to acquire information and thus the
information structure is UI).

Example 2: Reversal of the welfare order between IA and DA. Let us consider
another example in which IA dominates DA when the information structure is CI, but
DA dominates IA when the information structure is OI.

There are two schools. Each school has one seat, and student preference distribution
is described in Table 2. There are three students, and each student’s preferences are
an i.i.d. draw from the distribution.

9 In either case, students under DA report their true ordinal preferences and obtain an expected utility of
0.50.With OI, a symmetric equilibrium under IA is to report their true ordinal preferences, and each student
obtains an expected utility of 0.53. With CI, a symmetric equilibrium under IA is to submit (s1, s2) for
type-(1, 0.15), submit (s2, s1) for type-(0.15, 1), and, for type-(1, 0.7), submit (s1, s2)with probability 0.70
and (s2, s1) with probability 0.30, which leads to an expected utility of 0.54.
10 In other words, to have a probability po ∈ [0, 1) of learning one’s own ordinal preferences, one needs
to invest (k · po)2; given that ordinal preferences are learned, to have a probability pc ∈ [0, 1) of learning
one’s own cardinal preferences, the investment has to be (10k2 · pc)

2.
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Fig. 3 Equilibrium payoffs with information acquisition on own preferences. Notes This figure shows the
ex ante payoffs (net of information acquisition costs) in symmetric equilibrium when students endoge-
nously acquire information on their own preferences. Ex ante payoff in symmetric equilibrium is constant
across students, as they are homogenous ex ante. The technology of information acquisition is described

in Fig. 1 of Sect. 3.3 and is further specified by a(α) =
√

α
k (for ordinal information) and b(β) =

√
β

10k2
(for cardinal information). The cost function is c(α, β) = α + β + 10kαβ. k has 17 possible values,
{0, 0.05, 0.09, 0.15, . . . , 100,∞}, and between 0.05 and 100, k increases on a logarithmic scale. Note that,
for k = 0.05, we fail to numerically solve for a symmetric Bayesian Nash equilibrium under IA

With the information structure UI, students receive 0.5917 in terms of expected
utility in equilibrium under either mechanism.11 With CI, IA dominates DA in a
symmetric Bayesian Nash equilibrium.12 However, with OI, DA dominates IA in a
symmetric Bayesian Nash equilibrium.13 The reason for this reversal is that, with
OI, a type-(1, 0.45) student submits (s2, s1) too often because she cannot distinguish
between the two preference types, (1, 0.45) and (1, 0.9); as a result, a type-(1, 0.45)
student is sometimes assigned school 2 even when the other student is of type-(0.1, 1).

For the technology of information acquisition is the same as in the first example.

Moreover, a(α) =
√

α

k (for ordinal information) and b(β) =
√

β

2500
√

k
(for cardi-

nal information). The total cost function is c(α, β) = α + β + 100αβ. To see
how welfare changes with information acquisition, we let k be one of the 9 values

11 Under DA, students submit (s1, s2); under IA, students submit (s1, s2) with probability 0.5380 and
(s2, s1) with probability 0.4620.
12 In this case, students under DA report their true ordinal preferences and obtain an expected utility of
0.6232. A symmetric equilibrium under IA is to submit (s2, s1) for type-(0.1, 1), submit (s1, s2) for type-(1,
0.45), and, for type-(1, 0.9), submit (s1, s2) with probability 0.5987 and (s2, s1) with probability 0.4013,
which leads to an expected utility of 0.6294.
13 In this case, a symmetric equilibrium under IA is to submit (s2, s1) for type-(0.1, 1) and, for either
type-(1, 0.45) or type-(1, 0.9) (not distinguishable given a student’s information being OI), submit (s1, s2)
with probability 0.6907 and (s2, s1) with probability 0.3093, which leads to an expected utility of 0.6224.
Students under DA obtain an expected utility of 0.6232 by reporting true ordinal preferences.
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Fig. 4 Equilibrium payoffs with information acquisition on own preferences: DA dominates IA for some
costs. Notes This figure shows the ex ante payoffs (net of information acquisition costs) in symmetric
equilibrium when students endogenously acquire information on their own preferences. Ex ante payoff
in symmetric equilibrium is constant across students, as they are homogenous ex ante. The technology of

information acquisition is described in Fig. 1 of Sect. 3.3 and is further specified by a(α) =
√

α
k (for ordinal

information) and b(β) =
√

β

2500
√

k
(for cardinal information). The cost function is c(α, β) = α+β+100αβ.

k has 9 possible values, {0, 0.10, 0.21, 0.45, . . . , 18.85}×10−4, and between 0.1×10−4 and 18.85×10−4,
k increases on a logarithmic scale

{0, 0.10, 0.21, 0.45, . . . , 18.85} × 10−4. Between 0.1 × 10−4 and 18.85 × 10−4, k
increases on a logarithmic scale.

For a given k under a mechanism, we again solve for a symmetric Bayesian Nash
equilibrium and calculate ex ante equilibrium payoffs (net of information acquisition
costs). Figure 4 shows that whenever information acquisition is costly (k > 0), DA
dominates IA, in contrast to IA dominating DA given CI.

This reversal is due to two factors. First, as discussed above, with the information
structure OI, DA dominates IA in equilibrium. Second, the cost of acquiring informa-
tion on cardinal preferences is high in this example. Given that ordinal preferences
have been acquired, to have a probability pc ∈ [0, 1) of learning one’s own cardinal
preferences, the direct cost is (2500pc)

2k. Even for the smallest positive value of k
considered here, the probability of acquiring information on cardinal preferences in
equilibrium is 1.92 × 10−4, while the equilibrium probability of acquiring ordinal
preferences is 1. Essentially, for any positive value of k in the example, we are in a
case very similar to the one with the information structure being OI.

4 Information provision

While students always have incentives to acquire information on their own preferences
and sometimes on others’ preferences, information is not always successfully acquired
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due to the costs. In this section, we examine the impact of information provision by
education authorities.

In our model, we assume that the provision of information decreases the cost of
information acquisition to zero, while the lack of it increases such cost to infinity. For
simplicity, we focus on a special setting where everyone has the same ordinal (but
different cardinal) preferences, similar to the setting in Abdulkadiroğlu et al. (2011)
and Troyan (2012). This setting is unfortunately not a special case of the model in
sections 3.3 and 3.4 , because student preferences are correlated. However, it can be
shown that the main results, Propositions 1 and 2 , still hold true in the setting of this
section.

We start with a prior F and thus G (P|F) such that after a P is drawn, it becomes
everyone’s ordinal preference. Again, every school to be acceptable: vi,s > 0 for all
i and s. We use Fvs to denote the marginal distribution of the cardinal preference for
school s.

We next represent the education authority’s decision regarding how much infor-
mation to release by sending a vector of signals to every i : ω̄i = (

ω̄1,i , ω̄2,i , ω̄3,i
) ∈

P̄ × V̄ × V̄(|I |−1), where ω̄1,i and ω̄2,i are the signals of i’s ordinal and cardinal pref-
erences respectively, and ω̄3,i is the signal of others’ cardinal preferences. All signals

are such that ω̄1,i ∈ {Pφ, Pi
}
, ω̄2,i ∈ {V φ, Vi

}
, and ω̄3,i =

{
V φ

−i , V−i

}
, i.e., they are

either perfectly informative or completely uninformative.
We study the ex antewelfare in equilibrium under each of the following information

structures:

(i) Uninformed (UI): ω̄i =
(

Pφ, V φ, V φ
−i

)
, ∀i ;

(ii) Ordinally Informed (OI): ω̄i =
(

Pi , V φ, V φ
−i

)
, ∀i ;

(iii) Cardinally Informed (CI): ω̄i =
(

Pi , Vi , V φ
−i

)
, ∀i ;

(iv) Perfectly Informed (PI): ω̄i = (Pi , Vi , V−i ), ∀i .

Note that UI, OI, andCI are the same as in Sect. 3.5. The identical ordinal preference
is common knowledge under OI, CI, or PI. However, under UI, no one knows the
realization of ordinal preference, but everyone knows that the ordinal preference will
be the same across students.

These four information structures reflect possible outcomes of different school
choice policies. When the education authority makes it difficult for students to acquire
information on schools, we are likely to be in the UI scenario. When it makes some
information easy to access or directly sends signals to students about their ordinal
preferences, students may find it costless to learn their ordinal preferences, and thus
we are likely in the OI scenario. If all information on own preferences is readily
available, we are likely to be in the CI scenario.

We are also interested in the PI scenario, which relates to the gaming part of school
choice under a non-strategy-proofmechanism. FromProposition 2, individual students
have incentives to acquire information on others’ preferences under IA. The literature
has shown that this additional strategic behavior may create additional inequalities
in access to public education. More precisely, if one does not understand the game
and does not invest enough to acquire information on others’ preferences, she may
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have a disadvantage when playing the school choice game. As a policy intervention,
education authority can choose to make this information easier to obtain by publishing
students’ strategies and allowing students to revise their applications upon observing
others’ strategies as in Amsterdam (De Haan et al. 2015) and Wake County, NC (Dur
et al. 2018).

Note that a symmetric Bayesian Nash equilibrium, possibly in mixed strategies,
always exists under any of the four information structures by the standard fixed point
arguments. We summarize the results on ex ante welfare under DA and IA in the
following two propositions.

Proposition 3 (Ex ante welfare under DA) Under DA, the ex ante welfare of every
student under any of the four information structures (UI, OI, CI, and PI) equals∑

s∈S
qs
|I |
∫

vi,sd Fvs

(
vi,s

)
in any symmetric equilibrium.

This implies that there is no gain in ex ante student welfare when students receive
more information under DA.

Finally, we state our last proposition.

Proposition 4 (Ex ante welfare under IA) Under IA, we obtain the following ex ante
student welfare comparisons in terms of Pareto dominance in a symmetric equilibrium:

(i) When uninformed or ordinally informed, the ex ante student welfare is
∑

s∈S
qs
|I |∫

vi,sd Fvs

(
vi,s

)
;

(ii) Ex ante welfare for cardinally informed students weakly dominates that for unin-
formed or ordinally informed students: CI ≥ OI = UI;

(iii) Ex ante welfare for perfectly informed students weakly dominates that for unin-
formed or ordinally informed students: PI ≥ OI = UI;

(iv) The ranking between the ex ante welfare for perfectly informed students and that
for cardinally informed students is ambiguous.

The above proposition suggests that it is always beneficial to provide more infor-
mation on one’s own cardinal preferences, but the effect of providing information on
others’ preferences is ambiguous.

To prove part (iv), we use two examples in “Appendix A” (Sects. A.5.4,A.5.5). The
intuition for more information on others’ preferences being welfare-decreasing is as
follows. Suppose that there are two types of students who are categorized by their
preferences for school s1, high- and low-type. It is optimal for a high-type student to
top-rank s1 if there are not more than n other students top-ranking s1. Because the
cardinal preferences are i.i.d. draws, some realized preference profiles of this game
can have more than n + 1 high-type students, which is observed by every student
when they are perfectly informed. In a symmetric equilibrium in this case, always
top-ranking s1 becomes sub-optimal for high-type students. Instead, they may play
a mixed strategy in equilibrium by top-ranking some other school with a positive
probability. Consequently, school s1 will be assigned to a low-type student with a
positive probability, lowering the ex ante student welfare that is evaluated before the
realization of student preferences. In contrast, when cardinally informed, students do
not observe others’ preferences and thus play against a distribution of student types.
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When other students are high-type with a low probability, a high-type student will
choose to always top rank s1 in a symmetric equilibrium. The concrete example in
“Appendix A.5.5” details this intuition.

On the other hand, observing others’ preferences can sometimes facilitate coordi-
nation among students and thus become welfare improving. Consider again the above
example with high- and low-type students in terms of preferences for school s1. Sup-
pose that when cardinally informed, high-type students choose to never top rank s1 in
a symmetric equilibrium, because their preferences for s1 are not too high while other
students are very likely to be high-type. Now consider PI. Some realized preference
profiles of this game can have only one high-type student. In these realizations, it can
be optimal for the high-type student to top-rank s1, increasing the chance that a high-
type student is assigned s2. As a result, the ex ante student welfare, evaluated before
the realization of student preferences, can be improved. “Appendix A.5.4” provides a
numerical example showing this intuition.

5 Concluding remarks

This paper provides insights for designing better school choice policies by studying
endogenous information acquisition and the effects of information provision.

We distinguish between two types of information acquisition. One is to learn
one’s own preferences over schools, and the other is to discover others’ preferences.
Acquiring information on own preferences is necessary in school choice, given the
complex nature of education production and the usual lack of information on schools.
In contrast, learning about others’ preferences is more related to competing with other
students.

The two popular mechanisms, DA and IA, provide heterogeneous degrees of incen-
tives for students to acquire information on preferences. Only IA incentivizes students
to learn their own cardinal and others’ preferences, while students under DA have no
incentive to acquire information beyond their own ordinal preferences. We demon-
strate that information acquisition costs affect the efficiency of each mechanism and
the welfare ranking between the two. This implies that it is important to endogenize
information acquisition in welfare analyses of school choice.

In the case where everyone has the same ordinal preferences, we show the welfare
effects of various policies of information provision. The results reveal that information
provision is irrelevant in DA, while providing more information on own cardinal
preferences is always welfare-improving in IA. However, more information about
others’ preferences can sometimes be welfare-decreasing in IA.

Our model can be potentially extended in several dimensions. The results can be
generalized to the setting inwhich students have interdependent values over schools. In
this case, acquiring information on own values can be achieved by learningmore about
the schools as well as learning from others’ preferences. With interdependent values,
students decipher signals on others’ preferences in two ways, useful information on
one’s own values and that on others’ values. Our results then describe under each
mechanism which deciphering is necessary.
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Our model considers the sequential acquisition of information, but, in reality, stu-
dents may acquire information on one’s own and others’ preferences simultaneously.
Given the lack of strategy-proofness and the role of cardinal utility under IA, we expect
our results to hold.

Our model does not allow pre-determined admission priorities. In practice, such
priorities are common and can be correlated with student preferences. For exam-
ple, public school quality is often cited as one of the most important reasons for
families to decide where to live (Hoxby 2003, page 10), while schools often give pri-
orities to students in its neighborhood.14 Therefore, it would be interesting to examine
an extended information acquisition game: first, students acquire information about
schools to decide where to live; second, the residential location decision determines
student priority; third, students then enter another information acquisition game for
in-depth information about each school given their priority. Such a game can create
a correlation between student preferences and priorities. We leave this extension for
future research.

Finally, our model assumes every student is rational; however, this assumption is
not born out in laboratory or field studies (Chen and Sönmez 2006; Abdulkadiroğlu
et al. 2006; He 2017). Further studies might explore a theoretical model with students
of heterogenous sophistication levels, as in Pathak and Sönmez (2008). Given these
considerations, the laboratory experiment in our companion paper (Chen andHe 2018)
may help us better understand how the theoretical predictions correspond to actual
participant decisions in a school choice context.

Acknowledgements We thank Simon Anderson, Nick Arnosti, Georgy Artemov, Larry Ausuble, Estelle
Cantillon, Alexander Cappelen, Yeon-Koo Che, Li Chen, Ting-Ting Ding, John Duffy, Federico Echenique,
Lars Ehlers,MaximEngers, Guillaume Fréchette, GuillaumeHaeringer, AstridHopfensitz, TanjimHossain,
Fuhito Kojima, Rachel Kranton, Erin Krupka, Dorothea Kübler, Steve Leider, George Loewenstein, David
Miller, NoahMyung, TheoOfferman,YesimOrhun, Emel andErkutOzbay, Scott Page, Szilvia Pápai, Tanya
Rosenblat, Al Roth, Andy Schotter, Vernon Smith, Barry Sopher, Olivier Tercieux, Séverine Toussaert, Peter
Troyan, Bertil Tungodden, Dan Vincent, Georg Weizsäcker, Roberto Weber, John Wooders, Huan Xie, and
seminar participants at Amsterdam, BYU, Cologne, Concordia, Gothenburg, Leicester, Maryland, Michi-
gan, Norwegian School of Economics, NYU, NYU Abu Dhabi, Rutgers, Stanford, Toulouse, Tsinghua,
UC-Irvine, Virginia, the 2015 ESA World (Sydney, Australia) and North American (Dallas, TX) meet-
ings, the 2016 NSF/NBER Decentralization Conference (Providence, RI), the 2017 European Behavioral
Economics Meeting (Budapest, Hungary), and the 2017 SITE (Stanford, CA) for helpful discussions and
comments.

Declarations

Conflict of interest The authors declare that they have no known competing financial interests or personal
relationships that could have appeared to influence the work reported in this paper.

Availability of data andmaterials Not applicable.

Ethics approval Not applicable.

14 Moreover, using New York City high school choice data, Abdulkadiroğlu et al. (2009) find that most
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Appendix A: Proofs

Before proving the propositions, let us summarize the properties of the two mecha-
nisms. As the results can be easily verified by going through the mechanisms, we omit
the formal proof.15

Lemma 2 DA and IA (with single tie breaking) have the following properties:
(i) Monotonicity: If the only difference between Li and L ′

i is that the positions of s
and t are swapped such that t Li s, sL ′

i t , and #
{
s′′ ∈ S|s′Li s′′} = #

{
s′′ ∈ S|s′L ′

i s
′′}

for all s′ ∈ S\ {s, t}, then:

as
(
L ′

i , L−i
) ≥ as (Li , L−i ) ,∀L−i ;

the inequality is strict when L j = Li , ∀ j �= i .
(ii) Guaranteed share in first choice: If school s is top ranked in Li by i ,

as (Li , L−i ) ≥ qs/ |I |, for all L−i .
(iii) Guaranteed assignment:

∑
s∈S as (Li , L−i ) = 1 for all L−i .

A.1 Proof of Lemma 1

The proof applies to either DA or IA. Note that given any (α−i , β−i ) of other students,
σ ∗ (ω) exists. This can be proven by the usual fixed point argument. Note that σ ∗ (ω)

does not depend on one’s own investments in information acquisition, although it does
depend on the signal that one has received (ω).

Given ω, i’s payoff function can be written as:

∫ ∫ ∫

ui
(
V , σ, σ ∗ (ω−i )

)
d F (V |ω) d F (V−i |ω−i ) d H (ω−i |α−i , β−i ) ,

which is continuous in σ . Therefore, the value functionΠ (ω, α−i , β−i ) is continuous
in (α−i , β−i ) by the maximum theorem.

15 Similar results on IA and their proofs are available in He (2017).
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For student i , the optimal information acquisition is solved by the first-order con-
ditions (second-order conditions are satisfied by the assumptions on the functions
a () , b (), and c ()):

a′ (α∗)

∫
[

b (β∗ (P))
∫

Π
(
(P, V ) , α∗−i , β

∗−i

)
F (V |P)

+ (1 − b (β∗ (P)))Π
((

P, V φ
)
, α∗−i , β

∗−i

)− c (α∗, β∗ (P))

]

dG (P|F)

−a′ (α∗)
[
Π
(
Pφ, α∗−i , β

∗−i

)− c (α∗, 0)
]

−a (α∗)
∫

cα (α∗, β∗ (P)) dG (P|F) − (1 − a (α∗)) cα (α∗, 0) = 0

b′ (β∗ (P)
)
[∫

Π
(
V , α∗−i , β

∗−i

)
d F (V |P) − Π

(
P, α∗−i , β

∗−i

)
]

− cβ∗
(
α∗, β∗ (P)

) = 0, ∀P ∈ P .

Given the non-negative value of information and the properties of a () , b (), and c (),
one can verify that theremust exist α∗ and β∗(P) for all P ∈ P such that the first-order
conditions are satisfied.

A.2 Proof of Proposition 1

A.2.1 Proof of˛∗ > 0

Given the existence of a symmetric equilibrium, let us suppose instead that α∗ = 0.
It implies that β∗ (P) = 0 for all P ∈ P and that the value function can be simplified
as:

Π
(
ω, α∗, β∗) = Π

((
Pφ, V φ

)
, 0, 0

)

= max
σ

{∫ ∫

ui
(
V , σ, σ ∗ (ω−i )

)
d F (V ) d F (V−i )

}

.

Since α∗ = 0 and β∗ = 0 (a |P|-dimensional vector of zeros) is a best response for i ,
∀α > 0,

Π
((

Pφ, V φ
)
, 0, 0

)

≥
{

a (α)

∫

Π
((

P, V φ
)
, 0, 0

)
dG (P|F) + (1 − a (α))Π

((
Pφ, V φ

)
, 0, 0

)− c (α, 0)

}

;

or

c (α, 0) ≤ a (α)

[∫

Π
((

P, V φ
)
, 0, 0

)
dG (P|F) − Π

((
Pφ, V φ

)
, 0, 0

)
]

,∀α > 0,

which can be satisfied if and only if Π
((

P, V φ
)
, 0, 0

) = Π
((

Pφ, V φ
)
, 0, 0

)
for

all P ∈ P , given that
∫

Π
((

P, V φ
)
, 0, 0

)
dG (P|F) ≥ Π

((
Pφ, V φ

)
, 0, 0

)
and

cα (0, 0) < a′ (0) = ∞.
In a given symmetric equilibrium σ ∗, the finiteness of the strategy space implies

that a finite set of lists
(
L(1), . . . , L(N )

)
are played with positive probabilities

(
p(1), . . . , p(N )

)
(N ∈ N). Suppose that s1 is bottom ranked in L(1) and s2 is the second
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to the bottom. Moreover, there exists an ordinal preference P∗ such that s1P∗s P∗s2
for all s �= s1, s2. We also define L(1)′ which only switches the ranking of the bottom
two choices in L(1), s1 and s2.

Since Π
((

P∗, V φ
)
, 0, 0

) = Π
((

P, V φ
)
, 0, 0

)
, it implies that L(1) is also a best

response to σ ∗ even if i has learned Pi = P∗. We then compare i’s payoffs from
submitting L(1) and L(1)′.

By themonotonicity of themechanism (Lemma2),as1

(
L(1)′, L−i

) ≥ as1

(
L(1), L−i

)

and as1

(
L(1)′, L−i

) ≤ as1

(
L(1), L−i

)
for all L−i . Moreover, as∗ (P∗, L−i ) >

as∗ (P, L−i ) when everyone else submits L(1) in L−i .
Besides, under either of the two mechanisms, given a list, lower-ranked choices

do not affect the admission probabilities at higher-ranked choices. Together with the
guaranteed assignment (Lemma 2), it implies that as1

(
L(1), L−i

)+as2

(
L(1), L−i

) =
as1

(
L(1)′, L−i

)+ as2

(
L(1)′, L−i

)
.

σ ∗ leads to a probability distribution over a finite number of possible profiles of
others’ actions (L−i ). With a positive probability, everyone else plays L(1). In this
event, therefore, by submitting L(1)′, i strictly increases the probability of being
accepted by s1 and decrease the probability of the least preferred school s2, com-
paring with that of submitting L(1). Furthermore, in any other possible profile of
L−i , the probability of being assigned to s∗ is also always weakly higher when sub-
mitting L(1)′. Hence, L(1) is not a best response to σ ∗ when Pi = P∗, and thus
Π
((

P∗, V φ
)
, 0, 0

) �= Π
((

P, V φ
)
, 0, 0

)
.

This contradiction proves that α∗ = 0 is not an equilibrium. Since an equilibrium
always exists, it must be that α∗ > 0.

A.2.2 Proof ofˇ∗ (P) = 0 under DA

Suppose β∗ (P) > 0 for some P ∈ P under DA or any strategy-proof ordinal mech-
anism. It implies that:

β∗ (P)

∫

Π
(
(P, V ) , α∗−i , β

∗−i

)
d F (V |P)

+ (
1 − β∗ (P)

)
Π
((

P, V φ
)
, α∗−i , β

∗−i

)− c
(
α∗, β∗ (P)

)

> Π
((

P, V φ
)
, α∗−i , β

∗−i

)
,

or,

β∗ (P)

[∫

Π
(
(P, V ) , α∗−i , β

∗−i

)
d F (V |P) − Π

((
P, V φ

)
, α∗−i , β

∗−i

)
]

> c
(
α∗, β∗ (P)

)
. (1)

However, strategy-proofness implies that:

∫

Π
(
(P, V ) , α∗−i , β

∗−i

)
d F (V |P) = Π

((
P, V φ

)
, α∗−i , β

∗−i

)
,
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and thus Equation (1) cannot be satisfied. Therefore β∗ (P) = 0 for all P ∈ P .

A.2.3 Proof ofˇ∗ (P) > 0 for some P under IA

We construct an example where β∗ (P) > 0 for some P given the distribution F under
IA. For notational convenience and in this proof only, we assume the upper bound of
utility v = 1 and the lower bound v = 0, although we bear in mind that all schools are
more preferable than outside option. Suppose that F implies a distribution of ordinal
preferences G (P|F) such that for s1 and s2:

G (P|F) =
{

(1 − ε) if P = P̄, s.t. s1 P̄s2 P̄s3 . . . P̄s|S|;
ε

|P |−1 if P �= P̄ .

The distribution of cardinal preferences is:

F
(
V |P̄) =

⎧
⎨

⎩

1 − η if
(
vs1 , vs2

) = (1, ξ) and vs < ξ2,∀s ∈ S\ {s1, s2} ;
η if

(
vs1 , vs2

) = (1, 1 − ξ) and vs < ξ2,∀s ∈ S\ {s1, s2} ;
0 otherwise.

(ε, η, ξ) are all small positive numbers in (0, 1). Otherwise, there is no additional
restriction on F (V |P) for P �= P̄ nor on vs , ∀s ∈ S\ {s1, s2}.

Suppose that β∗ (P) = 0 for all P ∈ P . Section A.2.1 implies that α∗ > 0. If
ωi = (

P̄, V φ
)
(i.e., ordinal preferences are known but not cardinal ones), the expected

payoff of being assigned to s2 is:

E
(
vi,s2 |P̄

) = (1 − η) ξ + η (1 − ξ) .

And (η, ξ) are small enough such that E
(
vi,s2 |P̄

)
< qs1/ |I |. Therefore, obtaining s2

with certainty is less preferable than obtaining qs1/ |I | of s1. In equilibrium, with a
small enough (ε, η, ξ), it must be that:

σ ∗ ((P̄, V φ
)
, α∗, 0

) = σ ∗ ((Pφ, V φ
)
, α∗, 0

) = P̄ .

Therefore, from i’s perspective, any other player, j , plays P̄ with probability:

(1 − a(α∗)) + a(α∗)(1 − ε) > 1 − ε.

It then suffices to show that student i has incentive to deviate from such equilibrium
strategies. Suppose that i has learned her ordinal preferences and Pi = P̄ . If further-
more she succeeds in acquiring information on Vi , there is a positive probability that(
vs1 , vs2

) = (1, 1 − ξ). In this case, if she plays Li s.t., s2Li s1Li s3 . . . Li s|S| (or other
payoff-equivalent strategies), her expected payoff is at least:

(1 − ξ) (1 − ε)(|I |−1) ,
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While playing Pi (= P̄) leads to an expected payoff less than:

(1 − ε)(|I |−1)
[

qs1

|I | +
(

1 − qs1

|I |
)

ξ

]

+
(
1 − (1 − ε)(|I |−1)

)
.

This upper bound is obtained under the assumption that one is always assigned to s1
when not everyone submits P̄ . When (ε, ξ) are close to zero, it is strictly profitable to
submit Li instead of P̄:

∫

Π
((

P̄, V
)
, α∗−i , 0

)
d F

(
V |P̄) > Π

((
P̄, V φ

)
, α∗−i , 0

)
,

because in other realizations of V , i cannot do worse than submitting P̄ . The marginal
payoff of increasing β

(
P̄
)
from zero by Δ is then:

Δ

(

b′ (0)
[∫

Π
((

P̄, V
)
, α∗−i , 0

)
d F

(
V |P̄)− Π

((
P̄, V φ

)
, α∗−i , 0

)
]

− cβ

(
α∗, 0

)
)

,

which is strictly positive given cβ (α∗, 0) < b′ (0) = +∞. This proves that under IA
β∗ (P) > 0 for some P ∈ P given F .

A.3 Proof of Proposition 2

For the first part, by the definition of strategy-proofness, information on others’ types
does not change one’s best response. Therefore, δ∗ (V ) = 0 for all V under any
strategy-proof mechanism.

To prove the second part, we construct an example of F (V ) to show δ∗ (V ) > 0
for some V under IA. For notational convenience and in this proof only, we assume
the upper bound of utility v = 1 and the lower bound v = 0, although we bear in mind
that all schools are more preferable than outside option. The distribution of cardinal
preferences is:

F (V ) =
⎧
⎨

⎩

1
2 − ε if V = V (1) s.t.

(
vs1 , vs2

) = (1, 0) , vs ∈ (0, ξ) ∀s /∈ {s1, s2} ;
1
2 − ε if V = V (2) s.t.

(
vs1 , vs2

) = (0, 1) , vs ∈ (0, ξ) ∀s /∈ {s1, s2} ;
ε if V = V (3) s.t.

(
vs1 , vs2

) = (1, 1 − η) , vs ∈ (0, ξ) ∀s /∈ {s1, s2} ;

where (ε, ξ, η) are small positive values. Besides,

F
(

V ∈ [0, 1]|S| \ {V (1), V (2), V (3)}
)

= ε.

Suppose that for student i , Vi = V (3). If δ∗ (V ) = 0 for all V , the best response
for i in equilibrium is to top rank either s1 or s2.

Given F (V ), there is a positive probability,
( 1
2 − ε

)|I |−1
, that every other student

has V (1) and top ranks s1. In this case, the payoff for i top-ranking s1 is less than
qs1/ |I | + ξ , while top-ranking s2 leads to (1 − η).
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There is also a positive probability,
( 1
2 − ε

)|I |−1
, that every other student has V (2)

and top ranks s2. In this case, the payoff for i top-ranking s1 is 1, while the one when
top-ranking s2 is at most (1 − η) qs2/ |I | +ξ .

Since
∫

Φ
(
V , V−i , δ

∗−i

)
d F (V−i ) ≥ Φ

(
V , V φ

−i , δ
∗−i

)
and the above shows they

are different for some realization of (Vi , V−i ), thus,

∫

Φ
(
V , V−i , δ

∗−i

)
d F (V−i ) − Φ

(
V , V φ

−i , δ
∗−i

)
> 0.

The marginal payoff of acquiring information (increasing δ (Vi ) from zero to Δ) is:

Δ

(

d ′ (0)
[∫

Φ
(
V , V−i , δ

∗−i

)
d F (V−i ) − Φ

(
V , V φ

−i , δ
∗−i

)]

− e′ (0)
)

,

which is positive for a small (ε, ξ, η) because e′ (0) < d ′ (0) = ∞. This proves that
δ∗ (V ) > 0 for some V with a positive measure given F .

A.4 Proof of Proposition 3

Under UI, the only information i has is that her preferences follow the distribu-
tion F (V ). Denote W E

i as the expected (possibly weak) ordinal preferences of
i such that sW E

i t if and only if
∫

vi,sd Fvs

(
vi,s

) ≥ ∫
vi,t d Fvt

(
vi,t
)
. Given W E

i ,(
P E,1

i , . . . , P E,M
i

)
∈ P are all the strict ordinal preferences that can be generated by

randomly breaking ties in W E
i if there is any. Therefore, M ≥ 1.

When others play L−i , the expected payoff of i playing Li is:

∫ ∑

s∈S

as (Li , L−i ) vi,sd F (V ) =
∑

s∈S

as (Li , L−i )

∫

vi,sd Fvs

(
vi,s

)
.

Since DA with single tie breaking is essentially the random serial dictatorship, it is
therefore a dominant strategy that i submits any P E,m

i m ∈ {1, . . . , M}. Moreover,

a strategy that is not in
(

P E,1
i , . . . , P E,M

i

)
can never be played in any equilibrium,

because there is a positive-measure set of realizations of the lottery that such a strategy
leads to a strictly positive loss.

We claim that in equilibrium for any L∗−i such that L∗
j ∈

(
P E,1

i , . . . , P E,M
i

)
,

j �= i , the payoff to i is:

∑

s∈S

as

(
P E,m

i , L∗−i

) ∫

vi,sd Fvs

(
vi,s

) =
∑

s∈S

qs

|I |
∫

vi,sd Fvs

(
vi,s

)
,∀m. (2)

Note that for any L∗−i ,
∑

s∈S as

(
P E,m

i , L−i

) ∫
vi,sd Fvs

(
vi,s

)
does not vary across

m given that any P E,m
i is a dominant strategy.
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Since everyone has the same expected utility for being assigned to every school,
the maximum utilitarian sum of expected utility is:

∑

s∈S

qs

∫

vi,sd Fvs

(
vi,s

)
(3)

If Equation (2) is not satisfied and there exists i such that for some L̂∗−i :

∑

s∈S

as

(
P E,m

i , L̂∗−i

) ∫

vi,sd Fvs

(
vi,s

)
>
∑

s∈S

qs

|I |
∫

vi,sd Fvs

(
vi,s

)
,∀m. (4)

The maximum utilitarian social welfare in (3) implies that there exists j ∈ I\ {i} and
m ∈ {1, . . . , M} such that:

∑

s∈S

as

(
P E,m

j , L̂∗− j

) ∫

v j,sd Fvs

(
v j,s

)
<
∑

s∈S

qs

|I |
∫

v j,sd Fvs

(
v j,s

)
, (5)

where P E,m
j is j’s strategy in L̂∗−i and P E,m

j = P E,m
i . We can always find such P E,m

i

and P E,m
j because condition (4) is satisfied for all m. However, the uniform random

lottery implies that, ∀s,

as

(
P E,m

i ,
(

L∗−(i, j), P E,m
j

))
= as

(
P E,m

j ,
(

L∗−(i, j), P E,m
i

))
if P E,m

i = P E,m
j ,

and thus:

∑

s∈S

as

(
P E,m

j ,
(

L∗−(i, j), P E,m
i

)) ∫

v j,sd Fvs

(
v j,s

)

=
∑

s∈S

as

(
P E,m

i ,
(

L∗−(i, j), P E,m
j

)) ∫

vi,sd Fvs

(
vi,s

)
,

which contradicts the inequalities (4) and (5). This proves (2) is always satisfied.
Under OI, CI, or PI, the unique equilibrium is for everyone to report her true ordinal

preferences, and thus the expected payoff (ex ante) is:

∫ ∫ ∑

s∈S

as (P, L−i (P)) vi,sd F (V |P) dG (P|F)

=
∫ ∫ ∑

s∈S

qs

|I |vi,sd Fvs

(
vi,s |P

)
dG (P|F)

=
∑

s∈S

qs

|I |
∫

vi,sd Fvs

(
vi,s

)
,

where L−i (P) is such that L j = P , ∀ j ∈ I\ {i}.
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A.5 Proof of Proposition 4

A.5.1 Welfare under UI and OI

We first show UI = OI in symmetric equilibrium in terms of ex ante student welfare.
UnderUI, the game can be transformed into one similar to that under PI but everyone

has the same cardinal preferences that are represented in terms of the expected utilities[∫
vi,sd Fvs

(
vi,s

)]
s∈S . In a symmetric equilibrium, everyone thus must play exactly

the same strategy, either pure ormixed, which further implies that everyone is assigned
to each school with the same probability and has the same ex ante welfare:

∑

s∈S

qs

|I |
∫

vi,sd Fvs

(
vi,s

)
.

Under OI, everyone knows that everyone has the same ordinal preferences P .
The game again can be considered as one under PI where everyone has the same
cardinal preferences,

[∫
vi,sd Fvs

(
vi,s |P

)]
s∈S . Similar to the argument above, the

payoff conditional on P is:

∑

s∈S

qs

|I |
∫

vi,sd Fvs

(
vi,s |P

)
,

which leads to an ex ante payoff:

∫ ∑

s∈S

qs

|I |
∫

vi,sd Fvs

(
vi,s |P

)
dG (P|F) =

∑

s∈S

qs

|I |
∫

vi,sd Fvs

(
vi,s

)
.

A.5.2 Proof of CI≥ UI = OI under IA

We then show CI ≥ OI = UI.
Under CI, everyone’s cardinal preferences Vi are her private information, although

her ordinal preferences P , which is common across i , are common knowledge. Sup-
pose that σ B N (V ) : [0, 1]|S| → Δ(P) is a symmetric Bayesian Nash equilibrium.
We show that:

∫ ∫ (∫

A
(
σ B N (Vi ) , σ B N (V−i )

)
d F (V−i |P) · Vi

)

d F (Vi |P) dG (P|F)

≥
∑

s∈S

qs

|I |
∫

vi,sd Fvs

(
vi,s

)
.

The following uses the same idea as in the proof of Proposition 2 in (Troyan 2012).
Note that

∫
as
(
σ B N (Vi ) , σ B N (V−i )

)
d F (V−i |P) is i’s probability of being assigned

to s in equilibrium when the realization of cardinal preferences is Vi . Furthermore,
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the ex ante assignment probability, i.e., the probability before the realization of P and
Vi , is

∫ ∫ ∫

as

(
σ B N (Vi ) , σ B N (V−i )

)
d F (V−i |P) d F (Vi |P) dG (P|F) ,

which must be the same across students by symmetry. Therefore, we must have:

|I |
∫ ∫ ∫

as

(
σ B N (Vi ) , σ B N (V−i )

)
d F (V−i |P) d F (Vi |P) dG (P|F) = qs , ∀s ∈ S, (6)

as in equilibrium all seats at all s ∈ S must be assigned.
Suppose i plays an alternative strategy σi such that σi = ∫ ∫

σ B N (Vi ) d F (Vi |P)

dG (P|F) = ∫
σ B N (Vi ) d F (Vi ). That is, i plays the “average” strategy of the equi-

librium strategy regardless of her preferences. Her payoff given any realization of P
is:

∫ (∫

A
(
σi , σ

B N (V−i )
)

d F (V−i |P) · Vi

)

d F (Vi |P)

=
∫ (∫ (∫ ∫

A
(
σ B N (Vi ) , σ B N (V−i )

)
d F (Vi |P) dG (P|F)

)

d F (V−i |P) · Vi

)

d F (Vi |P)

=
∫ (∑

s∈S

(∫ ∫ ∫

as

(
σ B N (Vi ) , σ B N (V−i )

)
d F (Vi |P) dG (P|F) d F (V−i |P)

)

vi,s

)

d F (Vi |P)

=
∫ (

∑

s∈S

qs

|I | vi,s

)

d F (Vi |P) .

The last equation is due to (6). Since σi may not be optimal for i upon observing her
preferences Vi , we thus have for ex ante welfare:

∫ ∫ (∫

A
(
σ B N (Vi ) , σ B N (V−i )

)
d F (V−i |P) · Vi

)

d F (Vi |P) dG (P|F)

≥
∫ ∫ (∫

A
(
σi , σ

B N (V−i )
)

d F (V−i |P) · Vi

)

d F (Vi |P) dG (P|F)

=
∑

s∈S

qs

|I |
∫

vi,sd Fvs

(
vi,s

)
,

which proves CI ≥ OI = UI in terms of Pareto dominance of ex ante student welfare.

A.5.3 Proof of PI≥ OI = UI under IA

Under PI, everyone’s cardinal preferences Vi are common knowledge. Given a sym-
metric equilibrium, by the same argument as above, wemust have PI Pareto dominates
OI and UI.

Suppose that σ N E (Vi , V−i ) : [0, 1]|S|×|I | → Δ(P) is a symmetric Nash equilib-
rium. We show that:

∫ ∫ ∫ (

A

(

σ N E (Vi , V−i ) ,
[
σ N E (Vj , V− j

)]

j∈I\{i}

)

· Vi

)
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d F (V−i |P) d F (Vi |P) dG (P|F)

≥
∑

s∈S

qs

|I |
∫

vi,sd Fvs

(
vi,s

)
.

Note that as

(
σ N E (Vi , V−i ) ,

[
σ N E

(
Vj , V− j

)]
j∈I\{i}

)
is i’s probability of being

assigned to s in equilibrium when the realization of cardinal preferences is (Vi , V−i ).
Furthermore, the ex ante assignment probability, i.e., the probability before the real-
ization of P and (Vi , V−i ), is

∫ ∫ ∫

as

(

σ N E (Vi , V−i ) ,
[
σ N E (Vj , V− j

)]

j∈I\{i}

)

d F (V−i |P) d F (Vi |P) dG (P|F) ,

which must be the same across students by symmetry. Therefore, we must have,
∀s ∈ S:

|I |
∫ ∫ ∫

as

(

σ N E (Vi , V−i ) ,
[
σ N E (Vj , V− j

)]

j∈I\{i}

)

d F (V−i |P) d F (Vi |P) dG (P|F)

= qs , (7)

as in equilibrium all seats at all s ∈ S must be assigned.
Suppose i plays an alternative strategy σi such that

σi =
∫ ∫ ∫

σ N E (Vi , V−i ) d F (V−i |P) d F (Vi |P) dG (P|F) .

That is, i plays the “average” strategy of the equilibrium strategy regardless of her and
others’ preferences. Her payoff given a realization of (Vi , V−i ) is:

A

(

σi ,
[
σ N E (Vj , V− j

)]

j∈I\{i}

)

· Vi

=
(∫ ∫ ∫

A

(

σ N E (Vi , V−i ) ,
[
σ N E (Vj , V− j

)]

j∈I\{i}

)

d F (V−i |P) d F (Vi |P) dG (P|F)

)

· Vi

=
∑

s∈S

(∫ ∫ ∫

as

(

σ N E (Vi , V−i ) ,
[
σ N E (Vj , V− j

)]

j∈I\{i}

)

d F (Vi |P) dG (P|F) d F (V−i |P)

)

vi,s

=
∑

s∈S

qs

|I | vi,s .

The last equation is due to (7). Therefore, her payoff given a realization of P is:

∫ ∫ (

A

(

σi ,
[
σ N E (Vj , V− j

)]

j∈I\{i}

)

· Vi

)

d F (V−i |P) d F (Vi |P)

=
∫ (

∑

s∈S

qs

|I |vi,s

)

d F (Vi |P) .
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Sinceσi may not be optimal for i upon observing her and others’ preferences (Vi , V−i ),
we thus have:

∫ ∫ ∫ (

A

(

σ N E (Vi , V−i ) ,
[
σ N E (Vj , V− j

)]

j∈I\{i}

)

· Vi

)

d F (V−i |P) d F (Vi |P) dG (P|F)

≥
∫ ∫ ∫ (

A

(

σi ,
[
σ N E (Vj , V− j

)]

j∈I\{i}

)

· Vi

)

d F (V−i |P) d F (Vi |P) dG (P|F)

=
∑

s∈S

qs

|I |
∫

vi,sd Fvs

(
vi,s

)
,

which thus proves that P I > O I = U I in terms of Pareto dominance.
We use two examples to show part (iii) in Proposition 4: Section A.5.4 shows that PI

can dominate CI in symmetric equilibrium while the example in Section A.5.5 shows
the opposite.

A.5.4 Example: PI dominates CI in symmetric equilibrium under IA

There are 3 schools {s1, s2, s3} and 3 students whose cardinal preferences are i.i.d.
draws from the following distribution:

Pr ((v1, v2, v3) = (1, 0.1, 0)) = 1/2
Pr ((v1, v2, v3) = (1, 0.5, 0)) = 1/2

Each school has one seat. For any realization of preference profile, we can find a
symmetric Nash equilibrium as in Table 3.

The above symmetric equilibrium leads to an ex ante student welfare:

1

2

(
1

4

11

30
+ 1

2

1

2
+ 1

4

11

30

)

+ 1

2

(
1

4

1

2
+ 1

2

1

2
+ 1

4

1

2

)

= 14

30
.

Table 3 Symmetric Nash equilibrium for each realization of the game under PI

Realization of
preferences

Probability
realized

Strategy given realized type Payoff given realized type

(1, 0.1, 0) (1, 0.5, 0) (1, 0.1, 0) (1, 0.5, 0)

(1, 0.1, 0)
(1, 0.1, 0)
(1, 0.1, 0)

1/8 (s1, s2, s3) – 11/30 –

(1, 0.5, 0)
(1, 0.1, 0)
(1, 0.1, 0)

1/4 (s1, s2, s3) (s2, s1, s3) 1/2 1/2

(1, 0.5, 0)
(1, 0.5, 0)
(1, 0.1, 0)

1/4 (s1, s2, s3) (s1, s2, s3) 11/30 1/2

(1, 0.5, 0)
(1, 0.5, 0)
(1, 0.5, 0)

1/8 – (s1, s2, s3) – 1/2
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When everyone’s preference is private information, we can verify that the unique
symmetric Bayesian Nash equilibrium is:

σ B N ((1, 0.1, 0)) = σ B N ((1, 0.5, 0)) = (s1, s2, s3) .

That is, everyone submits her true preference ranking. This leads to an ex ante welfare
of:

1

2

11

30
+ 1

2

15

30
= 13

30

which is lower than the above symmetric equilibrium under PI.
Also note that always playing (s1, s2, s3) is also a symmetric Nash equilibrium

under PI in all realizations of preference profile, which leads to the same ex ante
student welfare as σ B N .

A.5.5 Example: PI is dominated by CI in symmetric equilibrium under IA

There are 3 schools {s1, s2, s3} and 3 students whose cardinal preferences are i.i.d.
draws from the following distribution:

Pr ((v1, v2, v3) = (1, 0.1, 0)) = 3/4
Pr ((v1, v2, v3) = (1, 0.9, 0)) = 1/4

.

Each school has one seat. For any realization of preference profile, we can find a
symmetric Nash equilibrium as in Table 4. The ex ante welfare under PI with the
above symmetric equilibrium profile is:

3

4

(
9

16

11

30
+ 6

16

1

2
+ 1

16

3073

3610

)

+ 1

4

(
1

16

19

30
+ 6

16

99

190
+ 9

16

9

10

)

= 22 549

43 320
≈ 0.52052.

Under CI, i.e., when one’s own preferences are private information and the dis-
tribution of preferences is common knowledge, there is a symmetric Bayesian Nash
equilibrium:

σ B N ((1, 0.9, 0)) = (s2, s1, s3) ; σ B N ((1, 0.1, 0)) = (s1, s2, s3) .

For a type-(1, 0.1, 0) student, it is a dominant strategy to play (s2, s1, s3). Conditional
on her type, her equilibrium payoff is:

9

16

(
1

3

(

1 + 1

10
+ 0

))

+ 6

16

1

2
+ 1

16
= 219

480
.
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Table 4 Symmetric Nash equilibrium for each realization of the game under PI

Realization of
preference

Probability
realized

Strategy given realized type Payoff given realized type

(1, 0.1, 0) (1, 0.9, 0) (1, 0.1, 0) (1, 0.9, 0)

(1, 0.1, 0)
(1, 0.1, 0)
(1, 0.1, 0)

27/64 (s1, s2, s3) – 11/30 –

(1, 0.9, 0)
(1, 0.1, 0)
(1, 0.1, 0)

27/64 (s1, s2, s3) (s2, s1, s3) 1/2 9/10

(1, 0.9, 0)
(1, 0.9, 0)
(1, 0.1, 0)

9/64 (s1, s2, s3)
(s1, s2, s3) w/prob 3/19
(s2, s1, s3) w/prob 16/19

3073/3610 99/190

(1, 0.9, 0)
(1, 0.9, 0)
(1, 0.9, 0)

1/64 –
(s1, s2, s3) w/prob 11/19
(s2, s1, s3) w/prob 8/19

– 19/30

For a type-(1, 0.9, 0) student, given others follow σ B N , playing (s2, s1, s3) results in
a payoff of:

9

16

9

10
+ 6

16

(
1

2

(
9

10
+ 0

))

+ 1

16

(
1

3

(
9

10
+ 1 + 0

))

= 343

480
.

If a type-(1, 0.9, 0) student deviates to (s1, s2, s3), she obtains:

9

16

(
1

3

(
9

10
+ 1 + 0

))

+ 6

16

(
1

2
(1 + 0)

)

+ 1

16
(1) = 291

480
.

It is therefore not a profitable deviation. Furthermore, she has no incentive to deviate
to other rankings such as (s3, s1, s2) or (s3, s2, s1).

The ex ante payoff to every student in this equilibrium under CI is:

219

480

3

4
+ 343

480

1

4
= 25

48
≈ 0.52083,

which is higher than that under PI.
In this example, the reason that PI leads to lower welfare is because it sometimes

leads to type-(1, 0.9, 0) students to play mixed strategies in equilibrium. Therefore,
sometimes school s2 is assigned to a type-(1, 0.1, 0) student, which never happens
under CI in symmetric Bayesian Nash equilibrium.
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Abdulkadiroğlu, A., Che, Y.K., Yasuda, Y.: Resolving conflicting preferences in school choice: the “Boston
Mechanism” reconsidered. Am. Econ. Rev. 101(1), 399–410 (2011). https://doi.org/10.1257/aer.101.
1.399

Artemov, G.: School choice mechanisms, information acquisition and school rankings, unpublished
manuscript (2016)

Bade, S.: Serial dictatorship: the unique optimal allocation rule when information is endogenous. Theor.
Econ. 10(2), 385–410 (2015)

Barlevy, G., Veronesi, P.: Information acquisition in financial markets. Rev. Econ. Stud. 67(1), 79–90 (2000)
Bergemann, D., Valimaki, J.: Information in mechanism design (2006)
Bergemann, D., Valimaki, J.: Information acquisition and efficient mechanism design. Econometrica 70(3),

1007–1033 (2002)
Bogomolnaia, A., Moulin, H.: A new solution to the random assignment problem. J. Econ. Theory 100(2),

295–328 (2001)
Chade, H., Lewis, G., Smith, L.: Student portfolios and the college admissions problem. Rev. Econ. Stud.

81(3), 971–1002 (2014)
Chen, Y., He, Y.: Information acquisition and provision in school choice: an experimental study. University

of Michigan Manuscript (2018)
Chen, Y., Sönmez, T.: School choice: an experimental study. J. Econ. Theory 127, 202–231 (2006)
Compte, O., Jehiel, P.: Auctions and information acquisition: sealed bid or dynamic formats? Rand. J. Econ.

38(2), 355–372 (2007)
Crémer, J., Khalil, F.: Gathering information before signing a contract. Am. Econ. Rev. 82(3), 566–578

(1992)
Crémer, J., Khalil, F., Rochet, J.C.: Strategic information gathering before a contract is offered. J. Econ.

Theory 81(1), 163–200 (1998)
Crémer, J., Spiegel, Y., Zheng, C.: Auctions with costly information acquisition. Econ. Theor. 38(1), 41–72

(2009)
Dang, T.V.: Bargaining with endogenous information. J. Econ. Theory 140(1), 339–354 (2008)
De Haan, M., Gautier, P.A., Oosterbeek, H., Van der Klaauw, B.: The performance of school assignment

mechanisms in practice. Technical report, CEPR discussion papers (2015)
Ding, T., Schotter, A.: Matching and chatting: an experimental study of the impact of network communi-

cation on school-matching mechanisms. Games Econ. Behav. 103, 94–115 (2017). https://doi.org/10.
1016/j.geb.2016.02.004

Ding, T., Schotter, A.: Learning and mechanism design: an experimental test of school matching mecha-
nisms with intergenerational advice. Econ. J. 129(623), 2779–2804 (2019). https://doi.org/10.1093/
ej/uez024

Dubins, L.E., Freedman, D.A.: Machiavelli and the Gale-Shapley algorithm. Am. Math. Mon. 88, 485–494
(1981)

Dur, U., Hammond, R.G., Morrill, T.: Identifying the harm of manipulable school-choice mechanisms. Am.
Econ. J. Econ. Policy 10(1), 187–213 (2018). https://doi.org/10.1257/pol.20160132

Dustan, A., de Janvry, A., Sadoulet, E.: Flourish or fail? The risky reward of elite high school admission in
Mexico city. Unpublished manuscript (2015)

Gale, D., Shapley, L.S.: College admissions and the stability of marriage. Am. Math. Mon. 69, 9–15 (1962)
Gerardi, D., Yariv, L.: Information acquisition in committees. Games Econ. Behav. 62(2), 436–459 (2008)
Gong, B., Liang, Y.: A dynamic college admission mechanism in Inner Mongolia: Theory and experiment.

Working paper, University of Michigan (2017)
Grenet, J., He, Y., Kübler, D.: Decentralizing centralized matching markets: implications from early offers

in university admissions. Technical report, WZB discussion paper (2019)
Guo, Y.: Information transmission and voting. Econ. Theor. 1–34 (2019)
Harless, P., Manjunath, V.: The importance of learning in market design (2015)
Hastings, J.S., Weinstein, J.M.: Information, school choice, and academic achievement: evidence from two

experiments. Q. J. Econ. 123(4), 1373–1414 (2008). https://doi.org/10.1162/qjec.2008.123.4.1373
Hauswald, R., Marquez, R.: Competition and strategic information acquisition in credit markets. Rev.

Financ. Stud. 19(3), 967–1000 (2006)
He, Y.: Gaming the Boston school choice mechanism in Beijing, Toulouse School of Economics Working

Paper (2017)

123

https://doi.org/10.1257/aer.101.1.399
https://doi.org/10.1257/aer.101.1.399
https://doi.org/10.1016/j.geb.2016.02.004
https://doi.org/10.1016/j.geb.2016.02.004
https://doi.org/10.1093/ej/uez024
https://doi.org/10.1093/ej/uez024
https://doi.org/10.1257/pol.20160132
https://doi.org/10.1162/qjec.2008.123.4.1373


Information acquisition and provision in school choice… 327

Hoxby, C., Turner, S.:What high-achieving low-income students know about college.Working paper 20861,
National Bureau of Economic Research (2015). https://doi.org/10.3386/w20861

Hoxby, C.M.: School choice and school productivity: could school choice be a tide that lifts all boats? In:
Hoxby, C.M. (ed.) The Economics of School Choice. University of Chicago Press, Chicago (2003)

Immorlica, N.S., Leshno, J.D., Lo, I.Y., Lucier, B.J.: Information acquisition in matching markets: the role
of price discovery, unpublished (2020)

Kim, J.: The value of an informed bidder in common value auctions. J. Econ. Theory 143(1), 585–595
(2008)

Kovalenkov, A.: Simple strategy-proof approximately Walrasian mechanisms. J. Econ. Theory 103(2),
475–487 (2002)

Lee, R.S., Schwarz, M.: Interviewing in two-sided matching markets. Mimeo (2012)
Lester, B., Persico, N., Visschers, L.: Information acquisition and the exclusion of evidence in trials. J. Law

Econ. Organ. (2009). https://doi.org/10.1093/jleo/ewp040
Pathak, P.A., Sönmez, T.: Leveling the playing field: Sincere and sophisticated players in the Boston mech-

anism. Am. Econ. Rev. 98(4), 1636–1652 (2008). https://doi.org/10.1257/aer.98.4.1636
Persico, N.: Information acquisition in auctions. Econometrica 68(1), 135–148 (2000)
Persico, N.: Committee design with endogenous information. Rev. Econ. Stud. 71(1), 165–191 (2004)
Rastegari, B., Condon, A., Immorlica, N.: Two-sided matching with partial information. In: Proceedings of

the 14th ACM Conference on Electronic Commerce (EC’13) (2013)
Roth, A.E.: The economics of matching: stability and incentives. Math. Oper. Res. 7, 617–628 (1982)
Roth, A.E., Sotomayor, M.: Two-Sided Matching: A Study in Game-Theoretic Modeling and Analysis.

Cambridge University Press, Cambridge (1990)
Shi, X.: Optimal auctions with information acquisition. Games Econ. Behav. 74(2), 666–686 (2012)
Troyan, P.: Comparing school choice mechanisms by interim and ex-ante welfare. Games Econ. Behav.

75(2), 936–947 (2012)
Van Nieuwerburgh, S., Veldkamp, L.: Information acquisition and under-diversification. Rev. Econ. Stud.

77(2), 779–805 (2010)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.3386/w20861
https://doi.org/10.1093/jleo/ewp040
https://doi.org/10.1257/aer.98.4.1636

	Information acquisition and provision in school choice: a theoretical investigation
	Abstract
	1 Introduction
	2 Literature review
	3 Information acquisition
	3.1 The setup
	3.2 School choice mechanisms
	3.3 Acquiring information on own preferences
	3.3.1 Technology of information acquisition
	3.3.2 Game of school choice with information acquisition

	3.4 Acquiring information on others' preferences
	3.5 Welfare effects of information acquisition: two examples

	4 Information provision
	5 Concluding remarks
	Acknowledgements
	Appendix A: Proofs
	A.1 Proof of Lemma 1
	A.2 Proof of Proposition 1
	A.2.1 Proof of αast>0
	A.2.2 Proof of βast( P) =0 under DA
	A.2.3 Proof of βast( P) >0 for some P under IA

	A.3 Proof of Proposition 2
	A.4 Proof of Proposition 3
	A.5 Proof of Proposition 4
	A.5.1 Welfare under UI and OI
	A.5.2 Proof of CI  UI = OI under IA
	A.5.3 Proof of PI  OI = UI under IA
	A.5.4 Example: PI dominates CI in symmetric equilibrium under IA
	A.5.5 Example: PI is dominated by CI in symmetric equilibrium under IA


	References




