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Abstract In this work we reconsider Harsanyi’s celebrated (J Polit Econ 61:434–435,
1953; J Polit Econ 63:309–321, 1955; Rational Behavior and Bargaining Equilibrium
in Games and Social Situations. Cambridge University Press, Cambridge, 1977) util-
itarian impartial observer theorem. Departing from Harsanyi’s individual-centered
approach, we argue that when societal decisions are at stake, postulates must not be
drawn from individualistic behavior. Rather, they should be based on societal norms.
Continuing this line of thinking, we state and prove a utilitarian result that, rather
than being based on the independence assumption, is based on the societal norm of
procedural fairness.
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“An axiomatic justification of utilitarianism would have more content to it if it started off at a place
somewhat more distant from the ultimate destination”

(Sen 1976, page 251)
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30 S. Ma, Z. Safra

1 Introduction

In this work we reconsider Harsanyi’s celebrated (1953, 1955, 1977) utilitarian impar-
tial observer theorem.We propose an approach that puts more emphasis on procedural
fairness, andweoffer a utilitarian result that does not use the independence assumption.

Harsanyi analyzed a society that needs to choose among alternate social policies,
each of which is a probability distribution over a given set of social actions, where the
latter associate outcomes with the society’s members. Every social lottery � induces
a lottery �i on individual i . Individual i’s preferences �i are known, and different
individuals may possess distinct preferences.

To help determine the optimal social policy, Harsanyi suggested that every individ-
ual is endowed with social preferences. Individuals may develop these preferences by
adopting the role of an impartial observer, thus disregarding their true identities and act-
ing behind “a veil of ignorance”. Therefore, the impartial observer can form her social
preferences by imagining that she faces not only a lottery � over social actions, but also
a lottery γ over identities. Elements of γ can be interpreted as weights associated by
the impartial observer with the different individuals. Then, the optimal social policy
is determined by restricting attention to the equiprobable lottery γ e = ( 1

n , . . . , 1
n

)
.

Harsanyi argued strongly for “Bayesian rationality”. That is, he assumed that
(among the otherBayesian postulates) all individuals satisfy the independence assump-
tion of the expected utility theory, both at their personal and social preference layers.
Harsanyi claimed that this “sound” axiom, together with the so-called acceptance
principle (that an impartial observer fully adopts individual i’s preferences if she
imagines becoming that individual for sure), would force the impartial observer to be
a (weighted) utilitarian. More formally, over all extended lotteries (γ, �) in which the
identity and the action lotteries are independently distributed, the impartial observer’s
preferences admit the following representation:

V (γ, �) =
∑

i∈I
γiUi (�i )

whereγi is the probability of assumingperson i’s identity andUi (�i ) := ∑
x ui (x)�i (x)

is person i’s von Neumann–Morgenstern expected utility.
Like Harsanyi, most authors who derived modifications of the utilitarianism result

within the impartial observer framework always assumed the independence axiom
[see the works of Weymark (1991), Karni (1998) and Grant et al. (2010); henceforth,
GKPS)].1 Notable exceptions within the related social aggregation framework are
Blackorby et al. (2004) and Mongin and Pivato (2015).2

Interestingly, Harsanyi’s entire emphasis on Bayesian rationality was based on an
individual-centered approach. Firstly, he assumed that rational individualsmust satisfy
the independence assumption and secondly, he claimed that society, by its need to be at
least as rational as its members, must also satisfy independence (Harsanyi 1975). We

1 A similar observation holds for most of the literature dealing with Harsanyi’s social aggregation theorem.
See Zhou (1997), Dhillon and Mertens (1999), Gilboa et al. (2004) and Fleurbaey and Mongin (2016).
2 Unlike the other works (including the current one), these authors consider both ex post and ex ante
analyses (and thus are able to employ Gorman (1968) separability theorem).
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Fairness and utilitarianism without independence 31

disagree with Harsanyi on this. Instead we argue that when societal decision problems
are at stake, postulates must not be drawn from individualistic behavior. Rather, they
should be based on societal norms. Hence, when social preferences are formed, issues
like societal fairness and equity should explicitly be the guiding principles.

In this work we focus on procedural fairness. This principle was first advocated by
Diamond (1967) and was strongly supported by Sen (e.g., 1977). Its essence can be
illustrated by the following example, which is an adoption of Diamond’s example from
the social aggregation framework to the impartial observer one. Consider a society
that needs to decide on how to allocate an indivisible good between two individuals,
1 and 2, and let action ai denote allocating it to individual i . Suppose, as Diamond
did, that ui (ai ) = 1 for both i and ui (a j ) = 0 for i �= j (that is, both individuals
like the good, receive a utility of one unit from having it and zero otherwise). As was
noted above assume that, when making a choice, the impartial observer considers the
equiprobable identity lottery γ e = ( 1

2 ,
1
2

)
(that is, she gives equal weights to the two

individuals). Also assume that she evaluates all four outcomes in full agreement with
the two individuals and adopts their utilities. The example can be described by the
following matrix

a1 a2

1
2

1 0
0 1

where individuals 1 and 2 correspond to the rows, actions a1 and a2 correspond to
the columns and the entries represent the impartial observer’s utilities. The impartial
observer has two policies at hand: Policy (1), which allocates the good to individual 1
(this policy is equivalent to choosing action a1 and facing the first column of the table)
and Policy (2), which allocates the good to one of the individuals, depending on the
outcome of a toss of a fair coin (this policy is equivalent to the action lottery 1

2a1+ 1
2a2).

The value of Policy (1) for Harsanyi’s utilitarian observer is 1
2 × 1 + 1

2 × 0 = 1
2 , as

is the value of Policy (2): 1
2

( 1
2 × 1 + 1

2 × 0
) + 1

2

( 1
2 × 0 + 1

2 × 1
) = 1

2 . Hence, the
impartial observer is indifferent between the two policies.3 However, Diamond and
Sen argued that Policy (2) provides both individuals with a “fair shake” and hence the
impartial observer might prefer it.4 This notion of procedural fairness is expressed in
our work by the notion of (weak) convexity over action lotteries: if, given the identity
equiprobable lottery γ e, the observer is indifferent between two action lotteries � and
�′ (while two individuals disagree on their ranking) then their mixtures cannot be
worse than them.5

Working in a framework in which the basic building blocks are two different types
of lotteries, those over identities and those over actions, raises a natural question:
should these types be treated similarly? Harsanyi, by construction, implicitly assumed

3 Note that the impartial observer is also indifferent between a1 and a2.
4 A long list of real-life applications supporting Diamond’s fairness consideration is provided by Elster
(1989).
5 Unlike Epstein and Segal (1992), we do not assume that such mixtures are always strictly preferred. This
is in agreement with Sen (1977), who argued that mixtures are not always superior.
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32 S. Ma, Z. Safra

that they should. Furthermore, in his own response to Diamond’s concern about fair-
ness, Harsanyi (1975) argued that even if randomizations were of value for promoting
fairness (which he doubted), any explicit randomization is superfluous since “the great
lottery of (pre-)life”may be viewed as having already given each child an equal chance
of being each individual. That is, it does not matter whether a good is allocated by a
(possibly imaginary) lottery over identities or by a (real) lottery over actions. Put it dif-
ferently, Harsanyi argued that we need to be indifferent between “accidents of birth”
(identity lotteries) and real “life chances” (action lotteries). On this issue we agree
with Harsanyi and just make this assumption explicit. We call it source indifference.

Despite its innocuous appearance, the conjunction of this assumption with proce-
dural fairness turns out to be rather forceful. More precisely, the main result of this
work shows that (assuming impartiality) convexity, source indifference and a stronger
notion of acceptance are necessary, and sufficient, for utilitarianism.

Since the independence axiom is not assumed here, this result is novel and quite
unexpected. Paraphrasing Sen’s quote, we believe that one could hardly find an
axiomatic justification of utilitarianism that starts off at a place that is more distant
from the ultimate destination than ours.

Lastly, our result carries an ‘impossibility flavor’: if societies are required to exhibit
strict inclination toward procedural fairness, then source indifference cannot hold.
Therefore, to accommodate views of authors like Diamond and Sen, the impartial
observer must display preference for action lotteries over identity ones. We elaborate
on this in the concluding section.

This work is organized as follows: Sect. 2 sets up the framework, Sect. 3 presents
the assumptions, Sect. 4 states and explains the utilitarian result, and Sect. 5 concludes.
Finally, proofs are given in Sect. 6.

2 Setup and notation

LetX = [xmin, xmax] ⊂ R be a compact interval representing all possible outcomes.6

Let �(X ) denote the set of outcome lotteries, endowed with the weak convergence
topology. With slight abuse of notation, we will let x denote the degenerate outcome
lottery that assigns probability 1 to outcome x . Let T be a denumerable set of potential
individual types, where each type t ∈ T is characterized by a preference relation over
�(X ) that is complete, transitive, continuous (in that the weak upper and lower
contour sets are closed), increases with respect to first-order stochastic-dominance
and its asymmetric part is non-empty.7 The set of individuals under consideration
is I = ∪t∈TIt , where It is a denumerable (infinite) set of type t individuals.
In the sequel, individuals are denoted by i, j (and their preferences by �i , � j ),
without explicitly specifying their types. A society I is a finite subset ofI . Note that,
even though we allow for societies in which some individuals are of the same type,

6 The end points of the interval, xmin and xmax, represent very extreme outcomes. That is, xmax is larger,
and xmin is smaller, than any conceivable outcome. For example, xmax can be an outcome that is greater
than the combined wealth of any possible society, while xmin can represent a debt of the same extreme size.
7 Note that, by construction, individuals are not themselves sensitive to others’ allocated outcomes.
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Fairness and utilitarianism without independence 33

these individuals may receive different outcomes and hence they need not be treated
similarly. Also note that our framework departs from Harsanyi’s in that, instead of
working with one fixed finite society, we consider all finite subsets of I .8

A social policy, or an action, associates an outcomewith every individual and hence
is represented by a function a : I → X . The set of all actions, endowed with the
corresponding product topology, is denoted byA (two extreme actions, amax and amin,
defined by amax (i) = xmax and amin (i) = xmin for all i , respectively, will be used in
the sequel). Let �(A ) denote the set of simple lotteries (lotteries with finite support)
over actions, with typical elements denoted by �. With slight abuse of notation, we
will let a denote the degenerate action lottery that assigns probability 1 to action a. A
lottery � ∈ �(A ) is sometimes written as � = ∑

a∈Supp(�) � (a) a.
FollowingHarsanyi, an observer imagines herself behind a veil of ignorance, uncer-

tain about which identity she will assume in the given society. Let �(I ) denote the
set of simple identity lotteries onI , where typical elements are denoted by γ (where
γi is the probability assigned by the identity lottery γ to individual i). These lotteries
represent the imaginary risks in the mind of the observer of being born as someone
else. With slight abuse of notation, we will let i denote the degenerate identity lottery
that assigns probability 1 to individual i . An imaginary lottery γ ∈ �(I ) is some-
times written as γ = ∑

i∈Supp(γ ) γi i . When the observer is faced with pairs of identity
and action lotteries, it is assumed that they are independently distributed.

The observer is endowed with a preference relation � defined over the space of all
product lotteries�(I )×�(A ). We assume throughout that� is complete, transitive,
continuous and that its asymmetric part	 is non-empty. These assumptions imply that
� admits a (non-trivial) continuous representation V : �(I ) × �(A ) → R. That
is, for any pair of product lotteries (γ, �) and

(
γ ′, �′), (γ, �) �

(
γ ′, �′) if and only if

V (γ, �) � V
(
γ ′, �′). Note that the observer might not be indifferent between getting

some amount x under two different identities (this may happen, for example, if she
values affirmative action policies). As a result, there exists no objective natural order
over the set of basic identity-outcome pairs (i, x) and, therefore, monotonicity with
respect to first-order stochastic-dominance relative to outcomes cannot be assumed.
Instead,we require aweaker notion ofmonotonicity, based on the observer’s subjective
ranking over I × X (I mV stands for the image of V )

Definition 1 Monotonicity: For any pair of product lotteries (γ, a) and
(
γ ′, a′),

∑

{i :V (i,a)�v}
γ (i) �

∑

{i :V (i,a′)�v}
γ ′ (i) for all v ∈ I mV ⇒ (γ, a) �

(
γ ′, a′)

That is, a product lottery (γ, a) is preferred over another product lottery
(
γ ′, a′)

(both having degenerate action lotteries), if the probability of getting identity-action
pairs with utilities not greater than v is always smaller under the first product lottery.

8 Dealing with a large set of potential members of various societies is justified by our pursuit for a general
rule, to be applied to all societies. Note that Harsanyi too (like other scholars) wanted his theory to be
applied to a large set of societies. The need for an infinite set of individuals is clarified in the proof of the
theorem.
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34 S. Ma, Z. Safra

Note that monotonicity is an ordinal condition that does not depend upon the choice
of the numerical representation V .

For a given society I , let �(I ) denote the set of identity lotteries over I .

Definition 2 Utilitarianism: The observer is a utilitarian if, for every society I ⊂ I ,
her preferences restricted to �(I ) × �(A ) admit a representation of the form

V (γ, �) =
∑

i∈I

γiUi (�i )

where �i ∈ �(X ) is the lottery faced by individual i (i.e., �i (x) =∑
{a∈supp(l):a(i)=x} � (a)), Ui (�i ) := ∑

x∈X ui (x) �i (x) is an expected utility (EU)
representation of �i and the functions Ui are unique up to common positive affine
transformations.

As is well known, the main behavioral property that characterizes EU preferences
is independence:

Definition 3 Independence: Let �̃ be a preference relation on �(X ). Then, for all
p, q, r ∈ �(X ) and for all β ∈ [0, 1],

p�̃q ⇒ βp + (1 − β) r�̃βq + (1 − β) r

3 Assumptions

We make the following assumptions on �:

Axiom 1 Impartiality: For any two individuals i, j ∈ I ,

(1) for all � ∈ �(A ), �i = � j and �i = � j ⇒ (i, �) ∼ ( j, �)

(2) (i, amax) ∼ ( j, amax) and (i, amin) ∼ ( j, amin)

Part (1) of this axiom states that, given an action lottery �, if two individuals i and
j with identical preferences are faced with the same action lottery, then the observer
is indifferent between facing �, while being individual i , and facing �, while being
individual j . This requirement seems quite natural. Part (2) says that being individual i
and getting one of the extreme outcomes, xmin or xmax, is assumed ethically equivalent
to being individual j and getting the (same) extreme outcome. This assumption is
justified since xmax is of extremely high value, taken to be greater than the combined
wealth of the whole society, and hence the observer has no reason to assume that at this
extreme wealth she prefers imagining herself being individual i over being individual
j . Clearly, the same justification applies to the outcome xmin that represents a debt
equal to the combinedwealth of thewhole society. Note that indifference need not hold
for intermediate outcome values, as the observer may attain a lower utility when she
imagines being a wealthier individual. A justification of a similar flavor was provided
by Karni (1998) who, in a different framework, employed a stronger axiom to derive
utilitarianism: “This value judgment . . . is obtained by default. The methodological
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Fairness and utilitarianism without independence 35

framework of revealed preference provides no ground for preferring one individual’s
most preferred alternative over that of the other. Consequently, strict preference in
either direction is either biased or involves considerations other than the rank order
of the alternatives”. Segal (2000) dictatorship indifference axiom is similar to this
requirement.9

Henceforth, we assume that the observer preferences satisfy the impartiality axiom.
To emphasize it, we call her an impartial observer.

Axiom 2 Strong acceptance: For all i ∈ I and �, �′ ∈ Δ(A ) satisfying ∀ j �= i � j =
�′

j , if γi > 0 then

�i �i �′
i ⇔ (γ, �) �

(
γ, �′)

This axiom states that the impartial observer sympathizes with individual i and fully
adopts his preferences when she imagines herself being this individual with a positive
probability, and when all other individuals are unaffected by her choice. This axiom
strengthens Harsanyi’s acceptance principle, according to which this sympathy holds
for γi = 1. Axiom 2 also is analogous to an axiom called strong Pareto, a version of
Harsanyi’s Pareto principle that was used in his aggregation analysis (see Harsanyi
1955; Weymark 1991; Epstein and Segal 1992).10 To see the connection between our
axiom and the strong Pareto principle note that, by sequentially applying our axiom,
the following property holds: for any �, �′ ∈ Δ(A ), if �i �i �′

i for all i ∈ Supp (γ )

then (γ, �) �
(
γ, �′).11 In a sense, strong acceptance unifies two of Harsanyi’s main

ideas, taken from his two famous analyses of social choice theory. Finally, our axiom
is analogous to Karni (1998) sympathy assumption.

The strong acceptance axiom enables us to express the impartial observer’s function
V as a social welfare function. That is, V can be expressed as a function W that, instead
of the action lottery �, depends on the individuals’ utilities associatedwith their induced
lotteries �i . More formally, let Vi (�i ) := V (i, �) be a representing utility the impartial
observer attaches to individual i preferences. Note that, by impartiality, Vi (xmin) =
Vj (xmin) := vmin and Vi (xmax) = Vj (xmax) := vmax, for all i, j ∈ I , and hence
by continuity, the image of Vi , for all i , is equal to the closed interval [vmin, vmax].
Then, strong acceptance implies that V (γ, �) can be written as W (γ ,V (�)), where

9 Part (2) can be replaced by a weaker condition: there exists i∗ such that for all j ,
(
i∗, amax

)
� ( j, amax)

and ( j, amin) �
(
i∗, amin

)
. Although our main result still holds under this condition, we prefer the more

intuitive current version. Omitting the second part altogether would probably require strengthening some
of the other axioms. This, however, is left for future research.
10 Strong Pareto: For a given society I , (1) for all lotteries �, �′ ∈ Δ (A ), if �i �i �′

i for all i , then � � �′
and (2) if, furthermore, there exists an individual i ′ such that �i ′ 	i ′ �′

i ′ , then � 	 �′.
11 To see it, assume without loss of generality that Supp (γ ) = {1, 2, . . . , n} and note that

(γ, �) = (γ, (�1, �2, . . . , �n)) �
(
γ,

(
�′
1, �2, . . . , �n

))
�

(
γ,

(
�′
1, �

′
2, . . . , �n

))
� · · ·

�
(
γ,

(
�′
1, �

′
2, . . . , �

′
n
)) = (

γ, �′)
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W is defined over �([vmin, vmax]), the set of lotteries over all attainable utility values
in which, for all i ∈ Supp (γ ), γ i = γi is the probability of attaining (V (�))i =
Vi (�i ). To see how W is constructed assume, for expositional clarity, that Supp (γ ) =
{1, . . . , n}. Then, given V and Vi , for any γ ∈ �({1, . . . , n}) and v = (v1, . . . , vn) ∈
[vmin, vmax]n , defineW byW (γ , v) := V (γ, �) , for the imaginary lotteryγ satisfying
γi = γ i and for any � satisfying vi = Vi (�i ), for all i ∈ {1, . . . , n}. By strong
acceptance, W is well defined. Furthermore, for a given γ , W is monotonic increasing
with respect to vi whenever γ i > 0. Note that, by construction, W satisfies W (1, v) =
v for all v ∈ [vmin, vmax] where, with slight abuse of notations, (1, v) stands for getting
v with probability one.

The following properties will be used in the sequel.

Lemma 1 Assume the observer satisfies impartiality and strong acceptance. Then
(a) for all �, �′ ∈ �(A ),

�i = � j and �i = �′
j ⇒ (i, �) ∼ (

j, �′)

(b) for all (γ, �) ∈ �(I ) × �(A ),

(i, �) ∼ ( j, �) for all i, j ∈ Supp (γ ) ⇒ (γ, �) ∼ (k, �), for all k ∈ Supp (γ )

(c) for all (γ e, �) ,
(
γ e, �′) ∈ �(I ) × �(A ), where Supp (γ e) = {1, . . . , n}, if there

exists a permutation π on {1, . . . , n} such that (i, �i ) ∼

(
π (i) , �′

π(i)

)
for all i , then

(
γ e, �

) ∼ (
γ e, �′)

The proof appears in Sect. 6.1.

Axiom 3 Convexity: Consider an equiprobable lottery γ e ∈ �(I ) and two lotteries
�, �′ ∈ �(A ) for which there exist two individuals i, j ∈ I satisfying �i 	i �′

i and
� j ≺ j �′

j . Then, for all β ∈ (0, 1),

(
γ e, �

) ∼ (
γ e, �′) ⇒ (

γ e, β� + (1 − β) �′) �
(
γ e, �

)

Aswas explained in Introduction, this axiom is an expression of procedural fairness
and is in agreement with Diamond’s critique.12

We include the requirement of having two individuals with opposing preferences
since procedural fairness has greater appeal when real conflict exists. However, it is
straightforward to verify that, with continuity, this requirement can be omitted. Hence,
in situations where only one individual faces distinct lotteries under the action lotteries
� and �′, convexity implies that his preferences must also be convex.

12 See Klaus and Klijn (2006) for a different notion of procedural fairness.
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Fairness and utilitarianism without independence 37

Convexity is also related to social stability. Consider a society I ⊂ I , whose set
of available actions is given by a finite A ⊂ A . For a given identity lottery γ ∈ �(I ),
the impartial observer’s aim is to find the optimal action lottery that maximizes her
utility. That is, the impartial observer seeks to solve the problem

max
�∈�(A)

V (γ, �)

For societal stability, it is desirable that the set of optimal action lotteries does not
change drastically when only minor changes occur. That is, we want this set to be
upper hemi-continuous and convex valued with respect to the set of available actions
A. Clearly, the continuity of � implies upper hemi-continuity, while convexity is
equivalent to the optimal set being a convex valued correspondence.

Axiom 4 Source indifference: For all societies {i1, . . . , in} and for all sets of available
actions

{
a1, . . . , an

}
, if there exists k ∈ {1, . . . , n} such that

(
i j , ak

)
∼

(
ik, a j

)
for

all j , then (
γ e, ak

)
∼ (

ik, �
e)

where γ e = ∑n
j=1

1
n i j and �e = ∑n

j=1
1
n a j .

To illustrate, consider the following matrix and suppose that the impartial observer

a1 a2 · · · ak · · · an

i1 x1
i2 x2
...

...
ik y1 y2 · · · z · · · yn
...

...
in xn

is indifferent between the following two options, for all j : (1) receiving an outcome
x j while facing the deterministic action ak and imagining being individual i j , and
(2) receiving an outcome y j while facing the deterministic action a j and imagining
being individual ik . There are two ways to randomize, with equal probabilities, over
these degenerate pairs of equivalent product lotteries. The product lottery

(
γ e, ak

)

randomizes over identity lotteries (for the given action ak), while product lottery
(ik, �

e) randomizes over action lotteries (for the given individual ik). Then, as was
argued by Harsanyi in his response to Diamond and was implicitly assumed by him,
the impartial observer should be indifferent between the two randomizations.We want
to emphasize that, a priori, there is no clear reason to prefer either of these lotteries.
Moreover, and as is explained in the next section (Comment 4), our utilitarian result
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holds even if Axiom 4 is relaxed and only requires (weak) preference of identity
lotteries.13

The following lemma shows that, given impartiality and strong acceptance, source
indifference for equiprobability lotteries γ e and �e implies that this property holds for
all lotteries γ and �γ . This property will be used later on.

Lemma 2 Assume the observer satisfies impartiality, strong acceptance and source
indifference. For all societies {i1, . . . , in} and for all sets of available actions{
a1, . . . , an

}
, if there exists k ∈ {1, . . . , n} such that

(
i j , ak

)
∼

(
ik, a j

)
for all j ,

then, for all γ = ∑n
j=1 γi j i j and �γ = ∑n

j=1 γi j a
j ,

(
γ, ak

)
∼ (

ik, �
γ
)

The proof is relegated to Sect. 6.1.

4 Utilitarianism

Our main result shows that the preceding axioms force all individuals to be of the
EU type and, in addition, the impartial observer must be a utilitarian. That is, the
behavioral assumptions on the impartial observer preferences induce her, as well as
all individuals, to satisfy the independence axiom. This is achieved without imposing
independence explicitly (neither on individuals nor on the observer).

Theorem Assume the observer satisfies impartiality. Then, her preferences satisfy
strong acceptance, convexity and source indifference if, and only if, all individuals in
I satisfy independence and the observer is a utilitarian.

The proof, which is relegated to Sect. 6.2, consists of two parts. First, we prove that
all individuals inI must satisfy the independence axiom. Then, we demonstrate that
the impartial observer’s preferences can be represented by a weighted average of the
individual utilities.

Comment 1 Consider theDiamond example.Having the identity lottery γ e = ( 1
2 ,

1
2

)
,

choosing action ai corresponds to the pair
(
γ e, ai

)
, while tossing a fair coin corre-

sponds to the pair (γ e, �e) = (
γ e, 1

2a1 + 1
2a2

)
. By source indifference,

(
γ e, a1

) ∼
(1, �e) and

(
γ e, a1

) ∼ (2, �e). Hence, (1, �e) ∼ (2, �e) and therefore, by Lemma 1(b),
(1, �e) ∼ (γ e, �e). But then, by transitivity,

(
γ e, a1

) ∼ (γ e, �e) and the impartial
observer is indifferent between the first action (Policy (1)) and the mixture (Policy
(2)). Put differently, she does not strictly prefer tossing a fair coin over the pure action

13 It should be noted that source indifference might seem less appealing in situations in which the two
randomizations are inherently less symmetric. For example, if identities are being fixed once and for a
lifetime while action lotteries are repeated. Also note that preference of one type of randomization over the
other can be seen as an example of what Ergin and Gul (2009) called issue or source preference. Viewing
individuals as representatives of various generations, source indifference can contribute to the discussion
on intergenerational ethics (see Asheim et al. 2012).

123



Fairness and utilitarianism without independence 39

a1 . Moreover, it can now be seen (proof omitted) that, by convexity, any mixture of
the two actions a1 and a2 must be indifferent to a1. This may seem like a signifi-
cant step toward proving utilitarianism. However, the derivation of these ‘straight line
indifference segments’ from the above extremely symmetric situation does not extend
to the general case and cannot be utilized to derive a utilitarian representation.

Comment 2 As noted in Introduction, Blackorby et al. (2004) andMongin and Pivato
(2015) also derived utilitarianism without imposing independence. Although these
authors work within Harsanyi’s aggregation theorem framework, a comparison to
our theorem seems natural and is carried out by focusing on the analysis of Mongin
and Pivato (2015). Consider a given society I , with a set of actions A, and identify
every product lottery (γ, �) with a matrix whose rows correspond to individuals and
columns correspond to actions. Mongin and Pivato’s ex ante analysis is manifested
by their row preference assumption, an assumption that is analogous to our strong
acceptance axiom. Similarly, their ex post analysis is manifested by a column prefer-
ence assumption that, in our model, would require an improvement in the impartial
observer’s situation whenever an action a is replaced by a better action ā. Together
with a coordinate monotonicity assumption, these two assumptions enable Mongin
and Pivato to employ Gorman (1968) separability theorem and derive a fully sep-
arable representation of the observer preferences. As can be seen in Sect. 6.2, our
proof uses different arguments. Nevertheless, one might conjecture that, since source
indifference implies similar treatment of columns and rows then, together with strong
acceptance, Gorman’s separability theorem could be applied to yield our result. How-
ever, this is not true. As can be seen in Examples 1 and 2 below, strong acceptance
and source indifference are not sufficient to imply utilitarianism.

Comment 3 Another result that is close to ours appears in GKPS (2010). Their The-
orem 3 roughly states that an observer is a utilitarian if and only if she satisfies
acceptance, independence over identity lotteries and (their notion) of source indiffer-
ence. To distinguish our result from theirs, note that we derive utilitarianism without
assuming any form of independence.14

The following first two examples demonstrate the necessity of convexity. The third
demonstrates the necessity of source indifference.

Example 1 Here we present a non-utilitarian impartial observer who satisfies all
axioms except for convexity. Assume that all preferences �i of individuals i ∈ I
belong to the rank-dependent utility class (RDU; see Weymark 1981; Quiggin 1982).
Let g : [0, 1] → [0, 1] be an increasing and onto function. For a given simple lot-
tery r and z ∈ Supp (r) define Fr (z) := ∑

y�z r (y), Fr (z−) := ∑
y<z r (y) and

∇g (z; r) := g (Fr (z)) − g (Fr (z−)). On simple lotteries, RDU preferences are rep-
resented by a function of the form V (p) = ∑

x u (x) ∇g (x; p).When g is the identity
function,∇g (x; p) = p (x) and RDU preferences are reduced to EU preferences. We
assume that, in the eyes of the impartial observer, individual i’s preferences are rep-
resented by Vi (p) = ∑

x ui (x) ∇g (x; p), where g is common to all individuals and,

14 It should also be noted that the notion of source indifference used by GKPS (2010) (they termed it
‘indifference between identity and action lotteries’) is stronger than ours. This is formally stated as Lemma
4 (see Sect. 6.4).
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for all i, j ∈ I , ui (xmin) = u j (xmin) and ui (xmax) = u j (xmax). The observer
preferences are also of the RDU type and are represented by

V r (γ, �) =
∑

i∈I

Vi (�i ) ∇g (Vi (�i ) ; γ )

Impartiality and strong acceptance are satisfied by construction. To verify that
source indifference is satisfied consider, without loss of generality, a society I =
{1, . . . , n}, a set of available actions {

a1, . . . , an
}
and assume that there exists k for

which V r
(

j, ak
) = V r

(
k, a j

)
for all j . Then, for all j ,

u j

(
ak ( j)

)
= Vj

(
ak ( j)

)
= V r

(
j, ak

)
= V r

(
k, a j

)
=Vk

(
a j (k)

)
=uk

(
a j (k)

)

Hence,

V r
(
γ e, ak

)
=

∑

j∈I

u j

(
ak ( j)

)
∇g

(
u j

(
ak ( j)

)
; γ e

)

=
∑

j∈I

uk

(
a j (k)

)
∇g

(
u j

(
ak ( j)

)
; γ e

)

=
∑

j∈I

uk

(
a j (k)

)
∇g

(
a j (k) ; �e

k

)
= V r (

k, �e)

as required.
To see that convexity does not hold assume that g is strictly concave and fix j ∈ I .

Let �, �′ ∈ Δ(A ) be two distinct action lotteries satisfying �i = �′
i for all i �= j ,

� j �= �′
j and Vj

(
� j

) = Vj

(
�′

j

)
(clearly, such lotteries exist). The strict concav-

ity of g implies Vj

(
1
2� j + 1

2�
′
j

)
< Vj

(
� j

)
and hence, for any γ with γ j > 0,

V r
(
γ, 1

2� + 1
2�

′) < V r (γ, �).15

15 Perhaps the simplest way to see it is to observe that, for continuous lotteries, Vj
(
� j

) =
∫

z u j (z) dg
(

F� j (z)
)

= u j (xmax) − ∫
z g

(
F� j (z)

)
u′

j (z) dz. Therefore

Vj

(
1

2
� j + 1

2
�′

j

)
= u j (xmax) −

∫

z
g

(
F1
2 � j + 1

2 �′
j
(z)

)
u′

j (z) dz

= u j (xmax) −
∫

z
g

(
1

2
F� j (z) + 1

2
F�′

j
(z)

)
u′

j (z) dz

< u j (xmax) −
∫

z

[
1

2
g

(
F� j (z)

)
+ 1

2
g

(
F�′

j
(z)

)]
u′

j (z) dz

= 1

2

[
u j (xmax) −

∫

z
g

(
F� j (z)

)
u′

j (z) dz

]

+ 1

2

[
u j (xmax) −

∫

z
g

(
F�′

j
(z)

)
u′

j (z) dz

]

= 1

2
Vj

(
� j

) + 1

2
Vj

(
�′

j

)
= Vj

(
� j

)
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Note that, as the following case shows, non-convexity of �i (which is manifested
by the concavity of g) is not necessary for the non-convexity of �. For this, let I =
{1, . . . , 5} and consider the two actions described by the matrix (the entries are the
utility values)

a1 a2

1
2
3
4
5

1 0
0 1
1 1
1 1
1 1

Let g be given by the convex piecewise linear function

g (t) =
{
0 t � 0.2
− 1

4 + 5
4 t otherwise

and note that, by the convexity of g, each �i is convex.
Clearly, for both j = 1, 2,

V r
(
γ e, a j

)
= g (0.2) × 0 + (1 − g (0.2)) × 1 = 1

Next, consider the lottery 1
2a1 + 1

2a2. For i ∈ {1, 2},

Vi

(
1

2
a1 (i) + 1

2
a2 (i)

)
= g (0.5) × 0 + (1 − g (0.5)) × 1 = 5

8

while, for i ∈ {3, 4, 5}, Vi
( 1
2a1 (i) + 1

2a2 (i)
) = 1. Hence, for the impartial observer,

V r
(

γ e,
1

2
a1 + 1

2
a2

)
= g (0.4) × 5

8
+ (1 − g (0.4)) × 1

= 1

4
× 5

8
+ 3

4
× 1 = 29

32
< 1

and convexity is not satisfied.

Example 2 In the two cases described in Example 1, either individual preferences are
non-convex with respect to outcome lotteries (when g is concave) or the impartial
observer preferences are non-convex with respect to identity lotteries (when g is con-
vex). This might suggest that convexity would be satisfied if all preferences involved
were convex. As we now show, this conjecture is false.

Footnote 15 contined
Similarly, if g is convex then so is � j .
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Assume that individual preferences are weighted utility (WU; see Chew 1983).
That is, for all i and p ∈ �(X ),

Vi (p) = V (p) =
∑

k

pk
w (xk)∑

j p jw
(
x j

)u (xk)

where u is a strictly increasing utility function and w is a non-constant and positive
weighting function. These preferences belong to the betweenness class (see Chew
1989; Dekel 1986), a class that is characterized by the property: for all lotteries p
and q, p � q if and only if p � λp + (1 − λ) q � q, for all λ ∈ (0, 1). Clearly,
betweenness implies that WU preferences are convex.

The impartial observer preferences are of the same type and are given by

V w (γ, �) =
∑

i

γi
w

(
u−1 (V (�i ))

)

∑
j γ jw

(
u−1

(
V

(
� j

))) V (�i )

As in Example 1, source indifference is satisfied. To see it, assume (for k = 1)
V w

(
j, a1 ( j)

) = V w
(
1, a j (1)

)
, for all j . That is, u

(
a1 ( j)

) = u
(
a j (1)

)
or, equiv-

alently, a1 ( j) = a j (1), for all j . Then

V w
(
γ e, a1

)
=

∑

i

1

n

w
((

u−1 ◦ u
) (

a1 (i)
))

∑
j
1
n w

((
u−1 ◦ u

) (
a1 ( j)

))u
(

a1 (i)
)

=
∑

i

1

n

w
(
a1 (i)

)

∑
j
1
n w

(
a1 ( j)

)u
(

a1 (i)
)

=
∑

i

1

n

w
(
ai (1)

)

∑
j
1
n w

(
a j (1)

)u
(

ai (1)
)

= V w
(
1, �e)

Next we show that convexity is not satisfied. Consider again the Diamond example.
Assume that u(x) = x and w(x) = 2 + x .16 Then,

V w
(
γ e, a1

)
=

1
2w (1)

1
2w (1) + 1

2w (0)
= 0.5 × 3

0.5 × 3 + 0.5 × 2
= 3

5

and

V w
(
γ e, a2

)
=

1
2w (1)

1
2w (0) + 1

2w (1)
= 0.5 × 3

0.5 × 2 + 0.5 × 3
= 3

5

16 WU preferences increase with respect to first-order stochastic-dominance whenw andw ·u are bounded
on the outcome interval ([0, 1] in this example) and when w(x)(u(x) − u(s)) is monotonic increasing in x
for all s ∈ [0, 1]. Clearly, these conditions are satisfied.
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Let � = 0.8a1 + 0.2a2 be a mixture of a1 and a2. Then,

V (�1) = 0.8w (1)

0.8w (1) + 0.2w (0)
= 0.8 × 3

0.8 × 3 + 0.2 × 2
= 6

7

V (�2) = 0.2w (1)

0.8w (0) + 0.2w (1)
= 0.2 × 3

0.8 × 2 + 0.2 × 3
= 3

11

and, for the impartial observer,

V w
(
γ e, �

) = 1

2

w
(
u−1 (V (�1))

)

1
2w

(
u−1 (V (�1))

) + 1
2w

(
u−1 (V (�2))

) V (�1)

+ 1

2

w
(
u−1 (V (�2))

)

1
2w

(
u−1 (V (�2))

) + 1
2w

(
u−1 (V (�2))

) V (�2)

=
20
7

20
7 + 25

11

× 6

7
+

25
11

20
7 + 25

11

× 3

11

= 44

79
× 6

7
+ 35

79
× 3

11
≈ 0.598 <

3

5

Hence, convexity is violated.

Example 3 A non-utilitarian impartial observer who satisfies all axioms except for
source indifference is the generalized utilitarian impartial observer of GKPS (2010).
Consider

V g (γ, �) =
∑

i∈I

γiφi [Ui (�i )]

where φi : [vmin, vmax] → R are strictly concave, for all i . It is easy to verify that
strong acceptance and convexity are satisfied while, as was shown in GKPS, this
observer deems identity lotteries inferior to action lotteries.

Comment 4 Consider the following assumption, which is weaker than source indif-
ference.
Preference for identity lotteries: For all societies {i1, . . . , in} and for all sets of available
actions

{
a1, . . . , an

}
, if there exists k ∈ {1, . . . , n} such that

(
i j , ak

)
∼

(
ik, a j

)
for

all j , then (
γ e, ak

)
�

(
ik, �

e)

In Sect. 6.3 (Lemma 3) we show that this assumption, in conjunction with strong
acceptance and convexity, implies source indifference. Therefore, our theorem could
be stated in a slightly stronger form. The current form is chosen because, having no
reason to prefer either type of these lotteries, source indifference seems the more
natural choice. Moreover, it is more in line with Harsanyi’s own arguments.
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5 Conclusion

As stated in Introduction we argue that when societal decisions are at stake, postulates
must be drawn from society-centered behavior. We have chosen to focus on the notion
of procedural fairness (exhibited by convexity) and added to it the requirement that
the impartial observer is indifferent between identity and action lotteries. In our main
result we have shown that these two assumptions (together with strong acceptance)
were sufficient to force the impartial observer to be a utilitarian. Unlikemost utilitarian
results, no form of the independence axiom was required here.

In addition to offering a society-centered basis for utilitarianism, our result sheds
more light on what is needed in order to always have a strict preference for procedural
fairness. Since preference for identity lotteries implies source indifference (Lemma 3,
Sect. 6.3), then, in order to have a strict preference for procedural fairness, the impar-
tial observer must display a preference for action lotteries. Two such non-utilitarian
models exist in the literature. The first follows from Karni and Safra (2000).17 In
their model, which leads to the representation V (γ, �) = ∑

i∈I γi Vi (�i ), individuals
possess a sense of justice and preference for procedural fairness is solely manifested
by their behavior (their utilities Vi are assumed to be concave). It can easily be veri-
fied that this impartial observer displays a preference for action lotteries. The second
model is the generalized utilitarian impartial observer of GKPS (2010). As mentioned
above, GKPS show that a preference for action lotteries holds if and only if each φi

is concave, a condition that implies procedural fairness. For a third model, consider a
rank dependent, or a Gini, impartial observer, whose preferences are represented by

V rd (γ, �) =
∑

i∈I

φ(Ui (�i ))∇g (Ui (�i ) ; γ )

(where each Ui is of the EU type and both φ and g are concave). As can easily
be verified, a preference for action lotteries follows from Chew et al. (1987) while
procedural fairness follows from Quiggin (1993, Section 9.1).

6 Proofs

6.1 Proofs of Lemmas 1 and 2

Proof of Lemma 1 (a) Assume�i=� j and consider �, �′ ∈ �(A ) satisfying �i = �′
j .

Construct an action lottery �̄ that satisfies �̄i = �̄ j = �i = �′
j . Then

(i, �) ∼ (
i, �̄

) ∼ (
j, �̄

) ∼ (
j, �′)

as required (the first and the last indifferences follow from strong acceptance while
the second follows from impartiality).

17 See also Grant et al. (2012).
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(b) Let v = V (i, �) = Vi (�i ) and note that, by the arguments that precede the
statement of the lemma, V (γ, �) = W (γ , (v, . . . , v)) while V (k, �) = W (1, v).
That is, the product lottery (γ, �) is equivalent to a utility lottery with n iden-
tical outcomes (where n is the number of elements in Supp (γ )), all equal to
v, while (k, �) is equivalent to the degenerate lottery that yields v for sure.
The two utility lotteries seem identical but, in order to show that the impartial
observer is indeed indifferent between them, the monotonicity property must be
employed.

For this, let ci (�i ) ∈ X be individual i’s certainty equivalent of the lottery �i

(that is, ci (�i ) ∼i �i ) and consider the action â satisfying â (i) = ci (�i ). By strong
acceptance, (γ, �) ∼ (

γ, â
)
and (k, �) ∼ (

k, â
)
. Then, as the unique utility value

attained by both
(
γ, â

)
and

(
k, â

)
is v, monotonicity implies that

(
γ, â

) ∼ (
k, â

)
. By

transitivity, (γ, �) ∼ (k, �).
(c) Let (γ e, �),

(
γ e, �′) and π satisfy the conditions of the lemma. Construct two

actions â and â′ satisfying â (i) = ci (�i ) and â′ (i) = ci
(
�′

i

)
where, as above, ci is the

certainty equivalent function of individual i . By strong acceptance, (γ e, �) ∼ (
γ e, â

)

and
(
γ e, �′) ∼ (

γ e, â′). The conditions (i, �i ) ∼

(
π (i) , �′

π(i)

)
imply V (i, �i ) =

V
(
π (i) , �′

π(i)

)
for all i , and hence,

V
(
i, â

) = V (i, ci (�i )) = V (i, �i ) = V
(
π (i) , �′

π(i)

)

= V
(
π (i) , cπ(i)

(
�′
π(i)

))
= V

(
π (i) , â′)

By monotonicity,
(
γ e, â

) ∼ (
γ e, â′) and, by transitivity, (γ e, �) ∼ (

γ e, �′). ��
Proof of Lemma 2 Consider, without loss of generality, a society I = {1, . . . , n}, a
set of available actions A = {

a1, . . . , an
}
and assume that (again, without loss of

generality)
(
i, a1

) ∼ (
1, ai

)
, for all i . Let γ = (γ1, . . . , γn).

First assume that γ is rational. That is, γi = ni
mi
, for all i . Consider a new society

Ī = {
1̄, 2̄, . . .

}
with m1 · · · mn individuals, in which the first n1m2 · · · mn individuals

are identical to individual 1 of I , the next m1n2m3 · · · mn individuals are identical to
individual 2 of I , and so on. Similarly, let the set of actions Ā = {

ā1, ā2, . . .
}
consists

of m1 · · · mn actions, in which the first n1m2 · · · mn actions are identical to action
a1 of A, the next m1n2m3 · · · mn actions are identical to action a2 of A, and so on.
Finally, let γ̄ e and �̄e be the equiprobability lotteries over Ī and Ā, respectively. By
construction,

(
ı̄, ā1

) ∼ (
1̄, āı̄

)
, for all ı̄ . By source indifference,

(
γ̄ e, ā1

) ∼ (
1̄, �̄e

)
.

To conclude note that, by monotonicity,
(
γ, a1

) ∼ (
γ̄ e, ā1

)
and, by Lemma 1(a),(

1̄, �̄e
) ∼ (1, �γ ). Transitivity then implies

(
γ, a1

) ∼ (1, �γ ).
Next consider any γ and let βk →k→∞ γ be a sequence of rational lotteries

that converge to γ . By construction,
(
βk, a1

) →k→∞
(
γ, a1

)
and

(
1, �βk

) →k→∞
(1, �γ ). By the argument above,

(
βk, a1

) ∼ (
1, �βk

)
for all k and hence, by continuity,(

γ, a1
) ∼ (1, �γ ). ��
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6.2 Proof of the Theorem

The ‘if’ part is immediate. The proof of the converse is divided into two parts.

Part I18 In this part we show that all individuals satisfy the independence axiom. Con-
sider an individual i∗ ∈ I and denote his preferences by�∗. We want to demonstrate
that for all p, q, r ∈ �(X ), p ∼

∗ q ⇒ 1
2 p+ 1

2r ∼
∗ 1

2q+ 1
2r . This, usingHerstein and

Milnor (1953), would imply that�∗ satisfies the independence axiom.Using the conti-
nuity of�∗, we can restrict attention to equiprobability lotteries with the same number
of outcomes: p = (( 1

k , . . . , 1
k

)
, (x1, . . . , xk)

)
, q = (( 1

k , . . . , 1
k

)
, (y1, . . . , yk)

)
, and

r = (( 1
k , . . . , 1

k

)
, (z1, . . . , zk)

)
(to see it, note that (1) any lottery with rational prob-

abilities can be replicated by an equiprobability lottery with not necessarily distinct
outcomes and (2) the set of lotteries with rational probabilities is dense in the space
of all lotteries).

Consider a society I consisting of n = 2k individuals, all with preferences �i

= �∗. Let π1 = (1, 2, . . . , n), π2 = (2, 3, . . . , 1),…, πn = (n, 1, 2, . . . , n − 1) be
permutations on {1, . . . , n} (where π j (i) stands for the i th element of the permutation
π j ). We concentrate on a set of actions Ȧ = {

ȧ1, . . . , ȧn
}
available to the society that

are defined as follows: for j = 1, . . . , k

ȧ j (i) =
{

xπ j (i) if 1 � i � k
zπ j (i−k) if k < i � n

and, for j = k + 1, . . . , n

ȧ j (i) =
{

zπ j−k(i) if 1 � i � k
xπ j−k (i−k) if k < i � n

To illustrate, look at the following matrix

ȧ1 ȧ2 · · · ȧk ȧk+1 ȧk+2 · · · ȧn

1 x1 x2 · · · xk z1 z2 · · · zk
2 x2 x3 · · · x1 z2 z3 · · · z1
...

...
...

. . .
...

...
...

. . .
...

k xk x1 · · · xk−1 zk z1 · · · zk−1
k+1 z1 z2 · · · zk x1 x2 · · · xk
k+2 z2 z3 · · · z1 x2 x3 · · · x1
...

...
...

. . .
...

...
...

. . .
...

n zk z1 · · · zk−1 xk x1 · · · xk−1

Fact 1 (γ e, �e) ∼
(
γ e, ȧ1

)
where γ e = ∑n

i=1
1
n i and �e = ∑n

j=1
1
n ȧ j .

18 The proof of this part is similar to that of Dekel et al. (1991, Theorem 2). However, dealing with social
multi-person framework, our proof is more general than (and improves upon) theirs.

123



Fairness and utilitarianism without independence 47

Since for all i, j �e
i = �e

j , impartiality implies (i, �e) ∼ ( j, �e) and hence, by Lemma

1(b), (γ e, �e) ∼ (1, �e). Next, since ȧ j (1) = ȧ1 ( j) (x j if j � k and z j−k otherwise)
then, in both

(
1, ȧ j

)
and

(
j, ȧ1

)
, the impartial observer faces the same deterministic

outcome. By Lemma 1(a),
(
1, ȧ j

)
∼

(
j, ȧ1

)
for all j ∈ I and, by source indifference,

(1, �e) ∼
(
γ e, ȧ1

)
. Transitivity then implies (γ e, �e) ∼

(
γ e, ȧ1

)
.

Fact 2 Let �k = 1
k

∑k
j=1 ȧ j . Then

(
γ e, �k

)
∼ (γ e, �e).

Since all actions ȧi yield the same outcomes then, using impartiality and monotonic-
ity,

(
γ e, ȧi

)
∼

(
γ e, ȧ1

)
for all i . By repeated application of convexity,

(
γ e, �k

) =(
γ e, 1

k

∑k
j=1 ȧ j

)
�

(
γ e, ȧ1

)
.19 Hence, byFact 1 and transitivity,

(
γ e, �k

)
� (γ e, �e).

For the converse, consider the action lottery �̂k = 1
k

∑n
j=k+1 ȧ j . For all i =

1, . . . , k, �̂k
i , the lottery individual i faces under �̂k , is identical to �k

k+i , the lottery

that individual k + i faces under �k . By Lemma 1(a),
(

i, �̂k
i

)
∼ (

k + i, �k
k+i

)
. Sim-

ilarly, �̂k
k+i , the lottery individual k + i faces under �̂k , is identical to �k

i , the lottery

that individual i faces under �k and hence, by Lemma 1(a),
(

k + i, �̂k
k+i

)
∼ (

i, �k
i

)
.

Therefore, by Lemma 1(c),
(
γ e, �̂k

)
∼

(
γ e, �k

)
. Since �e = 1

2 �̂
k + 1

2�
k , convexity

implies (γ e, �e) �
(
γ e, �k

)
.

Hence,
(
γ e, �k

)
∼ (γ e, �e).

Fact 3 1
2 p + 1

2r ∼
∗ 1

2q + 1
2r .

By the first part of the proof of Fact 1, (γ e, �e) ∼ (1, �e). Therefore, using transitivity
and Fact 2,

(
γ e, �k

)
∼ (1, �e). Note that in the first lottery, the first k individuals face

the lottery p and the rest face the lottery r while, in the second, individual 1 is faced
with the lottery 1

2 p + 1
2r .

Next consider the same set of individuals I with another set of actions Ã ={
ã1, . . . , ã2k

}
, that is derived from Ȧ by replacing every x j by y j . Clearly, a sim-

ilar conclusion holds: the impartial observer is indifferent between the product lottery(
γ e, �̃k

)
, inwhich the first k individuals face the lottery q and the rest face the lottery r ,

and the product lottery
(
1, �̃e

)
, in which individual 1 is faced with the lottery 1

2q + 1
2r .

But as p ∼
∗ q, all individuals in I are indifferent between p and q and hence, by

strong acceptance,
(
γ e, �k

) ∼
(
γ e, �̃k

)
. By transitivity, (1, �e) ∼

(
1, �̃e

)
. Hence, the

impartial observer, while imagining herself being individual 1, is indifferent between
the lotteries 1

2 p + 1
2r and 1

2q + 1
2r . By strong acceptance, 1

2 p + 1
2r ∼

∗ 1
2q + 1

2r .
To conclude Part I, note that allowing k to go to infinity implies that �∗ satisfies

independence over the entire set of lotteries �(X ).20

19 Note that by continuity, the convexity axiom holds even when there are no opposing individuals (see
Sect. 3, right after the statement of the convexity axiom).
20 This is where we make use of the infinity of the set I .
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Part II In the second part we show that the impartial observer is a utilitarian. Consider
a society I (without loss of generality, I = {1, . . . , n}) and let V (γ, �) be a represen-
tation of the impartial observer preferences where V (i, �) = Vi (�i ) = ϕi (Ui (�i )),
ϕi is monotonic increasing and, by Part I, Ui (�i ) = ∑

x∈X ui (x) �i (x) is an EU rep-
resentation of individual i’s preferences. Since ui is determined up to (positive) affine
transformations, we can assume it satisfies ui (xmin) = vmin and ui (xmax) = vmax
(hence, ϕi (vmin) = vmin and ϕi (vmax) = vmax, for all i).

Fact 4 � can be represented by a separable function V̄ (γ, �) = ∑n
i=1 γiφi [Ui (�i )].

Choose (γ, �) ∈ Δ (I ) × Δ(A ), denote vi = ϕi (Ui (�i )) and let ci (�i ) ∈ X be
individual i’s certainty equivalent of the lottery �i (that is, ui (ci (�i )) = Ui (�i )).
Consider a set of actions Â = {

â j | j ∈ {1, . . . , n}} satisfying â1 (i) = ci (�i )

and â j (1) = (ϕ1 ◦ u1)
−1 (

v j
)
for i, j = 1, . . . , n. By construction, V

(
i, â1

) =
(ϕi ◦ ui ) (ci (�i )) = vi and V

(
1, âi

) = (ϕ1 ◦ u1) ◦ (ϕ1 ◦ u1)
−1 (vi ) = vi . Hence,(

i, â1
)

∼
(
1, âi

)
and, by source indifference and Lemma 2,

(
γ, â1

)
∼ (1, �γ ) (�γ

is the action lottery on Â associated with γ ). Put differently, V
(
γ, â1

) = V (1, �γ ).
Note that by strong acceptance, V (γ, �) = V

(
γ, â1

)
. Therefore,

V (γ, �) = V
(
γ, â1

)
= V

(
1, �γ

) = ϕ1
(
U1

(
�
γ
1

))

= ϕ1

(
n∑

i=1

γi u1

(
(ϕ1 ◦ u1)

−1 (vi )
))

= ϕ1

(
n∑

i=1

γiϕ
−1
1 (vi )

)

= ϕ1

(
n∑

i=1

γi

(
ϕ−1
1 ◦ ϕi

)
(Ui (�i ))

)

Denote V̄ = ϕ−1
1 ◦ V and φi = ϕ−1

1 ◦ ϕi (note that V̄ also represents the impartial
observer preferences and its image is [vmin, vmax]). By the above,

V̄ (γ, �) =
n∑

i=1

γiφi [Ui (�i )]

Fact 5 � can be represented by the affine function V̄ (γ, �) = ∑n
i=1 γiUi (�i ).

To conclude, we show that for all i , V̄i = φi ◦Ui is affinewhich, given ϕi (vmin) = vmin
and ϕi (vmax) = vmax, implies V̄i = Ui . Take �, �′ ∈ Δ(A ). Since Ui is of the EU
type, we have for all λ ∈ [0, 1],

V̄i
(
λ�i + (1 − λ) �′

i

) = φi
[
Ui

(
λ�i + (1 − λ) �′

i

)]

= φi
[
λUi (�i ) + (1 − λ) Ui

(
�′

i

)]

= φi
[
λui (ci (�i )) + (1 − λ) ui

(
ci

(
�′

i

))]

= φi
[
Ui

(
λci (�i ) + (1 − λ) ci

(
�′

i

))]

123



Fairness and utilitarianism without independence 49

= V̄i

(
λǎi (i) + (1 − λ) ǎ j (i)

)

= V̄
(

i, λǎi + (1 − λ) ǎ j
)

(1)

for actions ǎi and ǎ j satisfying ǎi (i) = ci (�i ), ǎ j (i) = ci
(
�′

i

)
(note that the element

λci (�i ) + (1 − λ) ci
(
�′

i

)
that appears in the third line is a lottery, not an outcome).

Defining ǎi ( j) = (
φ j ◦ u j

)−1 ◦ (φi ◦ ui )
(
ci

(
�′

i

))
we get

V̄
(

j, ǎi
)

= (
φ j ◦ u j

) ◦ (
φ j ◦ u j

)−1 ◦ (φi ◦ ui )
(
ci

(
�′

i

))

= (φi ◦ ui )
(
ci

(
�′

i

)) = V̄
(

i, ǎ j
)

and hence, by source indifference and for γ satisfying γi = λ, γ j = 1−λ and γk = 0
otherwise,

V̄
(

i, λǎi + (1 − λ) ǎ j
)

= V̄
(
λi + (1 − λ) j, ǎi

)

(note that actions ǎk for k �= i, j are irrelevant but can easily be defined so as to fit with
the requirements of the axiom). Now, by the structure of V̄ and by using the equation
V̄

(
j, ǎi

) = V̄
(
i, ǎ j

)
,

V̄
(
λi + (1 − λ) j, ǎi

)
= λV̄

(
i, ǎi

)
+ (1 − λ) V̄

(
j, ǎi

)

= λV̄
(

i, ǎi
)

+ (1 − λ) V̄
(

i, ǎ j
)

= λV̄i

(
ǎi (i)

)
+ (1 − λ) V̄i

(
ǎ j (i)

)

= λV̄i (ci (�i )) + (1 − λ) V̄i
(
ci

(
�′

i

))

= λV̄i (�i ) + (1 − λ) V̄i
(
�′

i

)

Summarizing (using (1)),

V̄i
(
λ�i + (1 − λ) �′

i

) = λV̄i (�i ) + (1 − λ) V̄i
(
�′

i

)

and the affinity of V̄i is established.
Hence,

V̄ (γ, �) =
n∑

i=1

γiUi (�i )

as required. ��

6.3 Preference for identity lotteries versus source indifference

Lemma 3 If the impartial observer preferences satisfy strong acceptance, convexity
and preference for identity lotteries, then they satisfy source indifference.
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Proof Consider, without loss of generality, a society I = {1, . . . , n}, a set of avail-
able actions A = {

a1, . . . , an
}
and assume that (again, without loss of generality)

V
(
i, a1

) = V
(
1, ai

) := vi , for all i . Without loss of generality we can assume that
all vi are pairwise different and that vi > vi+1 for all i < n. For i, j ∈ {1, . . . , n},
let xi j ∈ X be defined by Vi

(
xi j

) = vπ j (i), where π j is a permutation on {1, . . . , n}
(as defined in the proof of the theorem), and note that, by the monotonicity of each
Vi with respect to the outcomes of X , V1 (x11) > V1 (x12) > · · · > V1 (x1n),
V2 (x2n) > V2 (x21) > V2 (x22) > · · · > V2

(
x2(n−1)

)
,…,Vn (xn2) > Vn (xn3) >

· · · > Vn (xnn) > Vn (xn1) . Consider a new set of actions Ā = {
ā1, . . . , ān

}
satisfy-

ing ā j (i) = xi j . By construction,

V
(

i, ā1
)

= Vi (xi1) = vπ1(i) = vi = V
(

i, a1
)

and
V

(
1, āi

)
= V1 (x1i ) = vπi (1) = vi = V

(
1, ai

)

which implies that, by strong acceptance, V
(
γ e, a1

) = W (γ e, (v1, . . . , vn)) =
V

(
γ e, ā1

)
and V (1, �e) given A (where �e = ∑n

j=1
1
n a j ) is equal to V (1, �e)

given Ā (where �e = ∑n
j=1

1
n ā j ). Hence, it is sufficient to restrict attention to

Ā and to show that V
(
γ e, ā1

) = V (1, �e) (given Ā). For this note that: (i)
since V

(
γ e, āi

) = W (γ e, (v1, . . . , vn)) for all i , we have V
(
γ e, āi

) = V
(
γ e, ā j

)
,

for all i, j ; (i i) by construction, for every k ∈ {1, . . . , n}, V
(
i, āk

) = V
(
k, āi

)
, for

all i ; (i i i) V (γ e, �e) ∈ [
mini V (i, �e) ,maxi V (i, �e)

]
and hence, if V (γ e, �e) =

maxi V (i, �e) then V (γ e, �e) = V (i, �e) = V ( j, �e), for all i, j ; and (iv) individual
i strictly prefers action ān+2−i (where ān+2−1 = ān+1 := ā1) over all other actions
and, by the monotonicity of Vi with respect to first-order stochastic-dominance, he
strictly prefers this action over all mixtures of the other actions. Therefore,

V
(
γ e, ā1

)
= max

k
V

(
γ e, āk

)
� max

k
V

(
k, �e) � V

(
γ e, �e) � V

(
γ e, ā1

)

where the equality follows from (i), the first inequality follows from (i i) and from
preference for identity lotteries, the second inequality follows from the first part of
(i i i) and the last inequality follows from (iv) by repeated application of convexity
(note that �e = 1

n

∑
j ā j ).

Since the first and the last elements are identical, maxk V (k, �e) = V (γ e, �e)

which, by the second part of (i i i), implies that V (1, �e) = maxk V (k, �e) and, there-
fore, V (1, �e) = V

(
γ e, ā1

)
. Hence, the impartial observer is indifferent between

identity and action lotteries. ��

6.4 GKPS’s (2010) source indifference implies ours

Lemma 4 Assume (as in GKPS 2010) that the impartial observer satisfies the follow-
ing property:
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∀γ, γ ′ ∈ �(I ), ∀�, �′ ∈ �(A ) and ∀β ∈ (0, 1),

(
γ, �′) ∼ (

γ ′, �
) ⇒ (

βγ + (1 − β) γ ′, �
)

∼
(
γ, β� + (1 − β) �′)

Then, the impartial observer exhibits source indifference.

Proof The proof is by induction. Without loss of generality, consider a society I =
{1, . . . , n}, the set of available actions A = {

a1, . . . , an
}
and assume that

(
1, ai

)
∼(

i, a1
)
, for all i .

First let n = 2. By the GKPS condition,
(
1, a2

)
∼

(
2, a1

)
implies

(
1

2
1 + 1

2
2, a1

)
∼

(
1,

1

2
a1 + 1

2
a2

)

as required.
Next assume it holds for n − 1 and consider n. Assume, without loss of generality,

that the acts of A satisfy (i, a j ) ∼ (i + 1, a j−1) for all i ∈ {1, . . . , n − 1}, j ∈
{2, . . . , n}. Consider the society I �1 = {2, . . . , n} and the set of actions A�n ={
a1, . . . , an−1

}
. By construction, (2, ai ) ∼ (i + 1, a1) for all i = 1, . . . , n − 1

and hence, by the induction hypothesis, ( 1
n−1

∑n
i=2 i, a1) ∼ (2, 1

n−1

∑n−1
i=1 ai ). Next

apply the same argument to I �n = {1, . . . , n − 1} and A�n = {
a1, . . . , an−1

}
, where

(2, ai ) ∼ (i, a2) for all i , to get (2, 1
n−1

∑n−1
i=1 ai ) ∼ ( 1

n−1

∑n−1
i=1 i, a2). Finally, apply

it to I �n = {1, . . . , n − 1} and A�1 = {
a2, . . . , an

}
, where (1, ai+1) ∼ (i, a2) for

all i , to get ( 1
n−1

∑n−1
i=1 i, a2) ∼ (1, 1

n−1

∑n
i=2 ai ). By transitivity,

(
1

n − 1

n∑

i=2

i, a1) ∼ (1,
1

n − 1

n∑

i=2

ai )

To conclude, mix both sides of the last indifference with (1, a1) and, by the GKPS.
condition, obtain

(
γ e, a1

)
∼ (1, �e) for I = {1, . . . , n} and A = {

a1, . . . , an
}
, as

required. ��
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tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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