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Abstract
We examine a two-player game with two-armed exponential bandits à la (Keller et al.
in Econometrica 73:39–68, 2005), where players operate different technologies for
exploring the risky option. We characterise the set of Markov perfect equilibria and
show that there always exists an equilibrium in which the player with the inferior tech-
nology uses a cut-off strategy. All Markov perfect equilibria imply the same amount
of experimentation but differ with respect to the expected speed of the resolution of
uncertainty. If and only if the degree of asymmetry between the players is high enough,
there exists a Markov perfect equilibrium in which both players use cut-off strategies.
Whenever this equilibrium exists, it welfare dominates all other equilibria. This con-
trasts with the case of symmetric players, where there never exists a Markov perfect
equilibrium in cut-off strategies.
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1 Introduction

In many instances, the information produced by one agent is interesting to other
agents as well. Think, for example, of firms exploring neighbouring oil patches: if one
firm strikes oil, chances are there will be oil in its neighbour’s patch as well. Such
games of purely informational externalities have been analysed by the strategic bandit
literature,1 which so far has only analysed the case of homogeneous agents. However,
in many instances, one of the oil firms, for example, might be a big multinational firm
that has access to a superior drilling technology. In this article, we aim to analyse
the impact of asymmetries in players’ exploration technologies in a game of strategic
experimentation with two-armed exponential bandits.

The seminal paper by Keller et al. (2005) analyses this problem with homogeneous
players. In the current paper, we generalise the analysis by introducing asymmetric
players, in the sense that their pay-off arrival rates from a good risky arm differ. This
implies that, given the risky arm is good, the expected time needed to learn this differs
between the players. As actions and outcomes are perfectly publicly observable, and
players start out with a common prior, they will always have a common posterior
belief. We characterise the set of Markov perfect equilibria with the players’ common
posterior belief as the state variable for all ranges of asymmetry between the players.
If the degree of asymmetry between the players is sufficiently high, there exists an
equilibrium in cut-off strategies, i.e. where both players use a cut-off strategy. That
is, either player uses the risky arm if and only if the likelihood he attributes to the
option being good is greater than a certain threshold. This equilibrium is unique in the
class of equilibria in cut-off strategies. Whenever only one of the players experiments
and the other free rides in this equilibrium, it is always the player with the weaker
technology who free rides. In the case of homogeneous players (Keller et al. 2005),
by contrast, there never exists an equilibrium in cut-off strategies, and players swap
the roles of pioneer and free rider at least once in any equilibrium. In our setting,
aggregate pay-offs in the equilibrium in cut-off strategies are higher than in any other
equilibrium. If the degree of asymmetry is low, at least one player uses a non-cut-off
strategy in any equilibrium. In contrast to the homogeneous case (Keller et al. 2005),
we furthermore show that more frequent switches of arms do not unambiguously
improve the equilibrium welfare with asymmetric players.

1.1 Related literature

This paper contributes to the literature on strategic experimentation with bandits, a
problem studied quite widely in economics, amongst others, by Bolton and Harris
(1999), Keller et al. (2005), Keller and Rady (2010), Klein and Rady (2011), Klein
(2013) and Thomas (2017). In all of these papers, players are homogeneous. Except in
Thomas (2017) and Klein and Rady (2011), players’ bandits are of the same type and
free riding is a common feature in all the above models except for Thomas (2017).

1 The first paper to do so was Bolton and Harris (1999). Keller et al. (2005) have introduced exponential
bandits, which we shall use here.
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Strategic experimentation with asymmetric players 1149

Many variants of this problem have been studied in the literature2. Rosenberg et al.
(2013) and Murto and Välimäki (2011), for instance, assume that switches to the
safe arm are irreversible and that experimentation outcomes are private information,
while Bonatti and Hörner (2011) and Heidhues et al. (2015) investigate the case of
private actions. In Dong (2018), actions and outcomes are public, but one of the
players receives an initial private signal. Rosenberg et al. (2007) analyse the role
of the observability of outcomes and the correlation between risky-arm types in a
setting in which a switch to the safe arm is irreversible. Besanko and Wu (2013)
use the Keller et al. (2005) framework to study how an R&D race is impacted by
market structure. Das (2019) analyses an R&D race in a strategic bandit setting in
which on the risky arm, players can learn both privately and publicly. Guo (2016)
and Zambrano (2017) analyse the problem of a principal delegating the operation of a
two-armed bandit to an agent; in Klein (2016), the bandit the agent operates has three
arms. Banks et al. (1997) provide an experimental test of a single-agent two-armed
bandit problem; Hoelzemann and Klein (2018) do so in a strategic setting. The paper
closest to the present paper is Keller et al. (2005), who find that, with homogeneous
players, there is never an equilibrium in cut-off strategies. By contrast, we show that,
with heterogeneous players, an equilibrium in cut-off strategies may exist and that it
is welfare maximising whenever it exists.

The rest of the paper is organised as follows. Section 2 sets out the model. Section 3
discusses the social planner’s solution. A detailed analysis of equilibria for different
ranges of heterogeneity is undertaken in Sect. 4. Finally, Sect. 5 concludes. Payoff
functions are shown in “Appendix A”, while some proofs are relegated to “Appendix
B”.

2 Two-armed bandit model with heterogeneous players

There are two players (1 and 2), each of whom faces a two-armed bandit in continuous
time. One of the arms is safe, in that a player who uses it gets a flow pay-off of s > 0.
The risky arm can be either good or bad. Both players’ risky arms are of the same
type. If the risky arm is good, then a player using it receives a lump sum, drawn from a
time-invariant distributionwithmean h > s, at the jumping times of a Poisson process.
The Poisson process governing player 1’s arrivals has intensity λ1 = 1, while player
2’s arrive according to a Poisson process with intensity λ2 ∈ ( s

h , 1). Thus, a good
risky arm gives player 1 (2) an expected pay-off flow of g1 = λ1h = h (g2 = λ2h),
with g1 > g2 > s. The parameters and the game are common knowledge.

The uncertainty in this model arises from the fact that players do not initially know
whether their risky arms are good or bad. Players start with a common prior belief
p0 ∈ (0, 1) that their risky arms are good. Players have to decide in continuous time
whether to choose the safe arm or the risky arm. At each instant, players can choose
only one arm. We write ki,t = 1 (ki,t = 0) if player i ∈ {1, 2} uses his risky (safe) arm
at instant t ≥ 0. Players’ actions and outcomes are publicly observable, and based on
these, they update their beliefs. Players discount the future according to the common
discount rate r > 0.

2 See Hörner and Skrzypacz (2016) for an overview
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Let pt be the players’ common belief that their risky arms are good at time t ≥ 0.
Given player i’s (i ∈ {1, 2}) actions {ki,t }t≥0, which are required to be progressively
measurable with respect to the available information and to satisfy ki (t) ∈ {0, 1} for
all t ≥ 0, player i’s expected pay-off is given by

E

[∫ ∞

0
re−r t [(1 − ki,t )s + ki,t pt gi ] dt

]
,

where the expectation is taken with respect to the processes {ki,t }t≥0 and {pt }t≥0. As
can be seen from the objective function, there are no pay-off externalities between
the players. Indeed, the presence of the other player impacts a given player’s pay-offs
only via the information that he generates, i.e. via the belief.

Asmentioned in Introduction, wewill focus our analysis onMarkov perfect equilib-
ria with the players’ common posterior belief as the state variable. Formally, a Markov
strategy of player i is any left-continuous function ki : [0, 1] → {0, 1}, p �→ ki (p)

(i = 1, 2) that is also piecewise continuous, i.e. continuous at all but a finite number
of points.

As only a good risky arm can yield positive pay-offs in the form of lump sums, the
arrival of a lump sum fully reveals the risky arm to be good. Hence, if either player
receives a lump sum at a time τ ≥ 0, then pt = 1 for all t > τ . In the absence of a
lump-sum arrival, the belief follows the following law of motion for a.a. t :

dpt = −(k1,t + λ2k2,t )pt (1 − pt ) dt .

3 Planner’s problem

Suppose there is a benevolent social planner, who controls the actions of both play-
ers and wants to maximise the sum of their pay-offs. Since the planner’s expected
pay-off at any point in time only depends on the belief at that time and the belief
follows a controlled Markov process, this is a Markov decision problem. Therefore,
it is without loss of generality for the planner to restrict himself to Markov strate-
gies (k1(pt ), k2(pt )) with the posterior belief pt as the state variable. The Bellman
equation for the planner’s problem is given by

v(p) = 2s + max
k1,k2∈{0,1}

{
k1[B1(p, v) − c1(p)] + k2[B2(p, v) − c2(p)]}, (1)

where we write v(p) for the planner’s value function and, like Keller et al. (2005),
define the myopic opportunity cost of having player i play risky, ci (p) = s − pgi ,
and the corresponding learning benefit

Bi (p, v) = p
λi

r
{(g1 + g2) − v(p) − v

′
(p)(1 − p)}.

Note that the planner’s Bellman equation is linear in both k1 and k2, so that our
restriction to action plans {(k1,t , k2,t )}t≥0 with ki,t ∈ {0, 1} for all (i, t) is without
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loss in the planner’s problem. To state the following proposition, which describes
the planner’s solution, we define g = g1 + g2, λ = 1 + λ2, μ = r

λ
, u1(p) :=

(1 − p)
(
1−p

p

)r
, u0(p) := (1 − p)

(
1−p

p

)μ

.

Proposition 1 The planner’s optimal policy k∗(p) = (k∗
1 , k∗

2)(p) is given by

(k∗
1 , k∗

2)(p) =
⎧⎨
⎩

(1, 1) if p ∈ (p∗
2, 1)

(1, 0) if p ∈ (p∗
1, p∗

2]
(0, 0) if p ∈ (0, p∗

1]

and the value function is

v(p) =

⎧⎪⎪⎨
⎪⎪⎩

gp +
[

λ
λ2

s − gp∗
2

]
u0(p)

u0(p∗
2 )

if p ∈ (p∗
2, 1],

s +
[

g+rg1
1+r − s

1+r

]
p +

[
s −

(
g+rg1
1+r − s

1+r

)
p∗
1

]
u1(p)

u1(p∗
1 )

if p ∈ (p∗
1, p∗

2],
2s if p ∈ (0, p∗

1],

where p∗
1 is defined as

p∗
1 = rs

(1 + r)g1 + g2 − 2s
, (2)

and p∗
2 ∈ (p∗

1,
s
g2

) is implicitly defined by v(p∗
2) = λ

λ2
s.

Proof Proof is by a standard verification argument. Please see “Appendix B.1” for
details. 	


By the above proposition, the belief at which player 1 switches to the safe arm in
the planner’s solution is higher than it would be if both players’ Poisson arrival rates
were equal to λ1 = 1. This is because, as player 2’s arrival rate λ2 decreases, the
benefit from player 1’s experimentation decreases.

The planner’s solution is depicted in Fig. 1.3 The planner’s value function is a
smooth convex curve which lies in the range [2s, g]. At the belief p∗

2(p∗
1) , player 2

(1) switches to the safe arm.

4 Non-cooperative game

We will first analyse a player’s best responses to a given Markov strategy of the other
player.

3 Parameter values for this figure: λ1 = 1; λ2 = 0.4; h = 3.5; s = 1 and r = 0.9. p∗
1 = 0.1488 and

p∗
2 = 0.6686.
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Fig. 1 Planner’s solution

4.1 Best responses

Fix player j’s strategy k j ( j ∈ {1, 2} \ {i}). If the pay-off function from player i’s
response satisfies the following Bellman equation, player i is playing a best response:4

vi (p) = s + k j (p)λ j bi (p, vi ) + max
ki ∈{0,1} ki [λi bi (p, vi ) − (s − gi p)] (3)

where

bi (p, vi ) = p
{gi − vi − (1 − p)v

′
i }

r
.

As before,λi bi (p, vi ) can be interpreted as the learning benefit accruing to player i due
to his own experimentation, while λ j bi (p, vi ) is the learning benefit accruing to player
i from player j’s experimentation. The myopic opportunity cost of experimentation
continues to be ci (p) = s − gi p.

For a given k j ∈ {0, 1}, from (3) we know that player i’s pay-off function satisfies
the Bellman equation if and only if

ki (p)

⎧⎨
⎩

= 1 if λi bi (p, vi ) > s − gi p,

∈ {0, 1} if λi bi (p, vi ) = s − gi p,

= 0 ifλi bi (p, vi ) < s − gi p.

4 By standard results, on any open interval of beliefs in which player j’s action choice is constant, player
i’s value function vi will be continuously differentiable. At those (finitely many) beliefs at which player
j’s action changes, v′ should be understood as the left derivative of v (since beliefs can only drift down).

123



Strategic experimentation with asymmetric players 1153

If λi bi (p, vi ) > s − gi p, then ki = 1 is the unique best response. From 3, we can
conclude that this requires vi > s + k jλ j bi (p, vi ) > s + k j

λ j
λi

(s − gi p). A similar
argument applies for the situations when the best responses are ki ∈ {0, 1} and ki = 0,
respectively. This allows us to infer that

ki (p)

⎧⎪⎨
⎪⎩

= 1 if vi > s + k j
λ j
λi

[s − gi p],
∈ {0, 1} if vi = s + k j

λ j
λi

[s − gi p],
= 0 ifvi < s + k j

λ j
λi

[s − gi p].

This implies that when k j = 1, player i chooses the risky arm, safe arm or is
indifferent between them depending on whether his value in the (p, v) plane lies
above, below or on the line

Di (p) = s + λ j

λi
[s − gi p] (4)

The single-agent threshold for player i is given by

p̄i = μi s

μi s + (1 + μi )(gi − s)
(5)

whereμi = r
λi
. In “AppendixA.2”,wedisplay theODEs the players’ pay-off functions

satisfy, as well as their solutions, for each possible action profile. We start off by
showing that, as in the homogeneous case (Keller et al. 2005), no efficient equilibrium
exists.

Proposition 2 In any MPE, both players play safe at all beliefs in [0, p̄1]. There is
thus no efficient MPE.

Proof Suppose to the contrary that pl , the infimum of the set of beliefs at which at
least one player plays risky satisfies pl < p̄1. Clearly, vi (pl) = s for both i ∈ {1, 2}.
We shall now distinguish two cases depending on whether or not there exists an ε̄ > 0
such that, in any ε-right neighbourhood of pl with ε ∈ (0, ε̄), only one player i plays
risky. If there does not exist such an ε̄ > 0, i is not playing a best response, because
pl < p̄i < s

gi
implies that the point (pl , s) is below the diagonal Di . In the other case,

player i faces the same trade-off as a single agent and does not play a best response
either, because pl < p̄i . 	


In the next subsection, we will characterise the condition under which an equilib-
rium in cut-off strategies exists.

4.2 Equilibrium in cut-off strategies

As we have argued in the proof of Proposition 2, there is no experimentation below the
belief p̄1 in any equilibrium. We will now argue that, in any equilibrium, only player
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1 will experiment in some right neighbourhood of p̄1, implying that player 1 is the
last player to experiment in any equilibrium.

By Proposition 2, we know that v1( p̄1) = v2( p̄1) = s, and thus, by continuity,
both players’ value functions must be below their respective diagonals Di in some
neighbourhood of p̄1. Thus, in any equilibrium, at most one player can play risky in
some right neighbourhood of p̄1. Now, suppose that player 2 is the only player to
experiment in some right neighbourhood of p̄1. Then, the relevant ODE (Equation 13
in “AppendixA.2”) gives us thatλ2 p̄1(1− p̄1)v′

2( p̄1+) = p̄1λ2(g2−s)−rc2( p̄1) < 0,
as p̄1 < p̄2. Thus, player 2’s value function drops below s immediately to the right
of p̄1, which contradicts his playing a best response. We can thus conclude that there
exists some belief p̂1 > p̄1 such that, on ( p̄1, p̂1), player 2 plays safe. As either player
can always guarantee himself his single-agent pay-off by ignoring the information he
gets for free from the other player, his pay-off in any equilibrium is bounded below
by his single-agent pay-off. Thus, in any equilibrium, v1 > s on ( p̄1, p̂1], and player
1 experiments, while player 2 free rides, in this range.

Thus, for beliefs right above p̄1, in any equilibrium, player 1’s pay-off is given by

v̄1(p) = g1 p + C̄1u1(p), (6)

with C̄1 = s−g1 p̄1
u1( p̄1)

. Player 2’s equilibrium pay-off for these beliefs is given by

v̄2(p) = s + (g2 − s)p

1 + r
+ C̄2u1(p) (7)

with C̄2 = − (g2−s) p̄1
(1+r)u1( p̄1)

.

Since C̄1 > 0 and C̄2 < 0, v̄1 is strictly convex and v̄2 is strictly concave.5 The
following lemma shows that the functions v̄i intersect the corresponding diagonals Di

at a unique belief.

Lemma 1 There exists a unique p
′
1 ∈ ( p̄1, 1) such that v̄1(p

′
1) = D1(p

′
1), and a

unique p
′
2 ∈

(
p̄2,

s
g2

)
such that v̄2(p

′
2) = D2(p

′
2).

Proof Please refer to “Appendix B.2”. 	

In the following proposition, we will show that there exists an equilibrium in cut-off
strategies if and only if the degree of asymmetry between the players is high enough.

Proposition 3 There exists a λ∗
2 ∈ ( s

h , 1) such that there exists an equilibrium in cut-
off strategies if and only if λ2 ∈ ( s

h , λ∗
2]. In this equilibrium, player 1 plays risky on

( p̄1, 1] and safe otherwise, while Player 2 plays risky on (p
′
2, 1] and safe otherwise.

Proof Please refer to “Appendix B.3”. 	

“Appendix B.4” shows that the belief p

′
2 where player 2 switches to the safe arm in the

above equilibrium is strictly greater than p∗
2 , the threshold in the planner’s solution.

This shows that for p ∈ (p∗
2, p

′
2], player 2 inefficiently free rides.

5 v̄1 and v̄2 are obtained fromEqs. 14 and 16, respectively, by imposing the condition v̄i ( p̄1) = s (i = 1, 2).
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Fig. 2 Equilibrium in cut-off strategies

The equilibrium in cut-off strategies is depicted in Fig. 26. In this equilibrium, both
players’ pay-offs are equal to s for p ≤ p̄1. For p > p̄1, the black curve represents
v1 and the red curve represents v2. For p ∈ ( p̄1, p

′
2], player i’s (i = 1, 2) pay-off is

v̄i (p). For p > p
′
2, player i’s pay-off is given by

vr
i (p) = gi p + Cr

i u0(p)

with Cr
i = v̄i (p

′
2)−gi p

′
2

u0(p
′
2)

.7 Player 1’s equilibrium pay-off function is (strictly) convex

(on ( p̄1, 1)); it is smooth, except for a kink at p
′
2. (For the particular parameter values

used in Fig. 2, we have v
′
1(p

′+
2 ) = 1.477 and v

′
1(p

′−
2 ) = 1.21). To depict this kink

in the figure, we have magnified the area around p = p
′
2. In the magnified part, the

orange curve represents v̄1 for p > p
′
2. Player 2’s pay-off function is strictly concave

on ( p̄1, p
′
2) and strictly convex on (p

′
2, 1); it has an inflection point at p

′
2. It is smooth

except for a kink at p̄1.
Experimentation decisions are strategic substitutes. Therefore in any equilibrium,

at the lowest belief where some experimentation takes place, one pioneer is indifferent
between choosing the safe and the risky arm, given that the other player is free riding.
The free rider can determine a threshold belief p

′
2 where he is indifferent between

6 Parameter Values: λ1 = 1; λ2 = 0.9; h = 2; s = 1 and r = 1.2. p∗
1 = 0.2857 and p∗

2 = 0.4126.

p
′
1 = 0.4629 and p

′
2 = 0.4916.

7 These pay-offs are obtained from 12 by imposing the condition vr
i (p

′
2) = v̄i (p

′
2) (i = 1, 2).
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choosing the safe arm and the risky arm, given that the pioneer is choosing the risky
arm for all beliefs between the lowest cut-off and p

′
2. This implies that for beliefs just

above p
′
2, the free rider finds it beneficial to experiment irrespectively of the action

of the pioneer. When players are homogeneous, their free riding opportunities are the
same. At p

′
2, the pioneer’s pay-off is less than that of the free rider as experimentation

is costly. Thus, for beliefs just above p
′
2, the pioneer has an incentive to free ride,

given that the free rider experiments. This explains [as shown in Keller et al. (2005)]
why there does not exist an equilibrium where both players use cut-off strategies.
However, the free riding opportunities are different for heterogeneous players. As
explained above, in any equilibrium the pioneer is always the player with the higher
productivity (player 1). The lower player 2’s productivity, the less player 1 has an
incentive to free ride on player 2’s experimentation. If player 2’s productivity is very
low, player 1 no longer has any incentive to free ride on 2’s experimentation for beliefs
right above p

′
2. This intuitively explains the result of Proposition 3.

Geometrically, the diagonals D1 and D2 in Fig. 2 do not coincide when players
are asymmetric. As the proof of Proposition 3 shows, the condition for existence of
an equilibrium in cut-off strategies is precisely that player 2 will enter the region in
which risky is dominant at a more optimistic belief than player 1.8 This is possible
if and only if the region in which risky is dominant for player 2 is relatively small
enough compared to that of player 1, i.e. if and only if λ2 is small enough compared
to λ1 = 1.

In Sect. 4.5, we show that if the players’ learning speeds are different while the
expected flow pay-off from the good risky arm is the same, there again exists an
equilibrium in cut-off strategies if and only if the difference in the learning speeds
is high enough. The same qualitative result obtains for identical learning speeds but
different expected pay-offs from the good risky arm. Indeed, either form of asymmetry
creates differences in the players’ free riding incentives. Diagrammatically, this can
be seen by a gap between the best response diagonals.

4.3 Equilibria in non-cut-off strategies

In the previous subsection, we have identified a necessary and sufficient condition for
the existence of an equilibrium in cut-off strategies. In this subsection, we will analyse
equilibria where at least one of the players uses a non-cut-off strategy. To begin with,
we show that even for low degrees of asymmetry, there exists an equilibrium where
player 2 uses a cut-off strategy.

Proposition 4 There exists an equilibrium in which only player 2 uses a cut-off strategy
if and only if λ2 > λ∗

2. In this equilibrium, the cut-off for player 2’s strategy is p
′
2.

Player 1 plays risky on ( p̄1, p
′
2] ∪ (p1s , 1] and safe otherwise, where p1s > p

′
2 is the

belief at which player 1’s pay-off function and D1 intersect.

Proof Please refer to “Appendix B.5”. 	

8 All our figures correspond to parametric values such that the point of intersection of v2 and v1 lies to

the right of p
′
2. However, for very low values of λ2, this intersection will occur to the left of p

′
2. All of our

analysis goes through unchanged for this case as well.
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Strategic experimentation with asymmetric players 1157

Theequilibriumwhere onlyplayer 2 uses a cut-off strategy is depicted inFig. 39. The
black and the orange curves depict the pay-offs to player 1 and 2, respectively. As the
degree of asymmetry between the players is low, p

′
1 > p

′
2, and hence, an equilibrium

where both players use cut-off strategies does not exist. In Fig. 3, we magnify the part
around p = p

′
2. We do not show p

′
1 in the figure, but for the parameter values used

in Fig. 3, we have p1s = 0.4740 < 0.4754 = p
′
1. At p = p

′
2, both v1 and v2 have a

kink.10 To the immediate right of p
′
2, v1 becomes concave and v2 becomes convex. v2

remains convex for all p > p
′
2, but has a kink

11 at p = p1s . v1 has an inflection point
at p = p1s and smoothly becomes convex at this belief.

Propositions 3 and 4 together imply that there always exists an equilibrium where
player 2 uses a cut-off strategy with p

′
2 as the cut-off. Indeed, as argued in the previous

subsection, in any equilibrium, p̄1 is the lowest belief where some experimentation
takes place and only player 1 experiments at beliefs just above p̄1. By the same token,
risky is Player 2’s best reply at all beliefs above p

′
2, given Player 1 plays risky on

( p̄1, p
′
2].

When the degree of asymmetry is low, there will exist a range of beliefs just above
p

′
2 where player 1 free rides. Thus, player 1 uses a non-cut-off strategy. This explains

the result of Proposition 4. In the limit λ2 ↓ λ∗
2, the range above p

′
2 where player 1

free rides vanishes, and hence, the equilibrium described in Proposition 4 coincides
with the equilibrium in cut-off strategies.

Equilibria where at least one player uses a non-cut-off strategy always exist, as the
following proposition shows. The following proposition, together with Proposition 3,
fully characterises the set of all Markov perfect equilibria. To state the proposition,
we let vi be player i’s equilibrium pay-off. For both players n ∈ {1, 2}, we define
pn

S as the (unique) point of intersection of vn and Dn .12 Let pi
S = min{p1S, p2S} and

p j
S = max{p1S, p2S}.

Proposition 5 For any λ2 ∈ ( s
h , 1), there exists a continuum of Markov perfect equi-

libria in which at least one player uses a non-cut-off strategy. For each integer l > 1
and each sequence of threshold beliefs ( p̃i )

l
i=1 such that p̄1 < p̃1 < · · · < p̃l = pi

S,
there exists an equilibrium such that both players play safe at all beliefs p ≤ p̄1;
player 1 plays risky and player 2 plays safe in ( p̄1, p̃1] ∪⋃

i∈2N∧i<l( p̃i , p̃i+1] , while

player 1 plays safe and player 2 plays risky in
⋃

i∈2N∧i≤l( p̃i−1, p̃i ]; on (pi
S, p j

S],
player i plays risky and player j plays safe, while both players play risky on (p j

S, 1].
The same strategies with l = 1 also describe an equilibrium in which only player 2

uses a cut-off strategy if and only if p
′
2 = p2S < p1S = p̂1S.

On [0, p̄1], both players’ value function is s. For even i < l, on ( p̃i , p̃i+1], player
1’s (2’s) value function is given by (14), (16), while on ( p̃i−1, p̃i ], player 2’s (1’s)

9 Parameter values: λ1 = 1; λ2 = 0.985; h = 2; s = 1 and r = 1.9. p̄1 = 0.3958; p
′
1 = 0.4754; p

′
2 =

0.4644 and p1s = 0.4740.
10 For the particular parameter values used in Fig. 3, we have v

′
1(p

′−
2 ) = 0.9694; v

′
1(p

′+
2 ) = 1.5085;

v
′
2(p

′−
2 ) = 0.9894; v

′
2(p

′+
2 ) = 0.3197.

11 For the particular parameter values used in Fig. 3, we have v
′
2(p1−s ) = 0.4625; v

′
2(p1+s ) = 1.0721.

12 The uniqueness of pn
S ∈ ( p̄1,

s
gn

) follows from (11).
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Fig. 3 Only player 2 uses a cut-off strategy

value function is given by (14), (16); on (pi
S, p j

S], player i’s ( j ’s) pay-off is given

by (14), (16). On (p j
S, 1], both players’ pay-offs are given by (12). The constants of

integration are determined by value matching.

Proof That the proposed strategies are mutually best responses immediately follows
from our discussion at the top of Sect. 4. That such equilibria always exist fol-
lows immediately from the continuity of players’ pay-off functions and the fact that
Di ( p̄1) > s for both i ∈ {1, 2}. 	


When the degree of asymmetry is low, it is easy to observe that both players have
incentives for free riding just below p

′
2; i.e. safe and risky are mutually best responses

in this region. Although an increase in the degree of asymmetry reduces the free
riding incentives for player 1, they never vanish completely. Therefore, there will
always be a range just above p̄1 where safe and risky are mutually best responses.
Hence, equilibrium allows players to take turns in experimenting at arbitrary beliefs
in ( p̄1, p

′
2). This explains the result of Proposition (5).

As p̄1 < p̄2, the proposition implies that there exist equilibria in which player 2
experiments below his single-agent threshold p̄2. Indeed, by being the last player to
experiment on ( p̄1, p̃1], player 1 provides an encouragement effect to player 2, as
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the latter is willing to play risky on ( p̃1, p̃2] only because he knows that, should his
experimentation not be successful, hewill get to free ride on player 1’s experimentation
once the belief will have dropped to p̃1.

4.4 Welfare rankings of equilibria

As in Keller et al. (2005), there are two potential sources of inefficiency in our
model: players might not produce enough information, and/or they might produce
the information too slowly. In order to analyse these different effects, we define the
experimentation intensity at time t ≥ 0 as Kt = λ1k1,t + λ2k2,t , and the integral∫ T
0 Kt dt as the amount of experimentation up to time T . Keller et al. (2005), by con-

trast, define the experimentation intensity at time t ≥ 0 as K̂t = k1,t + k2,t , and the
amount of experimentation up to time T as

∫ T
0 K̂t dt . Thus, we measure the output of

players’ experimentation efforts, with our measure taking into account that it matters
for the information-production process which player invests time in the risky arm. The
corresponding concepts in Keller et al. (2005), by contrast, measure the input, i.e. the
overall resources spent on producing information. In the case of homogeneous players
with productivities λ, the input, as indicated by their measure, of course corresponds
to 1/λ times the output, as indicated by our measure. The following result mirrors the
finding in Keller et al. (2005) (see their Lemma 3.1 in conjunction with their Proposi-
tions 5.1 and 6.1) that the amount of experimentation is the same in anyMarkov perfect
equilibrium. This implies that the welfare ranking of equilibria is solely determined
by the delay in information production.

Lemma 2 Suppose there is no success on the risky arm. Then, the amount of experi-
mentation is the same in any Markov perfect equilibrium.

Proof As we have seen from our characterisation of equilibria, experimentation stops
at p̄1 in any equilibrium. By Bayes’ rule, the law of motion of the belief conditional
on no success is given by dpt = −Kt pt (1− pt ) dt . Thus, conditionally on no success,
the amount of experimentation in any Markov perfect equilibrium is given by ∞ as
upper bound

∫ ∞

0
Kt dt =

∫ p̄1

p0
− dpt

pt (1 − pt )
=

[
ln

(
1 − p

p

)] p̄1

p0

,

which concludes the proof. 	

In the following proposition, we establish that in any equilibrium in which players

swap the roles of pioneer and free rider at least once, player 1’s (2’s) pay-off will hit
D1 (D2) at a more pessimistic (optimistic) belief than in the equilibrium in cut-off
strategies.

Proposition 6 Consider any equilibrium described in Proposition 5. Suppose p1S > p̄1
is the belief at which the equilibrium pay-off of player 1meets the line D1 and p2S > p̄1
is the belief at which the equilibrium pay-off of player 2 meets the line D2. Then, we
have p1S < p

′
1. For l > 1 we have p2S > p

′
2 and for l = 1, p2S = p

′
2.

123



1160 K. Das et al.

Proof Please refer to “Appendix B.6”. 	

In the equilibrium in cut-off strategies, player 2 free rides for all beliefs in ( p̄1, p

′
2].

However, in any other equilibrium there exists some open subset of ( p̄1, p
′
2) where

he experiments and player 1 free rides. Thus, for all p ∈ ( p̄1, p
′
2], the equilibrium in

cut-off strategies gives the highest pay-off to player 2, as he can free ride on the more
productive player’s experimentation. This implies that, in the range p ∈ ( p̄1, p

′
2],

player 2’s pay-off function in any non-cut-off equilibrium lies below his pay-off in the
cut-off equilibrium and will therefore intersect the diagonal D2 at a belief higher than
p

′
2. This explainswhywe have p2S > p

′
2. On the other hand, for all p ∈ ( p̄1, p

′
1], player

1 experiments in the equilibrium in cut-off strategies and receives his single-agent pay-
off. In any other equilibrium, however, there exists some open subset of ( p̄1, p

′
1)where

his single-agent optimal action is not a best response, and his equilibrium pay-off is
therefore higher. Thus, as player 1’s pay-off is lowest in the equilibrium in cut-off
strategies, we have p1S < p

′
1.

Suppose λ2 ∈ ( s
h , λ∗

2]. This implies that the equilibrium in cut-off strategies exists.
In the following proposition, we show that the equilibrium in cut-off strategies strictly
welfare dominates all other equilibria.

Proposition 7 Suppose λ2 ≤ λ∗
2 and let vcagg be the aggregate equilibrium pay-off in

the equilibrium in cut-off strategies and vncagg be the aggregate equilibrium pay-off in an
arbitrary equilibrium in non-cut-off strategies. Then, vcagg ≥ vncagg, with the inequality
strict on ( p̃1, 1).

Proof Please refer to “Appendix (B.7)”. 	

First, observe that in the equilibrium in cut-off strategies, both players experiment

for beliefs greater than p
′
2. Since p2S > p

′
2 (by Proposition 6), the range of beliefs

where both players experiment is largest in the equilibrium in cut-off strategies. Next,
in the equilibrium in cut-off strategies, whenever only one player experiments, it is
the player with the higher pay-off arrival rate, player 1. In any other equilibrium,
however, there is a range of beliefs where player 2 plays the role of the lonely pioneer.
Since player 1 is more productive, in any equilibrium all experimentation ceases at
p̄1, information is most efficiently generated in the equilibrium in cut-off strategies.
This intuitively explains the result of Proposition 7. One can observe that, since,
at any belief, the intensity of experimentation is highest in the equilibrium in cut-
off strategies, information generation is fastest. Thus, this equilibrium involves least
delay. As experimentation amounts are the same in all equilibria (Lemma 2), this
implies that the cut-off equilibrium welfare dominates all other equilibria.13

The comparison between the equilibrium in cut-off strategies and an equilibrium in
which players swap roles once is depicted in Fig. 4.14 Figure 4a, b depicts the actions
of players in the equilibrium in cut-off strategies and the equilibrium in non-cut-off
strategies, respectively. These equilibria correspond to the ones depicted in Fig. 4.

13 Dong (2018) shows that if the players’ initial beliefs are asymmetric enough, equilibrium welfare
improves.
14 Proposition 6 implies that the qualitative characteristics of p1s and p2s are the same in any equilibrium
in non-cut-off strategies. For simplicity, we consider an equilibrium in non-cut-off strategies where players
swap roles only once in the figure.
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Fig. 4 Comparison of cut-off equilibrium with equilibrium where players roles once

The thick purple15curve (v1) and the black curve (v2) in Fig. 4 depict the pay-offs to
player 1 and 2, respectively, in the equilibrium in cut-off strategies. In the equilibrium
in non-cut-off strategies, pay-offs coincide for beliefs less than or equal to p̃1. At p̃1,
players switch arms. The thin blue curve depicts the pay-off to player 1, and the thin
yellow curve depicts the pay-off to player 2 in the equilibrium in non-cut-off strategies
for p > p̃1. As argued, the blue curve meets the line D1 at a belief p1S , which is strictly

less than p
′
1. In the region ( p̃1, p1S], player 2 experiments and player 1 free rides. At

p1s , player 1 switches to the risky arm and player 2 switches to the safe arm. When
the red curve meets the line D2 at p2s > p

′
2, player 2 switches to the risky arm again.

Notice that in the equilibrium in non-cut-off strategies, player 2’s pay-off is negatively
sloped at the right neighbourhood of p = p̃1. Indeed, in the current example, we have
p̃1 = 0.39 < 0.4054 = p̄2, where p̄2 is the single person threshold for player 2.
This means that, in the equilibrium in non-cut-off strategies, player 2 is forced to act

15 Parameter values: λ1 = 1; λ2 = 0.9; h; s = 1 and r = 1.2. p̄1 = 0.3529; p
′
1 = 0.4629; p

′
2 =

0.4916; p1s = 0.4499; p2s = 0.5081 and p̃1 = 0.39.
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as the lonely pioneer to the left of his single-agent cut-off, which makes his pay-off
negatively sloped.16

When λ2 > λ∗
2, the equilibrium in cut-off strategies does not exist. However,

the argument in the proof of Proposition 7 allows us to show that, on ( p̄1, p
′
2], the

equilibrium of Proposition 4, which is the only equilibrium in which player 1 is exper-
imenting throughout this range, strictly welfare dominates all other equilibria. Indeed,
with heterogeneous players, more frequent switches have the effect of replacing exper-
imentation by the strong player with experimentation by the weak player in some open
subset in ( p̄1, p

′
2), thereby delaying information production in this range. Thus, even

thoughmore frequent switches can expand the range of beliefs where both experiment,
there is always a welfare loss in the range ( p̄1, p

′
2]. Hence, if players switch the role of

pioneer and free rider more frequently, the equilibrium welfare is not unambiguously
improved. This is in contrast to the casewith homogeneous players (Keller et al. 2005),
where the only effect of increasing the frequency of switches is to expand the range of
beliefs where both players experiment, thus unambiguously speeding up information
production and improving equilibriumwelfare. Yet, we have not been able to establish
that the equilibrium of Proposition 4 is globally welfare maximising.

4.5 Learning rates versus pay-offs

In our baseline model, we have considered asymmetric Poisson arrival rates only.
However, since the expected lump-sum pay-off from the good risky arm was the same
for both players, the asymmetry in learning rates implied that the expected flow pay-
off from a good risky arm was also different across the players. In this subsection, we
will analyse a model where learning rates differ, but the expected flow pay-off from a
good risky arm is the same for both players.

Define ĝ = λ1h1 where λ1 = 1 and h1 > 0. For any λ2 ∈ (0, 1), we choose a
h2 > 0 such that λ2h2 = ĝ.

Wewill first analyse the social planner’s problem. Please refer to “Appendix (B.10)”
for the explicit form of the Bellman equation for the planner’s value function w. The
following proposition will show that the structure of the planner’s solution is the same
as in Proposition 1.

Proposition 8 The planner’s optimal policy k∗(p) = (k∗
1 , k∗

2)(p) is given by

(k∗
1 , k∗

2)(p) =
⎧⎨
⎩

(1, 1) if p ∈ ( p̄∗
2, 1)

(1, 0) if p ∈ ( p̄∗
1, p̄∗

2]
(0, 0) if p ∈ (0, p̄∗

1]
and the value function is

16 Mathematically, this can be seen as follows: consider a function v = g2 p + C(1 − p)(
1−p

p )
r
λ2 , such

that the integration constant is derived from v( p̃1) = s. Since p̃1 < p̄2, direct computation shows that

v
′
( p̃1) < 0. In the equilibrium in non-cut-off strategies, to the immediate right of p̃1, 2’s pay-off is given by

Footnote 15 continued

v2 = g2 p + c2(1− p)(
1−p

p )
r
λ2 . The integration constant c2 is determined from v2( p̃1) = v̄2( p̃1) > s ⇒

c2 > C . Direct computation shows that this implies that 2’s pay-off will be negatively sloped in some right
neighbourhood of p̃1.
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w(p) =

⎧⎪⎪⎨
⎪⎪⎩
2ĝ p +

[
λ
λ2

s − ĝ p̄∗
2
1−λ2
λ2

− 2ĝ p̄∗
2

]
u0(p)

u0( p̄∗
2 )

if p ∈ ( p̄∗
2, 1],

s +
[
2ĝ+r ĝ
1+r − s

1+r

]
p +

[
s −

(
2ĝ+r ĝ
1+r − s

1+r

)
p̄∗
1

]
u1(p)

u1( p̄∗
1 )

if p ∈ ( p̄∗
1, p̄∗

2],
2s if p ∈ (0, p̄∗

1],

where p̄∗
1 is defined as

p̄∗
1 = rs

2(ĝ − s) + r ĝ
, (8)

and p̄∗
2 ∈ ( p̄∗

1,
s
ĝ ) is implicitly defined by w( p̄∗

2) = λ
λ2

s − ĝ p̄∗
2
1−λ2
λ2

.

Proof Proof is by a standard verification argument. Please see the “Appendix B.8” for
details. 	


We will now analyse the non-cooperative game. Please refer to “Appendix (B.10)”
for the explicit form of the Bellman equation player i’s (i = 1, 2) value function wi

satisfies.
The single-agent thresholds are p̂i = rs

rs+(r+λi )(ĝ−s) . It can be verified that p̂1 < p̂2.
As in the baseline model, we can argue that in any equilibrium, p̂1 is the lowest belief
where some experimentation takes place and player 1 is the last one to experiment.
This implies that, in any equilibrium, for beliefs right above p̂1, pay-offs to player
1 and 2 are given by w̄1(p) and w̄2(p), respectively.17 It can be verified that w̄1 is
strictly convex and w̄2 is strictly concave. By arguments similar to those in Lemma
1, we can infer that there exists a unique p̄

′
1 ∈ ( p̂1, 1) such that w̄1( p̄

′
1) = D1( p̄

′
1)

and a unique p̄
′
2 ∈ ( p̂2,

s
ĝ ) such that w̄2( p̄

′
2) = D2( p̄

′
2). In the following proposition,

we establish that an equilibrium in cut-off strategies exists if and only if the degree of
asymmetry is high enough.

Proposition 9 There exists a λ̂2 ∈ (0, 1) such that there exists an equilibrium in cut-off
strategies if and only if λ2 ∈ (0, λ̂2]. In this equilibrium, player 1 plays risky on ( p̂1, 1]
and safe otherwise, while player 2 plays risky on ( p̄

′
2, 1] and safe otherwise.

Proof Please refer to “Appendix B.9” for details. 	

Figure 5 depicts the equilibrium in cut-off strategies.18 The black (red) curve depicts
the pay-offs to player 1 (2). Since the flow pay-off obtained by each player from a
good risky arm is fixed at ĝ, the point of intersection between the best response line
and the horizontal line w = s is the same for both players. As agents become more
asymmetric, the best response lines diverge more from each other. Due to this, there
emerges a range of beliefs where only player 2 can free ride. Hence, if the degree of
asymmetry between the players is high enough, there exists an equilibrium in cut-off
strategies.

Using similar arguments, we can establish that when the players’ learning rates are
equal but their flow pay-offs from a good risky arm are different, an equilibrium in

17 Please refer to “Appendix (B.10)” for explicit expressions for these functions.
18 Parameter values: λ1 = 1; λ2 = 0.3; h1 = 2; h2 = 20

3 ; s = 1 and r = 1.2. p̂1 = 0.3529; p̄
′
1 =

0.4344; p̄
′
2 = 0.4779.
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Fig. 5 Cut-off equilibrium when only learning rates differ (color figure online)

cut-off strategies exists if the asymmetry between the players is high enough. As an
illustration, suppose λ1 = λ2 = λ̂. The lump sum received by each player from a
good risky arm at the jumping times of the Poisson process with intensity λ̂ is drawn
from a time-invariant distribution. The mean of this distribution hi (i = 1, 2) is such
that h1 > h2 and h2 ≥ s

λ̂
. This implies g1 > g2 ≥ s. The best response diagonal of

player i (i = 1, 2) is now given by D̂i : v = 2s − gi p. Beliefs p̃
′
1 and p̃

′
2 can be

defined analogously to p
′
1 and p

′
2 above. Figure 6

19 shows an equilibrium in cut-off
strategies in this framework. The black (red) curve depicts the pay-offs to player 1
(2). This equilibrium exists only when the players are highly asymmetric, and the best
response diagonals are far apart from each other.

In both cases, if it exists, the equilibrium in cut-off strategies is welfare maximising.
The argument is similar to above: Player 2 free rides the most in the equilibrium in
cut-off strategies, so that the range of beliefs at which both players play risky is largest.
In addition, for any equilibrium that is not in cut-off strategies, there is an open set
of beliefs in which the roles of experimenting pioneer and free rider are reversed as
compared to the equilibrium in cut-off strategies (where only player 2 ever free rides).
In the case λ1 �= λ2, both effects lead to greater delay in information production in the
non-cut-off equilibrium. In the case λ1 = λ2 = λ̂, the first effect leads to greater delay,

19 Parameter values: λ1 = λ2 = 1; h1 = 2.1; h2 = 1.9; s = 1 and r = 1.2. p̃1 = 0.3315; p̃
′
1 = 0.4418

and p̃
′
2 = 0.4582.
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Fig. 6 Cut-off equilibrium when learning rates are equal but risky flow pay-offs differ

while the second effect leads to a higher opportunity cost of information production
(s − g1 p < s − g2 p), in the non-cut-off equilibrium.

5 Conclusion

In this paper, we have characterised the set ofMarkov perfect equilibria in a two-armed
bandit model with heterogeneous players. We have shown that there always exists an
equilibrium in which the weaker player uses a cut-off strategy. If the heterogeneity is
stark enough, there exists an equilibrium in cut-off strategies. If such an equilibrium
exists, it is welfare optimal.

Thus, suppose there are two oil companies with vastly different drilling technolo-
gies, e.g. a big multinational firm and a small local enterprise. One could argue that
the difference in technological capabilities between the two will be bigger in develop-
ing countries. On account of the big heterogeneity in capabilities, we should expect
the equilibrium in cut-off strategies to exist. An empirically testable prediction of our
model would thus be that there will be a higher frequency of instances in developing
countries where the small local firm would free ride on the experimentation provided
by the big multinational firm, and only enter the market after oil had been struck, even
if the original level of uncertainty regarding the presence of oil was only moderate.

We have restricted players to using one arm only at any given instant t . By the
linearity of the players’ Bellman equations, our equilibria would remain equilibria if
we allowed players to select experimentation intensities ki,t ∈ [0, 1]. There might,
however, be more equilibria in this case.
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Our analysis has relied heavily on the characterisation of players’ best responses
via the diagonals Di [see Eq. (4)], which was pioneered by Keller et al. (2005) for the
homogeneous-player case.We expect that a similar approach could, mutatis mutandis,
be used to study other kinds of asymmetries, e.g. pertaining to players’ safe-arm
pay-offs si . We should expect a similar result to our Proposition 3 to hold in these
cases, namely, that there existed an equilibrium in cut-off strategies if and only if the
heterogeneity was stark enough.
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Appendix

A Ordinary Differential Equations

A.1 ODEs in the planner’s problem

Clearly, if (k1, k2) = (0, 0) is played at a belief p, the planner’s pay-off function
satisfies v(p) = 2s.

If the planner plays k1 = k2 = 1 on an open set of beliefs, his pay-off function on
this set satisfies

v(p) = 2s + B1(p, v) − c1(p) + B2(p, v) − c2(p),

which is equivalent to the ODE

λp(1 − p)v
′
(p) + (r + λp)v(p) = (r + λ)pg. (9)

This is solved by

v(p) = gp + Cu0(p)

where C is a constant of integration.
By the same token, the ODE for (k1, k2) = (1, 0) is given by

p(1 − p)v
′
(p) + (r + p)v(p) = r(s + pg1) + pg. (10)
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This is solved by

v(p) = s +
[

g + rg1
1 + r

− s

1 + r

]
p + Cu1(p).

A.2 ODEs of players in the non-cooperative game

If k1 = k2 = 0, both players’ pay-off functions satisfy vi (p) = s.
If k1 = k2 = 1 prevails on an open set of beliefs in the non-cooperative game, both

players’ value function for beliefs in this set satisfies

λp(1 − p)v
′
i (p) + (r + λp)vi (p) = (r + λ)pgi . (11)

This is solved by
vi = gi p + Cu0(p) (12)

where C is a constant of integration.
If ki = 1 and k j = 0, player i’s pay-off function satisfies

λi p(1 − p)v
′
i (p) + (r + λi p)vi (p) = (r + λi )pgi . (13)

Solving this, we get
vi (p) = gi p + Cui (p) (14)

where ui (p) = (1 − p)[ (1−p)
p ]μi and μi = r

λi
. Player j’s pay-off function satisfies

λi p(1 − p)v
′
j (p) + (r + λi p)v j (p) = rs + λi pg j . (15)

This is solved by

v j = s + λi

λi + r
(g j − s)p + Cui (p). (16)

B Proofs

B.1 Proof of Proposition 1

The function v satisfies v = 2s on [0, p∗
1], v = 2s + B1 − c1 on (p∗

1, p∗
2] and

v = 2s + B1 − c1 + B2 − c2 on (p∗
2, 1];20 thus, v is the pay-off function associated

with the policy k∗.21 We shall first show that v is of class C1, (strictly) increasing and
(strictly) convex (on (p∗

1, 1)).

20 We suppress arguments whenever this is convenient.
21 In “Appendix A.1”, we display the ODEs that v satisfies for each range of beliefs and the corresponding
general form of v for that range. The specific value of v is obtained by value matching.
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One computes that, for p ∈ (p∗
1, p∗

2), B1(p, v)−c1(p) = ψ(p), whereψ is defined
as

ψ(p) = −s + pg1 + 1

r
p

[
g − s − g + rg1

1 + r
+ s

1 + r

+ r

p

(
s − p∗

1

(
g + rg1
1 + r

− s

r + 1

))
u1(p)

u1(p∗
1)

]
.

Direct computation shows that u′′
1 > 0 and s − p∗

1

(
g+rg1
1+r − s

1+r

)
> 0, so that ψ , and

hence v|(p∗
1 ,p∗

2 )
, is strictly convex. One furthermore shows by direct computation that

ψ(p∗
1) = ψ ′(p∗

1) = 0, implying that v|(0,p∗
2 )
is of class C1.

We shall now show that p∗
2 is well-defined. Indeed, by definition, x = p∗

2 must
satisfy

[
g + rg1
1 + r

− s

1 + r

]
x +

[
s −

(
g + rg1
1 + r

− s

1 + r

)
p∗
1

]
u1(x)

u1(p∗
1)

= s

λ2
.

The left-hand side of this equation is strictly increasing in x for x > p∗
1 and equal to s <

s
λ2

at x = p∗
1 . Furthermore, at x = s

g2
, the left-hand side exceeds

[
g+rg1
1+r − s

1+r

]
s
g2

>
s
λ2
. By continuity, the equation thus admits of a unique root p∗

2 ∈ (p∗
1,

s
g2

).

As p∗
2 < s

g2
, λ

λ2
s − p∗

2g > 0, and v|[p∗
2 ,1] is strictly convex as well. It remains

to show that v|[p∗
2 ,1] is also strictly increasing. By convexity, it is sufficient to show

smooth pasting at p∗
2 . By the ODE for the region (p∗

1, p∗
2) (Eq. 10 in “Appendix A.1”),

we have p∗
2(1− p∗

2)v
′(p∗

2−) =
[
rs + r p∗

2g1 + p∗
2g − (r + p∗

2)
λ
λ2

s
]
. By the ODE for

the (p∗
2, 1)-region (Equation 9 in “Appendix A.1”), we find p∗

2(1 − p∗
2)v

′(p∗
2+) =[

(r + λ)p∗
2g − (r + λp∗

2)
λ
λ2

s
]
/λ, and hence v′(p∗

2+) = v′(p∗
2−).

It remains to show that v solves the Bellman equation, i.e. that Bi ≤ ci for both
i ∈ {1, 2} on [0, p∗

1]; B1 ≥ c1 and B2 ≤ c2 on (p∗
1, p∗

2]; and Bi ≥ ci for both
i ∈ {1, 2} on (p∗

2, 1]. First, let p ∈ [0, p∗
1]. In this case, v = 2s, and Bi ≤ ci if and

only if p ≤ rs
rgi +λi (g−2s) , which is verified for all p ≤ p∗

1 . Now, let p ∈ (p∗
1, p∗

2]. As v

is strictly increasing in this range, v = 2s+B1−c1 > 2s, and thus B1 > c1.Moreover,
v = 2s + B1 − c1 implies that B2 = λ2B1 = λ2 (v − s − pg1) ≤ s − pg2 = c2 if and
only if v ≤ λ

λ2
s, which is verified as p ≤ p∗

2 . Finally, let p ∈ (p∗
2, 1). In this range, we

have that g −v − (1− p)v′ = r
λp

(
λ
λ2

s − p∗
2g

)
u0(p)

u0(p∗
2 )
, so that Bi = λi

λ
v − pgi , which

exceeds ci = s − pgi if and only if v ≥ λ
λi

s. By monotonicity of v, v ≥ λ
λ2

s > λs in
this range, which completes the proof.

B.2 Proof of Lemma 1

The function v̄1 is strictly increasing, while D1 is strictly decreasing. Furthermore,
v̄1( p̄1) < D1( p̄1) and v̄1(1) > D1(1). Since both v̄1 and D1 are moreover continuous,
there exists a unique p

′
1 ∈ ( p̄1, 1) such that v̄1(p

′
1) = D1(p

′
1).
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As C̄2 < 0, we have

v̄2( p̄2) < s + [g2 − s] p̄2
1 + r

= s + [g2 − s]
1 + r

μ2s

(μ2 + 1)g2 − s
≡ Ψ̄ .

On the other hand, D2( p̄2) = s + s[g2−s]
λ2[(μ2+1)g2−s] . This implies

D2( p̄2) − Ψ̄ = s[g2 − s]
[(μ2 + 1)g2 − s] λ2(1 + r)

> 0.

Hence, D2( p̄2) > v̄2( p̄2). Furthermore, the function v̄2 is strictly increasing, and

D2 is strictly decreasing, on
(

p̄2,
s
g2

)
, while v̄2

(
s
g2

)
> D2

(
s
g2

)
= s. Since both

v̄2 and D2 are moreover continuous, there exists a unique p
′
2 ∈

(
p̄2,

s
g2

)
such that

v̄2(p
′
2) = D2(p

′
2).

B.3 Proof of Proposition 3

Proof By our previous arguments, in any equilibrium in cut-off strategies, player
1 will play risky on ( p̄1, 1] and safe otherwise. In response, by the definition of
p

′
2, player 2 must play risky on (p

′
2, 1] and safe otherwise, if there is an equilib-

rium in cut-off strategies. Indeed, below p
′
2, player 2 is playing a best response to

player 1’s action choice by the definition of p
′
2. Since D2 is decreasing, it is suf-

ficient to show that player 2’s pay-off function is increasing on [p
′
2, 1] in order

to show that he is also playing a best response at beliefs above p
′
2. Firstly, we

note that the closed-form expression for player 2’s pay-off function (see Eq. 12 in
“Appendix A.2”) implies that player 2’s pay-off v2 is strictly convex on (p

′
2, 1), as

v2(p
′
2) = D2(p

′
2) > g2 p

′
2, where the inequality follows from p

′
2 < s

g2
(see Lemma

1). Furthermore, the relevant ODEs (Eqs. 15 and 11 in “Appendix A.2”) show that
v2(p

′
2) = D2(p

′
2) implies smooth pasting at p

′
2. As moreover v̄′

2 > 0 (as C̄2 < 0
and u′

1 < 0), we can conclude that player 2’s value function is strictly increasing on
(p

′
2, 1) as well, and hence that player 2 is playing a best response at beliefs above

p
′
2.
Thus, the candidate strategy profile is indeed an equilibrium if and only if player 1’s

strategy is a best response to player 2’s. This requires player 2 to choose the safe arm
for all beliefs at which player 1’s pay-off is below D1. Thus, it remains to determine
under what conditions p

′
2 ≥ p

′
1.

We will first argue that p
′
1 (p

′
2) is increasing (decreasing) in λ2. Recall that

p
′
1 is the point of intersection of the function v̄1 and the line D1. As λ2

decreases, the line D1 rotates anticlockwise around the point ( s
g1

, s). Since v̄1

is independent of λ2, p
′
1 decreases as λ2 decreases. On the other hand, as λ2

decreases, the line D2 shifts to the right and becomes steeper. By direct compu-
tation, one shows that v̄2 becomes flatter as λ2 decreases. This implies that p

′
2

increases.
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Consider the case λ2 ↓ s
h . Then, D2 → s + (s−sp)

λ2
. Thus, the belief p̂

such that D2( p̂) = s will tend to 1. Moreover, v̄2 → s. Hence, p
′
2 → 1.

However, D1 still intersects the line s at p = s
g1
, implying that p′

1 ≤ s
g1

<

p
′
2.
Next, we consider the case λ2 ↑ 1 and argue that there exists a left neigh-

bourhood of 1 such that, for all λ2 in this neighbourhood, p
′
2 < p

′
1. Now,

suppose that v̄1(p†) = v̄2(p†) while v̄′
1(p†) ≥ v̄′

2(p†) for some p† in the
interior of the (1, 0)-region. The relevant ODEs then imply that p† ≥ p̌ =

rs
rg1+(g1−g2)

. It thus follows that v̄2 > v̄1 for all beliefs in ( p̄1, p̌]. Note that
p̌ < s

g1
and p̌ ↑ s

g1
as λ2 ↑ 1. Furthermore, recall that p′

1 is implicitly defined
by

(1 + λ2)(g1 p′
1 − s) + C̄1u1(p′

1) = 0,

where we note that C̄1 and u1 are both independent of λ2. This implies that (1)
p′
1 < s

g1
for all λ2 ∈ [ s

h , 1] (as C̄1 > 0 and u1 > 0 for p < 1), and (2) that p′
1

is a continuous function of λ2 (by the Implicit Function Theorem). Therefore p̂ =
maxλ2∈[ s

h ,1] p′
1 < s

g1
. Thus, we can choose λ2 ∈ ( s

h , 1) such that, for all λ2 ∈ [λ2, 1],
p̌ > p̂, and therefore v̄2 > v̄1 on ( p̄1, p′

1]. It thus follows that, for λ2 ∈ [λ2, 1],
p̃2 < p′

1, where p̃2 is the belief where the function v̄2 intersects the line D1. As
p′
2 ↓ p̃2 for λ2 ↑ 1, we can conclude that there exists some λ̂2 ∈ ( s

h , 1) such

that, for all λ2 ∈ (λ̂2, 1), p′
2 < p′

1. Thus, by monotonicity of p
′
1 and p

′
2 in λ2,

there exists a unique λ∗
2 ∈ ( s

h , 1) such that p
′
2 ≥ p

′
1 if and only if λ2 ∈ ( s

h , λ∗
2].	


B.4 To show that p∗
2 < p

′
2

Recall from the proof of Proposition 8 that p∗
2 was implicitly defined as the unique

root of the (for p > p∗
1) strictly increasing function ζ , where

ζ(p) =
[

g1 + g2 − s

1 + r

]
p +

[
s −

(
g1 + g2 − s

1 + r

)
p∗
1

]
u1(p)

u1(p∗
1)

− s

λ2
.

By the same token, p
′
2 is implicitly defined by v̄2(p

′
2) = D2(p

′
2), which is equivalent

to

g2 − s

1 + r
p

′
2 + p

′
2g1 − s

λ2
= g2 − s

1 + r
p̄1

u1(p
′
2)

u1( p̄1)
.

As p
′
2 > p̄2 > p∗

1 , it remains to show that

ζ(p
′
2) = g2 − s

1 + r
p̄1

u1(p
′
2)

u1( p̄1)
+

[
s −

(
g1 + g2 − s

1 + r

)
p∗
1

]
u1(p

′
2)

u1(p∗
1)

> 0.
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For this, it is sufficient that

s −
(

g1 + g2 − s

1 + r

)
p∗
1 > 0,

which follows by direct computation.

B.5 Proof of Proposition 4

If λ2 ≤ λ∗
2, p

′
1 ≤ p

′
2, by the proof of Proposition 3. Suppose to the contrary that the

equilibrium in which only player 2 uses a cut-off exists. By Proposition 6, p1S < p
′
1 ≤

p
′
2 = p2S , a contradiction to the characterisation of this equilibrium in Proposition 5.

Now, suppose λ2 > λ∗
2. By the proof of Proposition 3, p

′
1 > p

′
2. It thus remains to

show that p̂1S > p
′
2. Yet, player 1’s pay-off from the conjectured equilibrium strategies

at p
′
2 is given by v̄1(p

′
2) < D1(p

′
2), the inequality being immediately implied by

p
′
1 > p

′
2, we have p̂1S > p

′
2, and, by Proposition 5, the equilibrium exists.

B.6 Proof of Proposition 6

First, consider l > 1. It is sufficient to show that v̄1 < v1 and v̄2 > v2 on ( p̃1, p j
S],

where vn is player n’s equilibrium pay-off function.
Note that v̄n( p̃1) = vn( p̃1) for both n ∈ {1, 2} and suppose that v̄2( p̃i−1) ≥

v2( p̃i−1) and v̄1( p̃i−1) ≤ v1( p̃i−1) for some i ∈ {2, · · · , k}. Suppose that i −1 ≥ 1 is
odd, and let vrr

1 be player 1’s pay-off from deviating to playing risky on ( p̃i−1, p̃i ]. By
construction, vrr

1 ( p̃i−1) = v1( p̃i−1) ≥ v̄1( p̃i−1). Suppose to the contrary that there
exists a belief p ∈ ( p̃i−1, p̃i ] such that v̄1(p) = vrr

1 (p). The relevant ODEs [(13)

and (11)] imply that vrr
′

1 (p−) > v̄′
1(p−). As vrr

1 ( p̃i−1) = v1( p̃i−1) ≥ v̄1( p̃i−1), this

implies that there exists a p̂ ∈ [ p̃i−1, p̃i ) such that vrr
1 ( p̂) = v̄1( p̂) and vrr

′
1 ( p̂+) <

v̄′
1( p̂+), a contradiction to (13) and (11). By the same token, suppose that there exists
a belief p ∈ ( p̃i−1, p̃i ] such that v2(p) = v̄2(p). As s > pg2, the relevant ODEs
((13) and (15)) imply that v̄

′
2(p−) > v′

2(p−). As v̄2( p̃i−1) ≥ v2( p̃i−1), this implies
that there exists a p̂ ∈ [ p̃i−1, p̃i ) such that v2( p̂) = v̄2( p̂) and v

′
2( p̂+) > v̄′

2( p̂+), a
contradiction to (13) and (15).

Now, let i − 1 ≥ 2 be even. Note that our previous step implies that v̄2( p̃i−1) >

v2( p̃i−1) and v̄1( p̃i−1) < v1( p̃i−1). Suppose that there exists a p ∈ ( p̃i−1, p̃i ] such
that vn(p) = v̄n(p) for an n ∈ {1, 2}. As (k1, k2) = (1, 0) on ( p̃i−1, p̃i ], this imme-
diately implies that vn( p̃i−1) = v̄n( p̃i−1), a contradiction.

On ( p̃k, p j
S], a similar argument to the case of even (odd) i − 1 applies if j = 2

( j = 1), so that we can conclude that v̄1 < v1 and v̄2 > v2 on ( p̄1, p j
S], and hence

p1S < p
′
1 and p2S > p′

2.

For l = 1, from the equilibrium characterisation we know that p2S = p
′
2 and the

above argument to show p1S < p
′
1 still applies.
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B.7 Proof of Proposition 7

If player i (i = 1, 2) experiments and player j ( j = 1, 2, j �= i) free rides then the
players’ aggregate equilibrium pay-off is given by vagg = vi + v j , with vi satisfying
the ODE (13) and v j satisfying the ODE (15). If both players experiment then vagg =
v1 + v2 and vn (n = 1, 2) satisfy the ODE (11).

From Proposition 5, we know that vcagg( p̃1) = vncagg( p̃1). Suppose vcagg( p̃i−1) ≥
vncagg( p̃i−1) for some i ∈ {2, 3, . . . , k}. Suppose first that i − 1 ≥ 1 is odd. If there
exists a p ∈ ( p̃i−1, p̃i ] such that vcagg(p) = vncagg(p), then by the ODEs (13) and (15),

we can conclude that vc
′
agg(p−) > vnc

′
agg(p−). This implies there exists a p̂ ∈ [ p̃i−1, p)

such that vcagg( p̂) = vncagg( p̂) and vc
′
agg( p̂+) < vnc

′
agg( p̂+), a contradiction to ODEs (13)

and (15).
Suppose i − 1 ≥ 2 is even. Then from the previous step we can infer that

vcagg( p̃i−1) > vncagg( p̃i−1). In both kinds of equilibria, if i −1 is even, (k1, k2) = (1, 0)
on ( p̃i−1, p̃i ]. This implies that we have vcagg(p) > vncagg(p) for all p ∈ ( p̃i−1, p̃i ].
Thus, for all p ∈ ( p̃1, p̃k], vcagg(p) > vncagg(p).

As λ2 ≤ λ∗
2, we have p̃k = p1S . An argument similar to that for even i −1 shows that

vcagg > vncagg on p ∈ (p1S, p
′
2]. Now, suppose that there exists a p̂ ∈ (p

′
2, p2S] such that

vcagg( p̂) = vncagg( p̂). By the ODEs (13) and (11), this implies vc
′
agg( p̂−) > vnc

′
agg( p̂−).

This leads to a contradiction by the same argument as above. As (k1, k2) = (1, 1)
prevails in both equilibria on (p2S, 1), the claim follows.

B.8 Proof of Proposition 8

The function w satisfies w = 2s on [0, p̄∗
1], v = 2s + B̄1 − ĉ on ( p̄∗

1, p̄∗
2] and

w = 2s + B̄1 − c̄ + B̄2 − c̄ on ( p̄∗
2, 1]; thus, w is the pay-off function associated

with the policy k∗.22 We shall first show that w is of class C1, (strictly) increasing and
(strictly) convex (on ( p̄∗

1, 1)).
As in Proposition 1, we can compute for p ∈ ( p̄∗

1, p̄∗
2), B̄1(p, v) − c̄(p) = φ(p),

where φ is defined as

φ(p) = −s + pĝ + 1

r
p

[
2ĝ − s − 2ĝ + r ĝ

1 + r
+ s

1 + r

+ r

p

(
s − p̄∗

1

(
2ĝ + r ĝ

1 + r
− s

r + 1

))
u1(p)

u1( p̄∗
1)

]
.

Direct computation shows that u′′
1 > 0 and s − p̄∗

1

(
2ĝ+r ĝ
1+r − s

1+r

)
> 0, so that φ, and

hence w|( p̄∗
1 , p̄∗

2 )
is strictly convex. One furthermore shows by direct computation that

φ( p̄∗
1) = φ′( p̄∗

1) = 0, implying that w|(0, p̄∗
2 )
is of class C1.

22 As in “Appendix A.1”, from 17 we can obtain the ODEs that w satisfies for each range of beliefs and
the corresponding general form of w for that range.

123



Strategic experimentation with asymmetric players 1173

We shall now show that p̄∗
2 is well-defined. Indeed, by definition, x = p̄∗

2 must
satisfy

s +
[
2ĝ + r ĝ

1 + r
− s

1 + r

]
x +

[
s −

(
2ĝ + r ĝ

1 + r
− s

1 + r

)
p̄∗
1

]
u1(x)

u1( p̄∗
1)

+ ĝ[1 − λ2]
λ2

x = λ

λ2
s.

The left-hand side of this equation is strictly increasing in x for x > p̄∗
1 and equal to

s + s
λ2

[ĝ(2λ2+r)−2λ2s]
[ĝ(2+r)−2s] < λ

λ2
s at x = p̄∗

1 . Furthermore, at x = s
ĝ , the left-hand side

exceeds s +
[
2ĝ+r ĝ
1+r − s

1+r

]
s
ĝ > λ

λ2
s. By continuity, the equation thus admits of a

unique root p̄∗
2 ∈ ( p̄∗

1,
s
ĝ ).

As p̄∗
2 < s

ĝ ,
λ
λ2

s − ĝ[1−λ2]
λ2

p̄∗
2 − 2ĝ p̄∗

2 > 0, and w|[ p̄∗
2 ,1] is strictly convex

as well. It remains to show that w|[ p̄∗
2 ,1] is also strictly increasing. By convex-

ity, it is sufficient to show smooth pasting at p̄∗
2 . From 17, we can infer that for

the region ( p̄∗
1, p̄∗

2) (Equation 10 in “Appendix A.1”), p̄∗
2(1 − p̄∗

2)w
′( p̄∗

2−) =[
rs + r p̄∗

2 ĝ + p̄∗
22ĝ − (r + p̄∗

2)[ λ
λ2

s − ĝ(1−λ2)
λ2

p̄∗
2]

]
. Similarly, for the region ( p̄∗

2, 1),

we find p̄∗
2(1 − p̄∗

2)w
′( p̄∗

2+) =
[
(r + λ) p̄∗

22ĝ − (r + λ p̄∗
2)[ λ

λ2
s − ĝ(1−λ2)

λ2
p̄∗
2]

]
/λ,

and hence w′( p̄∗
2+) = w′( p̄∗

2−).
It remains to show that w solves the Bellman equation, i.e. that B̄i ≤ c̄ for both

i ∈ {1, 2} on [0, p̄∗
1]; B̄1 ≥ c̄ and B̄2 ≤ c̄ on ( p̄∗

1, p̄∗
2]; and B̄i ≥ c̄ for both i ∈ {1, 2}

on ( p̄∗
2, 1]. First, consider p ∈ [0, p̄∗

1]. In this case, w = 2s, and B̄i ≤ c̄ if and only if
p ≤ rs

r ĝ+λi (2ĝ−2s) , which is verified for all p ≤ p̄∗
1 . Now, consider p ∈ ( p̄∗

1, p̄∗
2]. Asw

is strictly increasing in this range,w = 2s + B̄1− c̄ > 2s, and thus B̄1 > c̄. Moreover,
w = 2s + B̄1 − c̄ implies that B̄2 = λ2 B̄1 = λ2

(
w − s − pĝ

) ≤ s − pĝ = c̄ if and

only if w ≤ λ
λ2

s − ĝ p[1−λ2]
λ2

, which is verified as p ≤ p̄∗
2 . Finally, let p ∈ ( p̄∗

2, 1).

In this range, we have that 2ĝ − w − (1 − p)w′ = r
λp

(
λ
λ2

s − p̄∗
22ĝ

)
u0(p)

u0( p̄∗
2 )
, so that

B̄2 = λ2
λ

w − λ2
λ
2ĝ p, which exceeds c̄ = s − pĝ if and only if w ≥ λ

λ2
s − ĝ p[1−λ2]

λ2
.

By monotonicity ofw,w ≥ λ
λ2

s − ĝ p[1−λ2]
λ2

in this range, which implies B̄2 ≥ c̄. Also,

B̄1 = B̄2
λ2

> B̄2 ≥ c̄. This completes the proof.

B.9 Proof of Proposition 9

As for Proposition 3, we need to establish that p̄
′
2 ≥ p̄

′
1 if and only if λ2 > λ̂2, for some

λ̂2 ∈ (0, 1). As λ2 increases, D̄1 (D̄2) continuously rotates clockwise (anticlockwise).
As w̄i (i = 1, 2) are independent ofλ2, it follows immediately that p̄

′
1 ( p̄

′
2) is increasing

(decreasing) in λ2. As λ2 ↑ 1, D̄1 and D̄2 coincide in the limit, and, since w̄2 > w̄1
on ( p̂1, 1), this implies p̄

′
2 < p̄

′
1. On the other hand, as λ2 ↓ 0, p̄′

1 → p̂1 and
p̄′
2 → s

ĝ > p̂1. This concludes the proof.
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B.10 Equations for subsection 4.5

Consider the case when λ1 > λ2, but g1 = g2 = ĝ.

Planner’s problem
The planner’s value function w satisfies

w(p) = 2s + max
k1,k2∈{0,1}

{
k1[B̄1(p, w) − c̄(p)] + k2[B̄2(p, w) − c̄(p)]} (17)

where

B̄i (p, w) = λi p[2ĝ − w(p) − w
′
(p)(1 − p)]

r

and c̄(p) = s − ĝ p.
Non-cooperative game
Player i’s value function wi satisfies

wi (p) = s + k j (p)λ j b̄i (p, wi ) + max
ki ∈{0,1} ki [λi b̄i (p, wi ) − (s − ĝ p)] (18)

where

b̄i (p, w) = p
ĝ − wi (p) − (1 − p)w

′
i (p)

r

As before, we can derive the best response diagonals as

D̄i (p) = s + λ j

λi
[s − ĝ p]

For beliefs right above p̂1, pay-offs to players 1 and 2 are given by

w̄1(p) = ĝ p + [s − ĝ p̂1] u1(p)

u1( p̂1)
,

and

w̄2(p) = s + ĝ − s

1 + r
p − ĝ − s

1 + r
p̂1

u1(p)

u1( p̂1)
,

respectively.
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