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Abstract In this paper we study an endogenous growth model where investments
are (generically) distributed over multi-period flexible projects leading to new capital
once completed. Recently developed techniques in dynamic programming are adapted
and used to unveil the global dynamics of this model. Based on this analytical ground,
several numerical exercises are performed to show the quantitative relevance of the
analytical findings with an emphasis on the relation between project features and
economic growth and speed of convergence toward the balanced growth path.
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1 Introduction

Motivation: The notion of investment project has been often used in the economic
growth literature [e.g., Asea and Zak (1999), Bambi (2008) and Bambi et al. (2012)]
and in the real business cycle literature [e.g., by Kydland and Prescott (1982)] to
introduce gestation lags in the production of capital goods. In these contributions, a
project has always three features. First, it requires several stages before its completion
and, once completed, leads to new productive capital; therefore, an (exogenously
given) lag of several periods exists between the beginning of a project and the formation
of new productive capital. Secondly, the amount of resources allocated to a project, as
well as its objective, are decided at its beginning and cannot be adjusted afterward. For
this reason, we refer to this kind of projects as fixed projects.1 Lastly, the investment
distribution over the fixed projects is exogenously given and, furthermore, not generic.
More precisely, it is often assumed that the investment is either spread evenly over
all the projects independently on their degree of completion (uniform distribution), or
concentrated on the project at its earliest stage (i.e., pure investment lag case).2

While the first feature is confirmed by several empirical evidences [e.g., Koeva
(2000)], the other two features are less convincing and are often introduced to make
the model more analytically tractable. The assumption of fixed projects seems even
more restrictive when capital is constructed broadly “to encompass human capital,
knowledge, public infrastructure, and so on” [see Barro and Sala-i Martin (2004)] as
it is usually the case with endogenous growth models having linear technology.

In fact, several empirical evidences point to projects with a certain degree of flex-
ibility. Among them, those on public infrastructures are probably the most popular.
In the UK, the government started in 2009, as a consequence of the recession, a pub-
lic spending review which comprehended 217 projects, totaling 34 billion pounds
(The Independent June 17, 2010); following the review, several of these projects were
reduced or even axed as the building of new schools for around 5 billion pounds
(Guardian, 6 July 2010), or the building of new hospitals for more than 2.5 billion
pounds (The Telegraph, March 3, 2009). 3

The third feature is also not confirmed by several recent contributions pointing
out to alternative distributions over the projects. In a model with projects lasting four
quarters, Altug (1989) estimates that 70 percent of the resources are allocated in the
first two quarters and strongly reject the hypothesis of uniform distribution in favor of

1 It is worth noting that a project already started is fixed not because the investment is irreversible but
because the resources necessary to complete it are predetermined or committed at its beginning. This
difference will result plainly clear in Section 2.1 where we will formally define the projects.
2 Kydland and Prescott propose a model setup with a generic distribution, but the equilibrium path is
numerically computed by assuming the two previously described distributions (i.e., uniform distribution or
pure investment lag).
3 Evidences of opposite sign can be also found in the literature. Recently Flyvbjerg et al. (2002) and
Flyvbjerg et al. (2003) have estimated that additional resources were required to complete around 90% of
a sample of 258 public transportation infrastructure projects in the USA and that the additional resources
added over time amount for the 20–40% of the initially planned investment. Modifications to public works
are also contemplated and regulated by law in some European Countries as shown, for example, by the
Italian Law 109 approved in 1994.
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a decreasing exponential distribution. Similar results are found by Park (1984) when
the projects take three quarters to be completed. On the other hand, some authors
[e.g., Christiano and Todd (1996) or Del Boca et al. (2008)] have found evidences in
support of an increasing exponential distribution according to which a close to zero
proportion of resources is allocated in the first stage of the project (planning) and
increasingly higher in the other stages (construction). Other distributions identified by
the literature are a U-shaped distribution [e.g., Zhou (2000) and Peeters (1998)] and
a hump-shaped distribution [e.g., Altug (1989)]. Interestingly, there is also evidence
that the heterogeneity in the distributions can be country specific [e.g., Peeters (1998)].

The heterogeneity in the project’s characteristics (i.e., investment distribution and
project’s length) seems even more compelling when we consider not only physical
capital but also human capital, public infrastructure, etc. For example, the realization of
public infrastructures projects varies significantly across countrieswith some reporting
significant delays in their completion.4 Of course, the heterogeneity in the project’s
features becomes even more evident when we compare the developed with developing
countries as emerges from a quite large literature on construction projects showing
that the actual project’s length is, on average, longer in developing countries where it
can arrive to be twice the estimated project duration.5

Therefore, the aim of this paper was to develop an endogenous growth model char-
acterized by generically distributed investment over flexible multi-period projects to
account for the empirical evidences just described and to investigate how much the
growth rate and transitional dynamics can be affected both qualitatively and quantita-
tively by differences in the project’s characteristics. In this extent, we depart from the
standard assumptions used in the literature by modifying the second and third features
of the investment projects.

Description of the Model: The engine of growth in our economy is the presence
of constant returns to scale in the capital stock which is the only accumulating factor
of production. A linear technology is a useful assumption for several reasons. First,
because capital is then defined in a broader sense, and our results can be related to the
empirical evidences on investments in public infrastructures, human capital formation,
and construction mentioned before; second, because it lets us investigate the global
rather than the local dynamics of the economy, thewelfare analysis can be donewithout
the usual problems related to the approximation errors.

Our analysis focuses on the centralized version of the model where a benevolent
social planner decides, as usual, how much to consume and save in each period;
however, the aggregate net investment contributes to the development of all the projects
not yet completed (flexibility), each of them leading to new capital at different dates
in the future. Then new capital is obtained as the weighted (Riemann) sum of all the
investments undertaken over a given (finite) time interval, and as its limit when we

4 A typical example is the list of the incomplete public projects recently published by the Italian Public
Infrastructure and TransportMinistry (see “ElencoAnagrafeOpere Incompiute,”Ministero per le Infrastrut-
ture e Transporti).
5 Koushki et al. (2005) shows that the estimated residential construction project duration in Kuwait is
on average 8.3months (planning) plus 9.4months (construction), while the actual is 8.3 plus 18.2months.
Similar results are found in studies focusing on other developing countries such as Nigeria (Mansfield et al.
1994) and Jordan (Al-Momani 2000).
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move to continuous time. The other departure from the existing literature is to allow
for a generic distribution of the investment over the (flexible) projects by keeping
generic, but still exogenous as in Kydland and Prescott, the weights in the previously
mentioned (Riemann) sum.

Before moving to our results, we stress that a project in our model is defined as flex-
ible not because the generic investment distributions is endogenous but rather because
the resources to be invested for its advancement or completion are not predetermined
as in the fixed case explained at the beginning of this introduction.

Main Results: The paper contributes to the existing literature in three ways. First,
it provides a full analytical characterization of the global dynamics of an endoge-
nous growth model with investment generically distributed over flexible multi-period
projects; this is done in the core part of the paperwherewe use a dynamic programming
approach to unveil the closed-form optimal path of all the aggregate variables. This
result is important also because constitutes the solid ground where the quantitative
analysis is built on.

Secondly, the dynamic programming approach used in this paper represents a
methodological contribution to the existing theoretical literature since it provides,
for the first time, a strategy to solve optimal control models where the state equa-
tion is an integral delay differential equation (IDDE hereafter). Most importantly, our
approach allows to find the optimal path of the aggregate macroeconomic variables
explicitly, something not achievable using the existing results on the Pontryagin max-
imum principle. Moreover, the strategy developed in this paper can be easily adapted
and applied to other interesting economic problems such as those on optimal dynamic
advertising whose solutions have been always obtained for specific distributions of
the forgetting time (see section Related Literature).

Thirdly, our analysis shows that economies with same interest rate, preference
discount factor, depreciation rate, and elasticity of intertemporal substitution but dif-
ferent projects’ characteristics may grow at different rates and that the heterogeneity
in the projects’ characteristics may imply quantitatively relevant differences in out-
put growth. For example, we show in one of our first quantitative exercise that the
income gap after 100years between two economies, which are similar but their invest-
ment’s distributions, is 9.4% when in both economies the length of a project, d, is
2years, but the richest is characterized by time-to-plan (i.e., increasing exponential
distribution), while the poorest by a uniform distribution of the investment over the
projects. The income gap changes to 37.02%when the poorest is characterized by pure
investment lags in production (i.e., Dirac’s Delta in −d). Even larger differentials are
observed if the project length changes from 2 to 3, 4, and 5years. In the latter, the
income gap after 100years is 109.6% when the poorest has pure investment lags in
production, while there is time-to-plan in the richest. Crucially, the effect of different
investment distributions on economic growth has not been investigated before; in fact,
previous contributions have always focused on the effect of the project’s length on eco-
nomic growth for an exogenously given but specific distribution which assumed all the
resource to be invested at the beginning of a project [see Bambi et al. (2012)]. Based
on our analytical findings we have also performed some numerical exercises which
show two interesting things: First, it is possible to rank the investment distributions
in term of their negative effect on economic growth if we exclude the hump-shaped
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distribution; second, the effects of this distribution on economic growth becomes,
as expected, more and more negative as the length of the project increases but such
change is milder than that implied by other distribution (such as the uniform) for some
choices of the project’s length (see Table 2).

Lastly,we showhowdifferent projects’ featuresmodify the transitional dynamics of
the standard AKmodel; again, this analysis generalizes existing results, such as Bambi
et al. (2012), which have always focused on the role of the project’s length in a pure
gestation lag environment (i.e., the investment distribution is aDirac delta δ−d ). In fact,
our analysis unveils how different choices of the project’s length and of the investment
distribution may affect the growth rate and the transitional dynamics of an economy.
Furthermore, we propose several quantitative exercises to assess how different projects
features affect the average andmaximum absolute deviation of the optimal output path
from the balanced growth path as well as its speed of convergence. Most importantly,
we find that economies with projects’ features more detrimental for economic growth
are also characterized by a slower convergence to the balanced growth path. The speed
of convergence differentials can be quantitative relevant, ranging from 24 to 106% for
different investment distributions, assuming a project’s length of 2years; such figures
change to 56 and 252% when the project’s length is 5years.

The rest of the paper is organized as follows. Sect. 2 presents the related theoretical
literature; Sect. 3 explains the model setup with emphasis on the definition of the
flexible multi-period investment projects and the investment distributions. In Sect. 4,
we state the problem formally as an optimal control problem, and we prove some
important preliminary results. In Sect. 5 we explain the methodological procedure
to deal with this kind of problems and we prove the main theoretical result of the
paper. In Sect. 6 we use the results of Sect. 5 to describe the balanced growth paths,
while in Sect. 7, we study the transitional dynamics of the economy. Finally Sect. 8
assesses numerically the quantitative implications of our model in term of economic
growth and transitional dynamics with an emphasis on the speed of convergence and
welfare analysis. All proofs are in “Appendix,” while in the supplementarymaterial the
interesting reader may find the complete procedure used to solve the optimal control
problem.

2 Related literature

Classical economists, such as Jevons (1871, Ch. VII) and Bohn Bawerk von Böhm-
Bawerk (1890), argued that the time required to build new capital is a relevant
dimension to be investigated to understand its role on the accumulation of capital
and, therefore, on the growth rate and business cycle of an economy. Since then a
quite large literature has followed.

Several contributions on economic growth and endogenousfluctuations [see, among
others Kalecki (1935) and Benhabib and Rustichini (1991), example 7, page 332, Asea
and Zak (1999), Ferrara et al. (2014), Bambi (2008) and Bambi et al. (2014)] have
studied analytically the dynamics of economies with pure investment lags and fixed
projects. In a stochastic general equilibrium framework, Kydland and Prescott (1982)
showed that time-to-build may enhance the persistence of fluctuations emerging from
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exogenous random productivity shocks. As explained in the introduction, our paper
differs from this existing literature because we study an endogenous (deterministic)
growth model where the investments are generically distributed over flexible projects.

Interestingly, Lucas (1981) is the contribution which probably shares more similar-
ities with our paper. In fact, Lucas (1981) studies, in a partial equilibrium framework,
the optimal investment policy for a single firm whose objective is to maximize the
discounted flow of profits by choosing the number of projects to initiate taking into
account that the limit of the weighted (Riemann) sum of all the initiated projects
undertaken over a given (finite) time interval generates new capital stock. Therefore,
the capital’s formation equation is an IDDE, closely resembling ours.6 However, there
are three crucial differences with respect to his contribution. The first concerns the
ownership right of capital; in our model, the firms rent capital at each date from the
households and then their profit maximization problem is static, while the households’
problem is dynamic and their saving/investment is spread over the not yet completed
projects. The second difference is the aim of the analysis, since we are interested in
understanding how different distributions and lengths of the projects may affect the
growth rate and transitional dynamics of the economy. The last difference is that the
main analytical results in Lucas (see Lucas (1981), page 43) are obtained by restrict-
ing the analysis to those distributions which allow the author to convert the original
complicated problem to a classical problem in the calculus of variations. On the other
hand, our approach does not require restrictions on the distributions of the investment
over the projects. In this extent, we contribute also from a methodological viewpoint
by providing an approach which can be used to solve a broader class of problems.

Similarly, our paper is related to the stream of literature on optimal dynamic adver-
tising. In their seminal contribution, Nerlove and Arrow (1962) study the optimal
decision of a monopolistic firm which has to decide the stock of advertising goodwill
which maximizes the discounted flow of profits taking into account that advertising
is a costly activity, and it has a positive, but decreasing over time, effect on the rev-
enue. As documented by the survey of Feichtinger et al. (1994), several contributions
have generalized the Arrow and Nerlove’s model to account for two effects: the lag
between the investment in advertising and the corresponding increase in goodwill, and
the distribution of the forgetting time [for more details, Feichtinger et al. (1994), page
200]. The resulting law of motion of the stock of advertising goodwill is similar to the
capital’s formation used in our model. Also in this case, our paper is different in the
assumption on the ownership of the stock variable and on the scope of the analysis.
Moreover, all these contributions [e.g., Pauwels (1977) and Hartl (1984)] characterize
analytically the optimal investment decision for specific distributions using a modifi-
cation of the maximum principle, while in our paper we apply dynamic programming
techniques to find the optimal plan of the economy without imposing any restriction
on the distribution of the investment over the projects.

Finally, this paper belongs to the class of optimal control problems where the state
equation is a functional differential equation. Vintage capital models are, clearly, an
economic example of such problems [see among others Boucekkine et al. (1997)

6 Lucas (1981) represents a generalization of the results in Lucas (1967) to the case of distributed delays.

123



Generically distributed investments on flexible projects… 527

and Feichtinger et al. (2006), and the survey on this literature by Boucekkine et al.
(2011)]. From a methodological viewpoint, most of the papers dealing with this kind
of problems use maximum principle techniques. Recently, starting from Fabbri and
Gozzi (2008), new techniques in dynamic programming have been developed to solve
such problems more explicitly; in particular it is possible to find the closed-loop pol-
icy function and unveiling economic mechanisms which were otherwise hidden [e.g.,
see Bambi et al. (2012) and Boucekkine et al. (2010)]. Optimal control of functional
integro-differential equations has been also tackled in a partial equilibrium frame-
work by Hritonenko and Yatsenko (1996) and Hritonenko and Yatsenko (2005). The
novelty of their contributions is to consider economic problems with no distributed
lags but with the delay parameter (in our case, the gestation lag) to be endogenously
determined.7

3 Model setup

3.1 Description of the flexible multi-period projects

We start with a description of the flexible multi-period projects, or investment plans,
when time is discrete, and thenwemove to its continuous counterpart.8 Let s j,t indicate
a project at time t , j stages from completion.9 Once completed a project generates
new capital:

s1,t = Δkt+1, (1)

no project requires more than d periods to be completed, sd+1,t = 0, and the initial
capital stock, k0, is exogenously given.

Flexibility is introduced by assuming that aggregate investment at time t is allocated
over a menu of d projects:

s1,t , s2,t , . . . sd,t

so that each project completed after j periods, receives an (exogenous) share, a j , of
the aggregate investments, it . Formally, an investment distribution is so defined:

Definition 1 (Investment’s Distribution) Given the (maximal) project’s length d ∈ N,
an investment distribution over the projects is a vector

(a1, a2, . . . , ad) ∈ R
d+ with

d∑

j=1

a j = 1 and a j ≥ 0 ∀ j

7 Application to functional differential equation in anOLG framework has been also investigated by d’Albis
and Augeraud-Veron (2007).
8 The choice of continuous time has no relevant implications on the results found in this paper; we have
decided to study the problem in continuous time because it makes the analytical part more tractable.
9 It is worth noting that there is no relevant change in the analytical derivations and interpretation of the
results if s j,t indicates the group of projects at time t , j-stages from completion.
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where, for every j and t , a j it is the share of the investment it over the projects j
periods from completion.10

Therefore, the dynamics of the projects is described by the following equation:

s j,t = s j+1,t−1 + a j it (2)

Clearly a project of period length d and started at date t can be modified at any date
in the interval (t, t + d). Therefore, all the resources added to a project, even those
at the very last stage, increase the capital stock generated by completing it: This is
the reason why the project is said to be flexible. Flexibility implies also that the total
resources needed to complete a project are not determined at its beginning but only
at the end because a project can be modified at each stage. Therefore, any investment
decision taken at t = 0 influences, according to Eq. 2, all the projects not yet completed
at that date. On the other hand, flexibility does not mean that the planner may decide
how much to invest in each single project since total net investments are distributed
over the existing projects according to the exogenously given distribution, a(·). It is
also worth noting that in the continuous-time counterpart, a completed project leads
instantaneously to new capital, and therefore, the investment decision at that date may
modify its magnitude. Flexibility as just described is fully specified as long as the
initial history of the investment it with t ∈ [−d, 0) and the initial capital stock k0 are
exogenously given; in fact, this information is essential to characterize the projects to
be completed in the interval [0, d).11

3.2 The social planner problem

Webegin this section embedding the project’s structure just described in the centralized
version of an AK model. The social planner solves the following problem:12

max
∫ ∞

0

c(t)1−σ

1 − σ
e−ρtdt, σ > 0, σ �= 1, ρ > 0,

subject to13

10 Observe that the investment distribution can be read as a probabilistic distribution with a j the probability
of investing in a project j stages from completion. Also N indicates as usual the set of all natural numbers
and R+ the set of all nonnegative real numbers.
11 The interested reader is referred to the “Appendix” for a comparison with the case of fixed projects as
used, for example, by Kydland and Prescott.
12 It is worth noting that the case of logarithmic utility can be treated as well.
13 A property holds almost everywhere (a.e.) means, as usual in Measure Theory, that it holds out of a set
of null Lebesgue measure.
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Ak(t) = c(t) + i(t)
{
k′(t) = ∫ 0−d a(r)i(t + r)dr, t ≥ 0,
k(0) = k0, i(s) = i0(s), s ∈ [−d, 0).

(3)

(c1) k(t) > 0, ∀t ≥ 0; (c2) i(t) ≤ Ak(t), for a.e. t ≥ 0. (4)

Observe that A
def= R − δ > 0 is the interest rate (i.e., the rental rate of capital, R,

minus the depreciation rate, δ). The other two parameters introduced, namely σ , and
ρ, indicate the inverse of the elasticity of substitution and the preference discount rate,
respectively. Also the resource constraint indicates that output is used for consumption
and net investment. Net investment does not lead immediately to new capital but
contributes to the development of projects as described by the state equation. In the
problem above, k is the state variable and i the control variable. The constraint (c1)
is a constraint on the state variable imposing the nonnegativity of capital, while the
constraint (c2) is a mixed state-control constraint imposing that net investment cannot
exceed the capital income.We note that in 3, i0(s)must be assigned for a.e. s ∈ [−d, 0)
and it is an initial datum together with k0.14

The fact that the initial datum is a real number k0 together with a function i0
illustrates that the nature of the problem is infinite dimensional. Differently from
Bambi et al. (2012), the state Eq. 3 is a IDDE in the control variable and investment
are reversible, meaning that net investment can be also negative.

4 The control problem: preliminary analysis

In this section, we briefly describe the notation on functional spaces used throughout
the paper and then we give a formal statement of the optimal control problem. A suf-
ficient condition for the finiteness of the value function is also found; this preliminary
result is crucial to solve the problem using the dynamic programming approach.15

4.1 Notation

We adopt the notation proposed by Brezis (2011). L2([−d, 0];R) denotes the space
of all functions from [−d, 0] toR that are Lebesgue measurable and square integrable.
L2
loc(R+;R) denotes the space of all functions from R+ to R that are Lebesgue mea-

surable and square integrable on all bounded intervals. 16 W 1,2([−d, 0];R) (resp.
W 1,2

loc (R+;R)) denotes the space of the functions in L2([−d, 0];R) whose weak first
derivative exists and belongs to L2([−d, 0];R) (L2

loc(R+;R) resp.) too. C0(R+;R)

and C1(R+;R) denote, respectively, the space of continuous and of continuously dif-

14 In this paper we have used “initial datum,” “initial condition” and “past history” as synonymous.
15 This preliminary part would be also necessary to solve this problem using the maximum principle
approach.
16 We recall that, loosely speaking, two functions in L2([−d, 0];R) or in L2loc(R+;R) are equal if they
coincide almost everywhere (a.e.) with respect to the Lebesgue measure.
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ferentiable functions from R+ to R. Similar definitions are given when R is replaced
by R+: simply, in this case, the functions take values in R+.17

4.2 Formal statement of the control problem

Consistently with the Definition 1 of investment distribution, we assume, from now
on, the following.

Assumption 1 The share of investment a(·) is a function in L2([−d, 0];R+) with∫ 0
−d a(r)dr = 1.

We now begin to rewrite our optimal control problem. First of all, we write more
formally the state Eq. 3: Given a control strategy i0 ∈ L2([−d, 0];R) and i ∈
L2
loc(R+;R), we denote by ı̃ : [−d,+∞) → R the function in L2

loc([−d,+∞);R)

defined as follows.

ı̃(s) =
{
i0(s), s ∈ [−d, 0)
i(s), s ∈ [0,+∞).

(5)

For every i0 ∈ L2([−d, 0];R), k0 ∈ R and i ∈ L2
loc(R+;R), there exists a unique

continuously differentiable solution to 3, i.e., a function of class C1(R+;R), which
will be denoted by k(k0,i0),i , verifying pointwise 3 for each t ≥ 0. Using 5, this solution
can be explicitly written in integral form

k(k0,i0),i (t) = k0 +
∫ t

0

∫ 0

−d
a(r)ı̃(s + r)dr ds, t ≥ 0 . (6)

The fact that k(k0,i0),i ∈ C1(R+;R) is due to the continuity of the function s 
→∫ 0
−d a(r)ı̃(s + r)dr .
The functional to maximize is

J ((k0, i0); i) def=
∫ +∞
0

(Ak(k0,i0),i (t) − i(t))1−σ

1 − σ
e−ρtdt, σ > 0, σ �= 1, (7)

under the set

I(k0,i0)
def= {i ∈ L2loc(R+;R) : k(k0,i0),i (t) > 0 ∀t ≥ 0, and i(t) ≤ Ak(k0,i0),i (t) for a.e. t ≥ 0}. (8)

We call (P) the problem of finding an optimal investment strategy i∗ ∈ I(k0,i0) such
that

J ((k0, i0); i∗) = V (k0, i0)
def= sup

i∈I(k0,i0)

J ((k0, i0); i). (9)

17 We recall that functions in W 1,2
loc (R+;R) admit a (unique) continuous representative.

123



Generically distributed investments on flexible projects… 531

where V is the value function. Define now theHilbert space H
def= R×L2([−d, 0];R).

The variable (k0, i0) belongs to one of the following two subsets of H :

H+ def= (0,+∞) × L2([−d, 0];R), H++ def= (0,+∞) × L2([−d, 0];R+),

where the initial capital, k0, is always positive while the initial investment, i0, can be
reversible (H+), or irreversible (H++).18 Nevertheless, it will be convenient to solve
the problem at first assuming (k0, i0) ∈ H and only later restricting its domain of
existence to H+ or H++.

The condition for the value function to be finite depends on the maximal growth
rate of the capital stock at infinity. For this reason we first focus on themaximal growth
rate of capital in the next subsection and on the finiteness of V in Sect. 4.4.

4.3 Maximal growth rate of capital

In this section we prove that the admissible state trajectories (capital paths) admit
an upper bound, denoted by kM(k0,i0), where the asymptotic growth rate of capital is
maximum. To prove the existence of this upper bound, some preliminary results are
necessary.

Equation 6, Assumption 1 and the structure of I(k0,i0) suggest that the highest
accumulation of capital, k, is when consumption is zero and output is fully reinvested
at each date, i.e., i(t) = Ak(t) for all t ≥ 0 (which implies that the constraint (c2) in 4
is binding). Substituting this constraint into the state Eq. 3, we get the corresponding
closed-loop IDDE

⎧
⎨

⎩
k′(t) =

∫ (−d)∨(−t)

−d
a(r)i0(t + r)dr + A

∫ 0

(−d)∨(−t)
a(r)k(t + r)dr , t ≥ 0,

k(0) = k0, i0(s), s ∈ [−d, 0).
(10)

We notice that in 10 the delay is now in the state variable.19

Proposition 2 1. For every (k0, i0) ∈ H, the IDDE 10 has a unique continuously
differentiable solution denoted by kM(k0,i0).

2. Let (k0, i0) ∈ H, i ∈ I(k0,i0). Then k(k0,i0),i (t) ≤ kM(k0,i0)(t) for every t ≥ 0.

3. If kM(k0,i0)(t) > 0 for every t ≥ 0, then I(k0,i0) �= ∅.
Now we want to study the IDDE 10, which becomes, for t ≥ d,

k′(t) = A
∫ 0

−d
a(r)k(t + r)dr. (11)

18 Observe that the inner product in H is defined, given two elements x = (x0, x1) and y = (y0, y1) ∈ H ,

as 〈x, y〉H def= x0y0 + 〈x1, y1〉L2([−d,0];R).
19 Recall that given two real numbers a and b, by a∨b (respectively a∧b) wemeanmax{a, b} (respectively
min{a, b}).
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The characteristic equation of (11) is the transcendental equation

z = A
∫ 0

−d
a(r) erzdr , z ∈ C . (12)

The characteristic equation associated to a linear IDDE have generically an infinite
number of complex conjugate roots [e.g., Diekmann et al. (1995, Ch. 1)]. In the next
proposition we study the properties of the spectrum of roots of (12).

Proposition 3 1. There exists a unique real root ξ of (12). It is simple and belongs
to the interval (0, A).

2. If λ = μ + iν is a complex root of (12) (with ν > 0) then also the complex
conjugate λ̄ = μ − iν is a root of (12). The following inequalities also hold

− Ae−μd < μ < ξ,
ξ

d
< ν < A

(
1 ∨ e−μd

)
(13)

In particular, the real part of all the complex roots is strictly smaller than ξ . The
real number ξ is, therefore, called the maximal root associated to (12).

3. There exists a decreasing real sequence {μ j } and a positive real sequence {ν j }
such that all the complex and non-real roots of (12) are given by the set

{λ j = μ j + iν j , λ̄ j = μ j − iν j } j∈N.

4. Let a1 and a2 be two functions in L2([−d, 0];R+) satisfying Assumption 1 and
let ξ1 and ξ2 be the corresponding maximal roots; then we have that

∫ s

−d
a1(r)dr ≤

∫ s

−d
a2(r)dr, ∀s ∈ [−d, 0] �⇒ ξ1 ≥ ξ2.

Since
∫ 0
−d a1(r)dr = ∫ 0−d a2(r)dr = 1, this is true in particular if a1 is increasing

and a2 is decreasing.
5. Let {a(·, d)}d>0 be a family of distributions, indexed by d > 0, satisfyingAssump-

tion 1 for each d > 0, and such that a(·, ·) ∈ C1(T ;R) where

T := {(x, y) ∈ R
2 : −y ≤ x < 0};

let ξ(d) be the unique real root to the characteristic Eq. 11 associated with the
distribution a(·, d). Then there exists ∂ξ

∂d (d) for every d > 0 and

∂ξ

∂d
(d) =

A
(∫ 0

−d
∂a(r,d)

∂d erξ(d)dr − a(−d, d)e−dξ(d)
)

1 − A
∫ 0
−d a(r, d)rerξ(d)80dr

. (14)

The real root ξ is the maximal long-run growth rate of capital, i.e., the growth rate
of kM(k0,i0). This is formalized in the next proposition.

123



Generically distributed investments on flexible projects… 533

Proposition 4 (Maximal Growth of Capital) Assume (k0, i0) ∈ H. Then for every
ε > 0, we have that the upper bound of all the admissible state trajectories is

kM(k0,i0)(t) = α0e
ξ t + o(e(ξ−ε)t ),

where ξ is the maximal long-run growth rate of capital, α0 is a coefficient depending

on (k0, i0) and limt→+∞
∣∣∣ o(e

(ξ−ε)t )

e(ξ−ε)t

∣∣∣ = 0.

Some considerations on Proposition 4.3 and 4.4 are in order. First, the existence of
an infinite number of complex roots, besides the real root ξ , strictly depends on the
presence of the gestation lag parameter, d. As it will result clear later, their existence
will be crucial for the raising of fluctuations in capital, investment and output. Second,
the root with largest real part, i.e., ξ , is always positive as long as the interest rate,
A, remains strictly positive. Moreover, the maximal growth rate coincides with the
interest rate, i.e., ξ = A, when the gestation lag parameter, d goes to zero; this
confirms what happens in the standard AK model without delays. Intuitively, the
maximal growth rate of capital becomes ξ < A when the projects take time to be
completed because a certain amount of resources remains unproductive till the project
is completed. As a consequence the accumulation of capital will be slower as well as
the maximal growth rate of capital. Moreover, Proposition 4.3 property 4 reveals that
the distribution of the investment over the not yet completed projects plays a crucial
role in the determination of the maximal growth rate of capital. In particular, those
investment distributions characterized by a large allocation of resources in the early
stages of the project (e.g., pure investment lag in production or decreasing exponential
distribution) and very few, if any, in the latest stages imply a lower maximal growth
rate of capital than the one obtained when the resources are mainly invested in the
latest stages of the project (e.g., time to plan). The intuition behind this result is that in
the first case a larger amount of resources remains unproductive for a longer period of
time. More generally, given two investment distributions and the associated maximal
growth rates of capital, Proposition 4 property 4 proves that the economy characterized
by the investment distribution with a larger area behind a(·) in any interval of time
[−d, s] and s ∈ [−d, 0], will have the lower maximal growth rate of capital. This
is indeed true when we compare, for example, an increasing exponential distribution
with a decreasing exponential. It can be also shown numerically that projects of length
d = 3 years and characterized by time to plan such that between a 75 and 95% of the
investment is concentrated in the last 2 years before being completed have a maximal
growth rate of capital higher than in the case of a uniform distribution since property 4
of Proposition 4.3 is indeed respected. This is shown in Fig. 1 where on the left-hand
side the distributions are drawn while in the right-hand side we control numerically
if the area behind the increasing exponential distributions (i.e., time to plan) remains
always lower than the area below the uniform distribution as s changes from −d to 0.
As it emerges clearly from the figure, this is indeed the case, and therefore, property
4 of Proposition 4.3 holds.20 Assuming an interest rate, A, to be equal to 0.077, the

20 The reader can find more details on the functional form of the distributions in Sect. 8.
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Fig. 1 Proposition 3—Property 4 at work looking at different investment’s distributions

maximal growth rate of capital can be computed and it is equal to 0.031 and 0.0304 for
the increasing exponential distributions and to 0.0301 for the uniform distribution.21

Finally, some considerations need to be done on property 5 of Proposition 4.3.
First of all, the sign of ∂ξ

∂d depends on the sign of the numerator in 14, since the
denominator is always positive because h(r) = a(r)rerξ ≤ 0 for any r ∈ [−d, 0].
Therefore, the maximal growth rate of capital can be positively or negatively affected
by an increase in the length of the projects, d, depending on the specification of the
family of investment’s distributions {a(·, d)}d>0 and on its effect on the sign of the
numerator of the expression in 14. However, the most commonly used families of
used investment’s distributions are characterized by ∂ξ

∂d < 0. In particular, it can be
proved that the maximal growth is negatively affected when the family of investment

21 The small difference in the growth rates is because the increasing exponential distribution is quite “close”
to the uniform distribution for the selected parameters. Of course, the difference in the growth rates become
more substantial when we consider different choices of the parameters as reported in Table 2.
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distributions is uniform a(r, d) = Unifd(r) ≡ 1
d 1[−d,0](r) (see Sect. 8), since in this

case22

sgn

(
∂ξ

∂d
(d)

)
= sgn

(
− 1

d

(
ξ(d) + e−dξ(d)

))
= −1.

Similarly, one can show that ∂ξ
∂d is negative when the family investment’s distribu-

tions is exponential, i.e., a(r, d) = Expμ,d(r, d) :=
(

μ

1−e−μd

)
eμr (see again Sect. 8).

In fact, in this case

sgn

(
∂ξ

∂d
(d)

)
= sgn

(
− μ2e−μd

(1 − e−μd)2

∫ 0

−d
e−(ξ(d)+μ)rdr − μ

1 − e−μd
e−(ξ(d)+μ)d

)

= −1 (15)

independently on specifying an increasing exponential distribution (μ > 0, time to
plan) or a decreasing exponential distribution (μ < 0). The intuition behind this result
is that shorter projects imply a faster accumulation of capital and therefore a higher ξ .

All these considerations on the role of the project’s length, d, and the investment’s
distribution, a(·), in the determination of the maximal growth rate of capital, ξ , will
be crucial later because the growth rate of the economy, g, will be proved to depend
on the maximal growth rate of capital.

4.4 Finiteness and properties of the value function

We may now proceed to study the finiteness and properties of the value function, V .
By convention, we have that V (k0, i0) = −∞ if I(k0,i0) = ∅.

Clearly, any choice of k0 ≤ 0 implies that the set of admissible strategies is trivially
empty, so V = −∞ when (k0, i0) ∈ H − H+. On the other hand, we will see that
V > −∞ in H++. Hence, letting

dom(V )
def= {(k0, i0) ∈ H | V (k0, i0) > −∞},

we have that

H++ ⊂ dom(V ) ⊂ H+.

The following results are proved.

Proposition 5 (Finiteness and homogeneity of the value function V )

1. V (k0, i0) < +∞ for every (k0, i0) ∈ H and V (k0, i0) > −∞ for every (k0, i0) ∈
H++. In particular dom(V ) ⊃ H++ and

22 Remember that the sign of a real number, x , is defined as sgn(x) and it is equal to −1, 0, or 1 when x
is lower, equal, or greater than zero, respectively.
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a) if σ ∈ (0, 1) and ξ(1 − σ) < ρ, then 0 ≤ V (k0, i0) < +∞ for every
(k0, i0) ∈ H++;

b) If σ > 1, then −∞ < V (k0, i0) ≤ 0 for every (k0, i0) ∈ H++.
2. dom(V ) is a cone of H and V is homogeneous of degree (1 − σ) therein:

V (λ(k0, i0)) = λ1−σV (k0, i0), ∀λ > 0.

3. V is concave on dom(V ).

Therefore, the value function is finite as long as the following assumption, which
will be a standing assumption from here on, holds true.

Assumption 6 The parameters are set such as ρ > ξ(1 − σ) when σ ∈ (0, 1).

Another significant assumption, to bemade to guarantee a positive economic growth
rate, i.e., g > 0, is the following.

Assumption 7 The parameters are set such as ξ > ρ.

It is worth to be noticed that when both Assumptions 7 and 6 hold, this means
that we are considering the case ξ ∈ (ρ,

ρ
1−σ

), when σ ∈ (0, 1), or the case ξ ∈
(ρ,+∞), when σ ∈ (1,+∞). Interestingly, these two restrictions have a counterpart
in the standard AK model. In fact, in the case without delay we have ξ = A and
then Assumption 6 leads to the usual condition for bounded utility A <

ρ
1−σ

, while
Assumption 7 becomes A > ρ, which is the usual condition for the interest rate to
be higher than the intertemporal discount factor and, therefore, to have a positive
economic growth. Differently from the standard AK model, A > ρ is no more a
sufficient condition to guarantee positive growthbecause now the length of the projects,
d, and the investment distribution, a(·) create a wedge between the maximal growth
rate of capital, ξ , and the interest rate, A. In particular, Proposition 4.3 shows that
A > ξ implying that any form of time to build is, not surprisingly, detrimental for the
economic growth.

5 Solution of the optimal control problem

5.1 Methodology

Our problem (P) is an optimal control problem with state constraints where the state
Eq. 3 is an integral differential distributed lags equation (IDDE). This kind of prob-
lems is usually difficult to solve for two reasons. First, they are intrinsically infinite
dimensional due to the fact that the solution of the state equation (such as Eq. 3) can be
found only specifying an initial condition which is not a point in Rn but a function, in
our case, the initial capital stock and the past history of the investment. Second, there
are state/control inequality constraints, in our case (c1) and (c2) in the social planner
problem 4.

The dynamic programming approach can be used successfully to solve these prob-
lems if a “regular” (i.e., differentiable in a suitable sense) solution of the associated
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Hamilton–Jacobi–Bellman (HJB) equation can be found and if such solution is indeed
the value function V for, at least, a subset of initial data. The first contribution in the
economic literature which successfully dealt with an infinite dimensional optimal
control problem with state constraint was Fabbri and Gozzi (2008), while other more
recent contributions are Bambi et al. (2012) and Boucekkine et al. (2010).

Remark 1 The presence of a generic delay structure in the state equation and the
absence of the irreversibility constraint make our problem much more difficult than
those faced in previous contributions. The main problem does not concern the solu-
tion of the HJB equation in infinite dimension (which can be obtained similarly to the
aforementioned references), but rather the proof of the admissibility of closed-loop
candidate optimal controls. Such a problem is solved by finding a suitable good “nat-
ural” class of initial data (the set S defined below)—new in the literature—and through
a series of highly technical and not trivial results, which are the real new contribution
of this paper from a mathematical viewpoint. We are referring to the results contained
in Subsections A and B.6 in the Supplementary Material.

For the reasons described in the remark above, we have developed a specific strategy
to solve problem (P) which is fully described in “Appendix B” of the supplementary
materials. This strategy can be summarized in the following steps:

1. We rewrite (P) as an equivalent infinite dimensional problem (PH) (with value
function V H ) in order to apply the dynamic programming approach. This is done
in Section B.2 of online supplementary material.

2. We write the HJB equation associated to (PH) and we find an explicit solution, v.
This is done in Section B.3 of online supplementary material.

3. We show that the explicit solution, v, is defined on a larger set of initial data than
the one of V H and, through a verification theorem, that v is equal to the value
function Ṽ H of another control problem (that we call (P̃H)) which is easier to
solve. This is addressed in Section B.4 of online supplementary material.

4. We perform the inverse path with respect to item 1 of the present list and define a
problem (P̃) which is the optimal control problem with delay (in dimension one)
equivalent to (P̃H). Then we derive its solution through the one found for (P̃H).
Section B.5 of online supplementary material is dedicated to this, in particular
Proposition 19.

5. We show, through a delicate analysis of the asymptotic behavior of admissible
trajectories that it exists an open set of initial data, S, where problem (P) and (P̃)

are equivalent. Section B.5 of online supplementary material is devoted to prove
this, while Theorem 8 in the main text uses such result to prove the main analytical
findings of the paper.

Most importantly, these steps can be applied to solve not only our problem but
also other relevant economic problems such as those on growth or optimal advertising
mentioned in the review of the literature when the state equation is an IDDE.

Interestingly enough, the dynamic programming approach is used instead of a more
“familiar” Pontryagin maximum principle for two reasons: first, there is no result in
the literature on the maximum principle which can be directly applied to our problem;
second, even in similar cases where some results exist [see, e.g., Boucekkine et al.
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(2005)], it is not possible to find explicitly the optimal strategies, e.g., the value of
C0

(k0,i0)
in (18).

In the next subsection we present the main result of our optimal control problem
which will be used later to study the properties of the optimal paths.

5.2 The main result

We want to address the question of solving (P) at least on the following subset of
initial data (i.e., initial stock of capital and initial history of the investment):

S def=
{
(k0, i0) ∈ H++ : i0 ∈ W 1,2([−d, 0);R), i ′0(t) − gi0(t) ≥ 0

for a.e. t ∈ [−d, 0),
∫ 0

−d
a(s)i0(s)ds − gk0 ≥ 0, Ak0 − C0

(k0,i0) ≥ 0
}

⊂ H++. (16)

where

g
def= ξ − ρ

σ
, (17)

C0
(k0,i0)

def= ν

(
k0 +

∫ 0

−d
eξr
(∫ r

−d
a(s)i0(s − r)ds

)
dr

)
, (18)

and

ν
def= (ξ − g)

A

ξ
. (19)

Observe that ν > 0 by Assumption 6 and g > 0 if Assumption 7 holds. The set S,
for which we will be able to fully solve the problem, is non-empty as long as g > 0—
see Proposition 9—hence as long as Assumption 7 holds. For this reason, such an
assumption will hold from now on. It is also worth noting that S is not, a priori, the
largest set of initial data where it is possible to solve the model: We are only claiming
that we are able to do it for this (quite meaningful) set of initial data. Furthermore, we
notice that taking the initial data in this set excludes an initial history of disinvestments;
on the other hand, the possibility of reversible (negative) investment is not precluded
for t > 0. As matter of fact, however, the optimal investment starting from S will be
proved to remain always positive.

We have the following explicit expression of the value function and complete char-
acterization of optimal paths when the initial data belong to S.

Theorem 8 (Value function and optimal paths) Let (k0, i0) ∈ S. Then

V (k0, i0)=
(

(ξ − g)
A

ξ

)−σ A

ξ(1 − σ)

(
k0+

∫ 0

−d
eξr
(∫ r

−d
a(s)i0(s − r)ds

)
dr

)1−σ

.
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Moreover, the optimal paths of the main aggregate variables are characterized as
follows.

1. The optimal capital path, k∗
(k0,i0)

, is the unique continuously differentiable solution
of the IDDE:

⎧
⎪⎨

⎪⎩

k′(t) = ∫ (−d)∨(−t)
−d a(r)i0(t + r)dr

+A
∫ 0
(−d)∨(−t) a(r)

(
k(t + r) − C0

(k0,i0)
eg(t+r)

)
dr, t ≥ 0,

k(0) = k0, i0(s), s ∈ [−d, 0).

(20)

2. The optimal investment path, i∗(k0,i0), is the unique continuously differentiable solu-
tion of the IDDE23

{
i ′(t) = A

∫ 0
−d a(r)i(t + r)dr − gC0

(k0,i0)
egt , t ≥ 0

i(0) = Ak0 − C0
(k0,i0)

, i(s) = i0(s), s ∈ [−d, 0).
(21)

3. The optimal consumption path, c∗
(k0,i0)

, is purely exponential:

c∗
(k0,i0)(t) = Ak∗

(k0,i0)(t) − i∗(k0,i0)(t) = C0
(k0,i0)e

gt , t ≥ 0. (22)

Some considerations are useful before moving to the next section. First, optimal
detrended consumption is always constant independently on the choice of the project’s
structure and of the initial conditions. However, when the projects takes time to be
completed, optimal detrended capital and investment will not remain constant for any
initial datum as in the standard AK model.

Moreover, considering a family {a(·, d)}d>0 of investment’s distributions as in
Proposition 3 (property 5) and indicating by C0

(k0,i0)
(d) the associated optimal initial

consumption rate and by ξ(d) the associated real root of the characteristic Eq. 11, we
may consider the dependence of the variation of the latter with respect to d, that is
∂C0

(k0,i0)

∂d (d). Indeed,

∂C0
(k0,i0)

∂d
(d) =

∫ 0

−d
eξ(d)r

(∫ r

−d

∂a

∂d
(r, d)i0(s − r)ds

)
dr

+
∫ 0

−d
eξ(d)rξ ′(d)

(∫ r

−d
a(s, d)i0(s − r)ds

)
dr

−
∫ 0

−d
eξ(d)r a(−d, d)i0(−d − r)dr.

23 The existence and uniqueness of solutions to such DDE follows from Theorem 2.12 in Diekmann et al.
(1995).
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Considering a uniform investment’s distribution, a(r, d) = Unifd(r) ≡ 1
d 1[−d,0](r)

(see Sect. 8), the latter reduces to

∂C0
(k0,i0)

∂d
(d) = − 1

d2

∫ 0

−d
eξ(d)r

(∫ r

−d
i0(s − r)ds

)
dr

+
∫ 0

−d
eξ(d)rξ ′(d)

(∫ r

−d
i0(s − r)ds

)
dr

−
∫ 0

−d
eξ(d)r i0(−d − r)dr. (23)

Hence, if (k0, i0) ∈ S (thus, i0 ≥ 0), from 4.3 we get
∂C0

(k0,i0)

∂d (d) < 0.
Similarly, when we consider exponential investment’s distributions, i.e., a(r, d) =
Expμ,d(r, d) :=

(
μ

1−e−μd

)
eμr , from 23 to 15, we get

∂C0
(k0,i0)

∂d (d) < 0; this result

holds for both the decreasing exponential distribution (μ < 0) and for the increasing
exponential (μ > 0).

Therefore, in these cases, the initial consumption will decrease when the project
length decreases and the investment’s distribution is one of those commonly used
(e.g., uniform distribution, exponential distribution, etc.) because we have shown after
Proposition 4.3 that the maximal growth rate of capital will increase. Intuitively, the
decrease in the project length makes the investment in the projects more attractive
because the return on an investment today will be paid earlier; therefore, the represen-
tative agent has an incentive to invest more; since output is predetermined, this can be
achieved only with a reduction in his initial consumption.

In the next two sections we will provide conditions under which the economy
is either immediately on a balanced growth path or is characterized by transitional
dynamics.

6 Balanced growth paths

A balanced growth path (BGP) is any optimal path such that k∗, i∗, c∗ are purely
exponential functions with the same growth rate. In this section we show that the set
of initial conditions consistent with a BGP solution is not empty. To do that, consider
the couple of initial data Eb defined as follows:

Eb=(k0, i0), where: i0(s)
def= begs, for a.e. s ∈ [−d, 0); k0

def= b

g

∫ 0

−d
a(s)egsds,

(24)

where b > 0 is an exogenously given constant, describing the past history of invest-
ments of exponential form, with i0(0−) = b. In the next proposition, we prove that the
initial data Eb, where b > 0, belong to S under the restriction on parameters imposed
in Assumption 7.
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Proposition 9 Eb ∈ S for every b > 0.

Moreover, the following result can be proved.

Proposition 10 The optimal capital, investment, and consumption paths are purely
exponential if and only if (k0, i0) = Eb for some b > 0. More precisely we have

k∗
(k0,i0)(t) = k0e

gt , i∗(k0,i0)(t) = begt , c∗
(k0,i0)(t) = C0

(k0,i0)e
gt , t ≥ 0, (25)

where C0
(k0,i0)

is the positive constant given in (18), which in the present case becomes

C0
(k0,i0) = Ak0 − b. (26)

The growth rate of the economy, g, was indeed found to be equal to ξ−ρ
σ

. Therefore,
a change in the project features modifies it indirectly through the maximal growth rate
ξ . Therefore, all the findings about the mechanisms which may affect ξ discussed in
Sect. 4.3 can be now used. In particular, it is immediate to observe that ∂g

∂d and ∂ξ
∂d have

the same sign; furthermore, a change in the investment distribution a(·) consistent
with Proposition 4.3, property 4, (see also Fig. 1) implies a change of ξ and therefore
of g.

As we have seen, the optimal consumption policy is always exponential. We may
compare how a change in the specification of the investment’s distribution over the
projects affects the initial optimal consumption rate when the initial paths lie in Eb.
Indeed, by 26, in this case we have

C0
(k0,i0) = k0

(
A − g

∫ 0
−d a(s)egsds

)
.

In the case of exponential distributions, Expμ,d(r) :=
(

μ

1−e−μd

)
eμr , straightfor-

ward computations and Proposition 3, Property 4, yield that the corresponding initial
consumption C0

(k0,i0)
(μ) is increasing in μ.

This result is illustrated in Fig. 2, where a decreasing and increasing exponential
distributions are compared. By moving from the decreasing to the increasing expo-
nential distribution, the economy experiences a lower initial consumption, but a faster
economic growth. Intuitively, this result depends on the fact that investments on a
time-to-plan project is seen more attractive, since the amount of resources are unused
for a shorter period of time once invested into a time-to-plan project.

Moreover, Proposition 10 tells us that the economy is on a BGP from the very
beginning, i.e., from t ≥ 0, if and only if the initial history of the investment has
already a purely exponential form i0(s) = begs , where s ∈ [−d, 0), and the initial
capital k0 is exactly b

g

∫ 0
−d a(s)egsds. Differently from the AK model with d = 0, the

economy is on a BGP only for a very specific choice of the initial condition of the state
variable. In fact, an economy with a past history of the investment i0(s) = begs , but
with a capital stock different from b

g

∫ 0
−d a(s)egsds and still in the feasible set of initial
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Fig. 2 From decreasing to increasing exponential distributions (left) and associated consumption optimal
paths (right; expressed in log) along balanced growth paths (see Sect. 6)

condition S, will not be on a BGP from t = 0 on. Under these initial conditions, the
optimal path of investment and capital are no more purely exponential and converge
over time to the balanced growth path. Therefore, the economy displays transitional
dynamics. The next section is dedicated to find the explicit form of these optimal paths
and to prove that an economy which, generically, is not on a BGP from t = 0 on,
meaning that the initial conditions are in S but are not Eb, will converge to it over time
by damping fluctuations.

7 Transitional dynamics

In this section we characterize optimal trajectories besides the balanced growth paths
just studied. From now on we assume the following:

Assumption 11 All the complex roots of the characteristic Eq. 12
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(i) have real part smaller than g and
(ii) are simple.

It is indeed theoretically viable to provide restrictions on parameters and on the
distribution a(·) such that (i) and (ii) hold. However, we do not address this issue
analytically but rather numerically by checking Assumption 11—case by case—in
Sect. 8. Also, (ii) occurs generically and, while not essential, it is useful to simplify
the proof of Proposition 12. Taking into account Theorem 5.2, we can now prove the
following result.

Proposition 12 Consider an initial datum (k0, i0) ∈ S. Then the optimal paths are:

c∗
(k0,i0)(t) = C0

(k0,i0)e
gt , t ≥ 0, (27)

k∗
(k0,i0)(t) = 1

A
(i∗(k0,i0)(t) + c∗

(k0,i0)(t)), t ≥ 0, (28)

i∗(k0,i0)(t) =
⎛

⎝αξC0
(k0,i0)

g

ξ − g
+

∞∑

j=1

p jb j

⎞

⎠ egt

︸ ︷︷ ︸
trend component

+
∞∑

j=1

p j e
λ j t a j

︸ ︷︷ ︸
oscillatory component

, t ≥ 0, (29)

where αξ > 0 is the real constant in 48, p j is the eigenvector associated with the
eigenvalue λ j while a j and b j are the complex numbers

a j
def= AΓ j (k0, i0) − C0

(k0,i0) + gC0
(k0,i0)

g − λ j
, b j

def= −gC0
(k0,i0)

g − λ j
, (30)

and

Γ j (k0, i0) := k0 +
∫ 0

−d
eλ j r

∫ r

−d
a(s)i0(s − r)dsdr.

Moreover, defining for t ≥ 0 the optimal detrended paths as x∗
(k0,i0),g

(t)
def=

e−gt x∗
(k0,i0)

(t) with x = k, i, c,
we have that the optimal detrended consumption path is constant and equal to

C0
(k0,i0)

for (27), while detrended capital and investment converges by damping oscil-
lations respectively to the positive constants

kl = C0
(k0,i0)

∫ 0
−d e

gra(r)dr

A
∫ 0
−d e

gra(r)dr − g
, and il = gC0

(k0,i0)

A
∫ 0
−d e

gra(r)dr − g
. (31)

Several consideration can be done. First, unless the initial conditions (k0, i0) ∈
Eb, the economy will not be on the BGP till the very beginning. In fact, some of
the aggregate variables are now characterized by transitional dynamics: Detrended
capital, investment, and output will indeed converge over time to a BGP by damping
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fluctuations since g > λ j for any j > 1 by Assumption 7.1 (i). On the other hand,
detrended consumption remains always constant even during the transition of the
other variables. Of course, this result is coherent with the assumption of risk adverse
agents (i.e., concavity in the utility function) who prefer smooth consumption profile
to profile alternating periods of high and low consumption. Interestingly, the agents
are able in our model to smooth perfectly consumption over time (i.e., detrended
consumption remains constant) by offsetting any deviation from theBGPwith changes
in their investment decision. This result holds for any specification of the projects’
features. Furthermore, the perfect consumption smoothing can be found also in other
models with time to build where the technology is not necessarily linear as shown
by Bambi and Gori (2014), Proposition 2. Perfect consumption smoothing emerges
independently of the projects features. This does not mean welfare equalization across
different investment distributions and/or projects’ lengths. In fact, these two features
affect non-trivially the welfare by modifying ξ , g, c∗(0) and therefore the economies
will converge to different BGPs. Furthermore, we have already appreciated in Sect. 6
and Fig. 2 that ξ and g may go down while c∗(0) may go up when we modify d and
a(·). These opposite variations in the growth rate and the initial optimal consumption
level make the welfare evaluation worth to be studied.24

Second, the amplitude and length of the fluctuations strictly depend on the projects’
features. In particular, the project’s length, d, and the investment’s distribution, a(·),
play a crucial role in the shape of the spectrum of roots of the characteristic Eq. (12).
Therefore, the value of the roots λ j and of the associated eigenvectors, p j , with
j ∈ (1,∞) depend on them. It is analytically very difficult to provide any insight
into this relation, and for this reason, we have used Fig. 3 to illustrate how different is
the shape of the damping fluctuations when we consider economies which are exactly
identical but the investment distributions over the projects. In particular, the figure on
the left show the different optimal output path while the figure on the right is simply
a zoom to emphasize the differences in the damping fluctuations. To compare more
effectively the differences in the transitional dynamics, we have translated the optimal
paths such that all of them converge to the same constant yL . Further quantitative
considerations on the functional form of the investment distributions used to draw such
a figure as well as on the deviations from the BGP and on the speed of convergence
are postponed in the next Section.

From this proposition and from Fig. 3, it clearly emerges that economies with the
same past history of investment and initial stock of capital behave very differently if
they differ in the projects’ structure. In fact, different investment distributions over the
projects and different projects’ length across economies determine different asymp-
totic growth rates, different balance growth paths and different transitional dynamics.

Finally, we conclude this section with a comment on the stability of the optimal
paths. This feature is not easy to address in its full generality; in fact, our analysis
describes the dynamic behavior of solutions starting from the set S, which is not a nice
set in the our framework Hilbert space H of Subsection B.2 (indeed, it has empty inte-
rior part). Nevertheless, we can assert that starting from close points (k0, i0), (k0, i0)

24 A similar consideration has been recently done by Boucekkine et al. (2015).
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0 d 2d
Time

Uniform distribution

Exponential increasing distribution μ=0.3466

Exponential decreasing distribution μ=1.197

Exponential increasing distribution μ=1.197

Exponential decreasing distribution μ=0.3466

y
L

3 d 2d
Time

Uniform distribution

Exponential increasing distribution μ=0.3466

Exponential decreasing distribution μ=1.197

Exponential increasing distribution μ=1.197

Exponential decreasing distribution μ=0.3466

y
L

Fig. 3 Optimal detrended paths (on the right: zoom on the vertical axis of the left figure) for different
distributions with d = 5 (see Sect. 8)

of the set S (in the sense that Q(k0, i0) is close to Q(k0, i0) with respect to the norm
of the space H , see Subsection B.2), the (detrended) associated optimal paths remain
close. This is not difficult to see by using the explicit expressions of Proposition 12.

8 Quantitative analysis

In this section, we perform two numerical exercises. The first evaluates how much the
growth rate, g, is affected by different assumptions on the projects’ structure while
keeping all the other parameters unchanged. In fact, the projects may be different
in length and in term of the investment distributions as defined in (the continuous-
time counterpart of) Definition 1; the relevance of these two features in affecting the
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maximal growth rate of capital, ξ , and therefore the growth rate, g, was indeed proved
analytically in Propositions 3 and 17, but their quantitative relevance is assessed in
this first exercise.

The second numerical exercise consists in studying how the transitional dynamics
are affected by different choices of the projects’ length and of the investment’s dis-
tribution over the projects when the initial condition (k0, i0) ∈ S but different from
Eb, i.e., the economy does not begin on its BGP. To do this assessment, we specify
the parameters as in the first numerical exercise, but we also add an initial exogenous
shock which makes the economy deviate from its BGP by reducing the initial capital
stock of ten percentage points. As observed in Proposition 12 the economy converges
to the BGP by damping fluctuations; therefore, our objective is to quantitatively eval-
uate the speed of convergence as well as the average and maximum absolute deviation
of output from the BGP.

Both the numerical exercises are performed looking at a range of values for d,
between 2 and 5years and considering the following investment’s distributions over
the projects:

1. Dirac’s Delta concentrated at −d, i.e., pure gestation lag in investment; when
d = 0 this corresponds to no time to build. In this case d is the only parameter to
choose.

2. Uniformdistribution [e.g.,Kydland andPrescott (1982), amongothers], i.e.,a(·) =
Unifd(·) ≡ 1

d 1[−d,0]. Also here the only parameter is d.

3. Exponential distribution, i.e., a(·)=Expμ,d(·), where Expμ,d(r) :=
(

μ

1−e−μd

)
eμr ,

r ∈ [−d, 0]. Then we have a decreasing exponential distribution [e.g., Peeters
(1998)] or an increasing exponential distribution [e.g., Koeva (2000)] whenμ < 0
or μ > 0 respectively. Clearly there are now two parameters to be chosen: μ

and d. In all these cases we have properly set the parameter μ to reproduce a
specific investment distribution over the projects: for example, in the case of a
decreasing exponential distribution, μ was set equal to either −0.3466 or −1.197
to have, respectively, a 75 and 95% of the investment concentrated on the projects
which need more than 2 years to be completed when the full length of a project is
3years. Similarly, when the increasing exponential distribution has been chosen,
we have set μ equal to either 0.3466 or 1.197 to have, respectively, a 75 and
95% of the investment concentrated on the projects which need <2 years to be
completed when the full length of a project is 3years. Moreover, we have adjusted
accordingly the distribution of the investment over the projects when the projects’
lengths is different from 3years, in the sense that whenever the projects’ lengths is
different from 3years, we move up or down the considered distribution such that
Assumption 1 still holds.

4. U-shaped [e.g., Peeters (1998) and Zhou (2000)] and hump-shaped [e.g., Altug
(1989) and Palm et al. (1994)] are modeled in this continuous-time context using
a parabola: a(·) = Pα,β,d(·), where Pα,β,d(r) = αr2 + βr + γ , with r ∈ [−d, 0].
Here the parameters are α, β, γ and d. The U shape or the hump shape is obtained,
respectively, for α > 0 and α < 0, while γ has been chosen in order to satisfy
the constraint

∫ 0
−d Pα,β,d(r)dr = 1. In the U-shaped distribution the parameters

have been set to have 50% of the investment allocated to the projects which need
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Table 1 Parameters for U (hump)-shaped distributions

d = 2 d = 3 d = 4 d = 5

α 1.3585 (−0.4898) 0.2924 (−0.1667) 0.1807 (−0.0807) 0.0653 (−0.0474)

β 2.8075 (−1.0041) 0.9128 (−0.5313) 0.7156 (−0.3185) 0.3654 (−0.2338)

γ 1.4962 (0.1490) 0.8254 (0.0365) 0.7174 (0.0435) 0.5693 (0.0104)

more than 40% of the period to be completed. In the hump-shaped distribution
the parameters have been set to have 70% of the investment concentrated on
the projects requiring <40% of the period to be completed. The values of these
parameters are reported in Table 1.25

Finally, all the numerical computations have been done usingMATLAB; the section
on output volatility has been performed using DDE-BIFTOOL, a MATLAB package
developed by Engelborghs and Roose (1999).

Long-Run Economic Growth

The parameters to be decided to perform the first numerical exercise are A, ρ, σ , and
those in the investment’s distribution. All these parameters enter in the characteristic
Eq. 12 and then are relevant to determine the growth rate of the economy, g, as proved
in Propositions 3 and 17.We start considering an economywithout time to build—a(·)
is a Dirac’s Delta in 0—and we set ρ = 0.017 and 1

σ
= 0.5 which are quite standard

and non-controversial values for the preference discount rate and the instantaneous
intertemporal elasticity of substitution. Within this setting (no time-to-build), a choice
of the interest rate equal to R − δ = 0.077 with δ = 0.10 implies an annual growth
rate g = 0.03. Then, we consider how much the growth rate is affected by different
choices of the delay parameter, d, and of the investment’s distribution, a(·) while
keeping unchanged all the other parameters. These values of the growth rates for the
different specifications of the projects’ features are reported in Table 2.

Themaximumgrowth rate differentials are observedwhenwe compare an economy
with pure investment lags in production—a(·) is a Dirac’s Delta in −d—with another
economy characterized by time-to-plan—a(·) is increasing exponential distribution
with μ = 1.197.26 According to our computations the growth differential, due to the
different resource distributions over the projects, is around 12.5% when the length
of the project is 2years. Moreover, such differential enlarges to 21.45% when the
project’s length changes to 3years. This sharp increase in the growth differential can
be immediately explained: The growth rate of the economy characterized by time-to-

25 Our choices are consistent with the values appearing Peeters (1998) and Zhou (2000), for example, the
Netherlands for hump-shaped and USA for U-shaped distribution and d = 2, 3.
26 Intuitively the increasing exponential distribution is the distribution “closest” to the Dirac’s Delta in 0
(i.e., no time-to-build case), and it indeed converges to it as the resources tends to be concentrated in the
last stage of the project. This is the reason why the highest growth rate differential is observed when we
compare the time-to-plan economy with a pure investment lag economy.
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Table 2 Growth rate (%) on the balanced growth path

Investment’s distributions d = 2 (%) d = 3 (%) d = 4 (%) d = 5 (%)

Dirac’s delta in 0 3 3 3 3

Increasing exponential (μ = 1.197) 2.83 2.8 2.79 2.78

Increasing exponential (μ = 0.3466) 2.76 2.68 2.62 2.57

U-shaped 2.75 2.65 2.52 2.52

Uniform 2.74 2.63 2.52 2.43

Hump-shaped 2.73 2.61 2.53 2.43

Decreasing exponential (μ = −0.3466) 2.71 2.57 2.44 2.31

Decreasing exponential (μ = −1.197) 2.65 2.47 2.3 2.15

Dirac’s delta in −d 2.515 2.33 2.17 2.04

plan is not affected significantly (just around−0.03 percentage points) by the increase
in the length of the project because the largest amount of the resources are concentrated
on the last stages; on the other hand, in the pure investment lag case all the resources
are concentrated at the beginning of the project and, therefore, a larger amount of
resources remains “unproductive” for a longer period of time when the length, d,
increases, with a larger negative effect on the growth rate of the economy (around
−0.2 percentage points). The growth differentials for the case of d = 4 and d = 5
years are also computed, and they are respectively the 28.6% and the 36.3%.

Interestingly enough, a comparison of the growth rates when the investment’s dis-
tribution is hump shaped and when it is uniform, reveals that the first distribution pins
down higher growth rates only when the projects’ length is lower or equal than 3years.
Keeping aside this case, a ranking of the distributions in term of the growth rates can
be done: Given A, ρ, σ , and d, the increasing exponential distribution is character-
ized by the highest growth rates, followed by the U-shaped distribution, the uniform
distribution and the hump-shaped distribution to end with the decreasing exponentials
and the Dirac’s delta in −d, the latter characterized by the lowest growth rate. The
robustness of this ranking has been checked for different choices of the parameters σ ,
ρ, and r .

Transitional Dynamics

To study the transitional dynamics from a quantitative viewpoint we proceed as fol-
lows. We consider economies which are identical but the project characteristics. Each
of them is assumed to be on its respective balanced growth path, meaning that the
initial conditions are exactly Eb where b = 1 without loss of generality. At t = 0, we
introduce an exogenous shock which makes each economy deviate from its balanced
growth path by destroying the 10% of the initial capital. Under our parametrization
the past history of the investment and the capital stock after the negative shock are
still in the set S and therefore we know from Proposition 12 that each economy will
converge by damping fluctuations to its balanced growth path. The output dynamics
is described quatitatively by computing the maximum and average absolute devia-
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Table 3 Average and maximum absolute deviation from the BGP

Investment’s distributions d = 2 d = 3 d = 4 d = 5

Dirac’s delta in 0 0 0 0 0

Incr. Exp. (μ = 1.197) 0.3% (0.5%) 0.5% (0.6%) 0.55% (0.6%) 0.6% (0.65%)

Incr. Exp. (μ = 0.3466) 0.5% (0.7%) 0.95% (0.95%) 1.4% (1.1%) 1.85% (1.3%)

Hump-shaped 0.59% (0.8%) 1.22% (1.18%) 1.8% (1.44%) 2.6% (1.74%)

Uniform 0.6% (0.8%) 1.22% (1.12%) 1.97% (1.44%) 3% (1.75%)

U-shaped 0.65% (0.72%) 1.27% (1.05%) 2.36% (1.05%) 2.6% (1.45%)

Decr. Exp. (μ = −0.3466) 0.75% (0.86%) 1.51% (1.3%) 2.58% (1.73%) 3.96% (2.16%)

Decr. Exp. (μ = −1.197) 0.9% (1%) 2.1% (1.6%) 3.7% (2.2%) 5.86% (2.75%)

Dirac’s delta in −d 1.6% (1.5%) 3.3% (2%) 5.5% (2.7%) 8% (3.2%)

Table 4 Speed of convergence
to the BGP

Investment’s distributions d = 2 d = 3 d = 4 d = 5

Dirac’s delta in 0 ∞ ∞ ∞ ∞
Incr. Exp. (μ = 1.197) 3.69 2.61 2.13 1.87

Incr. Exp. (μ = 0.3466) 3.14 2.01 1.48 1.18

Hump-shaped 3.14 1.91 1.43 1.11

Uniform 2.96 1.81 1.28 0.97

Decr. Exp. (μ = −0.3466) 2.79 1.66 1.13 0.83

U-shaped 2.63 1.65 1.08 0.93

Decr. Exp. (μ = −1.197) 2.49 1.41 0.92 0.66

Dirac’s delta in −d 1.79 1.05 0.71 0.53

tion from the BGP and the speed of convergence.27 These three indicators have been
computed by looking respectively at the following quantities28

sup
t∈[0,+∞)

|k∗
(k0,i0),g

(t) − klegt |
klegt

,

∫ +∞

0

|k∗
(k0,i0),g

(t) − klegt |
klegt

dt

and |Re(λM ) − g|. (32)

These three indicators have been computed for different investment’s distributions
a(·), and projects’ length, d, and reported in Table 3 (the maximum and average
absolute deviation from the BGP) and Table 4 (speed of convergence). In Table 3,

27 Consistently with Ortigueira and Santos (1997) and Bambi et al. (2012) the speed of convergence has
been measured as the absolute value of the difference between the growth rate of the economy and the
complex eigenvalue having the highest real part. In fact, this is the term which drives the convergence as
clearly emerges from the proof of Proposition 12.
28 The first two values are computed in MATLAB, so their values in Table 3 are in truth finite approxima-
tions, i.e., a max over a finite period [0, T ] instead of a sup over [0, +∞) and a finite sum instead of an
integral.
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the values outside (inside) the parenthesis refer to the average (maximum) devi-
ation. Output fluctuations are significant if characterized by a high maximum and
absolute deviation and a low speed of convergence. Keeping aside the U-shaped and
the hump-shaped distributions, we observe that the economy with the projects’ invest-
ment distribution leading to higher growth rates are also those with more pronounced
deviations from the balanced growth path. In particular, the same ranking on the invest-
ment distributions proposed for the growth rates, holds when we rank the economies
from those with lowest to those with highest output volatility.

Most importantly, large differences in the speed of convergence to the BGP can
be appreciated looking at Table 4. Comparing the speed of convergence between two
economies with different distributions, it emerges that those characterized by project
features which are detrimental for the economic growth are also characterized by a
slower speed of convergence to the BGP. Therefore, not only these economies will
asymptotically grow at a lower rate but will experience longer transitional dynamics.

9 Conclusion

In this paper we have used a dynamic programming approach to assess how the invest-
ment project’s features may affect the growth rate and transitional dynamics of an
endogenous growth model. The analytical results are used in the quantitative analysis
to evaluate the changes in output growth and output dynamics due to different choices
of the project’s length and of the investment distributions over the projects. Relatively
small differences in these features may induce significant differences in output growth
and in the speed of convergence toward the balanced growth path even when all the
other parameters of the economy are kept the same.
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Appendix

Comparison with the Kydland and Prescott’s specification

Flexibility is indeed the first main departure of our contribution from the Kydland and
Prescott’s specification. In fact, in their framework, the projects dynamics is given
by s j,t = s j+1,t−1 and aggregate investment is equal to it = ∑d

j=1 b j s j,t with
∑d

j=1 b j = 1 and b j ≥ 0 for all j . Moreover, the exogenously given initial con-
ditions are k0 and s j,0, with j ∈ [1, d − 1] which, together with 1, imply that Δkd− j
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are predetermined. Focusing on the case d = 3 and t = 0 we have that

i0 = b1s1,0 + b2s2,0 + b3s3,0 or
1

b3

⎛

⎜⎝i0 − b1Δk1 − b2Δk2︸ ︷︷ ︸
exog.given

⎞

⎟⎠ = Δk3

and, therefore, i0 determines completely s3,0 and then k3. For the same reason, it
follows that

i1 ↑ and/ori2 ↑ ⇒ k3 unchanged

since these investments do not affect the project started at date t = 0. In Kydland and
Prescott, the resources to be allocated to the different projects are, therefore, decided
at the very beginning while, in our context, more resources can be added during the
works in progress and crucially till the last period before the projects’ completion.

Proofs

Proof of Proposition 2 1. Within the setting proposed by Diekmann et al. (1995), the
DDE 10 is of type k′(t) = Lkt + b(t) with L a linear operator and b(t) continuous.
Hence, the existence and uniqueness of solutions to such DDE follows from Theorem
2.12 in Diekmann et al. (1995). The continuous differentiability is a consequence of
the continuity of t 
→ b(t).

By the admissibility constraint (c2), we have for t ∈ [0, d),

k(k0,i0),i (t) = k0 +
∫ t

0

(∫ −s

−d
a(r)i0(s + r)dr +

∫ 0

−s
a(r)i(s + r)dr

)
ds

≤ k0 +
∫ t

0

(∫ −s

−d
a(r)i0(s + r)dr + A

∫ 0

−s
a(r)k(k0,i0),i (s + r)dr

)
ds

(33)

while the function kM(k0,i0)(t) satisfies, for t ∈ [0, d)

kM(k0,i0)(t) = k0 +
∫ t

0

(∫ −s

−d
a(r)i0(s + r)dr + A

∫ 0

−s
a(r)kM(k0,i0)(s + r)dr

)
ds.

(34)

Then, by standard comparison results on DDEs [see, e.g., Federico et al. (2009)],
we get the claim in [0, d). Iterating this argument we prove the result.

3. Setting i M (·) def= kM(k0,i0)(·), we have i M ∈ I(k0,i0), so the claim follows. ��
Proof of Proposition 3 1. Consider the function

h : R → R, h(x)
def= x − A

∫ 0

−d
a(r)erxdr.
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It is clear that all real solutions of the characteristic Eq. 12 are zeros of h and
viceversa. We observe that

h(0) = −A < 0, lim
x→+∞ h(x) = +∞, lim

x→−∞ h(x) = −∞.

Moreover, for all x ∈ R,

h′(x) = 1 − A
∫ 0

−d
a(r)rerxdr > 1, h′′(x) = −A

∫ 0

−d
a(r)r2erxdr < 0,

so h is strictly increasing and strictly concave. This implies that g admits only one
real root ξ > 0 which is the only real solution of (12). Such solution has multiplicity
1 since h′(z) is never 0.

2. Let λ = μ + iν be a solution of (12). It is easy to check by direct substitution
that, if λ = μ + iν solves (12), then also λ̄ = μ − iν solves it. Take the one with
ν > 0. Then

μ + iν = A
∫ 0

−d
a(r)er(μ+iν)dr = A

(∫ 0

−d
a(r)eμr cos(νr)dr

+i
∫ 0

−d
a(r)eμr sin(νr)dr

)
.

This gives the following two equations:

μ = A
∫ 0

−d
a(r)eμr cos(νr)dr, ν = A

∫ 0

−d
a(r)eμr sin(νr)dr.

Then concerning the real part we clearly get

−A
∫ 0

−d
a(r)eμrdr < μ < A

∫ 0

−d
a(r)eμrdr = μ − g(μ).

So, from the second inequality we get g(μ) < 0 = g(ξ) which implies that μ < ξ

since g is strictly increasing. On the other hand, when μ < 0 we get, from the first
inequality Ae−μd < μ, the first of (13). Similarly, since ν > 0 we have

ν < A
∫ 0

−d
a(r)eμrdr < A

(
1 ∨ e−μd

)
.

On the other hand, since νr < 0 we have that sin(νr) < 0 for νr ∈ (−ξ, 0). So, to
have ν > 0 in the equation for ν we need to assume ν > ξ/d.

3. Recall that, by Diekmann et al. (1995, Th. 4.4, Ch. I), all the solutions of 12 form
a (countable) sequence. So complex roots are at most countable and have the form
λk = μk ± iνk for two sequences of real numbers {μk} and {νk}.
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4. It is enough to prove that

∫ 0

−d
a1(r)e

xrdr ≥
∫ 0

−d
a2(r)e

xrdr, ∀x > 0, (35)

and then, calling h1, h2 the functions defined as h in the first item and associated
respectively to a1, a2, we get h1 ≥ h2 on R+ and the claim follows. (35) is obtained
by integrating by parts:

∫ 0

−d
a1(r)e

xrdr = 1 − x
∫ 0

−d

(∫ r

−d
a1(s)ds

)
exrdr

≥ 1 − x
∫ 0

−d

(∫ r

−d
a2(s)ds

)
exrdr =

∫ 0

−d
a2(r)e

xrdr.

5. Setting F(z, d) := A
∫ 0
−d a(r, d)erzdr − z, the result can be obtained from the

equality F(d, ξ(d)) = 0, provided by the definition of ξ(d), by using the Implicit
Function Theorem. ��

Proof of Proposition 4 The claim follows from [Diekmann et al. (1995), Th. 5.4, p.
34] and using the fact that ξ is the solution to (11) with the highest real part (as proved
Proposition 3). ��

Proof of Proposition 5 1. We could prove this result directly [see, e.g., Freni et al.
(2006)], but for sake of brevity we omit the proof here. The result will be proved a
posteriori on a suitable subset of H++.

2. Let (k0, i0) ∈ dom(V ). In particular i ∈ I(k0,i0) �= ∅. The linearity of the
state equation yields, for every λ > 0, i ∈ I(k0,i0) ⇐⇒ λi ∈ Iλ(k0,i0) and
kλ(k0,i0),λi = λk(k0,i0),i . Then, the claim is a straightforward consequence of the homo-
geneous structure of the functional.

3. This follows by usual arguments exploiting the linearity of the state equation and
the concavity of the objective functional. ��

Proof of Theorem 8 Let (k0, i0) ∈ S. By Propositions 19 and 20, we have

V (k0, i0) ≥ J ((k0, i0); i∗(k0,i0)) = Ṽ (k0, i0).

On the other hand, since we have the inequality V ≤ Ṽ (Proposition 21), we
deduce the optimality of i∗(k0,i0) for (P) starting at (k0, i0). Then, uniqueness is stated
by Proposition 14, and the other claims follows from Proposition 19. ��
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Proof of Proposition 10 First of all, we prove (26). Let (k0, i0) = Eb for some b > 0.
We have

C0
(k0,i0) = νk0 + νb

∫ 0

−d
eξrdr

∫ r

−d
a(s)eg(s−r)ds = νk0

+νb
∫ 0

−d
a(s)egsds

∫ 0

s
e(ξ−g)rdr

= νk0 + νb
∫ 0

−d
a(s)egs

1 − e(ξ−g)s

ξ − g
ds

= νk0 + b
ν

ξ − g

∫ 0

−d
a(s)(egs − eξs)ds

= νk0 + b
ν

ξ − g

(
gk0
b

− ξ

A

)
= νk0

ξ

ξ − g
− b

νξ

A(ξ − g)
. (36)

Since νξ
A(ξ−g) = 1 (see (17) and (19)) the claim follows.

Now let us show the other claims. Using Theorem 8 by straightforward computa-
tions we get the “if” part. To show the “only if” part, assume that the optimal paths
k∗
(k0,i0)

, i∗(k0,i0), c
∗
(k0,i0)

are exponential. Then, the commongrowth rate of k∗
(k0,i0)

, i∗(k0,i0)
is g since Ak∗

(k0,i0)
(t) −C0

(k0,i0)
egt = i∗(k0,i0)(t). Hence, i

∗(t) = begt , for some b ∈ R

and k∗
(k0,i0)

= k0egt , with k0 > 0. Defining the function λ as in the proof of Proposition
20, we see that λ ≡ 0 over R+. Since λ solves (119)-(120), we see that (k0, i0) = Eb,
and finally b > 0 since k0 > 0. ��
Proof of Proposition 9 Since b > 0 and g > 0, we have Eb ∈ H++. Moreover, by
(26), we have Ak0 − C0

(k0,i0)
= b > 0. So, all the properties defining the set S are

fulfilled by (k0, i0), which is what we need to prove. ��
Proof of Proposition 12 For simplicity of notation we set i(·) = i∗(k0,i0)(·), k(·) =
k∗
(k0,i0)

(·) and Λ = C0
(k0,i0)

. The explicit expression of c is already provided by Theo-
rem 8. The expression of k in terms of c, i comes from definition of c. Let us prove 29.

First of all, we recall some standard facts from DDE’s theory. Let {λ j } j∈N and
{λ̄ j } j∈N as in Proposition 3, item 3. Applying Corollary 6.4 in Diekmann et al. (1995),
the solution of 46 can be written as (here the overline denotes the complex conjugate
operation)

γ (t) = αξ e
ξ t +

∞∑

j=1

(
eλ j t p j (t) + eλ̄ j t p j (t)

)
= αξ e

ξ t +
∞∑

j=1

2Re
(
p j (t)e

λ j t
)
,

(37)

since aeλ = āeλ̄ andwhere p j (t) are complex polynomial of degreemλ j −1, withmλ j

denoting the multiplicity of the root λ j . Also, the series above converges uniformly
on compact subsets of (0,+∞). Under Assumption 11(ii), the polynomials p j (·) are
constants. With a slight abuse of notation we denote the corresponding constants still
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by p j , so

γ (t) = αξ e
ξ t +

∞∑

j=1

2Re(p j e
λ j t ). (38)

From Theorem 8 we know that i solves 21. The solution to this DDE is the sum
of the solutions of the associated linear homogeneous DDE, i.e., without the forcing
term, plus a convolution term [see Hale and Lunel (1993), Ch. 6, page 170].

This means that the solution of (21) can be rewritten as [see Example 1.5, page
168, and formula (1.18), page 172, in Hale and Lunel (1993)],

i(t) = γ (t)i(0) +
∫ 0

−d

∫ d+r

0
γ (t − s)Aa(r − s)ds i0(r) dr −

∫ t

0
γ (t − s)Λgegsds

(39)

whereγ is defined in series form in (38).By the changeof variables s = −w, r = z−w

in the second term of (39), i can be rewritten as

i(t)=γ (t)i(0)+
∫ 0

−d

∫ w

−d
γ (t + w)Aa(z)i0(z − w)dz dw −

∫ t

0
γ (t − s)Λgegsds.

(40)

We observe that (46) is a special case (with special initial data) of (11).
Substituting (38) into (40), in view of the linearity of (40) with respect to γ , we

can analyze the contribution of the real and the complex roots. We start with αξ eξ t :
its contribution to i(t) is

αξ e
ξ t (Ak0−Λ)+

∫ 0

−d
αξ e

ξ(t+w)

∫ w

−d
Aa(z)i0(z−w)dz dw−

∫ t

0
αξ e

ξ(t−s)Λgegsds

= αξ e
ξ t
(
AΓ (x0) − Λ + Λg

g − ξ

)
+ αξ e

gt
(

− Λg

g − ξ

)

= αξ e
ξ t

(
ΛA

σ

ρ − ξ(1 − σ)

ξ

A
− Λ + Λ

ξ−ρ
σ

ξ−ρ
σ

− ξ

)
+ αξ e

gt
(

− Λg

g − ξ

)

= αξ e
gt
(

− Λg

g − ξ

)

where the second equality is obtained using (18) and (17). Now, to analyze the con-
tribution of the series, we can use the dominated convergence theorem to exchange
the series and the integral in (40). Then, for each term p j eλ j t , we can develop the
integrals as above, obtaining as contribution the sum of two terms:

p j e
λ j t
(
AΓ j (k0, i0) − Λ + Λg

g − λ j

)
+ p j e

gt
(

− Λg

g − λ j

)
. (41)
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So by definition of a j , b j (30), we get (29).
Now let us show the second part of the claim, i.e., the existence of the limits for the

detrended paths. Let us set, for simplicity of notation,

kg(t)
def= k∗

(k0,i0),g(t), ig(t)
def= i∗(k0,i0),g(t), t ≥ 0, (42)

Being i(·) real (29) can be rewritten as

i(t) = αξ e
gt
(

− Λg

g − ξ

)
+

∞∑

j=1

Re
[
p j e

λ j t a j + p j e
gtb j

]

= αξ e
gt
(

− Λg

g − ξ

)
+

∞∑

j=1

eμ j t Re
[
p j e

iν j t a j

]
+ egt Re

[
p jb j

]
. (43)

By Assumption 11(i), we have

i(t) = C0e
gt + o(egt ), where C0

def= −Λg

⎡

⎣ αξ

g − ξ
+

∞∑

j=1

Re

(
p j

g − λ j

)⎤

⎦ ,

where it can be proved that the last series converges.
This proves that there exists a constant il such that limt→+∞ ig(t) = il . Of course

by relation Akg(·) − ig(·) ≡ Λ this implies also that there exists a constant kl such
that limt→+∞ kg(t) = kl . We now calculate explicitly such il and kl using the explicit
form of the optimal feedback provided by (18)–(114). We have

ig(t) = (A − ν)kg(t) − ν

∫ 0

−d
e(ξ−g)rdr

∫ r

−d
a(s)ig(t + s − r)egsds,

and taking the limit for t → +∞weobtain il = (A−ν)kl−νil
∫ 0
−d e

(ξ−g)rdr
∫ r
−d a(s)

egsds,

i.e., il

(
1 + ν

∫ 0

−d
e(ξ−g)rdr

∫ r

−d
a(s)egsds

)
= (A − ν)kl . (44)

Exchanging the order of integration and using the definitions of ν and ξ , we get

il

(
A

ξ

∫ 0

−d
a(η)egηdη

)
= (A − ν)kl . (45)

Moreover, from the relation Akg(t) − ig(t) = Λ we have Akl − il = Λ. Using
previous equation and (45) we find the values il and kl and so the claim. ��
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