Skip to main content

Advertisement

Log in

Return on investment of fracture liaison services: a systematic review and analysis

  • Review
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Fracture liaison services (FLS) have been proven clinically effective and cost-effective in preventing subsequent fractures among patients with an existing fragility fracture. Little is known about their monetary benefits such as their return on investment (ROI). This systematic review aimed to investigate the ROI of FLS and identify the FLS characteristics with better ROI. Studies on the cost-effectiveness of FLS published between January 2000 and December 2022 were searched from MEDLINE, EMBASE, PubMed, and Cochrane Central. Two independent reviewers conducted study selection and data extraction. ROI was calculated based on the difference between monetary benefits and FLS costs divided by the FLS costs. Subgroup analysis of ROI was performed across FLS types and FLS design details. A total of 23 FLS were included in this review. The majority of them were targeting patients aged over 50 years having fractures without identified sites. The mean ROI of these FLS was 10.49 (with a median ROI of 7.57), and 86.96% of FLS had positive ROI. FLS making treatment recommendations yielded the highest ROI (with a mean ROI of 18.39 and a median of 13.60). Incorporating primary care providers (with a mean ROI of 16.04 and a median of 13.20) or having them as program leaders (with a mean ROI of 12.07 and a median of 12.07) has demonstrated a high ROI. FLS for specific fracture sites had great monetary return. Intensive FLS such as type A and B FLS programs had higher ROI than non-intensive type C and D FLS. This review revealed a 10.49-fold monetary return of FLS. Identified characteristics contributing to greater economic return informed value-for-money FLS designs. Findings highlight the importance of FLS and the feasibility of expanding their contribution in mitigating the economic burden of osteoporotic fracture and are conducive to the promotion of FLS internationally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

All data analyzed as part of this study are included in this published article.

References

  1. Johnell O, Kanis JA (2006) An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int 17(12):1726–1733. https://doi.org/10.1007/s00198-006-0172-4 [publishedOnline First: 20060916]

    Article  CAS  PubMed  Google Scholar 

  2. Dobre R, Niculescu DA, Petca RC et al (2021) Adherence to anti-osteoporotic treatment and clinical implications after hip fracture: a systematic review. J Pers Med 11(5). https://doi.org/10.3390/jpm11050341 [published Online First: 20210424]

  3. Long H, Cao R, Zhang H et al (2022) Incidence of hip fracture among middle-aged and older Chinese from 2013 to 2015: results from a nationally representative study. Arch Osteoporos 17(1):48. https://doi.org/10.1007/s11657-022-01082-0 [published Online First: 20220311]

    Article  PubMed  Google Scholar 

  4. Si L, Winzenberg TM, de Graaff B et al (2014) A systematic review and meta-analysis of utility-based quality of life for osteoporosis-related conditions. Osteoporos Int 25(8):1987–1997. https://doi.org/10.1007/s00198-014-2636-2 [published Online First: 20140222]

    Article  CAS  PubMed  Google Scholar 

  5. van Geel TA, van Helden S, Geusens PP et al (2009) Clinical subsequent fractures cluster in time after first fractures. Ann Rheum Dis 68(1):99–102. https://doi.org/10.1136/ard.2008.092775 [published Online First: 20080803]

    Article  PubMed  Google Scholar 

  6. González-Quevedo D, Pérez-Del-Río V, Moriel-Garceso D et al (2022) A 2-year follow-up of a novel fracture liaison service: can we reduce the mortality in elderly hip fracture patients? A prospective cohort study. Osteoporos Int 33(8):1695–1702. https://doi.org/10.1007/s00198-022-06298-x [published Online First: 20220331]

    Article  PubMed  PubMed Central  Google Scholar 

  7. Javaid MK (2021) Efficacy and efficiency of fracture liaison services to reduce the risk of recurrent osteoporotic fractures. Aging Clin Exp Res 33(8):2061–2067. https://doi.org/10.1007/s40520-021-01844-9 [published Online First: 20210528]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hoit G, Whelan DB, Atrey A et al (2022) Association of age, sex and race with prescription of anti-osteoporosis medications following low-energy hip fracture in a retrospective registry cohort. PLoS One 17(12):e0278368. https://doi.org/10.1371/journal.pone.0278368 [published Online First: 20221201]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Singh S, Whitehurst DG, Funnell L et al (2019) Breaking the cycle of recurrent fracture: implementing the first fracture liaison service (FLS) in British Columbia, Canada. Arch Osteoporos 14(1):116. https://doi.org/10.1007/s11657-019-0662-6 [published Online First: 20191127]

    Article  PubMed  Google Scholar 

  10. Akesson K, Marsh D, Mitchell PJ et al (2013) Capture the fracture: a best practice framework and global campaign to break the fragility fracture cycle. Osteoporos Int 24(8):2135–2152. https://doi.org/10.1007/s00198-013-2348-z [published Online First: 20130416]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. van den Berg P, van Haard PMM, van der Veer E et al (2018) A dedicated Fracture Liaison Service telephone program and use of bone turnover markers for evaluating 1-year persistence with oral bisphosphonates. Osteoporos Int 29(4):813–824. https://doi.org/10.1007/s00198-017-4340-5 [published Online First: 20171219]

    Article  CAS  PubMed  Google Scholar 

  12. IOF Capture the Fracture [cited 2023 30th March]. Available from: https://www.capturethefracture.org/ accessed 30th March 2023.,

  13. Mugnier B, Daumas A, Doddoli S et al (2020) Adherence to fracture liaison service programs in patients over 70: the hidden part of the iceberg. Osteoporos Int 31(4):765–774. https://doi.org/10.1007/s00198-020-05290-7 [published Online First: 20200111]

    Article  CAS  PubMed  Google Scholar 

  14. Wu C-H, Tu S-T, Chang Y-F et al (2018) Fracture liaison services improve outcomes of patients with osteoporosis-related fractures: a systematic literature review and meta-analysis. Bone 111:92–100

    Article  PubMed  Google Scholar 

  15. Li N, Hiligsmann M, Boonen A et al (2021) The impact of fracture liaison services on subsequent fractures and mortality: a systematic literature review and meta-analysis. Osteoporos Int 32(8):1517–1530. https://doi.org/10.1007/s00198-021-05911-9 [published Online First: 20210407]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Aziziyeh R, Perlaza JG, Saleem N et al (2021) Benefits of fracture liaison services (FLS) in four Latin American countries: Brazil, Mexico, Colombia, and Argentina. J Med Econ 24(1):96–102. https://doi.org/10.1080/13696998.2020.1864920

    Article  PubMed  Google Scholar 

  17. Chang C-B, Yang R-S, Chang L-Y et al (2021) One-year outcomes of an osteoporosis liaison services program initiated within a healthcare system. Osteoporosis Int 32:2163–2172

    Article  CAS  Google Scholar 

  18. Yan C, Chen Y, Cao J, Fang K, Shao L, Luo Y, Yang L (2023) The effectiveness of fracture liaison services in patients with hip fractures: a systematic review and meta-analysis of randomized controlled trials. Heliyon 9(10):e20838. https://doi.org/10.1016/j.heliyon.2023.e20838

  19. Wu CH, Kao IJ, Hung WC et al (2018) Economic impact and cost-effectiveness of fracture liaison services: a systematic review of the literature. Osteoporos Int 29(6):1227–1242. https://doi.org/10.1007/s00198-018-4411-2 [published Online First: 20180219]

    Article  PubMed  Google Scholar 

  20. Thusini S, Milenova M, Nahabedian N et al (2022) Identifying and understanding benefits associated with return-on-investment from large-scale healthcare Quality Improvement programmes: an integrative systematic literature review. BMC Health Serv Res 22(1):1083. https://doi.org/10.1186/s12913-022-08171-3 [published Online First: 20220824]

    Article  PubMed  PubMed Central  Google Scholar 

  21. Masters R, Anwar E, Collins B et al (2017) Return on investment of public health interventions: a systematic review. J Epidemiol Community Health 71(8):827–834. https://doi.org/10.1136/jech-2016-208141 [published Online First: 20170329]

    Article  PubMed  Google Scholar 

  22. Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA (editors) Cochrane handbook for systematic reviews of interventions version 6.4 (updated August 2023): Cochrane, 2023. Available from www.training.cochrane.org/handbook

  23. Stone PW (2005) Return-on-investment models. Appl Nurs Res 18(3):186–189. https://doi.org/10.1016/j.apnr.2005.05.003

    Article  PubMed  Google Scholar 

  24. McIntosh E (2010) Applied methods of cost-benefit analysis in health care. Oxford University Press

    Google Scholar 

  25. Ganda K, Puech M, Chen J et al (2013) Models of care for the secondary prevention of osteoporotic fractures: a systematic review and meta-analysis. Osteoporosis Int 24:393–406

    Article  CAS  Google Scholar 

  26. Beaupre LA, Lier D, Smith C et al (2020) A 3i hip fracture liaison service with nurse and physician co-management is cost-effective when implemented as a standard clinical program. Arch Osteoporos 15(1):113. https://doi.org/10.1007/s11657-020-00781-w [published Online First: 20200722]

    Article  CAS  PubMed  Google Scholar 

  27. Majumdar SR, Johnson JA, Lier DA et al (2007) Persistence, reproducibility, and cost-effectiveness of an intervention to improve the quality of osteoporosis care after a fracture of the wrist: results of a controlled trial. Osteoporos Int 18(3):261–270. https://doi.org/10.1007/s00198-006-0248-1 [published Online First: 20061104]

    Article  CAS  PubMed  Google Scholar 

  28. Majumdar SR, Lier DA, Beaupre LA et al (2009) Osteoporosis case manager for patients with hip fractures: results of a cost-effectiveness analysis conducted alongside a randomized trial. Arch Intern Med 169(1):25–31. https://doi.org/10.1001/archinte.169.1.25

    Article  PubMed  Google Scholar 

  29. Majumdar SR, Lier DA, Hanley DA et al (2017) Economic evaluation of a population-based osteoporosis intervention for outpatients with non-traumatic non-hip fractures: the "Catch a Break" 1i [type C] FLS. Osteoporos Int 28(6):1965–1977. https://doi.org/10.1007/s00198-017-3986-3 [published Online First: 20170309]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Majumdar SR, Lier DA, Leslie WD (2013) Cost-effectiveness of two inexpensive postfracture osteoporosis interventions: results of a randomized trial. J Clin Endocrinol Metab 98(5):1991–2000. https://doi.org/10.1210/jc.2013-1034 [published Online First: 20130417]

    Article  CAS  PubMed  Google Scholar 

  31. Majumdar SR, Lier DA, McAlister FA et al (2019) Cost-effectiveness of osteoporosis interventions to improve quality of care after upper extremity fracture: results from a randomized trial (C-STOP Trial). J Bone Miner Res 34(7):1220–1228. https://doi.org/10.1002/jbmr.3699 [published Online First: 20190318]

    Article  PubMed  Google Scholar 

  32. Majumdar SR, Lier DA, Rowe BH et al (2011) Cost-effectiveness of a multifaceted intervention to improve quality of osteoporosis care after wrist fracture. Osteoporos Int 22(6):1799–1808. https://doi.org/10.1007/s00198-010-1412-1 [published Online First: 20100929]

    Article  CAS  PubMed  Google Scholar 

  33. Saunders H, Sujic R, Bogoch ER et al (2021) Cost-utility analysis of the Ontario fracture screening and prevention program. J Bone Joint Surg Am 103(13):1175–1183. https://doi.org/10.2106/jbjs.20.00795

    Article  PubMed  Google Scholar 

  34. Senay A, Fernandes JC, Delisle J et al (2021) Patient healthcare trajectory and its impact on the cost-effectiveness of fracture liaison services. J Bone Miner Res 36(3):459–468. https://doi.org/10.1002/jbmr.4216 [published Online First: 20210123]

    Article  PubMed  Google Scholar 

  35. Yong JH, Masucci L, Hoch JS et al (2016) Cost-effectiveness of a fracture liaison service--a real-world evaluation after 6 years of service provision. Osteoporos Int 27(1):231–240. https://doi.org/10.1007/s00198-015-3280-1 [published Online First: 20150815]

    Article  CAS  PubMed  Google Scholar 

  36. Leal J, Gray AM, Hawley S et al (2017) Cost-effectiveness of orthogeriatric and fracture liaison service models of care for hip fracture patients: a population-based study. J Bone Miner Res 32(2):203–211. https://doi.org/10.1002/jbmr.2995 [published Online First: 20161101]

    Article  PubMed  Google Scholar 

  37. McLellan AR, Wolowacz SE, Zimovetz EA et al (2011) Fracture liaison services for the evaluation and management of patients with osteoporotic fracture: a cost-effectiveness evaluation based on data collected over 8 years of service provision. Osteoporos Int 22(7):2083–2098. https://doi.org/10.1007/s00198-011-1534-0 [published Online First: 20110524]

    Article  CAS  PubMed  Google Scholar 

  38. Nayak S, Singer A, Greenspan SL (2021) Cost-effectiveness of secondary fracture prevention intervention for Medicare beneficiaries. J Am Geriatr Soc 69(12):3435–3444. https://doi.org/10.1111/jgs.17381 [published Online First: 20210803]

    Article  PubMed  PubMed Central  Google Scholar 

  39. Solomon DH, Patrick AR, Schousboe J et al (2014) The potential economic benefits of improved postfracture care: a cost-effectiveness analysis of a fracture liaison service in the US health-care system. J Bone Miner Res 29(7):1667–1674. https://doi.org/10.1002/jbmr.2180

    Article  PubMed  Google Scholar 

  40. Cooper MS, Palmer AJ, Seibel MJ (2012) Cost-effectiveness of the Concord Minimal Trauma Fracture Liaison service, a prospective, controlled fracture prevention study. Osteoporos Int 23(1):97–107. https://doi.org/10.1007/s00198-011-1802-z [published Online First: 20110928]

    Article  CAS  PubMed  Google Scholar 

  41. Li N, Si L, Boonen A et al (2022) A model-based cost-effectiveness analysis of fracture liaison services in China. Arch Osteoporos 17(1):132. https://doi.org/10.1007/s11657-022-01170-1 [published Online First: 20221005]

    Article  PubMed  PubMed Central  Google Scholar 

  42. Naranjo A, Prieto-Alhambra D, Sánchez-Martín J et al (2022) Cost-effectiveness analysis of fracture liaison services compared with standard of care in the secondary prevention of fragility fractures in Spain. Clinicoecon Outcomes Res 14:249–264. https://doi.org/10.2147/ceor.S350790 [published Online First: 20220422]

    Article  PubMed  PubMed Central  Google Scholar 

  43. Chien LN, Li YF, Yang RS et al (2022) Real-world cost-effectiveness analysis of the fracture liaison services model of care for hip fracture in Taiwan. J Formos Med Assoc 121(1 Pt 2):425–433. https://doi.org/10.1016/j.jfma.2021.05.028 [published Online First: 20210616]

    Article  PubMed  Google Scholar 

  44. Peng K, Yang M, Tian M et al (2020) Cost-effectiveness of a multidisciplinary co-management program for the older hip fracture patients in Beijing. Osteoporos Int 31(8):1545–1553. https://doi.org/10.1007/s00198-020-05393-1 [published Online First: 20200326]

    Article  CAS  PubMed  Google Scholar 

  45. Peters JL, Anderson R (2013) The cost-effectiveness of mandatory 20 mph zones for the prevention of injuries. J Public Health 35(1):40–48

    Article  Google Scholar 

  46. Nichol KL (2001) Cost-benefit analysis of a strategy to vaccinate healthy working adults against influenza. Arch Int Med 161(5):749–759

    Article  CAS  Google Scholar 

  47. Peng J, Liu Y, Chen L et al (2016) Bisphosphonates can prevent recurrent hip fracture and reduce the mortality in osteoporotic patient with hip fracture: a meta-analysis. Pak J Med Sci 32(2):499–504. https://doi.org/10.12669/pjms.322.9435

    Article  PubMed  PubMed Central  Google Scholar 

  48. Saito T, Sterbenz JM, Malay S et al (2017) Effectiveness of anti-osteoporotic drugs to prevent secondary fragility fractures: systematic review and meta-analysis. Osteoporos Int 28(12):3289–3300. https://doi.org/10.1007/s00198-017-4175-0 [published Online First: 20170802]

    Article  CAS  PubMed  Google Scholar 

  49. Holzmueller CG, Karp S, Zeldow D et al (2016) Development of a cloud-based application for the Fracture Liaison Service model of care. Osteoporos Int 27(2):683–690. https://doi.org/10.1007/s00198-015-3260-5 [published Online First: 20150819]

    Article  CAS  PubMed  Google Scholar 

  50. Miller KL, Steffen MJ, McCoy KD et al (2021) Delivering fracture prevention services to rural US veterans through telemedicine: a process evaluation. Arch Osteoporos 16(1):27. https://doi.org/10.1007/s11657-021-00882-0 [published Online First: 20210210]

    Article  PubMed  PubMed Central  Google Scholar 

  51. Wu CH, Chen CH, Chen PH et al (2018) Identifying characteristics of an effective fracture liaison service: systematic literature review. Osteoporos Int 29(5):1023–1047. https://doi.org/10.1007/s00198-017-4370-z [published Online First: 20180310]

    Article  PubMed  Google Scholar 

  52. Marsh D, Akesson K, Beaton DE et al (2011) Coordinator-based systems for secondary prevention in fragility fracture patients. Osteoporos Int 22(7):2051–2065. https://doi.org/10.1007/s00198-011-1642-x [published Online First: 20110524]

    Article  CAS  PubMed  Google Scholar 

  53. Zhou RA, Beaulieu ND, Cutler D (2020) Primary care quality and cost for privately insured patients in and out of US Health Systems: evidence from four states. Health Serv Res 55(Suppl 3(Suppl 3)):1098–1106. https://doi.org/10.1111/1475-6773.13590 [published Online First: 20201029]

    Article  PubMed  PubMed Central  Google Scholar 

  54. Osaki M, Okuda R, Saeki Y et al (2021) Efficiency of coordinator-based osteoporosis intervention in fragility fracture patients: a prospective randomized trial. Osteoporos Int 32(3):495–503. https://doi.org/10.1007/s00198-021-05825-6 [published Online First: 20210123]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kim SW, Won YJ, Chae DS et al (2019) A new Fracture Liaison Service using the mobile application and IoT sensor. Annu Int Conf IEEE Eng Med Biol Soc 2019:3486–3489. https://doi.org/10.1109/embc.2019.8857094

    Article  PubMed  Google Scholar 

  56. Deloumeau A, Moltó A, Roux C et al (2017) Determinants of short term fracture risk in patients with a recent history of low-trauma non-vertebral fracture. Bone 105:287–291. https://doi.org/10.1016/j.bone.2017.08.018 [published Online First: 20170824]

    Article  PubMed  Google Scholar 

  57. Robinson R (1993) Cost-benefit analysis. Bmj 307(6909):924–926. https://doi.org/10.1136/bmj.307.6909.924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Weaver CM, Bischoff-Ferrari HA, Shanahan CJ (2019) Cost-benefit analysis of calcium and vitamin D supplements. Arch Osteoporos 14(1):50. https://doi.org/10.1007/s11657-019-0589-y [published Online First: 20190430]

    Article  PubMed  PubMed Central  Google Scholar 

  59. Cameron D, Ubels J, Norström F (2018) On what basis are medical cost-effectiveness thresholds set? Clashing opinions and an absence of data: a systematic review. Glob Health Action 11(1):1447828. https://doi.org/10.1080/16549716.2018.1447828

    Article  PubMed  PubMed Central  Google Scholar 

  60. Wisløff T, Hagen G, Hamidi V et al (2014) Estimating QALY gains in applied studies: a review of cost-utility analyses published in 2010. Pharmacoeconomics 32:367–375

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The study is funded by an MRFF grant (APP1176600). Lizheng Xu is supported by an Australian Government Research Training Program Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Chen.

Ethics declarations

Ethics approval and consent to participate

For this type of study, formal consent is not required.

Conflicts of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, L., Zhao, T., Perry, L. et al. Return on investment of fracture liaison services: a systematic review and analysis. Osteoporos Int 35, 951–969 (2024). https://doi.org/10.1007/s00198-024-07027-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-024-07027-2

Keywords

Navigation