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Abstract Multi-player perfect information games are known to admit a subgame-
perfect ε-equilibrium, for every ε > 0, under the condition that every player’s payoff
function is bounded and continuous on the whole set of plays. In this paper, we
address the question on which subsets of plays the condition of payoff continuity
can be dropped without losing existence. Our main result is that if payoff continuity
only fails on a sigma-discrete set (a countable union of discrete sets) of plays, then
a subgame-perfect ε-equilibrium, for every ε > 0, still exists. For a partial converse,
given any subset of plays that is not sigma-discrete, we construct a game in which
the payoff functions are continuous outside this set but the game admits no subgame-
perfect ε-equilibrium for small ε > 0.
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1 Introduction

We consider multi-player perfect information games, without chance moves, which
have arbitrary action spaces and infinite duration. As a consequence of Flesch
et al. (2010) and Purves and Sudderth (2011), these games admit a subgame-perfect
ε-equilibrium, ε-SPE for brevity, for every ε > 0, provided that every player’s payoff
function is bounded and continuous on the whole set of plays. Here, continuity is
meant with respect to the product topology on the set of plays, with the set of actions
given its discrete topology.

The question naturally arises what happens in games in which continuity of the
payoffs is not satisfied everywhere, but only on a subset of plays. More precisely, on
which subsets of plays discontinuity can be allowed without loosing that an ε-SPE
exists for every ε > 0.We show that discontinuities can be allowed on a sigma-discrete
set of plays, i.e., on a countable union of discrete sets. In the special case, when the
action space is countable, a set of plays is sigma-discrete if and only if it is countable.

Our main findings are as follows:

[1] If the set of discontinuities is sigma-discrete, then an ε-SPE exists for every ε > 0.
[2] Given a set of plays that is not sigma-discrete, there exists a game in which the

payoff functions are continuous outside of the given set, and the game admits no
subgame-perfect ε-equilibrium for small ε > 0. This is achieved by embedding a
game given in Flesch et al. (2014), which has no ε-SPE for small ε > 0.

The structure of the paper is follows. In Sect. 2, we define the model. Then, in Sect. 3,
we present the main results and discuss the main ideas of the proof. Sections 4 and 5
contain the proofs, and Sect. 6 provides some concluding remarks.

2 The model and preliminaries

The game Let N = {1, . . . , n} denote the set of players and let A be an arbitrary
non-empty set. Let N = {0, 1, 2, . . .}. We denote by H the set of all finite sequences
of elements of A, including the empty sequence ø, and we denote by P = AN the set
of all infinite sequences of elements of A. The elements of A are called actions, the
elements of H are called histories, and the elements of P are called plays. There is
a function ι : H → N which assigns an active player to each history. Further, each
player i ∈ N is given a so-called payoff function ui : P → R.

The game is played as follows: At period 0, player ι(ø) chooses an action a0. In
general, suppose that up to period t ∈ N of the game, the sequence h = (a0, . . . , at )
of actions has been chosen. Then, at period t + 1, player ι(h) chooses an action at+1.
The chosen action is observed by all players. Continuing this way, the players generate
a play p = (a0, a1, . . .), and finally, each player i ∈ N receives payoff ui (p).

We remark that this setup encompasses all games of finite duration. Another impor-
tant special case is the situationwhen the players receive instantaneous payoffs at every
period of the game and then aggregate them into one payoff, for example, by taking
the discounted sum.
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Subgame-perfect ε-equilibria in perfect information games 481

The topological structure We endow the set A with the discrete topology and P =
AN with the product topology T . A basis for (P, T ) is formed by the cylinder sets
P(h) = {p ∈ P : h ≺ p} for h ∈ H , where for a history h ∈ H and a play p ∈ P
we write h ≺ p if h is the initial segment of p. In this topology, a sequence of plays
(pn)n∈N converges to a play p precisely when for every k ∈ N there exists an Nk ∈ N

such that for every n ≥ Nk , the first k coordinates of pn coincide with those of p.
Note that (P, T ) is completely metrizable1, and moreover, it is separable (and hence
Polish) if and only if A is countable2.

A function f : P → R is said to be continuous at a play p ∈ P if, for every
sequence of plays (pn)n∈N converging to p, we have limn→∞ f (pn) = f (p). Thus,
f is continuous at p precisely when for every δ > 0 there is a history h ≺ p such
that | f (p) − f (q)| ≤ δ for every q ∈ P(h). Intuitively, continuity at p means that,
after following p for a large number of periods, further actions have little effect on
the value of f . The function f is said to be discontinuous at a play p if it is not
continuous at p. Further, f is said to be continuous if it is continuous at each play in
P .

Subgames For the concatenation of histories and actions, we use the following nota-
tions. For a history h = (a0, . . . , at ) ∈ H and finite sequence of actions (b0, . . . , bm)

in A, let (h, b1, . . . , bm) = (a0, . . . , at , b1, . . . , bm), whereas for an infinite sequence
of actions (b0, b1, . . .) in A, let (h, b0, b1, . . .) = (a0, . . . , at , b0, b1, . . .).

Consider a history h = (a0, . . . , at ) for some t ∈ N. The subgame G(h) corre-
sponding to h is played as follows: First, player ι(h) chooses an action at+1. In gen-
eral, suppose that the sequence of actions (at+1, . . . , at+m) is chosen. Then, player
ι(h, at+1, . . . , at+m) chooses an action at+m+1. Continuing this way, the players gen-
erate a play p = (h, at+1, at+2, . . .) in P(h), and finally, each player i ∈ N receives
payoff ui (p).

Strategies A strategy for player i is a function σi : ι−1(i) → �c(A), where ι−1(i)
is the set of histories where player i moves and where �c(A) is the set of probability
measures on A with a countable support. The interpretation is that if a history h ∈
ι−1(i) arises, then σi prescribes player i to choose an action according to σi (h). A
strategy is called pure, if it always places probability one on one action. A strategy
profile is a tuple (σ1, . . . , σn) where σi is a strategy for player i . Given a strategy
profile σ = (σ1, . . . , σn) and a strategy ηi for player i , we write σ/ηi to denote the
strategy profile obtained from σ by replacing σi with ηi .

Every strategy profile σ induces a probability measure μσ on the Borel sets of P .
Similarly, by considering the subgamefor a history h ∈ H , every strategy profile σ

1 One can take, for example, the metric d : P × P → R which is defined for each p, q ∈ P as follows: if
p = q, then d(p, q) = 0, and otherwise d(p, q) = 2−m(p,q) where m(p, q) ∈ N is the least m ∈ N such
that pm �= qm . For a detailed account of the properties of the metric d, see Kechris (1995, p.7).
2 Suppose first that A is uncountable. Consider the cylinder sets P(a), for a ∈ A. They are non-empty,
mutually disjoint, and there are uncountably many of them, so (P,T ) is not separable. Now suppose that A
is countable, which implies that H is countable too. For every history h ∈ H , take an arbitrary play ph 	 h.
Then, the set {ph | h ∈ H} is countable and dense in (P,T ).
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induces a probability measure μσ,h on the Borel sets of P , such that μσ,h(P(h)) = 1.
We denote the expected payoff for player i ∈ N in the beginning of the game by ui (σ )

and in the subgame starting at h by ui (σ, h).

Subgame-perfect ε-equilibrium Let ε ≥ 0 be an error term. A strategy profile σ is
called an ε-equilibrium if no player can gain more than ε by a unilateral deviation,
i.e., if for each player i ∈ N and for each strategy σ ′

i of player i , it holds that

ui (σ ) ≥ ui (σ/σ ′
i ) − ε.

A stronger concept arises if we require that the strategy profile induces an
ε-equilibrium in every subgame. A strategy profile σ is called a subgame-perfect
ε-equilibrium, ε-SPE for brevity, if for each history h ∈ H , each player i ∈ N , and
each strategy σ ′

i of player i , it holds that

ui (σ, h) ≥ ui (σ/σ ′
i , h) − ε.

A 0-equilibrium is simply called an equilibrium, and a 0-SPE is simply called an
SPE.

Existence of ε-SPE An ε-SPE exists for every ε > 0 provided that each player’s
payoff function is bounded and continuous. This follows from more general results
in Flesch et al. (2010) and Purves and Sudderth (2011). Carmona (2005) shows that
for every ε > 0, an ε-SPE exists under the assumption that the payoff functions
are bounded and continuous at infinity. Continuity at infinity implies continuity but
not vice versa.3 Flesch et al. (2014) describe a game in which every player’s payoff
function is bounded and Borel measurable, yet the game admits no ε-SPE for small
ε > 0.

Sigma-discrete and perfect sets Let X be a topological space. Consider a subset D ⊆
X . A point x ∈ D is called an isolated point of D if x has an open neighborhood
that contains no point of D \ {x}. The set D is discrete if every point of D is isolated,
and it is sigma-discrete if it is a countable union of discrete sets. If X is completely
metrizable and separable (i.e., Polish), then D is sigma-discrete if and only if it is
countable.

A non-empty subset of X is said to be perfect if it is closed and has no isolated
points. By Koumoullis (1984), if X is completely metrizable, then a non-empty Borel
subset D of X is sigma-discrete if and only if D does not contain a perfect subset of X .
Since the set of plays P is completely metrizable, these results apply to Borel subsets
of P .

3 For instance, consider a game with the action set A = N. Fix an action a∗ ∈ A and let the function ui be
given by ui (a0, a1, . . .) = 1 if aa0 = a∗ and 0 otherwise. Then, ui is continuous but is not continuous at
infinity.
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3 Main results

In this section, we present our main results.

Theorem 1 Consider a perfect information gamewith bounded payoff functions. Sup-
pose that for every player i the payoff function ui is continuous outside a sigma-discrete
subset of P. Then, for every ε > 0, the game admits an ε-SPE.

In Appendix 7.3, we prove that the payoff functions satisfying the condition of
theorem 1 are Borel measurable. Let Di denote the set of plays p such that ui is not
continuous at p, and let D = ∪i∈N Di . Under the hypothesis of theorem 1, the set Di

is sigma-discrete for each i ∈ N . Since the set of players N is finite, this is obviously
equivalent to the requirement that the set D be sigma-discrete.

If D is a countable set, it is sigma-discrete. Moreover, if the set of actions A is
countable, then D is sigma-discrete if and only if it is countable. The set of eventually
constant plays is an example of a sigma-discrete set that is not discrete. Another such
example is the set of eventually periodic plays.

The proof of theorem 1 is carried out in three steps. As a first step, we discretize the
payoffs in the following sense: We show that there exist payoff functions ū1, . . . , ūn
such that each ūi has finite range and is ε-close to ui , and the set of discontinuity
points D̄i of ūi is contained in Di . This approach has the advantage that for each play
p that is a continuity point of each function ūi there exists a history h ≺ p such that
each ūi is constant on the set P(h). Obviously, the subgame starting at history h has
a δ-SPE for every δ > 0. In contrast, the existence of such a history in the game with
the original payoff functions is not trivial to establish. It is for that reason that working
with discretized payoffs is crucial for our method.

As a second step, we prove theorem 1 for the so-called stopping games with finite
payoff range. Finally, we show theorem 1 along the following lines. We define H∗ as
the set of histories h ∈ H such that the subgame G(h) has an ε-SPE for each ε > 0.
We prove that H∗ = H by contradiction: assuming that H∗ �= H we show that there
is a history h ∈ H \ H∗ such that G(h) can be reduced to a stopping game and thus
shown to have an ε-SPE for each ε > 0.

Theorem 1 cannot be strengthened to conclude that there is a pure ε-SPE, a coun-
terexample is readily provided by Solan and Vieille (2003). The game is a two-player
stopping game in which the two players move alternatingly, and each player can either
stop the game or continue:

The game admits no pure ε-SPE for ε < 1, but does admit an ε-SPE in randomized
strategies: Player 1 always stops with probability 1, while player 2 always stops with
probability ε. The main idea is that randomization by player 2 makes it impossible for
player 1 to ever reach the only point of discontinuity in the game, the play (c, c, c, . . .).
This conveys much of the intuition for how randomized strategies will be used in the
proof of theorem 1.
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We also prove a partial converse to theorem 1. Recall that the game is specified by
the set of players, the set of actions, the assignment of the active players to histories,
and the payoff functions.

Theorem 2 Let A be any set of actions, and let D be a subset of P = AN that is not
sigma-discrete. Then, there exists a two-player game with action set A and with payoff
functions that are continuous outside of D, such that the game admits no ε-SPE for
small ε > 0.

The proof makes use of a game in Flesch et al. (2014) that admits no ε-SPE for
small ε > 0. We embed this game into D and define the payoffs elsewhere in such a
way that the large game admits no ε-SPE for small ε > 0 either.

The question that motivates the paper is for what kind of subsets of plays
the condition of payoff continuity can be dropped without losing the existence of
ε-SPE. As shown above, the answer is sigma-discrete subsets of plays. Surprisingly,
the answer is not strongly related to the topological notion of denseness, as illustrated
by the following two examples.

Take D to be the set of eventually constant plays. Then, D is dense. However, D is
sigma-discrete, and hence, theorem 1 implies that any game with payoffs continuous
outside of D has an ε-SPE for each ε > 0. Conversely, let the action set be A =
{0, 1, 2}, and D be the set {1, 2}N. Then, D is nowhere dense. It is also perfect and
thus is not sigma-discrete. Hence, theorem 2 implies that there is a game with payoff
functions that are continuous outside of D which has no ε-SPE for small ε > 0.

4 The proof of theorem 1

4.1 A reduction to a finite range of payoffs

In this section, we argue that it suffices to prove theorem 1 for games with payoff
functions having finite range.

Lemma 3 Let f : P → [−r, r ] be a Borel measurable function and let ε > 0. Then,
there exists a Borel measurable function f̄ : P → [−r, r ] such that [1] f̄ has finite
range, [2] for every p ∈ P, | f̄ (p) − f (p)| < ε, and [3] if f is continuous at a play
p ∈ P, then so is f̄ .

The proof of lemma 3 can be found in the Appendix.
We say that f̄ is an ε-discretization of the function f .
Now let G be a game with the payoff functions u1, . . . , un satisfying the assump-

tions of theorem 1. Fix an ε > 0, and let ū1, . . . , ūn be ε-discretizations of the
respective payoff functions. Then, the set of discontinuity points of the function ūi
is contained in the set of the discontinuity points of the function ui and is therefore
sigma-discrete.Moreover, any ε-SPE of the gamewith the payoff functions ū1, . . . , ūn
is a 2ε-SPE of the game with the payoff functions u1, . . . , un .

This shows that it is sufficient to prove theorem 1 for games with payoff functions
having finite range. In view of this result, we henceforth restrict our attention to games
with a finite range of payoffs.
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4.2 Stopping games with a finite range of payoffs

A game G is said to be a stopping game if the action space is A = {s, c}, where s
stands for “stop”, c stands for “continue”, and if for each t ∈ N and each player i , the
payoff function ui is constant on the set P(ct , s). Here, we write (ct , s) to denote the
history where action c has been played successively t times followed by the action s.
So, in a stopping game, the payoffs are fixed once the active player decides to play
action “stop”.

For each t ∈ N and each player i , let ιt = ι(ct ), and let r ti denote player i’s constant
payoff on P(ct , s) and let r∞

i denote ui (c∞). A stopping game can be represented as
follows:

Lemma 4 A stopping game with a finite range of payoffs admits an ε-SPE for each
ε > 0.

This result follows from a more general theorem in Mashiah-Yaakovi (2014). For
the sake of completeness, we give a direct proof of the lemma, see the Appendix.

4.3 Games with a finite range of payoffs

In this section, we prove theorem 1 for games with a finite range of payoffs. Let G be
a game satisfying the conditions of theorem 1 such that moreover the payoff functions
u1, . . . , un all have finite range. Let Di denote the set of plays p such that ui is not
continuous at p, and let D = ∪i∈N Di . Then, for each p ∈ P \D, there exists a history
h ≺ p such that each ui is constant on the set P(h). Consider

H∗ = {h ∈ H : for each ε > 0 the game G(h) has an ε-SPE}.

The following lemma is straightforward.

Lemma 5 Let h ∈ H. Then, h ∈ H∗ if and only if for each a ∈ A, (h, a) ∈ H∗.

Define the set

Q = {q ∈ P : for each h ≺ q it holds that h /∈ H∗}.
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Lemma 6 The set Q has the following properties:

[1] Q is closed,
[2] Q ⊆ D,
[3] H∗ = {h ∈ H : P(h) ∩ Q = ∅},
[4] Q is empty if and only if H∗ = H.

Proof [1] To prove that Q is closed we show that the complement of Q is open.
Thus, take p ∈ P \ Q. Then, there is an h ≺ p such that h ∈ H∗, and hence,
P(h) ⊆ P \ Q.

[2] To prove that Q ⊆ D take a p ∈ P \ D. Since this is a continuity point of
u1, . . . , un , and since each payoff function has finite range, there is an h ≺ p such
that for every i ∈ N the function ui is constant on P(h). But then h ∈ H∗ as any
strategy profile is an SPE of G(h). Hence, p ∈ P \ Q.

[3] The inclusion H∗ ⊆ {h ∈ H : P(h) ∩ Q = ∅} is trivial. We prove the converse.
Thus, take h ∈ H such that P(h) ∩ Q = ∅. Suppose that h ∈ H \ H∗. We
recursively define a sequence h0 ≺ h1 ≺ · · · of elements of H \ H∗, as follows:
Let h0 = h. Suppose we have defined hk ∈ H \ H∗. By lemma 5, there is
an action ak ∈ A such that (hk, ak) ∈ H \ H∗. Let hk+1 = (hk, ak). Define
p = (h, a0, a1, . . .). Then, p ∈ P(h) ∩ Q, which is a contradiction.

[4] It follows immediately from [3]. ��

To prove theorem 1, we need to show that H = H∗. Suppose not. Then, Q is non-
empty. If Q has no isolated points, by the above lemma, it is a perfect set contained
in D, contradicting the assumption of theorem 1. Therefore, Q has an isolated point,
say p ∈ Q. Choose an h ∈ H such that P(h) ∩ Q = {p}. We argue that h ∈ H∗, thus
obtaining a contradiction to the item [3] of the lemma above.

Thus, take an ε > 0. We show that G(h) has an ε-SPE.
For this purpose, we argue that G(h) can be reduced to a stopping game. First, we

rename the actions so that p = (c, c, c, . . .). Hence, h = ck for some k ∈ N. Take an
m ≥ k, and consider the history cm . If A is a singleton, there is nothing to prove. So we
assume that A contains at least two actions. For each a �= c, P(cm, a) does not contain
p and is contained in P(h). As P(h)∩Q = {p}, we have P(cm, a)∩Q = ∅. Therefore,
by item [3] of the previous lemma, (cm, a) ∈ H∗. This allows us to replace the subgame
G(cm, a) by a payoff on some 1

2ε-SPE of G(cm, a), denoted (wm
1 (a), . . . , wm

n (a)).
Choose an action am ∈ A \ {c} so as to maximize wm

i (a) for the player i active at the
history cm . We can rename the actions so that am = s for each m ≥ k.

We thus obtain a game G ′(h) where there are two distinguished actions, s and
c. Playing any action other than c terminates the game (in the sense that subsequent
actions do not affect the payoffs). Should a player choose to terminate the game, action
s yields the highest payoff. It is clear that all actions other than c and s can be safely
ignored, so that G ′(h) becomes a stopping game.

By lemma 4, the game G ′(h) has an 1
2ε-SPE. It is clear that the combination of the

1
2ε-SPE in G ′(h) with the chosen 1

2ε-SPE in the subgames G(cm, a), for m ≥ k and
a ∈ A \ {c}, constitutes an ε-SPE of G(h).
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5 Proof of theorem 2

In this section, we prove theorem 2. The proof makes use of the following game in
Flesch et al. (2014) that does not admit an ε-SPE for small ε > 0: There are two
players, and the set of actions is A = {1, 2}. Player 1 starts the game. The active
player decides who the next active player is by choosing the corresponding action.
The payoffs are (−1, 2) if player 2 is active only finitely many times, (−2, 1) if player
1 is active only finitely many times, and (0, 0) if both players are active infinitely many
times. In this game, the payoff functions are Borel, but discontinuous at every play.
Flesch et al. (2014) prove that this game admits no ε-SPE for ε ∈ (0, 0.1].

Proof of theorem 2 Let A be any set of actions, and let D be a subset of P = AN that
is not sigma-discrete. We construct a two-player game G, with action set A and with
payoff functions that are continuous outside of D, such that the game admits no ε-SPE
for small ε > 0.

Step 1: Construction of the gameG. Since D is not sigma-discrete, it contains a perfect
subset P∗ of the set of plays P . We first construct a subset D∗ of P∗, on which we can
define a game that is strategically equivalent with the game in Flesch et al. (2014).

Let S denote the set of finite sequences of elements of {1, 2}. Define a function
ϕ : S → H recursively on the length of the sequence s. Let ϕ(ø)=ø. Suppose ϕ(s)
has been defined so that P(ϕ(s)) ∩ P∗ �= ∅. The set P(ϕ(s)) ∩ P∗ contains at least
two distinct plays, say p and p′. Let h be the longest common prefix of p and p′,
and let a and a′ be the unique actions such that (h, a) ≺ p and (h, a′) ≺ p′. Define
ϕ(s, 1) = (h, a) and ϕ(s, 2) = (h, a′).

Now define the function f : {1, 2}N → P∗ by letting f (x) be the unique play that
extends the history ϕ(x0, . . . , xm) for each m ∈ N. Let D∗ be the image of f .4 Thus,
D∗ ⊆ P∗ ⊆ D ⊂ P .

Let H∗ denote the set of histories that are consistent with D∗, i.e., there is a play
p ∈ D∗ such that h ≺ p. At every h ∈ H∗, let A∗(h) denote the set of actions that
keep play consistent with D∗, i.e., A∗(h) = {a ∈ A : (h, a) ∈ H∗}.

By construction, for every h ∈ H∗, it holds that

• A∗(h) is either a singleton or it contains exactly two actions,
• there exists a history h ∈ H∗ such that h � h and A∗(h) contains exactly two
actions.

Define the game G as follows: The set of players is {1, 2}. The function ι : H →
{1, 2} is defined recursively as follows. Let ι(ø)= 1. Suppose that ι(h) has been
defined for h ∈ H . If h ∈ H∗ and A∗(h) is the singleton {a}, let ι(h, a) = ι(h). In this
case, we rename the action a into ι(h). If h ∈ H∗ and A∗(h) consist of two actions
a and a′, take the unique s ∈ S such that ϕ(s, 1) = (h, a) and ϕ(s, 2) = (h, a′). Let
ι(h, a) = 1 and ι(h, a′) = 2. In this case, rename a into 1 and a′ into 2. If h ∈ H \H∗,
then ι(h, a) can be arbitrary, say equal to 1, for each a ∈ A.

4 It is well known that f is a homeomorphism of the Cantor set {1, 2}N with D∗.
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The payoffs on D∗ are defined exactly as in the game of Flesch et al. (2014). It
remains to define the payoffs on the complement of D∗. Take a play p ∈ P \ D∗ and
let h be the shortest prefix of p at which the active player, say player i , chooses an
action a such that (h, a) /∈ H∗. In that case, regardless of future play, we define the
payoff for player i to be −10, and for the other player to be 5.5 Notice that the payoffs
are continuous outside of D∗, and hence, outside of D as well.

Thus, the game G proceeds just as the game in Flesch et al. (2014), unless an active
player chooses an action outside of A∗(h), in which that player is punished and the
other player is rewarded.

Step 2: Proving that G has no ε-SPE for small ε > 0. We let H∗
i be the set of histories

in H∗ where player i is active. Let S1 denote the set of plays with the payoff (−1, 2);
S2 the set with the payoff (−2, 1); Q1 the set with the payoff (−10, 5); Q2 denote the
set of plays with the payoff (5,−10), and R the set with the payoff (0, 0).

Let σ = (σ1, σ2) be an ε-SPE where ε ∈ (0, 1
7 ). We first argue that

μσ,h(Q1) ≤ ε

9
, μσ,h(Q2) ≤ ε

9
for each h ∈ H∗. (5.1)

To prove the first inequality, consider the following strategy τ1 for player 1: Follow
σ1 unless the outcome of the lottery σ1(h) at a history h ∈ H∗

1 is an action outside of
A∗(h). If that happens, play action 1 for the rest of the game. Recall playing an action
outside A∗(h) gives player 1 a payoff of −10, whereas playing 1 forever gives −1.
Then, for each h ∈ H∗

ε ≥ u1((τ1, σ2), h) − u1((σ1, σ2), h) ≥ 9 · μσ,h(Q1),

from which the first inequality follows. The proof of the second inequality is similar.
The rest of the proof follows very closely the analysis in Flesch et al. (2014).
We argue that

μσ,h(R) = 0 for each h ∈ H∗. (5.2)

Otherwise by Lévy’s zero-one law, there is a history h ∈ H∗ where μσ,h(R) ≥ 19
20 ,

which implies that u2(σ, h) ≤ 10 · 1
20 < 1 − ε. This is impossible since at h player 2

can guarantee a payoff of 1 by always playing action 2 whenever it is his turn.
At any history h ∈ H∗

1 , player 1 can guarantee a payoff of −1 by always playing
action 1, hence

u1(σ, h) ≥ −1 − ε for each h ∈ H∗
1 . (5.3)

Now

u1(σ, h) = μσ,h(S1) · (−1) + μσ,h(S2) · (−2) + μσ,h(Q1) · (−10) + μσ,h(Q2) · 5.
Combining this with (5.1), (5.2), and (5.3), we obtain μσ,h(S1) ≥ 1 − 2ε for every
h ∈ H∗

1 . This last inequality together with (5.1) give u2(σ, h) ≥ 2 − 6ε for each

5 Here, one has to be careful, because two low payoffs such as (−10, −10) does not work. This would
namely allow player i to punish his opponent, which in some games could create ε-SPE.
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h ∈ H∗
1 . It is then easy to conclude that u2(σ, h) ≥ 2 − 7ε for each h ∈ H∗. Since

u2(σ, h) ≤ μσ,h(S2) + 10(1 − μσ,h(S2)), we obtain

μσ,h(S2) ≤ 8 + 7ε

9
< 1 for each h ∈ H∗.

Therefore, applying Lévy’s zero-one law yields μσ,h(S2) = 0 for each h ∈ H∗. Then,
for each h ∈ H∗, we have u1(σ, h) ≤ −μσ,h(S1) + 10μσ,h(Q2) ≤ −1 + 4ε < −ε.
On the other hand, player 1 can guarantee a payoff of 0 at any history in H∗ by playing
action 2 whenever it is available. We arrive at a contradiction. ��

6 Concluding remarks

An interesting direction for future research is extending the results of this paper to the
case where the set of players is infinite. Consider a game with infinitely many players.

First suppose that the payoff functions are all continuous. If the set of actions is
finite, the existence of a pure SPE follows by the truncation approach of Fudenberg
and Levine (1983). When the set of actions is infinite, an SPE need not exist, but one
could follow the approach in Flesch and Predtetchinski (2015) to obtain existence of
a pure ε-SPE, for all ε > 0.

Much more challenging is the case where the continuity of payoff functions is only
assumedoutside of a sigma-discrete set. In this case, the question remains openwhether
an ε-SPE exists for all ε > 0. We conjecture that the existence can be established at
least in the special case when, on every play, infinitely many players are active. The
intuition is that we can require a player who appears for the first time to randomize
and place probability at least δ on at least two actions, where δ is a small positive
number. This way the set of discontinuities can be avoided almost surely. A similar
idea appeared in Cingiz et al. (2015).

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.

7 Appendix

7.1 Proof of lemma 3

Let E denote the set of histories h ∈ H such that

sup
p,q∈P(h)

| f (p) − f (q)| ≤ ε

2
.

We also let

PE =
⋃

h∈E
P(h).
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Notice that PE is an open set. For each p ∈ PE , let h(p) be the minimal history such
that h ≺ p and h ∈ E . Now fix an element a ∈ A arbitrarily and define the function

 : P → P as follows:


(p) =
{

(h(p), a, a, . . .) if p ∈ PE
p otherwise.

We argue that 
 is a continuous function. Let pk be a sequence of plays converging
to a play p ∈ P . We must show that 
(pk) converges to 
(p).

Suppose first that p ∈ PE . Then, for k large enough, we have h(p) ≺ pk , hence
pk ∈ PE with h(pk) = h(p), and so 
(pk) = 
(p).

Suppose now that p /∈ PE . Then, 
(p) = p. We have to show that for each h ≺ p,
there is a K ∈ N such that h ≺ 
(pk) for all k ≥ K . Thus, take any h ≺ p. There
exists a K ∈ N such that h ≺ pk for all k ≥ K . Take any k ≥ K . If pk /∈ PE then

(pk) = pk , and hence h ≺ 
(pk), as desired. Suppose pk ∈ PE . Since pk extends
both histories h and h(pk), we have either h � h(pk) or h(pk) ≺ h. But if h(pk) ≺ h
then h(pk) ≺ p, implying that p ∈ PE , contrary to our supposition. Hence h � h(pk),
which yields h ≺ 
(pk), as desired. Thus, we have shown that 
(pk) indeed converges
to 
(p).

Without loss of generality assume that r is amultiple of ε
2 . LetU be the set consisting

of points x ∈ [−r, r ] that are multiples of ε
2 . Let g : [−r, r ] → U be given by

g(x) = min{y ∈ U : x ≤ y}. Notice that g is Borel and that |g(x) − x | < ε
2 for every

x ∈ [−r, r ].
Define the function f̄ by letting f̄ (p) = g( f (
(p))). It is Borel since g and f are

Borel and 
 is continuous. Moreover, f̄ has finite range since g does, so property [1]
of the lemma is satisfied.

To check property [2], take a p ∈ P . If p /∈ PE , then

| f̄ (p) − f (p)| = |g( f (p)) − f (p)| < ε
2 .

If p ∈ PE , then

| f̄ (p) − f (p)| ≤ |g( f (
(p))) − f (
(p))| + | f (
(p)) − f (p)| < ε
2 + ε

2 = ε.

To check property [3], suppose that f is continuous at a play p ∈ P . Then, p ∈ PE
and so p ∈ P(h(p)). Since 
 is constant on the whole set P(h(p)), so is f̄ . Thus, f̄
is continuous on P(h(p)), and in particular at p. ��

7.2 Proof of lemma 4

The proof is by the induction on the number of players. Obviously, every 1-player
stopping game with finite range of payoffs has an SPE, which is an ε-SPE for each
ε > 0. So suppose that we have proven theorem 1 for all stopping games with finite
range of payoffs with at most n − 1 players. Consider a stopping game G with n
players with finite range of payoffs.
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Given a k ∈ N, we consider a “truncated” game Gk where at time k player ιk is
forced to stop.6 By using backward induction, we can find a pure SPE σk in the game
Gk with an additional property: for each t < k, whenever player ιt at history ct is
indifferent between taking action c and action s, the strategy profile σk assigns action
s. That is, σk(ct ) = s if uιt (σk, ct+1) = r t

ιt
.

We identify the strategy profile σk with a point of {c, s}N. By taking a subsequence
if necessary, we can assume that the sequence σk converges to a strategy profile σ . We
consider the following three cases:

[1] There is no player i ∈ N for which the set {t ∈ N : σi (ct ) = s} is infinite.
[2] There exist at least two players i ∈ N for which the set {t ∈ N : σi (ct ) = s} is

infinite.
[3] There exists exactly one player i ∈ N for which the set {t ∈ N : σi (ct ) = s} is

infinite.

We prove that case 1 is impossible, and that in case 2, the strategy profile σ is an SPE.
In case 3, we modify σ to construct an ε-SPE.

Case 1: We show that this case cannot occur. Let T ∈ N be so large that σ(ct ) = s
for every t ≥ T . By replacing the game G with the subgame starting with history cT ,
we may assume that in fact σ(ct ) = c for all t ∈ N.

Let 
k denote the first time that, under the strategy profile σk , action s is taken. That
is 
k = min{t ∈ N : σk(ct ) = s}. Notice that 
k ≤ k, since at history ck , player ιk

plays s by the definition of Gk . We argue that the sequence {
k} is bounded.
Given a player i ∈ N , consider the set Ri = {r ti : t ∈ N, ιt = i} and for each

k ∈ N let Rk
i = {r ti : t ∈ N, ιt = i, t ≤ k}. The sets Ri and Rk

i are finite. Clearly
R0
i ⊆ R1

i ⊆ · · · is an increasing sequence of sets with the limit Ri , so there exists a

ki such that R
ki
i = Ri . Now let K = max{k1, . . . , kn}. We argue that 
k ≤ K for each

k ≥ K . Suppose on the contrary that 
k > K for some k ≥ K . Let i = ι
k . By the
choice of K , there exists a t ≤ K such that r ti = r
k

i . Since, under the strategy profile
σk , no player stops before period 
k , at history ct player i is indifferent between taking
action s and action c. Hence, our requirement on the strategy profile σk implies that
σk(ct ) = s. But this contradicts the definition of 
k .

Thus, we have shown that the sequence {
k} is bounded. By taking a subsequence
if necessary, we may then assume that it converges, say to an l ∈ N. However, then
σ(cl) = s, contradicting our assumption that σ(ct ) = c for all t ∈ N.

Case 2: We prove that σ is an SPE.
Take a t ∈ N. Let m > t be the minimal number such that σ(cm) = s and ιm �= ιt .

Notice that such an m exists by the condition defining case 2. Let k ∈ N be so large
that σk coincides with σ on histories c0, . . . , cm . Then, for any strategy ηιt of player
ιt , we have uιt (σk/ηιt , ct ) = uιt (σ/ηιt , ct ). Since ηιt is not a profitable deviation from
σk , it is not a profitable deviation from σ .

6 Formally, one could define the payoffs in the game Gk such that any play extending the history ck+1

gives player ιk a payoff smaller than rk
ιk
.
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Case 3: Let i be the only player such that the set S = {t ∈ N : σi (ct ) = s} is infinite.
One can show exactly as in case 2 that no player j �= i has a profitable deviation from
the strategy profile σ .

Let t0 < t1 < t2 . . . be the increasing enumeration of the elements of S. It is easy
to see that for each m

rtmi = max{r

i : 
 ≥ tm, ι
 = i}. (7.1)

In particular, r t0i ≥ r t1i ≥ · · · is a non-increasing sequence. Define α to be the limit of
this sequence. Define also

β = max
T∈N

min{r ti : t ≥ T, ιt �= i}.

Intuitively, β is the minimal payoff in far subgames to player i that he receives when
other players decide to play action s. This payoff β will serve as a threat payoff against
player i . We distinguish the following three cases:

[3.1] α ≥ r∞
i ,

[3.2] α < r∞
i and α < β,

[3.3] α < r∞
i and β ≤ α.

Case 3.1: In this case, the strategy profile σ is an SPE of the gameG. Indeed, the fact
that player i has no profitable deviations from σ follows since r t0i ≥ r t1i ≥ · · · ≥ r∞

i .
Since, as noticed above, other players have no profitable deviations, σ is an SPE.

Case 3.2:Choose anm, 
 ∈ N so large that r tmi = α andmin{r ti : t ≥ 
, ιt �= i} = β.
Let k = max{tm, 
}. We argue that the subgame G(ck), that starts at history ck , has an
ε-SPE. Then, due to backward induction, G admits an ε-SPE as well.

Notice that, in G(ck), player i has no incentive to ever stop. Indeed, stopping the
game yields player i a payoff of at most α. If another player stops the game, player
i’s payoff is at least β. And if no one stops, player i’s payoff is r∞

i .
Let ηi be the strategy for player i inG(ck) that requires player i to always continue.

Fixing player i’s strategy to ηi yields a new stopping game where the player set is
N \ {i}. In view of our inductive hypothesis, this game has an ε-SPE η−i . It is now
not difficult to see that η = (ηi , η−i ) is an ε-SPE in the game G(ck).

Case 3.3: We construct an ε-SPE of G.
Since β ≤ α, there are infinitely many periods t ∈ N such that ιt �= i and r ti ≤ α.

Consequently, we can construct an infinite increasing sequence t ′0, t ′1, . . . such that

[A] for each 
 ∈ N, we have ιt
′

 �= i and r

t ′

i ≤ α, and

[B] for each m ∈ N, there is at most one 
 ∈ N such that tm < t ′
 < tm+1.

Let M the maximum of |r tj | over all j ∈ N and t ∈ N ∪ {∞}. If M < ε
2 , then any

strategy is an ε-SPE of G, so there is nothing to prove. Suppose that M ≥ ε
2 and let

δ = ε
2M . Define the strategy profile η by letting

η(t) =
{

δs + (1 − δ)c if t ∈ {t ′0, t ′1, . . .}
σ(t) otherwise.
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In particular, ηi = σi . We argue that η is an ε-SPE.
Consider a player j �= i . Take a t ∈ N with ιt = j . We show that for each strategy

η′
j of player j , it holds that

|u j (η/η′
j , t) − u j (σ/η′

j , t)| ≤ ε. (7.2)

It suffices to verify (7.2) for all pure strategies η′
j of player j . Thus, let m be the

minimal natural number such that t < tm . By property [B], there is at most one 
 for
which t ≤ t ′
 < tm . Consider now the play of the game starting at period t :

• If under the strategy profile σ/η′
j player j stops the game at or before period t ′
,

the same occurs under η/η′
j .

• If under the strategy profile σ/η′
j player j stops the game at period s > t ′
 (in

which case s < tm), then under η/η′
j the game stops at period t ′
 with probability

δ and at period s with probability 1 − δ.
• Suppose that under the strategy profile σ/η′

j player i stops the game at time tm . If

ιt
′

 = j , then under η/η′

j the game stops at tm with probability 1. If ιt
′

 �= j , then

the game stops at with t ′
 with probability δ and stops at tm with probability 1− δ.

In all three cases, the difference in the payoff to player j is at most ε.
Since for player j no deviation from the strategy profile σ is profitable, no deviation

from the strategy profile η increases player j’s payoff by more than ε.
Consider player i . Take a t ∈ N with ιt = i . Let m be the least natural number with

t ≤ tm . It is not difficult to see that the payoff to player i on the strategy profile η is at
least r tmi − ε.

Now let η′
i be a pure strategy for player i . Under the strategy profile η/η′

i with
probability 1 one of the following outcomes prevails: Either the game stops at some
period in the set {t ′0, t ′1, . . .}, or the game is stopped by player i at a period t ′′ ≥ t .
In the first case, the payoff to player i is bounded above by α by property [A] above.
Notice that α ≤ r tmi . In the second case, the payoff is r t

′′
i . Notice that r t

′′
i ≤ r tmi by

(7.1). We conclude that under the strategy profile η/η′
i the payoff to player i is at most

r tmi . Hence, the deviation to η′
i improves player i’s payoff by at most ε.

This concludes the proof of theorem 1 for stopping games with finite payoff range.
We remark that the method to solve case 3.3 is exactly the one that is needed to find
an ε-SPE in the above-mentioned game by Solan and Vieille.

7.3 sigma-discrete subsets of P are Borel

Lemma 7 A sigma-discrete subset of P is Borel. Furthermore, every function f :
P → R that is continuous outside a sigma-discrete subset of P is Borel measurable.

Proof
Step 1: Let Q ⊂ P be a discrete set of plays. We argue that Q is a Gδ-subset of P ,
i.e., a 
0

2-set of P . For every q ∈ Q, let

m(q) = inf
q ′∈Q\{q}

d(q, q ′),
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where d is the metric on P . Because Q is discrete, m(q) > 0. Now for every n ∈ N,
consider the set

Un =
⋃

q∈Q
B

(
q,

1

2n
m(q)

)
,

where B(q, ε) denotes the open ball around a play q of radius ε. Notice that the
sequence Un is non-increasing.

We show that U1 is a disjoint union. Take a p ∈ P and suppose that there are two
different q1, q2 ∈ Q such that p ∈ B(q1,

1
2m(q1)) and p ∈ B(q2,

1
2m(q2)). Assume

that m(q1) ≥ m(q2). Then,

d(q1, q2) ≤ d(q1, p) + d(p, q2) <
1

2
m(q1) + 1

2
m(q2) ≤ m(q1),

which is in contradiction with the choice of m(q1).
It follows that

Q =
⋂

n∈N
Un .

Indeed, the inclusion ⊆ is trivial. To see the other inclusion ⊇, take a p ∈ ∩n∈NUn .
Suppose by way of contradiction that p /∈ Q. Then, p ∈ U1 \Q. SinceU1 is a disjoint
union, there is a unique q ∈ Q such that p ∈ B(q, 1

2m(q)). Because d(p, q) > 0, we
conclude that p /∈ B(q, 1

2n m(q)) for large n, and hence, p /∈ Un for large n. This is a
contradiction with the choice of p.

Since each Un is open, Q is a Gδ-set of P , as desired.
Step 2: Let Q ⊂ P be a sigma-discrete set of plays. Then, Q is a countable union

of Gδ-sets of P , and hence, Q is a Borel subset of P , in particular it is a �0
3-set of P .

Step 3: Let f : P → R be continuous outside a sigma-discrete subset D ⊂ P . We
argue that f is Borel. Take a Borel set X of R. Let fC and fD denote the restriction
of f to the domain P \ D and, respectively, to the domain D.

Since fC is continuous with respect to the relative topology on P \ D, the set
f −1
C (X) is a Borel subset of P \ D. As P \ D is a Borel subset of P by step 2, f −1

C (X)

is a Borel subset of P . Further, since any subset of D is sigma-discrete, by step 2
f −1
D (X) is a Borel subset of P . Hence,

f −1(X) = f −1
C (X) ∪ f −1

D (X)

is a Borel subset of P , as desired. ��
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