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Abstract Allowing for games with a continuous action space, we investigate how
evolutionary stability, the existence of a uniform invasion barrier, local superiority and
asymptotic stability relate to each other. This is done without restricting the popula-
tions of which we want to investigate the stability to monomorphic population states
or to strategies with finite support.
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1 Introduction

The recent literature on evolutionary dynamics for populations playing games with
a continuous action space shows that generalizing results from games with a finite
action space is not always straightforward and sometimes not even possible. This can
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356 M. van Veelen, P. Spreij

be learned from Oechssler and Riedel (2001, 2002) and from Cressman (2005),
Cressman and Hofbauer (2005) and Cressman et al. (2006). These authors have
therefore chosen to focus for an important part on pure strategies—or monomorphic
population states—as candidates for stability in population dynamics. This is done for
very good reasons, because such restrictions on the candidates for stability allow use-
ful results to be established and still encompass a wide range of interesting equilibria
of games. In this paper, however, we choose to avoid making such restrictions on the
candidates for asymptotic stability and the aim is to push the limit of how far we can
get without them a little further.

An important part of the theory for games with a finite action space consists of con-
necting static properties that a strategy can have—such as evolutionary stability, the
existence of a uniform invasion barrier and local superiority—to notions that apply
to population dynamics, the most important of which is asymptotic stability in the
replicator dynamics. The main results for finite action spaces can be summarized very
shortly; the three static properties mentioned above are equivalent and they imply
asymptotic stability in the replicator dynamics (see Weibull 1996). In Sect. 3 we look
at the equivalents of those concepts for games with a continuous action space and
investigate how they are related. This is done by bringing together results from the
literature with a number of missing links.

Finally there is an appendix that concerns some topological details. This is needed,
for in Bomze (1991), which is an important and often quoted paper in this field, it is tac-
itly assumed that auxiliary results on Kullback–Leibler I -divergences borrowed from
Csiszár (1962, 1964, 1967) use modern, standard topology definitions. The appendix
first indicates why this cannot be the case, and then it shows how the ingredients of
Csiszár’s proofs can be used to prove the auxiliary results when using modern standard
topology textbook definitions too.

2 Definitions

The action space S is a complete separable metric space with metric ρ (x, y). A strat-
egy is a probability measure on (S,B) with Borel σ -field B and P [S,B] denotes the
set of all such probability measures. We will consider pairwise contests and random
matching unless explicitly mentioned otherwise; players are drawn at random from a
population to play a symmetric 2-player game, which is characterized by a function
A : S × S → R. Here A (x, y) is the payoff to player 1 if she plays x and the opponent
plays y. (Please note that symmetry only implies that the payoff to player 2 is A (y, x)

and not that A (y, x) = A (x, y), which would make it a doubly symmetric game).
The expected payoff to a player playing strategy P against a player playing Q is given
by the function u [P, Q] = ∫ ∫ A (x, y) dP (x) dQ (y).

Symmetric games, pairwise contests and random matching is exactly the setting
chosen by Weibull (1996) for finite action spaces, but one could think of more general
forms of this function u [P, Q] that are not necessarily bilinear. This would allow for
games such as the sex ratio game as described by Sigmund (1987), but it should be
noted that any expected payoff function that is not bilinear implies a departure from
the setting of pairwise contests, as Bomze and Pötscher (1989) show. Some of the
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Evolution in games with a continuous action space 357

results in this paper however do not use the bilinearity of the function u [P, Q] and
therefore remain valid in a more general setting where u [P, Q] = ∫ FQ (x) d P (x),
FQ : S → R, Q ∈ P [S,B] (see for instance Sect. 3 arrow 2 and Proposition 16).
The counterexamples on the other hand are all bilinear, which makes them useful for
disproving implications even in the setting of pairwise contests.

The following definitions are close copies of their discrete counterparts.

Definition 1 εP (Q) is an invasion barrier for P against Q, Q �= P, if u
[
P,

(1 − ε) P + εQ
]

> u [Q, (1 − ε) P + εQ] for all ε ∈ (0, εP (Q)).

It will be useful to have a notion for the largest invasion barrier, so we will let
εP (Q) be the supremum of εP (Q) ∈ (0, 1) if there is an invasion barrier in (0, 1)

and 0 if there is not.

Definition 2 P is an evolutionary stable strategy if there exists an invasion barrier
εP (Q) ∈ (0, 1) for every strategy Q �= P .

An equivalent definition of evolutionary stability is that both u [P, P] ≥ u [Q, P]
for all Q and u [P, P] = u [Q, P] ⇒ u [P, Q] > u [Q, Q] for all Q �= P hold.

Definition 3 P has a uniform invasion barrier if there exists an ε ∈ (0, 1) such that
u [P, (1 − ε) P + εQ] > u [Q, (1 − ε) P + εQ] for all Q �= P and all ε ∈ (0, ε).

A strategy that has a uniform invasion barrier is also referred to as uninvadable.
For the third stability concept we will need a definition of a vicinity. A vicinity is

defined with the help of a function d : P [S,B] × P [S,B] → [0,∞], of which we
only assume that d (P, P) = 0 and d (P, Q) > 0 for P �= Q, which implies that d
not necessarily is a distance. V is a vicinity of P with respect to d if and only if there
is a δ > 0 such that V = {Q ∈ P [S,B] | d (Q, P) < δ}. If this function d is in fact
a distance, then the set of all vicinities of all population states P makes a base for a
topology. In that case we can read neighbourhood whenever the word vicinity is used.
However, one of the examples that follow is not a distance, and therefore it is better
to avoid using neighbourhoods, that are only defined once there is a topology. The
details of the distinction between vicinities and neighbourhoods can be found in the
appendix.

Definition 4 P is locally superior with respect to d if it has a vicinity V with respect
to d such that u [P, Q] > u [Q, Q] for all Q �= P in V .

Please note that there is a minor difference with the discrete counterpart (Hofbauer,
Schuster & Sigmund, 1979, see also Weibull 1996) where the choice of a function d
is not an issue, and neighbourhoods are used.

Whether or not a strategy is locally superior obviously depends on what we consider
to be a vicinity. In this section, we will consider a few possible functions d that define
different types of vicinities, but the question what vicinities we allow for is not just of
technical interest. After all, it would be nice if we could see a vicinity of a population
state P as a set of states that can be reached from P by mutations or by a shock with
relatively large probability.

The first function d we consider is the Prohorov metric. This metric is defined as
follows (see for instance Bickel et al. 1993).
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dpr (Q, P) = inf

{

ε > 0

∣
∣
∣
∣

P (B) ≤ Q (Bε) + ε

Q (B) ≤ P (Bε) + ε
for all B ∈ B

}

,

where Bε = {x ∈ S | ∃ y ∈ B such that ρ (x, y) < ε}. It is worth knowing that the
Prohorov metric metrizes weak convergence, that is, dpr (Pn, P) → 0 if and only
if
∫

g (x) dPn (x) → ∫
g (x) dP (x) for all bounded and continuous g on S. The

topology it induces is called the weak topology.
The second option is the variational distance,

dvd (Q, P) = 2 sup {|P (B) − Q (B)| B ∈ B}
=
∫ ∣∣
∣
∣
dP

dµ
− dQ

dµ

∣
∣
∣
∣ dµ,

for any µ dominating both P and Q,

which induces the strong topology. To illustrate the difference between the vicinities
we make with those two functions, we can take S = [0, 1] and P = δ0 the point
measure at 0. Now compare the collection Vpr (P) of all vicinities of P in the Pro-
horov metric to Vvd (P) that contains all vicinities of P in the variational distance. It
is not too hard to see that these two collections of vicinities share no elements apart
from the whole set P [S,B]; just take δy , the point measures at y. For y ∈ (0, 1] we
find that dvd

(
δy, P

) = 2 whereas dpr
(
δy, P

) = y. Therefore any vicinity of P in
the Prohorov metric contains probability measures δy (choose y < δ for a vicinity
Vpr (P, δ) = {Q ∈ P [S,B] | dpr (Q, P) < δ

}
) while none of these δy is contained

in any of the vicinities of P in the variational distance, apart from, of course, the
whole set P [S,B] which is a vicinity in the variational distance for δ > 2 and in the
Prohorov metric for δ > 1.

Going in the opposite direction is more successful. Because dpr (Q, P) ≤ 1
2 dvd

(Q, P), which follows directly from the definitions, we find that Vvd (P, 2δ) ⊂
Vpr (P, δ).

A third possibility is to use the Kullback–Leibler I -divergence (see also Bomze
1991).1

dkl (Q, P) = HP (Q) =
⎧
⎨

⎩

∫

supp(P)

log
(

dP(x)
dQ(x)

)
dP (x) if P 
 Q

∞ if not

This function does not satisfy the triangle inequality and is not symmetric. In the
appendix we show that the set of all vicinities of all distributions P ∈ P [S,B] cannot
be a base for a topology. With the Kullback–Leibler I -divergence we therefore have
to resort to using vicinities rather than neighbourhoods.

To see where the vicinities we make with this Kullback–Leibler I -divergence
differ from the other two, take S = [0, 1] and P uniform on S. Again we make a

1 Names that are also frequently used are Kullback–Leibler relative-entropy measure and Kulback–Leibler
distance. Since it is neither a distance in the topological sense nor a measure in the measure theoretic sense,
we chose to use the word I -divergence, as Csiszár (1962, 1964, 1967) does.
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Evolution in games with a continuous action space 359

collection Vkl (P) of all vicinities of P in the Kullback–Leibler I -divergence and
compare this to Vvd (P). If we then consider distributions Py uniform on [y, 1], we
find that for all y ∈ (0, 1) the Kullback–Leibler I -divergence dkl

(
Py, P

) = ∞ while
dvd
(
Py, P

) = 2y. This implies that any vicinity of P in the variational distance
contains probability measures Py (just choose y < δ/2 for a vicinity Vvd (P, δ) =
{Q ∈ P [S,B] | dvd (Q, P) < δ}) while none of these Py is contained in any of the
vicinities of P in the Kullback–Leibler I -divergence since dkl

(
Py, P

) = ∞.
Bomze (1991) uses Reiss (1998) to show that [dvd (Q, P)]2 ≤ dkl (Q, P) and

therefore we know that Vkl
(
P, δ2

) ⊂ Vvd (P, δ).
Summing up the relation between these three types of vicinities in an intuitive way,

one can say that Q being close to P in the variational distance implies that Q is close
to P in the Prohorov metric, but not the other way round, and that if Q is close to P
in the Kullback-Leibler sense, Q will also be close to P in the variational distance,
but not vice versa.

In this paper we follow Cressman and Hofbauer (2005) in sticking to the term local
superiority and mention what types of vicinities are used. In the literature, two of
those kinds of local superiorities have names of their own; Bomze (1990, 1991) calls
a strategy that is locally superior in the variational distance strongly uninvadable and
Oechssler and Riedel (2002) term a strategy that is locally superior in the Prohorov
metric evolutionary robust. Local superiority in the Kullback-Leibler I -divergence is
a new definition, but Bomze (1991) introduced vicinities of this type.

For the derivation of the replicator dynamics we can simply follow the standard
case. A population at time t is characterized by a measure R(t), where R (t) (B) is
the magnitude of the part of the population playing a strategy in B ∈ B at time t .
By definition the expected payoff of a strategy in the game determines the expected
growth of the part of the population that plays it, so we get

d

dt
(R (t) (B)) =

∫

B

∫

S

A (x, y) P (t) (dy) R (t) (dx) ∀B ∈ B,

where P (t) (C) = R(t)(C)
R(t)(S)

∀ C ∈ B, which can be rewritten as

d

dt
(P (t) (B)) =

∫

B

∫

S

A (x, y) P (t) (dy) P (t) (dx)

−P (t) (B)

∫

S

∫

S

A (x, y) P (t) (dy) P (t) (dx) ∀B ∈ B.

Oechssler and Riedel (2001, Theorem 2) show that when the strong topology is used,
boundedness of A guarantees existence and uniqueness of trajectories and positive
invariance of P [S,B] under the replicator dynamics. They also indicate (Remark 2,
p. 145) that for the weak topology, A needs to be continuous to achieve this.
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In the more general, non-bilinear case the replicator dynamics are defined as
follows:

d

dt
(P (t) (B)) =

∫

B

FP(t) (x) P (t) (dx) − P (t) (B)

∫

S

FP(t) (x) P (t) (dx) ∀B ∈ B.

Conditions under which this is well defined can be found in Bomze (1991, Lemma 1).
Please note that the space on which the last two differential equations are defined is
the set P [S,B], since P(t) (S) = 1. All points along a trajectory through a point
P (0) have the same atoms, but the limiting distribution may have a different set
of atoms. More formally, if we define P (∞) as the weak limit point of P (t), and
AP(t) = {x ∈ S | P (t) ({x}) > 0} and AP(∞) = {x ∈ S | P (∞) ({x}) > 0} then nei-
ther AP(0) ⊂ AP(∞) nor AP(∞) ⊂ AP(0) necessarily holds.

The states that interest us most are the asymptotically stable states; states that guar-
antee a pull back to status quo after any small perturbation of the population state. Like
local superiority, this concept is dependent on what we consider small perturbations, or
in other words: which type of vicinities we use. Assuming that the whole set P [S,B]
is positively invariant under the dynamics, the following two types of stability are
defined (see also Definition 6.5 of Weibull 1996; Definition 6 of Oechssler and Riedel
2001).

Definition 5 A state P ∈ P [S,B] is Lyapounov stable with respect to d if every
vicinity V with respect to d of P contains a vicinity V 0 of P such that Q (t) ∈ V for
all Q (0) ∈ V 0 and t ≥ 0.

Definition 6 A state P ∈ P [S,B] is asymptotically stable with respect to d if it
is Lyapounov stable with respect to d and ∃ε > 0 s.t. d (Q (0) , P) < ε ⇒ d (Q (t) , P)

→ 0 as t → ∞.

3 From evolutionary to asymptotic stability and back

An interesting question is how the different concepts defined in Sect. 2 relate to each
other. We know that for the discrete, finite case evolutionary stability (ESS), the exis-
tence of a uniform invasion barrier (UIB) and local superiority ( LS) are equivalent and
imply asymptotic stability (AS). For finite action spaces (Fig. 1), there is no need to
specify a function d for local superiority and asymptotic stability. With a finite action
space, any vicinity of a probability measure P with respect to any of the functions d
mentioned above also contains a vicinity of P with respect to any other of the three.
Hence, as long as the action space is finite, local superiority is equivalent across the
three functions mentioned above, and the same naturally also holds for asymptotic
stability.

ESS   UIB   LS   AS 

Fig. 1 Finite action space
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LSpr   ASpr 

LSvd   ASvd 

ESS   UIB   LSkl   ASkl 

1

2 4

3

5 6

7
                 12 
8                              17 
                 13

14

 9 

                 10 
6                15
                 11

16

18

?
?

Fig. 2 Continuous action space

A continuous action space breaks up a few of those links as we will see just now.
The examples that show which implications do not hold are of course negative results
that suggest that local superiority might be the most useful of the three static concepts,
but all is not lost for evolutionary stability; there are assumptions that pave the way
from evolutionary stability to local superiority.

The implications under examination are drawn as arrows in Fig. 2. In this section
we will check them one at a time, trying to find out which of them hold and which
do not. For some arrows we will only mention known results or counterexamples,
but since local superiority in the Kullback–Leibler I -divergence is a new definition,
there are a few new arrows to consider. On top of that there are propositions that are
concerned with restoring implications under extra assumptions.

We start with the relation between evolutionary stability and the existence of a
uniform invasion barrier.

1 ESS ��� UIB

Oechssler and Riedel (2001, p. 148) give an example of a payoff function for which
the equilibrium strategy is ESS but not UIB, which in their terminology means that
it is not uninvadable. Their example is a game A (x, y) = −x4 + 4xy and one can
easily check that if δx is the Dirac measure in x , then δ0 is an ESS, but that for x �= 0
the maximum invasion barrier of δx is x2

4 , and this goes to 0 if x goes to 0.
One remarkable feature of their counterexample is that if we take the limiting dis-

tribution of the sequence of strategies for which the maximum invasion barrier goes
to 0, it coincides with the ESS itself. One may wonder whether examples can be con-
structed where this is not the case, and it turns out that under very mild assumptions
this is not possible, as the following proposition shows.

Proposition 7 Assume that A is continuous and that S is compact. If P is an ESS and
{Qn}n∈N is a sequence of strategies for which the maximum invasion barrier tends to
0, then Qn converges weakly to P.

Proof For showing that Qn converges weakly to P , it will suffice to show that every
subsequence has a further subsequence that weakly converges to P (see Billingsley
1968, Theorem 2.3).

Since S is compact, the sequence
{

Qnk

}
k∈N

is naturally tight. Let
{

Qnk

}
k∈N

be a
subsequence of {Qn}n∈N. By Prohorov’s theorem (see Billingsley 1968, Theorem 6.1)
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there exists a subsequence
{

Qnki

}

i∈N
and a probability measure Q such that Qnki

weakly converges to Q. We now show that Q = P .
Since P is an ESS, we know by definition that for every Qnki

�= P either u [P, P] >

u
[

Qnki
, P
]

or u [P, P] = u
[

Qnki
, P
]

and u
[

P, Qnki

]
> u

[
Qnki

, Qnki

]
. In the

latter case the invasion barrier is 1. This also holds if u [P, P] > u
[

Qnki
, P
]

and

u
[

P, Qnki

]
≥ u
[

Qnki
, Qnki

]
. The fact that εP (Qn) decreases to 0 therefore implies

that there is an N such that εP

(
Qnki

)
< 1 for i > N , and therefore that from this

N onwards u [P, P] > u
[

Qnki
, P
]

and u
[

P, Qnki

]
< u
[

Qnki
, Qnki

]
. For any such

Qnki
, the maximum invasion barrier εP

(
Qnki

)
follows from the equation

u [P, P] − u
[

Qnki
, P
]

u
[

Qnki
, Qnki

]
− u
[

P, Qnki

] =
εP

(
Qnki

)

1 − εP

(
Qnki

)

Since εP (Qn) → 0, it also holds that

lim
i→∞

u [P, P] − u
[

Qnki
, P
]

u
[

Qnki
, Qnki

]
− u
[

P, Qnki

] = lim
i→∞

εP

(
Qnki

)

1 − εP

(
Qnki

) = 0.

Weak convergence of Qnki
implies that u

[
Qnki

, P
]

→ u [Q, P], u
[

P, Qnki

]
→

u [P, Q] and u
[

Qnki
, Qnki

]
→ u [Q, Q] since A is continuous and S compact.

Convergence of u
[

Qnki
, Qnki

]
follows from Theorem 3.2 in Billingsley (1968) and

separability of S, where separability is implied by compactness, see Pervin (1964),
page 105.

But then we have found that P is not an ESS if Q �= P , since u [P, Q] ≤ u [Q, Q]

and u [P, P] = u [Q, P], which follows directly from the fact that u
[

Qnki
, Qnki

]
−

u
[

P, Qnki

]
is bounded. From this contradiction, it follows that Q = P . �

2 UIB ⇒ ESS

The other direction is obvious; a strategy with a uniform invasion barrier is an ESS.

3 UIB ��� LSkl

The following game is not very elegant, but it does serve as an example of a game
with a strategy that has a uniform invasion barrier without being locally superior in the
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Fig. 3 Partition of the domain
of A (x, y)

2p
-p

-p

p

p

Kullback-Leibler I -divergence. Let S be the interval [−π, 2π ] and take the sequence
{an}n∈N with an = (1 − 1

2n

)
π . Define the payoff function of the game as

A =

⎧
⎪⎪⎨

⎪⎪⎩

∣
∣sin 1

2 (x − y)
∣
∣ for x ∈ [−π, π ] and y ∈ [−π, π ]

3(π−an)+2 cos 1
2 an

(π+an)(an−an−1)
for x ∈ [π + an−1, π + an

]
and y ∈ [−π, an]

0 elsewhere

where the different parts of the domain are pictured in Fig. 3.
Take as an equilibrium strategy P the uniform distribution on [−π, π ], in other words,

d P (x)

dλ (x)
=
{ 1

2π
for x ∈ [−π, π ]

0 elsewhere

where λ is the Lebesque measure. Then we construct a sequence of signed measures
{Hn}n∈N with Hn = H+

n − H−
n which is defined by

d H+
n (x)

dλ (x)
=
{ 1

2π
for x ∈ [π + an−1, π + an

]

0 elsewhere
,

d H−
n (x)

dλ (x)
=
{ 1

2π
for x ∈ [an, π ]

0 elsewhere

This is a sequence of differences that we use to make a sequence {Qn}n∈N of strategies,
where Qn = P + 1

2 Hn . Note that

lim
n→∞ dkl (Qn, P) = lim

n→∞

∫
log

(
dP (x)

dQn (x)

)

dP (x)

= lim
n→∞

⎛

⎝

an∫

−π

log 1dx +
π∫

an

log 2dx

⎞

⎠ = 0
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If we make an obvious generalization of the function u to allow for the arguments to
be measures that do not necessarily integrate to 1, we can take a shortcut in the algebra
by computing the following integrals:

u
[
H−

n , P − H−
n

] =
an∫

−π

π∫

an

∣
∣
∣
∣sin

1

2
(x − y)

∣
∣
∣
∣

1

2π
dx

1

2π
dy = 2

π2 cos
1

2
an

u
[
H−

n , H−
n

] =
π∫

an

π∫

an

∣
∣
∣
∣sin

1

2
(x − y)

∣
∣
∣
∣

1

2π
dx

1

2π
dy= 1

π2

(

(π − an) − 2 cos
1

2
an

)

u
[
H+

n , P
] = u

[
H+

n , P−H−
n

] =
an∫

−π

π+an∫

π+an−1

3 (π−an) +2 cos 1
2 an

(π + an) (an − an−1)

1

2π
dx

1

2π
dy

= 1

4π2

(

3 (π − an) + 2 cos
1

2
an

)

.

Note that furthermore, due to the parts of the payoff function that are zero, u
[
H+

n , H−
n

]

= u
[
H−

n , H+
n

] = u
[
H+

n , H+
n

] = 0. Now we can write

u [Qn, Qn] − u [P, Qn] = u

[

P + 1

2
Hn, P + 1

2
Hn

]

− u

[

P, P + 1

2
Hn

]

= u [P, P] + 1

2
{u [Hn, P] + u [P, Hn]}

+1

4
u [Hn, Hn] − u [P, P] − 1

2
u [P, Hn]

= 1

2
u [Hn, P] + 1

4
u [Hn, Hn]

= 1

2

{
u
[
H+

n , P
]− u

[
H−

n , P
]}+ 1

4

{
u
[
H+

n , H+
n

]

− u
[
H+

n , H−
n

]− u
[
H−

n , H+
n

]+ u
[
H−

n , H−
n

]}

Filling in the integrals found above, and using u[H−
n , P] = u[H−

n , P − H−
n ] +

u[H−
n , H−

n ], we get

1

2

{
1

4π2

(

3 (π − an) + 2 cos
1

2
an

)

− 1

4π2 (4 (π − a))

}

+1

4

{
1

π2

(

(π − a) − 2 cos
1

2
an

)}

= 1

8π2

(

(π − an) − 2 cos
1

2
an

)

> 0

which implies that the strategy P is not locally superior in the Kullback–Leibler
I -divergence.
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To show that the strategy P has a uniform invasion barrier, it will do to look at the
sequence

{
Q̃n
}

n∈N
with Q̃n = P + Hn . For this sequence we can write

εQ̃n

1 − εQ̃n

= u [P, P] − u[Q̃n, P]
u
[
Q̃n, Q̃n

]− u
[
P, Q̃n

] = −u [Hn, P]

u [Hn, P + Hn]

= − ((3 (π − an) + 2 cos 1
2 an
)− 4 (π − an)

)

(
3 (π − an) + 2 cos 1

2 an
)− 8 cos 1

2 an
= (π − an) − 2 cos 1

2 an

3 (π − an) − 6 cos 1
2 an

=1

3

From this equation, it follows that εP
(
Q̃n
) = 1

4 , which is an invasion barrier for all
strategies Q̃n . Since the payoff function is zero on [π, 2π ] × [−π, 2π ], as well as on[
an−1, an

]× [an, π ] for all n > 0, no mutant can perform better against P than these
Q̃n’s, which implies that 1

4 is a uniform invasion barrier.2

4 LSkl⇒ UIB

This implication is relatively easy and basically not very different from the finite case:

Proposition 8 A strategy P which is locally superior in the Kullback-Leibler
I -divergence has a uniform invasion barrier.

Proof First observe that

dkl ((1 − ε) P + εQ, P) =
∫

supp(P)

log

(
dP (x)

d [(1 − ε) P + εQ] (x)

)

dP (x)

<

∫

supp(P)

log

(
dP (x)

d [(1 − ε) P] (x)

)

dP (x)

=
∫

supp(P)

log
1

(1 − ε)
dP (x) = log

1

(1 − ε)

P being locally superior in the Kullback-Leibler I -divergence means that there is a
vicinity Vkl (P, δ) of P such that for all R ∈ Vkl (P, δ)

u [P, R] > u [R, R]

Now take ε = 1 − e−δ . Using our first observation, we find that for all ε < ε and all
Q ∈ P [S,B] the following holds: dkl ((1 − ε) P + εQ, P) < δ. The local superiority

2 In game A we could replace 3 (π − an) + 2 cos 1
2 an by anything between 4 (π − an) and 8 cos 1

2 an . We

would only have to adapt the Qn ’s accordingly; if we take (1 − β) ·4 (π − an)+β ·8 cos 1
2 an , β ∈ (0, 1),

then we have to choose an α that exceeds β in Qn = P + αHn .
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then tells us that

u [P, (1 − ε) P + εQ] − u [(1 − ε) P + εQ, (1 − ε) P + εQ] > 0

⇔ u [εP, (1 − ε) P + εQ] − u [εQ, (1 − ε) P + εQ] > 0

⇔ u [P, (1 − ε) P + εQ] − u [Q, (1 − ε) P + εQ] > 0

But then we have shown that ε is a uniform invasion barrier. �
There are different kinds of assumptions we can make under which equivalence of

the existence of a uniform invasion barrier and local superiority can be restored. One
is to restrict the support of the candidate for local superiority to a finite set. This is
done in Oechssler and Riedel (2001, Lemma 1, part 2), where they show the following.
(Note that they refer to a strategy as uninvadable when we say it has a uniform invasion
barrier and that their strong uninvadability equals what we call local superiority in the
variational distance).

Proposition 9 Assume that the support of P is finite. Then P is locally superior in
the variational distance if P has a uniform invasion barrier.

This proposition actually does a bit more than repair only the third arrow from
Fig. 2; it gives a condition under which both non-implications 3 and 7 are turned into
implications in one go.

There is however also a quite different restriction on the support of P under which
equivalence can be restored too. Under the assumption that the support equals the
whole action space S, we can in fact go from evolutionary stability directly to local
superiority in the Prohorov metric ( 1, 3, 5 and 7 in one step).

Proposition 10 Assume that A is continuous and that the support of P equals the
action space S. Then P is locally superior in the Prohorov metric if P is an ESS.

Proof This follows directly from the second definition of evolutionary stability, which
states that P is evolutionary stable if both u [P, P] ≥ u [Q, P] ∀ Q and u [P, P] =
u [Q, P] ⇒ u [P, Q] > u [Q, Q] ∀Q �= P hold. If the support of P equals S then,
by Lemma 11, u [P, P] must equal u [Q, P] and then the second part of the definition
tells us that P must even be globally superior, and therefore that P will also be locally
superior in the Prohorov metric. �

Here the following lemma, however intuitively clear, is used:

Lemma 11 If (P, P) is a Nash equilibrium of A, supp (Q) ⊂ supp (P) and A is
continuous, then u [Q, P] = u [P, P].

Proof (P, P) being a Nash equilibrium of A—that we have assumed to be a symmetric
game throughout the paper—means that u [P, P] ≥ u [Q, P] for all Q. As a conse-
quence, u [P, P] ≥ u [δx , P] = ∫ A (x, y) P (dy), where δx is the Dirac measure in
x . If we define f (x) as the difference, then f (x) = u [P, P]−u [δx , P] ≥ 0. But also∫

S f (x) P (dx) = ∫S (u [P, P] − u [δx , P]) P (dx) = 0, so that we can conclude that
[P {x : f (x) > 0} = 0 and ] P {x : f (x) = 0} = 1. The set {x : f (x) = 0} is closed
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because f (x) is continuous. Together with the assumed inclusion, this implies that
supp (Q) ⊂ supp (P) ⊂ {x : f (x) = 0}.

We now have that 0 ≤ ∫S f (x) dQ = ∫supp(Q)
f (x) dQ ≤ ∫{x : f (x)=0} f (x) dQ

= 0, which reads u [P, P] = u [Q, P]. �
The assertion of the lemma remains valid if the two assumptions that supp (Q)

⊂ supp (P) and that A is continuous are replaced with the single assumption that Q
is absolutely continuous w.r.t. P . Inspection of the proof of the lemma shows that
the only place where the original two assumptions are used, is where we obtain the
conclusion that Q {x : f (x) = 0} = 1 from P {x : f (x) = 0} = 1. This is obviously
also guaranteed under the alternative assumption.

We conjecture that the following theorem also holds, but we were not able to prove
or disprove it:

Conjecture 12 If P (int (supp (P))) = 1, A is continuous and S is compact, then P
has a UIB if P is an ESS.

Because Proposition 7 states that εP (Qn) → 0 implies that Qn converges weakly
to P , it would be enough to show that, coversely, if P (int (supp (P))) = 1, and
Qn converges weakly to P , then εP (Qn) = − u[Qn−P,P]

u[Qn−P,Qn−P] cannot go to 0. This
contradiction would prove the conjecture.

Now we will turn to how the three types of local superiority relate to each other.

5 LSvd ��� LSpr

Oechssler and Riedel (2002, Example 4) show that a strategy with a UIB need not be
locally superior in the Prohorov metric. Here we focus only on the step from local
superiority in the variational distance and local superiority in the Prohorov metric, but
luckily δ0 (the Dirac measure in 0) in their counterexample—A (x, y) = −x2+xy—is
also locally superior in the variational distance.

6 LSpr ⇒ LSvd

Since Vvd (P, 2δ) ⊂ Vpr (P, δ), a vicinity in the Prohorov metric contains one in
the variational distance, so it is obvious that local superiority in the Prohorov metric
implies local superiority in the variational distance.

7 LSkl ��� LSvd

For a counterexample we go back to the one we used at arrow 3 and modify it slightly.
We change the game into

A =

⎧
⎪⎨

⎪⎩

∣
∣sin 1

2 (x − y)
∣
∣ x ∈ [−π, π ] , y ∈ [−π, π ]

8 cos 1
2 an

(π+an)(an−an−1)
x ∈ [π + an−1, π + an

]
, y ∈ [−π, an]

0 elsewhere
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If we look at the same equilibrium strategy P , that is P uniform on [−π, π ], and at
mutant strategies Qn (α) = P + αHn , with the Hn’s as before, we see that

u [Qn (α) , Qn (α)] − u [P, Qn (α)]

= αu [H, P] + α2u [H, H ]

= α
(
u
[
H+, P − H−]+ u

[
H−, P

])+ α2 (u
[
H−, H−])

= α

(
2

π2 cos
1

2
an − 1

π2 (π − an)

)

+ α2
(

1

π2 (π − an) − 2

π2 cos
1

2
an

)

and this is smaller than 0 if α is smaller than 1. But for α = 1, which makes the
only sequence {Qn (α)}π∈N that goes to 0 in the variational distance but not in the
Kullback-Leibler I -divergence, this expression equals 0. Therefore P is not locally
superior in the variational distance, although it is locally superior in the Kullback-
Leibler I -divergence.

8 LSvd ⇒ LSkl

Similar to 6, Vkl
(
P, δ2

) ⊂ Vvd (P, δ) implies that a strategy that is local superior in
the variational distance is also local superior in the Kullback-Leibler I -divergence.

This completes the implications within the set of static definitions. When we go on
to characteristics of strategies as population states in the dynamics, it is useful to note
a few things. The first is that there are again different types of asymptotic stability,
depending on which type of vicinity we choose. This time, however, not all of them are
equally useful without further restrictions or assumptions. The reason for that is that
population states that are close by in the variational distance or in the Prohorov metric
may put probability zero on a set that has positive probability in the equilibrium. If a
shock takes the population to such a state, it is obvious that selective dynamics cannot
bring the population back. This observation is made in Oechssler and Riedel (2002)
and in Cressman (2005) and Propositions 13 and 14 make that precise. Although they
are relatively obvious observations, they will turn out to be useful for proving some
implications later on.

Proposition 13 If a strategy P is asymptotically stable in the variational distance,
then the support is finite.

Proof Suppose the support of P is not finite. Then, by Lemma 15 below, for any
ε > 0 one can find a set C ∈ B such that 0 < P (C) ≤ ε

2 . Define Q as Q (B) =
1

1−P(C)
P (B\C) ∀ B ∈ B. For this Q we have that dvd (Q, P) = 2P (C) ≤ ε and

dvd (Q (t) , P) ≥ dvd (Q, P) > 0 for all t ≥ 0 if we take Q (0) = Q. The latter
follows from Q (0) (C) = 0, which implies that Q (t) (C) = 0 for all t ≥ 0. Strategy
P therefore is not asymptotically stable in the variational distance. �
Proposition 14 If a strategy P is asymptotically stable in the Prohorov distance, then
the support of P is (1) finite and (2) consists of isolated points only.

Proof Suppose the support of P is not finite. Then with Lemma 15 we know that for
any ε > 0 one can find an open set C such that 0 < P (C) < ε. Define Q as Q (B) =
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1
1−P(C)

P (B\C) ∀B ∈ B. For this Q we have that dpr (Q, P) ≤ 1
2 dvd (Q, P) =

P (C) < ε. For the open set C , we now have that Q (t) (C) = 0 for all t ≥ 0 if we
take Q (0) = Q. Hence lim inf Q (t) (C) = 0 < P (C), which by the Portmanteau
theorem contradicts that Q (t) converges weakly to P . Strategy P therefore is not
asymptotically stable in the Prohorov metric.

If the support of P is finite, but does not consist of isolated points only, then
there is a point x ∈ S for which P (x) > 0 and ρ (x, S\{x}) = 0. Then for any
0 < ε < min {P (x) , ρ (x, supp (P)\{x})}, we can define a strategy Qε such that
the only difference between P and Qε is that Qε has probability mass 0 in x and
probability mass P (x) in a point y with 0 < ρ (x, y) < ε. For this Qε we have
that 0 < dpr (Qε, P) < ε and dpr (Q (t) , P) ≥ dpr (Qε, P) for all t ≥ 0 if we
take Q (0) = Qε . Strategy P therefore is not asymptotically stable in the Prohorov
metric. �
Lemma 15 The support of P is a finite set if and only if ∃ ε > 0 such that for all
F ∈ B either P(F) = 0 or P(F) ≥ ε.

Proof (⇒) Let F0 = {x1, . . . , xn} with P(F0) = 1 and P({xi }) > 0 for all i . Take ε =
min{P({x1}), . . . , P({xn})} > 0. Note that we do not need the separability of S here.

(⇐) Let AP be the set of atoms of P . In general AP is at most countable, but it fol-
lows from the assumption that AP is even a finite set. If P(AP ) = 1, then that proves the
assertion. If 0 ≤ P(AP ) < 1 we define Q as Q (B) = 1

1−P(AP )
P (B\AP )∀B ∈ B.

This way P is renormalized on the reduced space S\AP by taking the conditional
probability measure on this set, to again obtain a probability measure, but now with-
out possible atoms. By separability of S we can find an S0 = {x1, x2, . . .} that is
a countable dense subset of S. Take such an xn and consider a sequence of open
balls Bk

n , k = 1, 2, . . . with centers xn that decreases to {xn}. Then, by continuity of
the probability measure, we have that P

(
Bk

n

) ↓ 0 for k → ∞. By the assumption

there then exists an index kn such that P
(

Bkn
n

)
= 0. Since S0 is dense, it holds that

S = ⋃∞
k=1 Bkn

n and hence it would follow that Q (S) = 0. But then it cannot be that
P(AP ) < 1 and it must be that P (AP ) = 1 after all. �

In general, two ways to get more positive results have been tried successfully.
The first one is to focus on strategies with finite support in combination with the
variational distance. This is done in for instance Oechssler and Riedel (2001) and
Cressman (2005). The second way to get positive results is to make additional assump-
tions concerning starting points of trajectories, as is done in for instance Bomze (1990,
1991), Oechssler and Riedel (2002) and Cressman (2005). In Bomze (1990, Theorem 2,
1991, Theorem 4) it is assumed that starting points are in a vicinity that is defined with
the Kullback-Leibler I -divergence. In Oechssler and Riedel (2002, Conjecture 1) and
Cressman (2005, Definition 1), it is assumed that starting points have a support that
includes the support of the candidate for stability. In this paper, we would like to let
these two different assumptions enter in a slightly different way.

The additional assumption in Bomze (1990, 1991) implies the introduction of the
Kullback-Leibler I -divergence as a function d that defines vicinities of probability
distributions. When this is used to (further) restrict the possible starting points on top
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of—or instead of—demanding that starting points be close in for instance the vari-
ational distance, then we think it is natural to treat this restriction no different from
the restrictions we impose by using the Prohorov metric or the variational distance.
Because we think of them as functions that reflect how the likelihood of different muta-
tions or shocks compare to each other, we would prefer to give the Kullback-Leibler
I -divergence a similar interpretation. This restriction is therefore naturally incorpo-
rated in the definition of asymptotic stability in the Kullback-Leibler I -divergence.3

Restricting the starting points of trajectories to those that have a support that includes
the support of the candidate for stability we would like to treat slightly differently.
This restriction is made with the correct argument that if we allow for starting points
to violate this assumption, then there are interesting games in which no equilibrium
strategy can ever be asymptotically stable in the variational distance nor in the Proho-
rov metric. Another way of formulating this is that for those games no positive results
can be proven. Propositions 13 and 14 can be seen as formalizing that argument. The
restriction itself, however, we think is not naturally thought of as excluding relatively
unlikely mutations and including the more likely ones. We therefore would like to for-
mally separate the reasons why starting points of trajectories should not have a support
that is a strict subset of the support of the candidate for stability, from the reasons why
other starting points are excluded, which is that it takes a relatively unlikely shock to
shift the population to them.

Summarizing, we have chosen to allow for the possibility to let the restriction to
vicinities in the Kullback-Leibler I -divergence enter the definition of asymptotic sta-
bility through the function d, while we have left the second restriction out of the
definition of asymptotic stability itself. Leaving it out does not at all imply that this
restriction can or should not be used in formulating useful positive stability results. It
only reflects that we do not see it as a representation of relative likelihoods of shocks or
mutations. A final thing worth mentioning here is that the use of asymptotic stability in
the Kullback-Leibler I -divergence makes excluding starting points of trajectories on
grounds of their support superfluous, because dKL (Q, P) = ∞ for any Q for which
supp(P) is not included in supp(Q). Given that we emphatically want to allow for
equilibrium distributions that have densities (see for instance the examples at arrows 3
and 7), for which Propositions 13 and 14 exclude asymptotic stability in the Prohorov
metric and the variational distance, we chose to place a bit more emphasis on asymp-
totic stability in the Kullback-Leibler I -divergence than on restrictions concerning the
support, which in that case becomes redundant.

9 LSpr ��� ASpr

Take S = [0, 1] and

A (x, y) =
{

1 if x = 0
0 if x > 0

3 Van Veelen (2001) contains a simple finger exercise with mutations that explores the possibilities of
such an interpretation, which gives vicinities that are somewhere in between the ones that come with
Kullback-Leibler I -divergence and the variational distance.
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If we take probability measure P with all mass at x = 0, then u [P, Q] = P (0) = 1 >

Q (0) = u [Q, Q] for all Q �= P . This P is therefore locally superior in the Proho-
rov metric, but it is obviously not asymptotically stable in the Prohorov metric (see
Proposition 14 and realise that x = 0 is not an isolated point in S).

10 ASpr ��� LSpr

12 ASvd ��� LSvd

14 ASkl ��� LSkl

The counterexample for the finite case still serves as an example that these implications
do not hold. For this distorted Rock Scissors Paper game, I refer to Weibull (1996,
p. 102). The only important thing is that we have to choose the action space S properly.
If we locate the three actions at 1, 2 and 3, respectively, one has to make sure that these
are isolated points in the action space if we use the Prohorov metric—take for instance
S = {1, 2, 3}—because otherwise the equilibrium would not be asymptotically stable.
For the other two cases, S can be R if we define A (x, y) = 0 if x /∈ {1, 2, 3} or
y /∈ {1, 2, 3}.

11 LSvd ��� ASvd

Take as an example S = [−π, π ] and A (x, y) = ∣∣sin
( 1

2 (x − y)
)∣∣. The strategy P

with uniform density f (x) = 1
2π

is globally superior, but any strategy Qδ with density

gδ (x) =
{

0 x ∈ [−π,−π + δ)
1

2π−δ
x ∈ [−π + δ, π ]

is within variational distance ε if δ < ε/2, and yet dvd (Q (t) , P) ≥ 2δ for all t ≥ 0
if we take Q (0) = Qδ .

13 LSkl⇒?ASkl

From Theorem 4 in Bomze (1991) and Theorem 2 in Bomze (1990) we know that if
P is local superior in the variational distance and we start in an appropriately small
Kullback-Leibler vicinity of P , then (1) the Kullback-Leibler I -divergence decreases
monotonically and (2) the variational distance goes to zero. Because the proofs only
use the local superiority in the Kullback-Leibler vicinity, this could be summarized as
follows:

Proposition 16 Assume that replicator dynamics are well-defined. If a strategy P is
locally superior in the Kullback-Leibler I -divergence, then for dkl (Q (0) , P) small
enough, dkl (Q (t) , P) decreases monotonically and dvd (Q (t) , P) → 0 as t
increases.
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In order to arrive at asymptotic stability at arrow 13, it remains to be proven that
also dkl (Q (t) , P) not only decreases monotonically, but actually goes to 0.

15 ASvd ��� ASpr

The counterexample at arrow 9 also serves as a counterexample here; if we take
S = [0, 1] and

A (x, y) =
{

1 if x = 0
0 if x > 0

then probability measure P with all mass at x = 0 is asymptotically stable in the
variational distance, but not in the Prohorov metric.

16 ASpr⇒ ASvd

From Proposition 14 we know that if P is asymptotically stable in the Prohorov metric,
then its support must consist of isolated points only. In that case the two asymptotic
stabilities coincide.

17 ASkl ��� ?ASvd

Any strategy that is asymptotically stable in the Kullback-Leibler I -divergence and
that has a density would do as a counterexample (see Proposition 13 ). A proof of the
implication at arrow 13 would certainly help establishing this, for then we could take
the example from arrow 11.

18 ASvd ⇒ ASkl

From Propositions 13 we know that if P is asymptotically stable in the variational
distance, then its support must consist of a finite number of points. In that case the two
asymptotic stabilities coincide.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

4 Appendix

The appendix is meant to serve the reader that wants to check up on the reason why
the Kullback-Leibler type vicinities do not come with a straightforward topology, as
the Prohorov metric or the variational distance do.

The definition of a Kullback-Leibler vicinity is due to Bomze (1991), and on page
81 of the article, he refers to Csiszár (1967) for the argument why they, as it is stated
there, do not define a topology. The relevant theorem from Csiszár (1967) is Theorem 3,
which proves this point for a general set of divergences, of which the Kullback-Leibler
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I -divergence is a special case. In order to indicate that there is a problem concerning
the interpretation of this theorem, we quote the remark that directly follows the theo-
rem in Csiszár (1967). The general set of f -divergences we encounter there is defined
with functions f (u), and for f (u) = u log u we have our case, which is, in terms of
the theorem, the I -divergence of order 1.

Remark The corresponding theorem for I -divergences of order α > 0 has been proved
in Csiszár (1962); the idea of the proof is similar also in the general case, but the lack
of knowledge of the concrete form of f (u) causes some difficulties.

In order that the Fréchet (V )-space E be a topological space (in the sense that
the given neighbourhood systems of the points of E are basis for the neighbourhood
systems of the points of E in some topology on E) the following property is clearly
necessary:

(B) For all points e ∈ E , each neighbourhood U of e contains another neighbour-
hood U ′ of e such that each point e′ ∈ U ′ possesses a neighbourhood which is
a subset of U .

Note to Remark: This property is well known to be sufficient, too, provided that each
point of E possesses at least one neighbourhood and is contained in all of its neigh-
bourhoods.

The idea this remark conveys is to some extent clear, but a few things are strange
if we just use standard topology textbook definitions. One is that for sufficiency, it is
demanded that each point is contained in all of its neighbourhoods. This is a rather
odd requirement, for points by definition are contained in their neighbourhoods (see
Definition 18). It is also remarkable that in (B) there apparently are neighbourhoods,
while the purpose of this property is to prove that something is not a topological space.
This is strange, because in standard topology terminology, neighbourhoods can only
be defined once there is a topology (again, see Definition 18).

The solution to this problem lies in the topology textbook that Csiszár (1967) refers
to, which is General Topology by Sierpinski (1952). There we find that the order of
defining neighbourhoods and topologies is the reverse of the order we are used to now.
The starting point there is a system of neighbourhoods called a Fréchet (V )-space.
These neighbourhoods may be different from our notion of a neighbourhood; a neigh-
bourhood of a point e for instance need not contain e itself. A topological space is
then defined as a Fréchet (V )-space that satisfies four conditions. Modern textbook
definitions, as they are given in Definitions 17 and 18, go in the opposite direction;
first a topological space is defined, and once we have it, we can check whether or not
a set U is a neighbourhood of a point e. It is also worth noting that Sierpinski’s set
of four conditions includes what we now call the first separation axiom, which is not
included in the standard definition of a topological space.

All of this implies that we can run into trouble if we read the proof of Theorem 3 in
Csiszár (1967), or the proof of the special case in Csiszár (1962), and assume that the
terminology there refers to modern textbook definitions. If we do, then there are some
parts of the proofs that would need no proving and others that would just not be true.
The ingredients however can without much complications be rearranged so that they
make a correct proof when using modern textbook definitions. Therefore we will start
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with some important observations and then indicate how the sequences constructed in
Csiszár (1962) can be used to prove the point.

4.1 Definitions

We begin with modern standard definitions of a topological space, a neighbourhood,
a base and a subbase, as well as a well-known theorem.

Definition 17 A topological space is a pair (X, T ), with X a set and T a topology,
that is, a set of subsets of X that satisfies the following axioms:

1. ∅, X ∈ T ;
2. If Oi ∈ T ∀ i ∈ I , then

⋃
i∈I Oi ∈ T ;

3. If O1, ..., On ∈ T , then
⋂n

i=1 Oi ∈ T .

Definition 18 U is a neighbourhood of P ∈ X if there is a O ∈ T such that P ∈
O ⊂ U .

Definition 19 Let (X, T ) be a topological space. A collection B is a base for T if

1. B ⊂ T ,
2. for every O ∈ T there is a B′ ⊂ B such that O =⋃{B : B ∈ B′}.

Definition 20 Let (X, T ) be a topological space. A collection B is a subbase for T if
the set of finite intersections from B is a base for T .

Theorem 21 Let X be a set and B a collection of subsets of X. Then there is a unique
topology T on X such that B is a base for T if and only if

1.
⋃ {B : B ∈ B} = X

2. for all B1, B2 ∈ B and all x ∈ B1 ∩ B2 there exists a B ∈ B such that x ∈ B ⊂
B1 ∩ B2

4.2 Vicinities

For a probability measure P and a function d, one can define the set of vicinities of
P as follows:

Vd (P) = {Vd (P, δ)}δ>0

where

Vd (P, δ) = {Q ∈ P [S,B] | d (Q, P) < δ}

We will look at the union of such sets over all probability measures in P [S,B]

Fd =
⋃

P∈P[S,B]
Vd (P)

A collection of this type is sometimes called a Fréchet (V ) -space.
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With the three functions d from Sect. 2, we have now defined Fpr , Fvd and Fkl . Each
of these collections is a subbase for a topology on P [S,B], and the topologies gener-
ated by the subbases F pr , Fvd and Fkl are denoted by T (F pr ), T

(
Fvd
)

and T
(
Fkl
)

respectively. Because the Prohorov metric and the variational distance are actual dis-
tances, we know—using Theorem 21 and the triangle inequality—that F pr and Fvd are
also bases for T (F pr ) and T

(
Fvd
)
, respectively. The Kullback-Leibler I -divergence

however is not a distance, and Fkl is not a base for T
(
Fkl
)
, as we will see below.

We will do two things now. First we will show that T (F pr ) ⊂ T
(
Fvd
) ⊂ T

(
Fkl
)

and that these inclusions are strict. Then we will finally show how the sequences of dis-
tributions that are constructed by Csiszár (1962) imply that condition 2 in Theorem 21
is not met, and hence Fkl is not a base for a topology.

4.3 Inclusions

Because F pr is a base for T (F pr ), we know that if O ∈ T (F pr ) and P ∈ O ,
this implies that there is a B ∈ F pr such that P ∈ B ⊂ O . In other words, there
is a Q and a δ > 0 such that P ∈ Vpr (Q, δ) ⊂ O . Because the Prohorov met-
ric is a distance, we can use the triangle inequality to show that there also is an
ε > 0 such that P ∈ Vpr (P, ε) ⊂ Vpr (Q, δ) ⊂ O . But then, since we know that
Vvd (P, 2ε) ⊂ Vpr (P, ε), we also know that P ∈ Vvd (P, 2ε) ⊂ Vpr (P, ε) ⊂ O .
This can be done for any P ∈ O , and therefore also O ∈ T

(
Fvd
)
. Summarizing, we

have found that T (F pr ) ⊂ T
(
Fvd
)
.

A similar argument can be employed to show that T
(
Fvd
) ⊂ T

(
Fkl
)
; we then

use that the variational distance is a distance too and that Vkl
(
P, δ2

) ⊂ Vvd (P, δ).
The converse inclusions are typically not true with continuous action spaces S. To

illustrate that T (F pr ) does not contain T
(
Fvd
)
, we take S = [0, 1] and P = δ0 the

point measure at 0. For all y ∈ (0, 1] we find that dvd
(
δy, P

) = 2, while dpr
(
δy, P

) =
y. Therefore none of these probability measures δy are elements of Vvd (P, 1) ∈ Fvd .
For any B ∈ F pr such that P ∈ B, however, there is a y ∈ (0, 1] close enough to 0
for which δy ∈ B. Hence for P ∈ Vvd (P, 1) there is no B ∈ F pr such that P ∈ B ⊂
Vvd (P, 1). This therefore constitutes a counterexample; Vvd (P, 1) ∈ T

(
Fvd
)
, but

Vvd (P, 1) /∈ T (F pr ).
To illustrate that T

(
Fvd
)

does not contain T
(
Fkl
)
, we take S = [0, 1] and P

uniform on S. If we take distributions Py uniform on [y, 1], we find that for all y ∈
(0, 1) the Kullback–Leibler I -divergence dkl

(
Py, P

) = ∞, while dvd
(
Py, P

) = 2y.
Therefore none of these probability measures Py are elements of Vkl (P, 1) ∈ Fkl .
For any B ∈ Fvd such that P ∈ B, however, there is a y ∈ (0, 1] close enough to
0 for which Py ∈ B. Hence for P ∈ Vkl (P, 1) there is no B ∈ Fvd such that P ∈
B ⊂ Vkl (P, 1). This therefore constitutes a counterexample; Vkl (P, 1) ∈ T

(
Fkl
)
,

but Vkl (P, 1) /∈ T
(
Fvd
)
.

4.4 Not a base

The central ingredient of the proof of Satz 5 (Theorem 5) of Csiszár (1962) is the con-
struction of a probability distribution P and sequences of distributions {Qm}m∈N and
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{
Rm,n

}
n>m,m∈N

for which limm→∞ dkl (P, Qm) = 0 and limn→∞ dkl
(
Qm, Rm,n

) =
0 ∀ m but dkl

(
P, Rm,n

) = ∞ ∀ m, n. We can then read Theorem 3 from Csiszár (1967)
applied to the Kullback-Leibler I -divergence, together with the remark quoted above,
as follows: Fkl is not a base for a topology. This is definitely true, also when using
modern textbook Definition 19, since from the counterexample in Csiszár (1962), it
follows that Vkl (P, δ) , δ > 0 and Vkl (Qm, ε) , ε > 0, for m large enough, can feature
as B1 and B2, and, for n large enough, Rm,n would be an x for which condition 2 in
Theorem 21 is not met.
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