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Abstract
Summary The Convolutional Neural Network algorithm achieved a sensitivity of 94% and specificity of 93% in identifying 
scans with vertebral fractures (VFs). The external validation results suggest that the algorithm provides an opportunity to 
aid radiologists with the early identification of VFs in routine CT scans of abdomen and chest.
Purpose To evaluate the performance of a previously trained Convolutional Neural Network (CNN) model to automatically 
detect vertebral fractures (VFs) in CT scans in an external validation cohort.
Methods Two Chinese studies and clinical data were used to retrospectively select CT scans of the chest, abdomen and 
thoracolumbar spine in men and women aged ≥50 years. The CT scans were assessed using the semiquantitative (SQ) Genant 
classification for prevalent VFs in a process blinded to clinical information. The performance of the CNN model was evalu-
ated against reference standard readings by the area under the receiver operating characteristics curve (AUROC), accuracy, 
Cohen’s kappa, sensitivity, and specificity.
Results A total of 4,810 subjects were included, with a median age of 62 years (IQR 56-67), of which 2,654 (55.2%) were 
females. The scans were acquired between January 2013 and January 2019 on 16 different CT scanners from three different 
manufacturers. 2,773 (57.7%) were abdominal CTs. A total of 628 scans (13.1%) had ≥1 VF (grade 2-3), representing 899 
fractured vertebrae out of a total of 48,584 (1.9%) visualized vertebral bodies. The CNN’s performance in identifying scans 
with ≥1 moderate or severe fractures achieved an AUROC of 0.94 (95% CI: 0.93-0.95), accuracy of 93% (95% CI: 93%-
94%), kappa of 0.75 (95% CI: 0.72-0.77), a sensitivity of 94% (95% CI: 92-96%) and a specificity of 93% (95% CI: 93-94%).
Conclusion The algorithm demonstrated excellent performance in the identification of vertebral fractures in a cohort of chest 
and abdominal CT scans of Chinese patients ≥50 years.

Keywords Convolutional neural network · Osteoporosis · Predictive value of tests · Tomography, X-Ray computed · 
Vertebral body

Introduction

Osteoporosis affects approximately 200 million people 
globally, resulting in more than 9 million fragility frac-
tures each year [1, 2]. Vertebral fractures (VFs) due to 
osteoporosis are common, with one occurring every 22 
seconds worldwide in individuals aged 50 years or older. It 
is estimated that only one out of three VFs comes to clini-
cal attention [3] and underreporting of VFs is a worldwide 
problem [4]. Radiologists apply different protocols for 
reading VFs that can be categorized as qualitative, quan-
titative, or semiquantitative (SQ) assessments. Several 
studies have shown that inter- and intra-reader variability 
is significant for the various reading standards and across 
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modalities [5, 6]. The growing number of abdominal and 
chest CT scans and associated radiologist workload [7] 
provides an opportunity to aid radiologists with the iden-
tification and reporting of VFs using artificial intelligence 
algorithms.

Over the last decades, Convolutional Neural Networks 
(CNN) have been successfully applied to detection and 
segmentation tasks in medical image analysis [8]. Exist-
ing VF detection methods vary in their degree of automa-
tion, supported modality, modeling approach, and maturity. 
While most methods are fully automated, none of them 
independently diagnose VFs without confirmation from a 
clinician and hence they operate as computer-aided support 
systems. The published machine learning methods for VF 
detection are predominantly applied to CT, DXA, and lat-
eral radiographs, yet they all leverage information from 2D 
images only (i.e., sagittal reformations in the case of CT) 
[9]. Modeling approaches range from segmentation of verte-
bral bodies followed by height measurements to end-to-end 
methods automatically scoring an image as containing VFs 
or not [10–15]. Evidence of general applicability is limited 
for most of the above VF detection methods, which present 
results from cross-validation studies using relatively small 
sample sizes acquired at a single center (order of magnitude 
of 100 samples). Some methods were evaluated further with 
retrospective diagnostic validation studies on external data 
from multiple centers but again on data sets of a few hun-
dred [14, 16, 17] to almost 1,700 samples [18]. Finally, one 
study discussed the challenges and opportunities of inte-
grating two devices that were approved for clinical use for 

opportunistically screening CT scans into the osteoporosis 
care pathway in the context of the UK National Health Ser-
vice [19].

The purpose of our study was therefore to evaluate the 
performance of a previously trained Convolutional Neural 
Network (CNN) model to automatically detect VFs in CT 
scans in an external validation cohort and to investigate its 
potential for helping radiologists to identify VFs on routine 
CT scans.

Materials and Methods

Study design and cohort

We retrospectively collected 5,195 CT scans: 2,419 
abdominal CT images and 2,036 chest CT images origi-
nating from prior community health screening studies, and 
740 thoracic/lumbar spine CT images from Beijing Jishu-
itan Hospital (Fig. 1). 2,419 abdominal CT scans were 
randomly sampled from the China Action on Spine and 
Hip (CASH) study, an epidemiology study that recruited 
3,457 subjects across seven Chinese provinces and per-
formed lumbar spine Quantitative Computed Tomogra-
phy (QCT) between June 2013 and March 2017. In the 
CASH study, Bone Mineral Density (BMD) measurements 
were computed on the QCT scans and scout views were 
reviewed for prevalent VFs to determine the prevalence 
of osteoporosis and evaluate the association between VFs 
and BMD [20]. 2,036 chest CT images in which vertebrae 

Fig. 1  Flowchart of the study. VF = vertebral fracture. CASH = China action on spine and hip. PACS = picture archive and communications 
system
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could be identified by naked eye were selected, excluding 
2,512 low-dose CT exams due to low-resolution, from the 
Beijing Lung Cancer Early Screening and Early Treatment 
program, an epidemiological study that recruited 4,548 
subjects in the Beijing community and performed chest 
CT imaging between August 2013 and March 2014. In 
the original study, lateral chest CT images were reviewed 
for lumbar spondylolisthesis (LS) of L1 to L5 to assess 
the prevalence of LS [21]. The 740 thoracic/lumbar spine 
CT scans were collected from Beijing Jishuitan Hospital 
by oversampling for fracture cases to ensure a validation 
set with sufficient VFs. LY queried the hospital Picture 
Archiving and Communication System (PACS) for CT 
exams performed between January 2013 and December 
2018 and searched within the radiology reports using 
the keywords "fracture" and "wedge deformity". Cases 
belonging to women and men aged 50 years or older at 
the time of their CT scan with osteoporotic vertebral frac-
ture or wedge deformity were included, while cases of 
subjects <50 years old, with traumatic fracture, patho-
logical fracture and metal internal fixation of spine were 
excluded. CT scans with a maximum slice thickness of 2 
mm that had a quality deemed acceptable to read VFs by a 
radiologist were included. All CT scans were anonymized 
before processing. We estimated that a sample size of 624 
subjects with VFs was sufficient to measure a sensitivity 
of 80% or more, which we were expecting to meet in our 
study population assuming a VF prevalence of 15% [22].

VF detection model development

This study evaluated a previously developed CNN algorithm 
that automatically processes a CT scan blinded to clinical 
information and outputs a list of vertebrae with a VF grade 
associated with every level identified in the scan (Fig. 2). 
The algorithm is composed of two models: a model that 
estimates the SQ grade (i.e., SQ0=normal, SQ1=mild, 
SQ2=moderate, and SQ3=severe VF) for every vertebra 
visible in the CT scan, and a model that identifies its ana-
tomical level (i.e., T1, ..., L5). The VF detection model was 
previously trained by JN on a private dataset of 666 CT 
scans from the Universitair Ziekenhuis (UZ) Brussel. The 
training set comprised of abdominal and chest CT scans 
of subjects aged 50 years or older at the time of the scan 
with a maximum slice thickness of 3mm. VF readings were 
defined in the training set following the Genant SQ method 
involving an external radiology service (Clario, USA). The 
training set was balanced for the presence of VFs at subject-
level (VF prevalence of 55% at subject-level), oversampling 
VFs to ensure that enough VFs were present at every ver-
tebral level for every SQ grade (VF prevalence of 12% at 
vertebral-level). The VF detection model consists of a 3D 
CNN model that outputs SQ grade scores for every voxel in 
the CT image and a post-processing step to aggregate the 
voxel-level scores to vertebral- and subject-level outcomes 
[23]. We applied an ensemble of three models, trained on 
different subsets of the UZ Brussel dataset, by averaging the 
vertebral-level scores for each SQ grade across all models. 

Fig. 2  Illustration of the machine learning algorithm processing abdominal/chest CT scans. CT = computed tomography. VF = vertebral frac-
ture. VB = vertebral body. SQ = semiquantitative grade (Genant). Vertebra levels as T1 = first thoracic vertebra, …, L5 = fifth lumbar vertebra
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This approach is similar to asking three experts to indepen-
dently grade each vertebra in a CT scan and average their 
results. The vertebra identification model was previously 
trained by Payer et al. on the Verse dataset [24, 25]. The VF 
detection algorithm processes any spine CT exam, irrespec-
tive of the exam type, number of visible vertebrae, number 
of slices and acquisition characteristics (e.g., with or without 
contrast, different convolution kernels, etc.). The CT images 
underwent the following preprocessing steps: resample to 
1x1x1mm spacing, clip CT intensities below -1,000 and 
above 2,000 Hounsfield units and normalize intensities to 
zero mean and unit standard deviation. The algorithm was 
executed on a server using one NVidia GTX 1080 Ti GPU 
card and leveraged the Tensorflow [26] and SimpleITK [27] 
Python software packages.

Reference standard reading

All CT scans were read twice by radiologists in a process 
blinded to clinical information. First, one sub-specialist radi-
ologist (XC) with more than 20 years’ experience identified 
and graded fractured vertebrae from the lateral CT scout 
view according to Genant’s SQ method [28]. The SQ method 
is recommended by most societies such as ISCD, IOF and 
the European Society of Skeletal Radiology [29] and com-
monly applied in research studies as a gold standard. Sec-
ond, the study cohort was randomly split into three subsets 
that were each assigned to one reader. Three sub-specialist 
radiologists with less than five years’ experience (YL, PH, 
YZ) read individual vertebrae applying the SQ method on 
sagittal slices of the CT scans, blinded to the first readings. 
In the event of a disagreement between the first and second 
readings, the final grade was determined by a consensus 
review involving all four readers.

Statistical analyses

The performance of the algorithm was evaluated against 
reference standard readings for primary outcomes SQ23 
(grade 0-1 vs. grade 2-3) and secondary outcomes SQ123 
(normal vs. grade 1-3) at subject- and vertebral-level by the 
area under the Receiver Operating Characteristics curve 
(AUROC), accuracy, Cohen’s kappa, sensitivity, specific-
ity, and positive and negative predictive values (PPV and 
NPV). Accelerated bootstrapping with bias-correction using 
1,000 repetitions was used to construct the 95% confidence 
intervals (CI) and box plots. A threshold of 0.5 was used 
for all cut-off metrics. Groups were compared by two-tailed 
Student t-tests for continuous and χ2-tests for categorical 
data using significance level alpha=.05. Subject- and ver-
tebral-level analysis was performed when both the human 
and model readings were available. Statistical analyses were 
performed using Scikit-learn v1.0 [30].

Results

Study data

Of the 5,195 CT scans collected in this study, the readers 
excluded 13 CT scans due to poor image quality. The same 
13 CT scans and 52 other CT scans could not be read by 
the algorithm due to missing slices in the DICOM CT 
series. Both the reference standard and algorithm readings 
were available for a total of 5,130 CT scans belonging to 
unique individuals. We excluded 320 CT scans of subjects 
aged <50 years (Fig. 1). As a result, 4,810 CT scans were 
eligible for analysis. The study population had a median 
age of 62 years (IQR: 56-67), of which 2,654 (55.2%) were 
females. The baseline characteristics of our study popula-
tion is shown for the ‘No VF (normal or mild VF)’ and 
‘VF (moderate or severe VF)’ sub-groups in Table 1. As 
expected, the prevalence of VFs increased with age, with 
a median age of 61 and 69 years in the ‘No VF’ and ‘VF’ 
groups respectively (p-value <.001, Table 1a). The sex 
and number of vertebrae visible in the CT scan differed 
significantly between both groups (both p-values <.001, 
Table 1a). The median number of vertebrae visible was 
13 (IQR: 12-13) and 9 (IQR: 8-10) in chest and abdomi-
nal CT scans respectively. 2,773 (57.7%) were abdominal 
CTs. The ‘VF’ group contained a higher proportion of 
abdominal exams than the ‘No VF’ group (89% vs. 53% 
respectively, p-value <.001, Table 1a). While the median 
age of female and male subjects was similar (62 and 61 
years respectively), there were significantly more older 
women (specifically in age group [70,79]). The abdominal 
CT scans belonged to older subjects (median age 65 vs. 58 
years in chest exams, p-value <.001, Table 1b), with major 
differences in age groups [50,59] and [70,89] (Table 1b). 
The CT scans were acquired at eight different institutions 
on 16 CT scanners from three different manufacturers. The 
peak kilo voltage was the same for all scans (120 kVp) 
and the x-ray tube current ranged from 50 to 250 mAs. 
The slice thickness was 0.625mm (13%), 1mm (34%) and 
1.25mm (53%). Six convolution kernels were used (Soft, 
Standard, B30F, Lung, FC03 and Bone).

The VF reference standard readings resulted in a total 
of 628 scans (13.1%) with ≥1 moderate or severe VFs 
(grades 2-3), representing 899 fractured vertebrae out of 
a total of 48,584 (1.9%) visualized vertebral bodies. A 
total of 1,622 scans (33.7%) with ≥1 VF (grades 1-3) were 
found, representing 2,623 fractured vertebrae out of a total 
of 48,584 (5.4%) visualized vertebral bodies. The cumula-
tive fracture grade (i.e., the sum of all VF grades in a scan) 
had a median of 2 (IQR: 1-3) in the subset of positive 
cases. Almost two-thirds of these scans contained only 
mild VFs (994 out of 1622), of which 687 scans contained 
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only a single mild VF. 41% (666 out of 1,622) and 75% 
(472 out of 628) of the SQ123 and SQ23 cases, respec-
tively, originated from Jishuitan hospital (Fig. 1). The 
readers additionally annotated the presence of Schmorl’s 
nodes, which were found in 17% (n=819) of all CT scans. 
Figure 3 shows the number of VFs for every SQ grade, the 
proportion of fractured vertebrae, and the total number of 
visible vertebrae from T1 to L5 in our study population.

Diagnostic performance of VF detection model vs. 
reference standard readings

The metrics for the evaluation of the diagnostic performance 
of the VF detection model versus reference standard read-
ings are shown in Table 2. The SQ23 subject-level perfor-
mance in differentiating normal/mild from moderate/severe 
VFs shows an AUROC of 0.938 (95% CI: 0.928-0.947), 
Cohen’s kappa of 0.749 (95% CI: 0.722-0.774), accuracy of 
93.3% (4,490 of 4,810), sensitivity of 94.4% (593 of 628), 
specificity of 93.2% (3,897 of 4,182), PPV of 67.5% (593 
of 878) and NPV of 99.1% (3,897 of 3,932). The SQ23 ver-
tebral-level performance for identifying grade 2-3 VFs has 

Table 1  Baseline characteristics of study participants

IQR = interquartile range. GE = General Electric. VF = vertebral fracture. SQ = semiquantitative grade

(a) Participants stratified in ‘no VF’ (SQ 0-1) and VF (SQ 2-3) groups as per reference standard readings: both groups show significant differ-
ences in sex, age (as expected) and CT scan characteristics. Median data are provided with IQR in parentheses.

Characteristic No VF (SQ 0-1)
(n=4,182)

VF (SQ 2-3)
(n=628)

P value

Subject
   Women; N (%) 2,197 (52.5%) 457 (72.8%) <.001
   Median age, y (IQR) 61 (56-66) 69 (63-76) <.001
CT scan
   Median number of visible vertebrae (IQR) 11 (9-12) 8 (7-10) <.001
   Abdominal exams; N (%) 2,214 (52.9%) 559 (89.0%) <.001
   Scans performed on GE; N (%) 3,094 (74.0%) 97 (15.5%) <.001
   Scans performed on Siemens; N (%) 884 (21.1%) 68 (10.8%) …
   Scans performed on Toshiba; N (%) 204 (4.9%) 463 (73.7%) …
(b) Participants stratified by age groups [50-59], [60-69], [70-79], [80-89]: the study population contains significantly more women aged ≥70y 

and significantly more abdomen exams of subjects aged ≥70y. Subjects of 90 years or older are not shown in this table (N<5).
Characteristic Age [50-59y] Age [60-69y] Age [70-79y] Age [80-89y] Median age, y (IQR) P value
Women; N (%) 976 (37%) 1,130 (43%) 464 (18%) 81 (3%) 62 (57-68) <.001
Men; N (%) 900 (42%) 942 (44%) 267 (12%) 46 (2%) 61 (56-66) …
Abdominal exams; N (%) 675 (24%) 1,260 (45%) 714 (26%) 120 (4%) 65 (60-71) <.001
Chest exams; N (%) 1,201 (59%) 812 (40%) 17 (1%) 7 (0%) 58 (55-62) …

Fig. 3  Distribution of vertebrae 
and VF across vertebral levels 
T1 to L5 (on the x-axis). The 
top panel shows on the left 
y-axis, the count of VF stratified 
per SQ grade with a bar plot 
(SQ1 or mild VF in light blue, 
SQ2 or moderate VF in blue 
and SQ3 or severe VF in dark 
blue), and on the right y-axis 
the proportion of VF with a line 
plot (in red). The bottom panel 
shows the total number of vis-
ible vertebrae. VF = vertebral 
fracture. VB = vertebral body. 
SQ = semiquantitative grade
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an AUROC of 0.932 (95% CI: 0.921-0.943), Cohen’s kappa 
of 0.728 (95% CI: 0.706-0.746), accuracy of 98.8% (48,013 
of 48,584), sensitivity of 87.4% (786 of 899), specificity of 
99.0% (47,227 of 47,685), PPV of 63.2% (786 of 1,244) and 
NPV of 99.8% (47,227 of 47,340). In a sensitivity analysis, 
we found that one third of the subject-level false positives 
(87 of 285) were explained by errors involving the first and 
last visible vertebrae in the CT scan. This finding is consist-
ent with the methodology of the VF detection algorithm: 
every vertebra is analyzed by considering its superior and 
inferior neighboring vertebrae (mimicking the information 
used by a human reader), and an absent top or bottom ver-
tebra increases the ambiguity of the reading. Additionally, 
we found that one out of five false positive (56 of 285) scans 
contained Schmorl’s nodes. The SQ123 subject-level perfor-
mance in differentiating normal from grade 1-3 VFs shows 
an AUROC of 0.781 (95% CI: 0.768-0.794), Cohen’s kappa 
of 0.598 (95% CI: 0.574-0.621), accuracy of 83.1% (3,997 
of 4,810), sensitivity of 62.6% (1,016 of 1,622), specificity 
of 93.5% (2,981 of 3,188), PPV of 83.1% (1,016 of 1,223) 
and NPV of 83.1% (2,981 of 3,587). The SQ123 vertebral-
level performance for grade 1-3 VFs show an AUROC of 
0.783 (95% CI: 0.773-0.792), Cohen’s kappa of 0.639 (95% 

CI: 0.623-0.656), accuracy of 96.7% (47,001 of 48,584), 
sensitivity of 57.6% (1,511 of 2,623), specificity of 99.0% 
(45,490 of 45,961), PPV of 76.2% (1,511 of 1,982) and NPV 
of 97.6% (45,490 of 46,602). The majority (586 of 606) of 
false negatives were mild VF cases; thus, the lower sensitiv-
ity can be attributed to missing mild VFs. For false positives, 
31% (64 of 207) of the scans were attributable to mild VFs 
only. In a sensitivity analysis, we found that half of the sub-
ject-level false positives (103 of 207) and roughly 15% (90 
of 606) of the subject-level false negatives were explained 
by errors involving the first and last visible vertebrae in the 
CT scan. Almost one third of the subject-level false positives 
(59 of 207) and 13% (79 of 606) of the subject-level false 
negatives occurred in scans with Schmorl’s nodes present.

Figure 4 qualitatively illustrates the primary results for 
four CT scans that were selected from the study popula-
tion by XC from the abdomen and chest sub-groups without 
knowledge of the algorithm outputs. The presented images 
contain one sagittal slice extracted from the CT scan and 
the algorithm heatmaps overlaid in color using ITK-SNAP 
[31]. Note that these slices are only used for visualization 
purposes; the reference standard readings and the algorithm 
outputs were generated using all 3D information contained 
within the CT scan. Figures (b) and (c) illustrate that all 
normal vertebrae present were correctly detected on the 
normal scans with medium (green) to high (red) confidence 
scores, except for the T1 vertebra which got detected with 
lower (blue) confidence in the chest scan (Figure c). Figures 
(d) and (e) illustrate that the algorithm confidently detected 
one severe VF and three moderate or severe VFs respec-
tively with good (yellow) to high (red) confidence scores. 
The moderate L2 was missed (identified as a mild VF by the 
algorithm) in the chest scan with blue heatmap colors rep-
resenting low algorithm scores for SQ2 and SQ3 (Fig. 4e). 
The lack of heatmap colors for the other vertebrae in sub-fig-
ures (d) and (e) demonstrate that the algorithm confidently 
identified those vertebrae as normal or mild VF, since the 
algorithm’s confidence scores for a moderate or severe VF 
were below 0.05.

The machine learning algorithm required on average two 
minutes run-time per scan using GPU acceleration.

Discussion

We retrospectively collected CT scans of 4,810 subjects 
from eight institutions across China. Expert radiologists 
annotated 48,584 vertebral bodies in this study popula-
tion using the Genant SQ assessment method. The Con-
volutional Neural Network algorithm agreed substantially 
with the expert readers, reaching a Cohen’s kappa of 
0.75, similar to the agreement between readers reported 
by Buckens et al. [5]. The algorithm’s sensitivity of 94% 

Table 2  Diagnostic performance of VF detection model vs. refer-
ence standard readings. The metrics are stratified by outcome SQ23 
(normal and mild vs. grade 2-3) and SQ123 (normal vs. grade 1-3), 
and level (subject and vertebral). The depicted numbers are point esti-
mates with 95% CI between parentheses, all CI’s have been generated 
using a bias-corrected and accelerated bootstrapping method (1,000 
iterations)

AUROC = area under the receiver operating characteristic curve. 
PPV = positive predictive value. NPV = negative predictive value. 
VF = vertebral fracture. SQ = semiquantitative grade. CI = confi-
dence interval

(a) SQ23 (normal/mild vs. moderate/severe)
Metric Subject-level Vertebral-level
AUROC 0.938 (0.928-0.947) 0.932 (0.921-0.943)
Accuracy 0.933 (0.926-0.940) 0.988 (0.987-0.989)
Kappa 0.749 (0.722-0.774) 0.728 (0.706-0.746)
Sensitivity 0.944 (0.923-0.960) 0.874 (0.853-0.896)
Specificity 0.932 (0.925-0.939) 0.990 (0.989-0.991)
PPV 0.675 (0.646-0.708) 0.632 (0.605-0.659)
NPV 0.991 (0.988-0.994) 0.998 (0.997-0.998)
(b) SQ123 (normal vs. mild/moderate/severe) outcome
Metric Subject-level Vertebral-level
AUROC 0.781 (0.768-0.794) 0.783 (0.773-0.792)
Accuracy 0.831 (0.821-0.841) 0.967 (0.966-0.969)
Kappa 0.598 (0.574-0.621) 0.639 (0.623-0.656)
Sensitivity 0.626 (0.602-0.648) 0.576 (0.557-0.595)
Specificity 0.935 (0.926-0.943) 0.990 (0.989-0.991)
PPV 0.831 (0.809-0.851) 0.762 (0.744-0.782)
NPV 0.831 (0.819-0.843) 0.976 (0.975-0.977)
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for identifying moderate and severe VFs suggests that the 
application of the CNN algorithm would improve current 
clinical practice, where more than half of the prevalent 

VFs are missed on imaging exams [4]. When applied in 
a clinical alerting workflow to flag cases with moderate 
or severe fractures to the radiologist for follow-up, the 

Fig. 4  Qualitative analysis of the primary results: visualization of 
algorithm heatmaps for four CT scans from our study population. 
The presented images contain one sagittal slice extracted from the 
CT scan and the algorithm heatmaps in ITK-SNAP [31]. CT image 
intensities are clipped below -1,000 and above 2,000 Hounsfield units 
and the heatmaps show the algorithm’s confidence scores between 
0.05 and 1.0. The heatmaps illustrate that the algorithm identifies 
the location of the vertebral bodies with heatmap colors representing 
the algorithm’s confidence for the presence of a SQ grade shown in 
figure (a). Abdominal (left) and chest (right) CT scans are displayed. 
The SQ0 (normal/no VF) heatmap is overlaid in figures (b) and (c), 
hence the heatmap colors represent the algorithm’s confidence for 
the presence of a normal vertebra. The SQ2 and SQ3 (moderate or 
severe VF) heatmaps are overlaid in figures (d) and (e), hence the 

heatmap colors represent the algorithm’s confidence for the presence 
of a moderate or severe VF. The sex, age, reference standard reading 
and vertebral-level agreement for row three are depicted under each 
sub-figure. Note that these slices are only used for visualization pur-
poses; the reference standard readings and the algorithm outputs were 
generated using all 3D information contained within the CT scan. 
The authors welcome the interested reader to get in contact to review 
these CT scans and algorithm outputs in full detail. F = female. M = 
male. SQ = semiquantitative grade. Y = years. TP = true positive. 
FN = false negative. (a) Heatmap colors representing the algorithm’s 
confidence scores from 0.05 (blue) to 1.0 (red). (b) F, 53Y, normal. 
(c) M, 57Y, normal. (d) M, 78Y, severe L1 (TP). (e) F, 71Y, moder-
ate T4 (TP), moderate T6 (TP), severe T8 (TP), moderate L2 (FN*). 
*The algorithm’s confidence scores were highest for SQ1 (mild VF)
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algorithm would reduce the workload by 80% (878 of 
4,180 scans were detected as positive by the algorithm) 
compared to a fully manual review of every spine-con-
taining CT scan by a radiologist. The Positive Predic-
tive Value (PPV) of 68% and Negative Predictive Value 
(NPV) of 99% suggest that the algorithm is more reliable 
in detecting negative (normal or mild) than in detecting 
positive (moderate or severe) scans. While this operating 
point implies that radiologists need to re-classify 1 out of 3 
scans flagged for follow-up as normal, the high sensitivity 
implies that less than 6% of scans with VFs were missed 
by the algorithm (35 of 628).

We found that the number of CT scans with grade 1-3 
VFs is almost three times the number of scans with grade 
2-3 VFs (1,622 vs. 628). The performance of the model in 
identifying scans with one or more grade 1-3 VFs is inferior 
to its performance identifying grade 2-3 VFs in AUROC 
(78% vs. 94%), Cohen’s kappa (0.60 vs. 0.75), and accuracy 
(83% vs. 93%). More specifically, the model identified mild 
VFs more conservatively with a lower sensitivity (63% vs. 
94%) and a higher PPV (83% vs. 68%) when comparing the 
SQ123 results with the SQ23 results (Table 2). The vast 
majority (97%) of false negative scans involve only mild 
VFs. The drop in performance when including mild grade 
VFs has been reported by other studies [17]. The lower per-
formance on mild VFs was expected as the algorithm was 
trained on and tested against mild VF readings that exhibit 
higher reader variability [5]. Importantly, previous studies 
have shown that the association between mild VFs and low 
BMD is low [32], hence the algorithm performs best on the 
clinically most important VFs.

The vertebral-level SQ23 results are similar to the 
subject-level results on most metrics, except for a drop in 
sensitivity to 87% (Table 2). For the SQ123 outcome, the 
vertebral-level results differ on multiple metrics from the 
subject-level results. The vertebral- and subject-level results 
cannot be readily compared, given that the baseline char-
acteristics of these data sets are different. We argue that 
the vertebral-level results are important to verify the algo-
rithm outputs against the reference standard readings and to 
provide more detailed insights into the algorithm outputs. 
However, the subject-level results are the most important 
clinical outcomes because they influence treatment deci-
sions. Vertebral-level results must be interpreted with cau-
tion as mismatches between the vertebral levels identified 
by the model and reader are common (perfect correspond-
ences were found in 3088 or 64% of all scans). While such 
vertebral-level mismatches impact the vertebral-level results, 
they generally do not change the subject-level results (e.g., 
if the algorithm detects T12 as a moderate VF while the 
reference standard reading was a moderate VF at L1 and 
normal vertebra at T12, the vertebral-level results would be 
impacted but the subject-level results remain the same). We 

conclude that the algorithm performs best on the clinically 
most important outcomes, i.e., subject-level VFs.

We found that our study population had a higher VF prev-
alence for grades 1-3 and lower VF prevalence for grades 
2-3 compared to another study that retrospectively identified 
VFs in abdominal and chest CT scans (34% vs. 24% and 13% 
vs. 18% respectively in ours vs. Kolanu et al. [18]). Ignor-
ing the statistical differences between both validation stud-
ies, we found that the subject-level results were marginally 
higher in our study than the other study, which evaluated a 
different algorithm, for the SQ123 outcome (sensitivity of 
54% vs. 63% in our study, PPV of 69% vs. 83% in our study, 
and specificity of 92% vs. 94% in our study), and the SQ23 
outcome (sensitivity of 65% vs. 94% in our study, PPV of 
65% vs. 68% in our study, and specificity of 92% vs. 93% 
in our study). We note that the study had a smaller sample 
size than ours (1,696 vs 4,810), did not report vertebral-
level results and applied a specific adjudication procedure to 
determine the reference standard readings, which involved 
unblinding the algorithm readings to the study readers. Nota-
bly, the adjudication procedure involved only reviewing the 
reference standard readings in the subset of scans where 
the algorithm and the first reader disagreed. Another study 
has previously reported validation results for identifying 
VFs by measuring the diagnostic performance of a differ-
ent algorithm compared to human readers on 500 CT scans 
randomly sampled from a study population [16]. The study 
did not identify the VFs at the individual vertebral level, nor 
did it report the presence of mild (grade 1) fractures. In this 
different cohort, the authors reported a similar subject-level 
sensitivity of 94% (albeit with a larger 95% CI: 89-98% vs. 
92-96% in our study) but a lower specificity of 65% (95% CI: 
60-70%) vs. 93% (95% CI: 93-94%) in our study.

In this study, we retrospectively examined CT scans from 
two prior epidemiological studies and one hospital PACS 
in a cohort of Chinese subjects, which constitutes a selec-
tion bias. Furthermore, our study population contained other 
selection biases that may not be present in a wider abdomi-
nal and chest CT population (i.e., specific CT acquisition 
settings, correlations between CT exam type and number of 
VFs in different age groups, and correlations between VFs 
and CT scan characteristics). Future work should aim at pro-
spectively studying CT scans in routine clinical cohorts with 
bigger sample sizes to further demonstrate the algorithm’s 
reliability and investigate further whether the algorithm per-
forms similarly in specific sub-groups (e.g., male vs. female, 
thoracic vs. lumbar vertebrae, …). A sensitivity analysis of 
vertebral-level results (for different SQ grades and different 
levels) would require a manual consensus review to ensure 
perfect correspondence between the vertebral-level read-
ings of the algorithm and the reader. This study evaluated 
the performance of a machine learning algorithm compared 
to reference standard readings defined by two readers with 
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a consensus review in case of disagreement; future work 
should study the diagnostic performance of the algorithm 
and a dozen or more readers against a gold standard read-
ing, using two study arms, i.e., one with and one without an 
algorithm as computer-aided support.

In summary, the CNN algorithm demonstrated excellent 
performance in the identification of vertebral fractures in an 
external validation cohort of abdominal and chest CT scans 
of Chinese patients ≥50 years. As life expectancy increases 
and the elderly population grows, the number of patients 
receiving CT examinations of the abdomen or chest for 
various indications is increasing. Applying the algorithm to 
flag the presence of vertebral fractures for radiologist review 
offers the potential to improve on the identification and 
reporting of VFs in patients aged 50 years or older without 
overloading radiologists.
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