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Abstract We study the one-way flow model of network formation with owner-
homogeneous link costs and heterogeneous profits. Recently, several proofs of
existence of Nash networks are discussed in literature. The proof by Billand et al.
(Econ Theory, 2007, forthcoming) is based on a nice and clear idea, but the technical
elaboration is tedious and too complex in our opinion. In this note, we provide an
alternative and easy accessible proof based on the same idea. Also, we show by means
of a counterexample that Nash networks may not exist for games where link costs are
heterogeneous, but arbitrarily close to owner-homogeneity.

Keywords Network formation - Non-cooperative games

JEL Classification C72 - D85

1 Introduction

Bala and Goyal (2000) introduce a non-cooperative game model of network formation.
Agents, who correspond to the nodes of the network, are able to form links unilaterally,
i.e. without consent of other agents. Agents receive profits from being connected
to other agents. However, links are expensive. Two variants are being studied by
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Bala and Goyal (2000): the one-way flow model and the two-way flow model. Profits
flow along the direction of the arcs in the one-way flow model, while they flow along
both directions of the arcs in the two-way flow model. In this note, we study the one-
way flow model. The two-way flow model has been studied by Galeotti et al. (2006),
Haller and Sarangi (2005), and Haller et al. (2007).

For the one-way flow model, the architecture of Nash networks has been addressed
by Bala and Goyal (2000) and Galeotti (2006). Bala and Goyal (2000) prove the
existence of Nash networks when link costs and profits are homogeneous, i.e. all
links are equally expensive, and each agent receives a constant profit value for being
connected to each other agent.

The existence of Nash networks in one-way flow models for owner-homogeneous
link costs, i.e. all links are equally expensive with respect to the owner, and hetero-
geneous profits has been proved by Billand et al. (2007) and independently by Derks
et al. (2008a). These two proofs are totally different from each other. The latter is a
proof by induction; to show that a Nash network exists for a game with n agents, Derks
et al. (2008a) used the induction hypothesis that a Nash network exists for each game
with less than n agents. Billand et al. (2007) provide a constructive proof, in which
a sequence of networks is constructed where each successive network is as least as
good for each agent. The idea behind their approach is very nice and clear. However,
its implementation is complicated and too technical in our opinion. Therefore, we
provide an alternative proof in this note, that is directly based on the same idea.

Furthermore, Billand et al. (2007) provide conditions for the existence of Nash
networks when link costs are heterogeneous. According to these conditions, Nash
networks exist when the difference between any two link costs is smaller than the
constant profit value. In this note, we show by means of a counterexample that this
result is not correct. For this counterexample, where link costs are arbitrarily close to
the situation of owner-homogeneity, we show that Nash networks do not exist.

A different approach to study the existence of Nash networks is used by Derks
et al. (2008b). They model network formation as a dynamic game in which agents
play local actions, which are adding, removing or replacing a link. Furthermore, they
study payoff functions that fulfill a specified framework of properties. By a series of
improving local actions, they prove the existence of local-Nash networks, which are
global-Nash as well.

2 Model and notations

Let N = {1, ..., n} denote a finite set of agents. We define a one-way flow network
g on the agent set N as a set of links ¢ € N x N, where loops are not allowed, i.e.
(i,i) ggforalli € N.

We say that a link (j, i), which is directed to i, is owned by i. Let g_; denote the
network obtained from g after removing the links owned by i.

A directed path from j to i in g is a sequence of distinct agents iy, i2, ..., iy With,
k > 1,such that j = i1,i = iy and (i5,is4+1) € gforeachs = 1,2,...,k — 1.
An undirected path is defined analogously, but here, either (is, is41) or (is+1,is) 1S
contained in g foreachs = 1,2,...,k — 1.
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Let Car(g), the carrier of network g, be the set of agents who are begin- or endpoints
in g. For a network g we define g/, the component of g that contains agent j, as the
network containing all links that are connected to j by some undirected path. Since g/
may be empty, which is the case when j is isolated in g, we assume that j is contained
in the carrier of g/, i.e. let j € Car(g/).

Let N;i(g) = {j € N : adirected path from j to i exists in g}. We will refer to the
agents in this set as observed agents by agent i in network g. Let Nl.d (@={j:(j,i)eg}.
Note thati € N;(g), and i & N?(g).

For each agent i, let 7; : G — R be a payoff function, where G is the set of all
possible one-way flow networks. We will use the following payoft function, which
has been proposed by Galeotti (2006).

Ti(g) = D viji— D cij. ey

JENi(9) jeNt(g)

Here, v;; is the profit that agent 7 receives from being connected to j and ¢;; is the
cost of link (j, i) for agent i. Thus, agent i pays for each own link, i.e., for each link
ending at 7, and he receives profits from being connected to each other agent j, which
is the case when a directed path from j to i exists.

We say that link costs are homogeneous if there is a constant ¢ with ¢;; = ¢ for all
i, j € N.Link costs are owner-homogeneous if for each agent i there is a constant
¢; with ¢;j = ¢; for all j € N. Otherwise, the link costs are heterogeneous. These
definitions also apply to the profits. The profits and link costs are assumed to be
non-negative throughout this paper.

In this paper we study a non-cooperative game. This game is played by the agents
in N. Simultaneously and independently, each agent i chooses a, possibly empty, set S
of agents he wants to connect to by creating the links (j, i), for each j € S. Together,
the links of all agents form a network g € G. Then, each agent i receives a payoff
7 ().

We define an action of agent i to a network g by a set of agents S € N \ {i}. The
network, after i chooses to link up with the agents in S, is described by

g-i Y{(j. i) 1 j € S}
An action S* of agent i is called a best response if
i (9-i VLG, 1) 2 j € 8™)) = mi (g1 U{(, i) = j € S

for all actions § € N \ {i}. A network g is a Nash network if Nid (g) is a best response
foralli € N, i.e., if for each agent i

7i(g) = 7w (g—i V{(j,i):j €S}
for all actions S € N \ {i}.
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Let g_;; = gfl. U {(j,i)}. Recall that g_; is network g where all i’s links are

removed, so that ¢’ ; is the component of g_; where j is contained in its carrier. It is
immediate that

mi(g) < mi (g\{(j, D} + mi(g—ij), (2)

when link (j, 7) is contained in g. Therefore, when agent i plays a best response then
mi(g—ij) = 0 for each j € Nl.d(g). We say that link (j, i) is beneficial in g when
i (g—ij) = 0, and a network g is called beneficial when all its links are beneficial.
Observe that a Nash network is beneficial.

3 Non-existence of Nash networks

Billand et al. (2007) claim that Nash networks always exist if for all i, j, j* € N holds
that |¢;; — ¢;j/| < v; (see their Proposition 3). This is not true due to the following
example.

Example 1 (Derks et al. 2008a) Let n = 4 and call the agents 1, 2, 3 and 4. Let 7 be
a payoff function defined by (1), where link costs are heterogeneous and profits are
homogeneous and normalized to 1. The numbers next to the links in Fig. 1 indicate
the costs of these links. Here, € is a strictly positive number which can be chosen
arbitrarily close to 0. The costs of the links that are not depicted in this figure are the
following:

— links owned by agent 1 have costs 1 + ¢,
— links owned by agent 2 have costs 2 + ¢,
— links owned by agents 3 and 4 have costs 3 + €,

Notice that since v;; = 1, m;(g9—;) = 1 for any network g and any agent i.

The best response of agent 4 to any network is either {2} or ¥, since those are the
only actions for which agent 4 might have a payoff of at least 1. First, suppose that
agent 4 plays {2} as a best response in a Nash network. Consequently, the unique best
response of agent 1 is {4}. Agent 2 has one unique best response to this situation: {1}.
Finally, agent 3 has one unique best response, which is {2}. The obtained network
is the same as depicted in Fig. 1. It follows that {2} is not a best response of agent
4, since () gives a higher payoff. This contradicts our assumption. Hence, there is no
Nash network in which agent 4 plays {2}.

Fig. 1 The link costs 1
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Fig. 2 Network obtained in
Example 1
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Now suppose that agent 4 plays @ as a best response in a Nash network. Agent 1
will include 4 in every best response to this situation. Then, the unique best response
for agent 2 is {1}. To this situation, the unique best response of agent 3 is {2}. Hence,
the unique best response of agent 1 is {3, 4} (see Fig. 2). Now agent 4 has a unique
best response to this new situation, which is {2}. This contradicts our assumption of
agent 4 playing ¢ in a Nash network. Hence no Nash networks exist.

For this example, link costs are close to owner-homogeneity, i.e. [c;j — ¢;j/| < 2€
foralli, j, j' € N.Since v;; = 1foralli, j € N, and since € can be chosen arbitrarily
small to 0, we have |¢;; — ¢;jr| < 1. Therefore this example is a counterexample for
Proposition 3 by Billand et al. (2007).

4 Existence of Nash networks

In this section, we prove the existence of Nash networks for games with owner-
homogeneous link costs, i.e. ¢;; = ¢; foralli, j € N.

Let a network be proper if the outdegree of each agent is at most 1. In a proper
network g, an agent i observes each agent j € N;(g) via a unique directed path, and
by this observation it is not hard to see that equality holds in (2), whenever g is proper.

For any network g let C(g) denote the set of agents located on a directed cycle in
g. Further, let D(g) denote the set of agents who observe at least one agent in C(g),
ie. D(g) ={i: Ni(g9) N C(g) # ¥}

Assuming that the agents are numbered 1,2, ..., n there is a unique ordering
S1, 82, ...,84 of agents in D(g), with sy < sg41 foreachk =1,2,...,d = |D(g)|.
Consider the following network g, defined by § = g in case d = 0, and for d > 2
(notice that d = 1 does not exist, since a cycle contains at least two agents):

g =1{(s1,52), ..., (Sa—1,54), (54, s1)YU{(j, i) € g: j & D(9)}.
An example of this network is depicted in Fig. 3.

Lemma 1 If for a network g the agents outside D(g) have at most one outgoing link
then § is proper.

Proof Each agent in D(g) has exactly one outgoing link in g, namely the one on the
cycle. Each agent outside D(g) has the same outdegree in § as in g. O
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Fig. 3 Network g with the corresponding network g

Observe that g = g whenever D(g) = @, i.e. whenever there are no cycles in g.
Otherwise, ¢ has exactly one cycle. Notice also that an agent has no more links in g
than in g, so that in the owner-homogeneous costs situation the agents in g face costs
at most as in g. Furthermore, the agents observe the same or more agents in §:

Lemma 2 N;(g) € N;(g) for each agent i.

Proof Let j € N;(g). Supposei ¢ D(g), then any directed path from j to i in g does
not visit an agent in D(g), and therefore it is also a directed path in g. This implies
that i observes j in g: j € N;(9).

Now suppose i € D(g). When also j € D(g) then i observes j via the cycle in g.
So, let j € D(g), and let k be the first agent in D(g) on a directed path from j to i
in g. Then, the subpath from j to k is also a directed path in g, implying j € N¢(g).
Since k € N;(g), we must have j € N;(g). O

Lemma 3 Let the payoff function be given by (1) where link costs are owner-
homogeneous, i.e. c;j = c; for all i, j € N. If a network g is beneficial, then net-
work § is also beneficial.

Proof Let (j,i) € g. We prove that (j, i) is beneficial in g.

Suppose j ¢ D(g). This implies (j, i) € g. For k € N;(g—;;) there is a directed
path from k to i vialink (j, i) in g, and none of the visited agents are members of D(g)
(except possibly i), so that this path is also present in g_;;. This implies k € N;(§—;;),
and therefore,

@)= D, vk—cG= D vk —c =mi(gij)

keN; (§-ij) keN;(g—ij)

Beneficiality of link (/, {) in g implies therefore the beneficiality of (j, i) in g.

Now, suppose j € D(g). Then the link (J, i) is a link of the cycle of g. It is evident
that D(g) € N;(§—ij). Also, D(g) N N¥(g) # @, say k € D(g) N N¥(g). We know
that (k, i) is beneficial in g. Since link costs are owner-homogeneous, i.e. ¢cjx = ¢jj,
we conclude that link (7, i) is beneficial in g whenever

Ni(g—ik) S Ni(G—ij)- 3)
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So, let r € N;(g—ix). If r € D(g) then also r € N;(§—;;) as we mentioned before.
Thus, assume r € D(g). There is a directed path from r to k in g_;. Let r’ be the first
agent from D(g) on this path. Then the subpath from r to r’ is present in §. Extend
this path with the directed path from r’ to j on the cycle of g, thus obtaining a directed
path from r to j in g. This path does not visit agent i since i is not on the path from
r to r/, and also i is not located on the cycle between r’ and j since i is found on the
cycle right after agent j. Hence, r € N;(g—; ), implying (3). Hence we conclude that
(j, i) is beneficial in g. O

Proposition 1 Let the payoff function be given by (1) where link costs are owner-
homogeneous, i.e. cij = c¢; forall i, j € N. Then a Nash network always exists.

Proof Consider the following sequence of networks:

Step 0: Lett = 1, and g, = ;

Step 1: If g; is Nash then STOP.

Step 2: Let agent i perform a best answer in g,, with as many links as possible, and
let g;4+1 be the resulting network;

Step 3: Let gr+2 = gr+1;

Step 4: Lett =t + 2, and return to Step 1.

(For convenience we write g, 1 instead of g;;1.)

Let i be an agent who applies a best response B to g; with as many links as
possible, obtaining g;+1. Suppose that g; is proper and beneficial. We prove that (i)
N;i(gr+1) D Ni(gy), (ii) gr41 is beneficial, and (iii) g;41 is proper.

(i) Letj e Nl.d (g¢), and suppose j ¢ B. Since g, is proper it follows that agent j

in (g,)j;l. is the unique agent who observes all agents in (g,)];,.: N; ((g[)];l.) =
Car ((g,)j;i). This shows that whenever Car ((gt)ii) N B # (J, then j € B.
Since we assumed j & B, it follows that Car ((gt)];i) N B = {J, so that

i (gep1 UG DY = mi(gi1) + 7 (940 —ij)
= i (gi+) + i ((9)—ij) = i (grg1).

The latter inequality is due to the beneficiality of the links in g;. Since the best
response B is chosen as large as possible, and the action B U {j} is at least as
good as B, we arrive at a contradiction. Hence,

Nf(g1) < B. @

Since B is a strict improvement, we have Nid (g¢) C B, implying N;(g;+1) D
Ni(g1)-

(i) By (4) it follows that g; € g;+1, and this proves the beneficiality of the links
(j,i) € grings+1. Asfortheaddedlinks (j, i), with j € B\Nl.d(g,) we observed
already (see (2)) that these links are beneficial in g;41. So, g;+1 is beneficial,
and because of Lemma 3, we conclude that g, is beneficial.
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(ili) To show that g,4; is proper, by Lemma 1 we only need to check the

outdegrees of the agents outside D(g;+1) in g;+1. Furthermore, only the outde-
gree of the agents in B\Nid (gr) are raised by 1, with respect to the outdegree
in the proper network g,. Therefore, we only need to check that the agents in
B\ (Nl.d(g,) U D(gi+1)) have outdegree 0 in g;.
Consider an agent j € B\Nl.d(g,), and suppose that his outdegree in g; is 1.
Then it is easily checked that j is necessarily located on the cycle of ¢, i.e.
Jj € D(g;). Observe that D(g,) is a subset of D(g,+1), so that we conclude
that j & B\ (N (g:) U D(gi+1)). Hence, all agents in B\ (N{(g,) U D(gi+1))
have outdegree 0 in g;.

Observe that we started with a beneficial, proper network. By Lemma 2 and part
(i) we conclude that the total number of observed agents of the constructed networks
does not decrease, and strictly increases when Step 2 is performed. The procedure has
therefore to terminate with a network that is Nash. Observe that this network is also
beneficial and proper. O

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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