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Abstract
The “generalized second-price auction” is widely employed to sell internet advertising
positions and has many equilibria. Analysis of this auction has assumed that myopic
players commonlyknoweachothers’ positionvalues, and that the resulting equilibrium
play is “locally envy-free”. Here, I argue that the appropriate refinement of Nash
equilibrium for this setting is evolutionary stability, and show that it implies that
an equilibrium is locally envy-free if the whole population of players bids in each
auction and the set of possible bids is not too coarse. However, not all locally envy-free
equilibria are evolutionarily stable in this case, as I show by example for the popular
Vickrey–Clarke–Groves outcome. The existence of evolutionarily stable equilibrium
is established when one position is auctioned, as well as for two positions and a large
number of bidders.

Keywords Online advertising · Internet auctions · Position auctions · Evolutionarily
stable strategy · Locally envy-free equilibrium · Symmetric Nash equilibrium ·
Vickrey–Clarke–Groves outcome · Spite

JEL Classification C73 · D44 · L81 · L86 · M3

1 Introduction

The “generalized second-price auction” (GSP) is a popular mechanism for the sale
of advertising slots, or “sponsored links”, on internet search engines. Advertisers can
bid on possible search keywords, for each of which there is such a “sponsored search”
or “position” auction, taking place in continuous time. Higher positions are more
valuable, in the sense that they generate more clicks, and the GSP allocates these
positions in order of bid size, but with each advertiser’s payment determined by the
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next highest bid. Notwithstanding the complexity of this repeated game of incomplete
information, much of the existing literature has argued that it is well modelled as a
one-shot game of complete information.

Whilst there exist many equilibria of even this one-shot game, much work has
focused on Varian’s (2007) “symmetric Nash equilibria”, which are Nash equilibria
in which bidders do not wish to deviate to win a higher position even if they only
have to pay their current bid. Edelman et al. (2007) justify symmetric equilibria with
their “locally envy-free” requirement—that a bidder will raise her bid to induce a
higher payment for the bidder in the position above her, but only up to the point
at which she would not regret her bid if that opponent were then to undercut her
slightly. Börgers et al. (2013) “regard this argument as not entirely compelling because
it is not clear that the relevant case for bidders to consider is the case that other
bidders lower their bids” in this way. Moreover, it is not clear why a bidder should
raise her bid to harm her opponent when there is no such motivation captured in her
payoffs.

Unless, that is, the advertisers’ bids are evolutionarily stable (Maynard Smith and
Price 1973; Schaffer 1988).1 Roughly speaking, an evolutionarily stable strategy
(ESS) is a strategy that, if adopted by most players, cannot be outperformed—
and hence invaded—by a small number of players using a “mutant” strategy. This
concept was originally defined for infinite populations, where it refines Nash equi-
librium, but was generalized to allow finitely many players by Schaffer (1988).
In the infinite-population case, each game involves an arbitrarily small fraction of
the population, which is an unrealistic assumption for sponsored search auctions.
Indeed, implicit in the one-shot complete-information modelling of these games is
the assumption that a fixed set of advertisers participate in each auction, in which
case the whole population takes part in each game. Schaffer’s analysis allows for
this “playing the field” (Maynard Smith 1982) scenario, an important implication of
which is that stable behaviour may be “spiteful” (Hamilton 1971): an ESS player
acts not only to increase her payoff as usual, but also to decrease the payoffs of
her opponents. This spite motivation, coupled with the robustness of ESS to small
mutations, is key to my finding here that evolutionarily stable equilibrium bids in the
“playing the field” GSP are locally envy-free (if the set of possible bids is not too
coarse).

The potential role for spite in explaining bidding behaviour in auctions predates the
literature on sponsored search: It has been offered as an explanation for the experi-
mental regularity of overbidding in second-price auctions (Morgan et al. 2003), where
there is evidence that bidders overbid more often when they are likely to lose and set
the winner’s price (Andreoni et al. 2007; Cooper and Fang 2008; Nishimura 2011).
However, to my knowledge, evolutionary stability offers the first justification of such
behaviour with standard preferences. In the infinite-population setting, ESS implies
Nash equilibrium but need not exist in general. In the finite-population case, evolution-
ary stability may even diverge from Nash play (Ania 2008; Hehenkamp et al. 2010).
However, I establish the existence of equilibrium ESS in the “playing the field” GSP

1 For general introductions to evolutionary game theory, see Weibull (1995), Sandholm (2010) or Newton
(2018), for instance.
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for one position, and also for two positions as the number of bidders becomes large
(which I argue extends to more than two positions).2

Whilst evolutionary stability can thus provide a foundation for locally envy-free
equilibria, there remain many such equilibria, including one with the same prices as
the truthful equilibrium of the Vickrey–Clarke–Groves (VCG) mechanism. This out-
come has been a popular equilibrium selection, but its incomplete-information basis
in Edelman et al. (2007) has been criticized for its arbitrary use of ascending bids
(Börgers et al. 2013, p. 175, Che, Choi, and Kim 2007, p. 25). Cary et al. (2014)
seek to justify the VCG outcome via a particular adaptive process, but their “balanced
bidding” condition has been criticized by Che, Choi, and Kim (ibid.): “Since the same
indifference condition is used to define the lower bound of symmetric Nash equilibria,
and since the lower bound coincides with VCG, it is not surprising that the result-
ing dynamics converge to the VCG outcome”. The same authors offer experimental
evidence against the VCG outcome.

More traditional equilibrium refinements have been explored byMilgrom andMoll-
ner (2018a), who find that whilst properness (Myerson 1978) and strategic stability
(Kohlberg and Mertens 1986) are too weak to imply locally envy-free equilibrium
in the GSP, it is implied by their pure “test-set equilibrium” refinement, and test-set
equilibrium is equivalent to a modification of van Damme’s (1984) quasi-perfect equi-
librium in a high-stakes version of a finite game. However, pure test-set equilibrium
does not imply the VCG outcome, which furthermore does not survive Hashimoto’s
(2013) “noise bidder” refinement, where a nonstrategic random bidder takes part in the
auction with low probability. Here, I find similarly that evolutionary stability offers no
support for the VCG outcome; I show by example that the VCG outcome need not be
evolutionarily stable. Milgrom and Mollner (2018b), meanwhile, define an “extended
proper equilibrium”—which is essentially a symmetric proper equilibrium of the sym-
metrized game employed by Selten (1980) and in my analysis below—and show that
it too implies locally envy-free equilibrium in the GSP. In their paper and here, the
symmetrizing of trembles/mutations across players is important for the result, and the
relation between extended proper equilibrium and evolutionary stability would be an
interesting topic for further study.

Evolutionary stability is a very natural refinement for sponsored search auctions.
There are two elements to the one-shot complete-information simplification popular
in the literature: first, that bidders’ values are commonly known, because advertisers
who “originally have private information about their types, gradually learn the values
of others, and can adjust their bids repeatedly” (Edelman et al. 2007, p. 249); and sec-
ond, that their payoffs are myopic, in the sense that their bids in any given auction are
motivated by the immediate outcome of that auction rather than all future outcomes.
It is well known that players can improve on myopic stage-game actions in repeated
games, but Edelman, Ostrovsky, and Schwartz argue that they may not be able to do
so in sponsored search auctions, due to the complexity of the requisite strategy imple-
mentation in a frequently repeated game: “ bidding software must first be authorized

2 Alós-Ferrer andAnia (2001) define aweakening of Schaffer’s ESS that allows only deviations to “nearby”
strategies. This concept, which captures an appealing form of bounded rationality under learning, coincides
with ESS for equilibrium strategies in the GSP.
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by the search engines, and search engines are unlikely to permit strategies that would
allow advertisers to collude and substantially reduce revenues”.3

Given myopic behaviour, the common learning of bidders’ valuations in an envi-
ronment with frequent bidding is well founded theoretically (Jordan 1991) and
experimentally (Che et al. 2017), and indeed, some platforms allow direct observation
of competitor bids . Hence, the focus on Nash equilibria of one-shot sponsored search
auctions appears valid, but the refinement possibilities offered by their repeated occur-
rence remain unexplored; for the framework of a game played repeatedly by myopic
players is precisely that of evolutionary game theory, and the concept appropriate
when the players are often the same advertisers is finite-population ESS. Edelman et
al. (2007, p. 249) themselves ask “if the vector of bids stabilizes, at what bids can it
stabilize?” This is a question of evolutionary game theory. In justifying their locally
envy-free refinement, they ask “what are the simple strategies that an advertiser can
use to increase his payoff, beyond simple best responses to the other players’ bids?”
This is a question of which mutants can successfully invade an otherwise stable vector
of bids. Finally, they “view a locally envy-free equilibrium as a prediction regarding a
rest point at which the vector of bids stabilizes” (ibid., p. 250). Evolutionary stability
provides a basis for this view.

2 Evolutionarily stable bids

Consider a population of M (risk-neutral) bidders repeatedly matched at random
to play a K -player “generalized second-price” (GSP) auction for N positions i =
1, . . . , N , with K ≤ M . In particular, the bidders simultaneously submit one-
dimensional bids bk ∈ {0, δ, 2δ, . . .} ≡ B, δ > 0, for payment per click. The winner
g( j) of position j , j = 1, . . . ,min{N , K }, is the bidder with the j th highest bid
b( j) (with ties split randomly), paying the j + 1th highest bid per click; any remain-
ing bidders pay and receive nothing. The (expected) number of clicks per period
received by the bidder in position i is αi , so that bidder g(i)’s total payment p(i)

is αi b(i+1) for i = 1, . . . ,min{N , K }; if N ≥ K , the last bidder’s payment p(K )

is equal to zero. Positions are labelled in descending order (without loss of general-
ity): i < j implies αi > α j . The value per click to bidder k is sk , with S denoting
the set of values (s1, s2, . . . , sK ); suppose that values are also labelled in descending
order (again without loss of generality), and that no two players have the same value:
s1 > s2 > · · · > sK .4 Hence, bidder k’s payoff from receiving position i is

αi sk − p(i).

Each bidder k chooses her bidmyopically each period tomaximize this payoff, without
regard for subsequent payoffs. This setup follows that of Edelman et al. (2007); see

3 However,Decarolis et al. (2017) explore the vulnerability of theGSP to collusive bidding through common
marketing agencies.
4 If multiple players shared the same value, then they would share the same equilibrium bid, in which case
the position order g would become stochastic and the definition of locally envy-free equilibrium below
would require modification.
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Börgers et al. (2013, pp. 166–8) for discussion and relaxation of some of its limitations,
such as the independence of value per click from position. Athey and Ellison (2011)
endogenize players’ values via an explicit model of consumer search.

Definition 1 (Edelman et al. 2007) An equilibrium of the simultaneous-move game
induced by GSP is locally envy-free if a player cannot improve her payoff by exchang-
ing bids with the player ranked one position above her; i.e. for any i ≤ min{N+1, K },

αi sg(i) − p(i) ≥ αi−1sg(i) − p(i−1), (1)

where αN+1 = 0.

Under the VCG mechanism, by contrast, each advertiser pays the negative exter-
nality that her presence in the game imposes on the other players under truthful
bids. The last advertiser allocated a position hence pays zero if N ≥ K , and
αNb(N+1) otherwise; for all other i < min{N , K }, the payment induced by VCG
is pV ,(i) = (αi − αi+1)b(i+1) + pV ,(i+1). If, in the GSP, b(i) = pV ,(i−1)/αi−1 for
each i > 1 and b(1) = s1, then the bids constitute a locally envy-free equilibrium,
with each advertiser’s position and payment equal to those in the dominant-strategy
equilibrium under the VCGmechanism (Edelman et al. 2007, Theorem 1); I will refer
to this as the VCG outcome of the GSP.

Suppose that, prior to each auction, the values in the set S are assigned (bijectively)
at random to the players, with each possible assignment equally likely. A strategy σ is
a vector (σ (s1), σ (s2), . . . , σ (sK )), specifying the bid σ(s) ∈ B that a bidder would
make if she had each value s ∈ S. The strategy set is of course then symmetric, and a
strategy profile (σ1, σ2, . . . , σK ) implies a joint distributionμ over each bidder’s value,
position and total payment. There is then a symmetric payoff function π(σk |σ−k) =
Eμ(αi sk − p(i)) for each bidder k, where σ−k is (any permutation of) (σl)l �=k . This
symmetrizing of the game is necessary for single-population ESS analysis and is the
standard way of accommodating asymmetric games within this framework (Selten
1980). It is not intended to capture a genuinely incomplete-information setting (as
in Edelman et al. 2007, p. 252, Athey and Nekipelov 2010, Gomes and Sweeney
2014, or Caragiannis et al. 2015). In particular, whilst players are ex ante uncertain of
their values, there is common knowledge of the true set of values S. Since a player’s
evolutionarily stable strategy is symmetric and conditioned on her own realized value,
whilst her payoffs are invariant to permutations in the bids of her opponents, this
effectively remains the same game of complete information described earlier.

For example, consider a three-player GSP with values S = {s1, s2, s3} = {9, 5, 2}.
Prior to finding out their values, each of the three players chooses a strategy σ =
(σ (9), σ (5), σ (2)) that specifies the bid she would choose for each possible value.
The values are then assigned to the players, with each assignment (e.g. (9, 5, 2) or
(2, 9, 5)) equally likely (and no two players sharing a value). Since ESS is a symmetric
solution concept, there is no uncertainty in the game except that players do not know
which bidder they are going to be. For example, when all players choose the strategy
σ = (σ (9), σ (5), σ (2)) = (6, 4, 3), we always see the bids 6, 4, and 3 played by the
bidders with values 9, 5, and 2, respectively.
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I call σ ∗ an equilibrium strategy if the bid vector (σ ∗(s))s∈S that it generates is
a Nash equilibrium of the GSP. Given a strategy σ , let a mutant σm be a strategy
that differs from σ in exactly one dimension (i.e. that makes a different bid to σ for
exactly one value); this definition ensures that a mutation in the symmetrized game
corresponds to a single mutation/deviation in the original (asymmetric) GSP.

Definition 2 A strategy σess is evolutionarily stable if, for all mutants σm ,

(
1 − K − 1

M − 1

)
π(σess|σess, σess, . . .)

+ K − 1

M − 1
π(σess|σm, σess, . . .) ≥ π(σm |σess, σess, . . .). (2)

This is not the infinite-population definition of evolutionary stability (Maynard Smith
and Price 1973; Maynard Smith 1982), but rather Schaffer’s (1988) finite-population
definition, where a single player “mutates” to σm .5 This mutant playermay bematched
to play a GSP against a given nonmutant player, who would then receive the expected
payoff π(σess|σm, σess, . . .) from facing the mutant (in an unknown position). Alter-
natively, the nonmutant player may be matched exclusively with other nonmutants,
thus receiving the expected payoff π(σess|σess, σess, . . .). In order to be evolutionarily
stable, the overall expected payoff of the nonmutant must exceed that of the mutant
(who cannot face himself), π(σm |σess, σess, . . .). In the GSP, we can think of ESS as
capturing the bids of repeatedly and randomly matched advertisers, whose bids are
stable in the face of one member of the advertiser population switching to another
strategy.

Schaffer’s concept of evolutionary stability includes the special “playing the field”
case K = M , where thewhole population takes part in each game, but also any instance
where a proper subset of a finite population is matched to play the GSP. Notice that,
unlike its infinite-population counterpart, symmetric play of a finite-population ESS
need not be a Nash equilibrium (see, for example, Vega-Redondo 1996, Sect. 2.7).
This relation is explored by Ania (2008) and Hehenkamp et al. (2010), who offer
classes of games where finite-population ESS does refine Nash, but the GSP does not
fit within any of these classes. Indeed, rather than Nash equilibrium, there seems to
be a general relation between finite-population evolutionary stability and Walrasian
equilibrium (Vega-Redondo 1997; Alós-Ferrer and Ania 2005). This relation finds a
further instance in Proposition 2, in the sense that locally envy-free equilibrium can
be interpreted as a Walrasian equilibrium: “If each bidder takes these prices as given
and fixed, and picks the position that generates for him the largest surplus at these
prices, then for each position there will be exactly one bidder who wants to acquire
that position…[and] demand and supply are both equal to 1” (Börgers et al. 2013, p.
170).

5 In particular, Definition 2 is the first half of Schaffer’s definition; I make no use of the stability condition
in the second half of his definition.
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2.1 Properties

I begin by showing that positive evolutionarily stable bids differ by the minimum
bid increment δ, for δ sufficiently small. Intuitively, Schaffer’s (1988) evolutionary
stability leads players to behave “spitefully” towards one another, so that each will
increase her bid to harm her opponents as long as her own payoff remains unaffected;
thus, bids for consecutive positions cannot differ by more than δ. To rule out tied bids,
consider a situation in which bidders k and k + 1 make the same bid and sk > sk+1.
Then either: (a) sk is considerably above bk , in which case a profitable deviation exists
(for sufficiently small δ) whereby k increases her bid and wins the higher position for
sure; or (b) sk is very close to bk , in which case sk+1 must be less than bk = bk+1,
so that a profitable deviation exists (for sufficiently small δ) whereby bidder k + 1
reduces his bid and avoids the risk of winning the position at that price.

Proposition 1 There exists δ̄ > 0 such that, for all δ < δ̄, if σess is an equilibrium
evolutionarily stable strategy, then for all i = 1, . . . ,min{N , K−1}, b(i)

ess = b(i+1)
ess +δ.

Proof Suppose otherwise; then for all δ > 0 there exists an equilibrium ESS σess and
an i ∈ {1, . . . ,min{N , K }} such that b(i)

ess �= b(i+1)
ess +δ. But since σess is evolutionarily

stable, it solves

σess ∈ argmax
σm

π(σm |σess, σess, . . .) − K − 1

M − 1
π(σess|σm, σess, . . .). (3)

Since increasing bids without altering g reduces the second term of the maximand at
no cost to the first , σess implies a b(i)

ess (for i = 2, . . . ,min{N + 1, K }) above which g
is altered with positive probability—i.e. bids for adjacent positions differ by at most
δ.

Furthermore, since σess is also an equilibrium strategy, I claim that no two players
can make the same bid for δ > 0 sufficiently small. To see this, note that any player
with a shared bid and a strictly negative expected payoff will wish to deviate to a zero
bid. Hence, suppose that any player with a shared bid has a nonnegative expected
payoff. But any player k with the shared highest bid b has a payoff at most

1

K
α1(sk − b) + K − 1

K
α j (sk − b + δ)

for some position j ∈ {2, . . . , N + 1} (where αN+1 = 0), because there would be a
profitable upwards deviation if α1(sk −b) strictly exceeded α j (sk −b+ δ) for all such
j . This must hence weakly exceed her upward-deviation payoff α1(sk − b), which is
true if and only if

α j (sk − b + δ) ≥ α1(sk − b)

⇔ b ≥ sk − α j

α1 − α j
δ.
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Thus, letting s̄b be the highest value and sb the lowest value amongst the players
sharing the bid b,

b ≥ s̄b − α j

α1 − α j
δ.

This is inconsistent with nonnegativity of the expected payoff of the player with the
lowest value sb for

1

K
α1(s

b − b) + K − 1

K
α j (s

b − b + δ) < 0

⇔ b > sb + (K − 1)α j

α1 + (K − 1)α j
δ

⇐ s̄b − α j

α1 − α j
δ > sb + (K − 1)α j

α1 + (K − 1)α j
δ

⇔ δ <
(α1 − α j )(α1 + (K − 1)α j )

Kα1α j
(s̄b − sb).

Moreover, any player k with the shared second highest bid of b′ > 0 has a payoff at
most

θα2(sk − b′) + (1 − θ)α j ′(sk − b′ + δ)

for some θ ∈ [0, 1] and some position j ′ ∈ {3, . . . , N + 1}. This must hence exceed
her payoff (α1(sk − b′ − δ) + α2(sk − b′))/2 from deviating to b′ + δ, which is true
if and only if

b′ ≥ sk − α1 + 2(1 − θ)α j ′

α1 + (1 − 2θ)α2 − 2(1 − θ)α j ′
δ.

Thus, letting s̄b
′
be the highest value and sb

′
the lowest value amongst the players

sharing the bid b′,

b′ ≥ s̄b
′ − α1 + 2(1 − θ)α j ′

α1 + (1 − 2θ)α2 − 2(1 − θ)α j ′
δ.

This is inconsistent with nonnegativity of the expected payoff of the player with the
lowest value sb

′
for

δ <
(θα2 + (1 − θ)α j ′)(α1 + (1 − 2θ)α2 − 2(1 − θ)α j ′)

2(1 − θ)α1α j ′ + (1 − θ)α2α j ′ + θα1α2
(s̄b

′ − sb
′
).

We can make a similar argument for players sharing the i th highest bid, i = 3, . . . , N ,
if required. Therefore, no two players can share a bid for δ > 0 sufficiently low, and
bids for adjacent positions must differ by exactly δ. ��
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Equation (3) is Schaffer’s (1988) equation (10), which exhibits not just the usual
payoff maximization of the first term, but also a “spite” motivation in the second term
(whose strength is increasing in the auction size K relative to the population size M).
Intuitively, a player’s evolutionary success is dependent not on her raw payoff, but on
her payoff relative to other players, with whom she is in ongoing competition. In the
presence of this spite motivation, evolutionarily stable bids for adjacent positions must
differ by δ, otherwise, there would be an invasion by a mutant who bid a little more
through spite; there would exist a player whose bid could be increased by δ at no cost
to his own payoff but with resultant harm to another player. Without δ sufficiently low
though, we would not be able to rule out multiple players sharing the same bid in an
equilibrium ESS, which (as mentioned in Footnote 2) would make the position order
g stochastic and hence require a modified definition of locally envy-free equilibrium.
Indeed, a player sharing a bid with a higher-value player would certainly “envy” that
player in expectation (prior to the random resolution of their tie), violating one obvious
modified concept of locally envy-free equilibrium.

I now show that, in the “playing the field” case with sufficiently low δ, equilibrium
ESS bids are locally envy-free. Intuitively, if positive equilibrium ESS bids differ by
δ, then an upwards mutation risks swapping positions with the bidder above and hence
having to pay the higher bid—a scenario that is unprofitable by evolutionary stability,
and which approaches the condition for locally envy-free equilibrium as δ becomes
small. Similarly, if an equilibrium is not locally envy-free, then a bidder would like to
swap bids with the bidder above her, which—if bids differ by δ—allows an upwards
mutation to destabilize the population as δ becomes small.

Proposition 2 There exists δ̂ ∈ (0, δ̄] such that, for all δ < δ̂, if K = M and σess is an
equilibrium evolutionarily stable strategy, then the realized bids are locally envy-free.

Proof Given the evolutionarily stable σess, consider a mutation σm where, for some
position i ∈ {2, . . . , N }, bidder g(i) bids b(i)

ess + δ instead of b(i)
ess, hence having a

chance to swap positions with bidder g(i − 1) by Proposition 1. If she were not the
mutant, bidder g(i) would get the position i at a cost per click of b(i+1)

ess , with payoff
αi (sg(i) − b(i+1)

ess ); although she faces an opponent playing the mutant strategy, this is

irrelevant as she is the one in position i , and hence, each of her opponents plays b( j)
ess ,

j �= i . Thus,

π(σess|σm, σess, . . .) = 1

K

(
αi (sg(i) − b(i+1)

ess )
)

+ β

for some β > 0.
If she were the mutant, bidder g(i) would have a chance of winning the position

i − 1 at a cost per click of b(i)
ess + δ with payoff αi−1(sg(i) − b(i)

ess − δ). It follows that

π(σm |σess, σess, . . .) >
1

2K

(
αi−1(sg(i) − b(i)

ess − δ) + αi (sg(i) − b(i+1)
ess )

)
+ β,
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244 T. W. L. Norman

where the strict inequality arises because σm avoids the risk faced by σess of being
outbid by the mutant for position i−1 when she is bidder g(i−1), so that her expected
payoff in positions other than i exceeds β.

If K = M , it follows by (2) that

αi (sg(i) − b(i+1)
ess ) > αi−1(sg(i) − b(i)

ess − δ), (4)

from which the result follows for δ sufficiently low. ��
In other words, in the “playing the field” case where the whole population participates
in each auction, an equilibrium strategy that is evolutionarily stable must produce
locally envy-free bids for sufficiently low δ. If a proper subset of the population
plays each auction, then the bidders’ “spite” motivation is diluted; when K < M ,
the weighting on the “−π(σess|σm, σess, . . .)” term of (3) is reduced from 1 to (K −
1)/(M − 1), and as a result (2) no longer implies (4). In other words, outside of the
“playing the field” case, I cannot say whether evolutionarily stable bids are locally
envy-free or not.

However, the converse result to Proposition 2 does not hold; a locally envy-free
equilibrium need not be evolutionarily stable, as the following example shows for the
case of the popular VCG outcome.

Example 1 Suppose that N = 1, K = M = 2 and S = {2, 1}, giving a second-price
auction. Let σ ≡ (σ (2), σ (1)) = (b + δ, b), and consider two possible mutations
σ ′ ≡ (σ ′(2), σ ′(1)) = (b, b), and σ ′′ ≡ (σ ′′(2), σ ′′(1)) = (b + δ, b + δ). Then a
bidder with strategy σ has: value 2 with probability 1/2, in which case she bids b+ δ

and beats the b bid of strategy σ ′; and value 1 with probability 1/2, in which case she
ties the b bid of strategy σ ′ and receives the position with conditional probability 1/2.
Thus,

π(σ |σ ′) = 1

2
α1 (2 − b) + 1

4
α1 (1 − b) ≥ 1

4
α1 (2 − b) = π(σ ′|σ)

⇔ b ≤ 3/2,

and similarly,

π(σ |σ ′′) = 1

4
α1 (2 − b − δ) ≥ 1

2
α1 (2 − b) + 1

4
α1 (1 − b − δ) = π(σ ′′|σ)

⇔ b ≥ 3/2.

Since these are the most attractive mutations (by Lemma 1), σ is evolutionarily stable
for b = 3/2, in which case it is also an equilibrium strategy and locally envy-free. For
general S, the stable bid is b = (s1 + s2)/2. Note, however, that the VCG outcome
is given by strategies of the form σVCG ≡ (σVCG(2), σVCG(1)) = (b, 1), b > 1; only
(1 + δ, 1) is a candidate for evolutionary stability when δ is low enough to satisfy
Proposition 1, and it is vulnerable to invasion by σ ′′. Thus, the VCG outcome need
not be evolutionarily stable.
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2.2 Existence

But the existence of an evolutionarily stable strategy is not guaranteed in general, and
indeed, deciding its existence in the infinite-population case is both NP-hard and co-
NP-hard (Etessami and Lochbiler 2005).Moreover, even if existence of ESS does hold
for a particular GSP, it is not clear that there exists an ESS that is also an equilibrium
strategy. Here I establish that such an equilibrium ESS does exist for the “playing the
field” GSP with one position, and also for a large number of bidders on two positions
(which I then argue extends to more than two positions). But first I establish a useful
result that drastically reduces the number of mutations that need to be considered.

Lemma 1 Given an equilibrium strategy σess, if δ is sufficiently low and the evolution-
ary stability conditions (2) hold for:

– mutations where a bidder k ∈ {2, . . . , N + 1} switches to the bid bk−1; and
– mutations where a bidder k ∈ {1, . . . , N } switches to the bid bk+1;

then they hold for all mutations.

Proof Consider a mutation σ ′
m that has a bidder k switch her bid to any bg(i) ∈

{b1, . . . , bk−2} (i.e. switching to a nonadjacent higher position i), and let σm be
the mutation where bidder k − 1 (rather than bidder k) switches to bg(i). Then
π(σm |σess, σess, . . .) > π(σ ′

m |σess, σess, . . .), since sk−1 > sk and bidder k − 1
suffers a smaller increase in her expected payment than bidder k. Moreover,
π(σess|σ ′

m, σess, . . .) > π(σess|σm, σess, . . .), since bidder k lowers the payment of
bidder k − 1 under σ ′

m (thus gaining a lower “spite” benefit than bidder k − 1 from
the deviation). It follows that, if (2) holds for σm , then it also holds for σ ′

m . We may
then proceed by induction until we reach bidder g(i + 1).

Consider a mutation σ ′
m that has a bidder k switch her bid to any bg(i) ∈

{bk+2, bk+3, . . . , bN } (i.e. switching to a nonadjacent lower position i), and let σm
be the mutation where bidder k + 1 (rather than bidder k) switches to bg(i). Then
π(σm |σess, σess, . . .) > π(σ ′

m |σess, σess, . . .) for sufficiently low δ, since sk+1 < sk
and bidder k’s expected payment under σ ′

m falls by only δ more than k + 1’s
expected payment under σm (by Proposition 1). Moreover, π(σess|σ ′

m, σess, . . .) =
π(σess|σm, σess, . . .), since bidder k lowers the payment of bidder k − 1 by δ under
σ ′
m , bidder k + 1 lowers the payment of bidder k by δ under σm , and other bidders are

affected the same by the two mutations. It follows that, if δ is sufficiently low and (2)
holds for σm , then it also holds for σ ′

m . We may then proceed by induction until we
reach bidder g(i − 1).

Finally, if a mutation σm has a bidder k ∈ {N + 1, N + 2, . . .} switch her bid to
any b ∈ {bN+2, bN+3, . . . , bK }, then the bidder neither wins a position nor affects
any other bidder’s payment, under either σess or σm ; hence, π(σess|σm, σess, . . .) =
π(σess|σess, σess, . . .). Moreover, since σess is an equilibrium strategy, we have
π(σess|σess, σess, . . .) ≥ π(σm |σess, σess, . . .), and condition (2) holds. ��
Thus, we need only consider mutations where a subset of bidders switch to an adjacent
position, similar to the sufficiency of adjacent deviations for symmetric equilibrium
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(Varian 2007, Fact 5). Note that it follows that every equilibrium local ESS (Alós-
Ferrer and Ania 2001) is an ESS in the GSP. Henceforth, I suppose that δ is low
enough to satisfy the conditions of Propositions 1, 2 and Lemma 1.

With Lemma 1 in hand, it becomes easier to check for existence of an equilibrium
ESS, as in the following two results.

Proposition 3 Suppose that N = 1 and K = M ≥ 2, and consider the strategy
σ ≡ (σ (s1), σ (s2), σ (s3), σ (s4), . . .) = (b+δ, b, 0, 0, . . .). Then σ is an equilibrium
strategy and evolutionarily stable for

b ∈
[
1

K
s1 + K − 1

K
s2 − K − 2

K
δ,

K − 1

K
s1 + 1

K
s2

]
�= ∅.

Proof Consider two possible mutations, σ ′ ≡ (σ ′(s1), σ ′(s2), σ ′(s3), σ ′(s4), . . .) =
(b, b, 0, 0, . . .) and σ ′′ ≡ (σ ′′(s1), σ ′′(s2), σ ′′(s3), σ ′′(s4), . . .) = (b + δ, b +
δ, 0, 0, . . .). Then

π(σ |σ ′, σ, . . .) = 1

K
α1 (s1 − b) + 1

2K (K − 1)
α1 (s2 − b)

≥ 1

2K
α1 (s1 − b) = π(σ ′|σ, σ, . . .)

⇔ b ≤ (K − 1)s1 + s2
K

,

and

π(σ |σ ′′, σ, . . .) = 1

2K (K − 1)
α1 (s1 − b − δ) + K − 2

K (K − 1)
α1 (s1 − b)

≥ 1

K
α1 (s1 − b) + 1

2K
α1 (s2 − b − δ) = π(σ ′′|σ, σ, . . .)

⇔ b ≥ s1 + (K − 1)s2
K

− K − 2

K
δ.

By Lemma 1, σ is evolutionarily stable for such a b. And since σ(s2) = b < s1 and
σ(s1) = b + δ > s2, σ is also an equilibrium strategy. ��
Notice that, as K → ∞ and δ → 0, σ becomes evolutionarily stable for all b in the
interval (s2, s1).

Proposition 4 Suppose that N = 2 and K = M, and consider the strategy σ ≡
(σ (s1), σ (s2), σ (s3), σ (s4), . . .) = (b + δ, b, b − δ, 0, . . .). Then, as K = M → ∞,
σ is an equilibrium strategy and evolutionarily stable for

b ∈
[
s2 − α1 + α2

α1 − α2
δ, s2 + δ

]
.

Proof Consider four possible mutations,

123



Evolutionary stability in the generalized second-price… 247

σ ′ ≡ (σ ′(s1), σ ′(s2), σ ′(s3), σ ′(s4), . . .) = (b, b, b − δ, 0, . . .),

σ ′′ ≡ (σ ′′(s1), σ ′′(s2), σ ′′(s3), σ ′′(s4), . . .) = (b + δ, b + δ, b − δ, 0, . . .),

σ ′′′ ≡ (σ ′′′(s1), σ ′′′(s2), σ ′′′(s3), σ ′′′(s4), . . .) = (b + δ, b − δ, b − δ, 0, . . .), and

σ ′′′′ ≡ (σ ′′′′(s1), σ ′′′′(s2), σ ′′′′(s3), σ ′′′′(s4), . . .) = (b + δ, b, b, 0, . . .).

Then

π(σ |σ ′, σ, . . .) = 1

K
α1 (s1 − b) + 1

2K (K − 1)
(α1 (s2 − b) + α2 (s2 − b + δ))

+ K − 2

K (K − 1)
α2 (s2 − b + δ)

≥ 1

2K
(α1 (s1 − b) + α2 (s1 − b + δ))

+ 1

K
α2 (s2 − b + δ) = π(σ ′|σ, σ, . . .)

⇔ b ≤ (K − 1)s1 + s2
K

− α2

α1 − α2
δ,

π(σ |σ ′′, σ, . . .) = 1

2K (K − 1)
(α1 (s1 − b − δ) + α2 (s1 − b + δ))

+ K − 2

K (K − 1)
α1 (s1 − b) + 1

K
α2 (s2 − b + δ)

≥ 1

K
α1 (s1 − b)

+ 1

2K
(α1 (s2 − b − δ) + α2 (s2 − b + δ)) = π(σ ′′|σ, σ, . . .)

⇔ b ≥ s1 + (K − 1)s2
K

− (K − 2)α1 + Kα2

K (α1 − α2)
δ,

π(σ |σ ′′′, σ, . . .) = 1

K (K − 1)

(
α1 (s1 − b + δ) + α2

2
(s3 − b + δ)

)

+ K − 2

K (K − 1)
α1 (s1 − b) + 1

K
α2 (s2 − b + δ)

≥ 1

K
α1 (s1 − b) + 1

2K
α2 (s2 − b + δ) = π(σ ′′′|σ, σ, . . .)

⇔ b ≤ (K − 1)s2 + s3
K

+ 2α1 + Kα2

Kα2
δ, (5)

and

π(σ |σ ′′′′, σ, . . .) = 1

K
α1 (s1 − b) + 1

2K (K − 1)
α2 (s2 − b)

+ K − 2

K (K − 1)
α2 (s2 − b + δ)

≥ 1

K
α1 (s1 − b) + 1

K
α2 (s2 − b + δ)
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+ 1

2K
α2 (s3 − b) = π(σ ′′′′|σ, σ, . . .)

⇔ b ≥ s2 + (K − 1)s3
K

+ 2

K
δ. (6)

By Lemma 1, these are the conditions for σ ’s evolutionary stability, satisfied for

b ∈
[
max

{
1

K
s1 + K − 1

K
s2 − K (α1 + α2) − 2α1

K (α1 − α2)
δ,

1

K
s2 + K − 1

K
s3 + 2

K
δ

}
,

min

{
K − 1

K
s1 + 1

K
s2 − α2

α1 − α2
δ,

K − 1

K
s2 + 1

K
s3 + 2α1 + Kα2

Kα2
δ

} ]
,

which (for low δ) approaches the interval [s2 − δ(α1 + α2)/(α1 − α2), s2 + δ] as
K → ∞.

Furthermore, σ is an equilibrium strategy if:

α1(s1 − σ(s2)) ≥ 1

2
(α1(s1 − σ(s2)) + α2(s1 − σ(s3)))

⇔ α1(s1 − b) ≥ α2(s1 − b + δ)

⇔ b ≤ s1 − α2

α1 − α2
δ,

which is implied by (5); and if:

α2(s2 − σ(s3)) ≥ 1

2
(α1(s2 − σ(s1)) + α2(s2 − σ(s3)))

⇔ α2(s2 − b + δ) ≥ α1(s2 − b − δ)

⇔ b ≥ s2 − α1 + α2

α1 − α2
δ;

α2(s2 − σ(s3)) ≥ 1

2
α2(s2 − σ(s3))

⇔ α2(s2 − b + δ) ≥ 0

⇔ b ≤ s2 + δ; and

0 ≥ 1

2
α2(s3 − σ(s2))

⇔ 0 ≥ α2(s3 − b)

⇔ b ≥ s3,

the latter of which is implied by (6). ��
By contrast with Proposition 3, this existence result required an arbitrarily large

number of bidders, K = M → ∞, in order to guarantee stability against the larger
number of mutations possible under two positions. Whilst the population size thus
returns to infinity, the “playing the field” assumption K = M is maintained, and
hence so are Schaffer’s (1988) finite-population ESS effects. Intuitively, as we take
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this limit, the chance of being in an adjacent position to the single mutant vanishes,
so that the “playing the field” evolutionary stability conditions,

π(σess|σm, σess, . . .) ≥ π(σm |σess, σess, . . .), ∀σm,

approach the conditions for an equilibrium strategy,

π(σess|σess, σess, . . .) ≥ π(σm |σess, σess, . . .), ∀σm,

For this reason—and by existence of Nash equilibrium—similar existence results will
hold with more than two positions, although of course direct verification becomes ever
more cumbersome as N (and hence the number of mutations to be checked) grows.

3 Conclusion

“Locally envy-free” (or “symmetric”) equilibrium has been a very influential concept
in the analysis of the generalized second-price auction, but its theoretical foundations
have also been criticized. Why should a bidder wish to increase her bid to harm
her opponent, and why should she cease to do so in case her bid is undercut by
the bidder in the position above? Evolutionary stability provides an answer to both
of these questions, and it does so under the “playing the field” assumption that is
most consistent with the standard complete-information approach to the GSP. An
evolutionarily stable bidder is “spiteful” towards her opponents, intuitively because
she is in ongoing competition with them for survival, and their loss is hence her gain.
For this reason, positive evolutionarily stable bids are consecutive, and any upwards
mutationwould tie the bid in the position above; an evolutionarily stable biddermust be
able to outperform such amutation, just as shemust be able to outperform allmanner of
“mutant” strategies.Outside of the “playing thefield” case, the evolutionary foundation
for locally envy-free equilibriummayormaynot hold, butwith afixedgroupof bidders,
evolutionary stability and locally envy-free equilibrium go hand-in-hand.
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