Skip to main content

Advertisement

Log in

New insights into the properties, functions, and aging of skeletal stem cells

  • Review
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Bone-related diseases pose a major health burden for modern society. Bone is one of the organs that rely on stem cell function to maintain tissue homeostasis. Stem cell therapy has emerged as an effective new strategy to repair and replace damaged tissue. Although research on bone marrow mesenchymal stem cells has been conducted over the last few decades, the identity and definition of the true skeletal stem cell population remains controversial. Due to technological advances, some progress has been made in the prospective separation and function research of purified skeletal stem cells. Here, we reviewed the recent progress of highly purified skeletal stem cells, their function in bone development and repair, and the impact of aging on skeletal stem cells. Various studies on animal and human models distinguished and isolated skeletal stem cells using different surface markers based on flow-cytometry-activated cell sorting. The roles of different types of skeletal stem cells in bone growth, remodeling, and repair are gradually becoming clear. Thanks to technological advances, SSCs can be specifically identified and purified for functional testing and molecular analysis. The basic features of SSCs and their roles in bone development and repair and the effects of aging on SSCs are gradually being elucidated. Future mechanistic studies can help to develop new therapeutic interventions to improve various types of skeletal diseases and enhance the regenerative potential of SSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Spangrude GJ, Heimfeld S, Weissman IL (1988) Purification and characterization of mouse hematopoietic stem cells. Science 241(4861):58–62

    Article  CAS  PubMed  Google Scholar 

  2. Laurenti E, Göttgens B (2018) From haematopoietic stem cells to complex differentiation landscapes. Nature 553(7689):418–426. https://doi.org/10.1038/nature25022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tare RS, Babister JC, Kanczler J, Oreffo ROC (2008) Skeletal stem cells: phenotype, biology and environmental niches informing tissue regeneration. Mol Cell Endocrinol 288(1–2):11–21. https://doi.org/10.1016/j.mce.2008.02.017

    Article  CAS  PubMed  Google Scholar 

  4. Lv F-J, Tuan RS, Cheung KMC, Leung VYL (2014) Concise review: the surface markers and identity of human mesenchymal stem cells. Stem Cells 32(6):1408–1419. https://doi.org/10.1002/stem.1681

    Article  CAS  PubMed  Google Scholar 

  5. Chan CKF, Seo EY, Chen JY, Lo D, McArdle A, Sinha R, Tevlin R, Seita J, Vincent-Tompkins J, Wearda T, Lu W-J, Senarath-Yapa K, Chung MT, Marecic O, Tran M, Yan KS, Upton R, Walmsley GG, Lee AS, Sahoo D, Kuo CJ, Weissman IL, Longaker MT (2015) Identification and specification of the mouse skeletal stem cell. Cell 160(1–2):285–298. https://doi.org/10.1016/j.cell.2014.12.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Méndez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD, Lira SA, Scadden DT, Ma’ayan A, Enikolopov GN, Frenette PS (2010) Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466(7308):829–834. https://doi.org/10.1038/nature09262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ono N, Ono W, Mizoguchi T, Nagasawa T, Frenette PS, Kronenberg HM (2014) Vasculature-associated cells expressing nestin in developing bones encompass early cells in the osteoblast and endothelial lineage. Dev Cell 29(3):330–339. https://doi.org/10.1016/j.devcel.2014.03.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhou BO, Yue R, Murphy MM, Peyer JG, Morrison SJ (2014) Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow. Cell Stem Cell 15(2):154–168. https://doi.org/10.1016/j.stem.2014.06.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Baryawno N, Przybylski D, Kowalczyk MS, Kfoury Y, Severe N, Gustafsson K, Kokkaliaris KD, Mercier F, Tabaka M, Hofree M, Dionne D, Papazian A, Lee D, Ashenberg O, Subramanian A, Vaishnav ED, Rozenblatt-Rosen O, Regev A, Scadden DT (2019) A cellular taxonomy of the bone marrow stroma in homeostasis and leukemia. Cell 177(7). https://doi.org/10.1016/j.cell.2019.04.040

  10. Greenbaum A, Hsu Y-MS, Day RB, Schuettpelz LG, Christopher MJ, Borgerding JN, Nagasawa T, Link DC (2013) CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance. Nature 495(7440):227–230. https://doi.org/10.1038/nature11926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Asada N, Kunisaki Y, Pierce H, Wang Z, Fernandez NF, Birbrair A, Ma’ayan A, Frenette PS (2017) Differential cytokine contributions of perivascular haematopoietic stem cell niches. Nat Cell Biol 19(3):214–223. https://doi.org/10.1038/ncb3475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Matsushita Y, Nagata M, Kozloff KM, Welch JD, Mizuhashi K, Tokavanich N, Hallett SA, Link DC, Nagasawa T, Ono W, Ono N (2020) A Wnt-mediated transformation of the bone marrow stromal cell identity orchestrates skeletal regeneration. Nat Commun 11(1):332. https://doi.org/10.1038/s41467-019-14029-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Worthley DL, Churchill M, Compton JT, Tailor Y, Rao M, Si Y, Levin D, Schwartz MG, Uygur A, Hayakawa Y, Gross S, Renz BW, Setlik W, Martinez AN, Chen X, Nizami S, Lee HG, Kang HP, Caldwell J-M, Asfaha S, Westphalen CB, Graham T, Jin G, Nagar K, Wang H, Kheirbek MA, Kolhe A, Carpenter J, Glaire M, Nair A, Renders S, Manieri N, Muthupalani S, Fox JG, Reichert M, Giraud AS, Schwabe RF, Pradere J-P, Walton K, Prakash A, Gumucio D, Rustgi AK, Stappenbeck TS, Friedman RA, Gershon MD, Sims P, Grikscheit T, Lee FY, Karsenty G, Mukherjee S, Wang TC (2015) Gremlin 1 identifies a skeletal stem cell with bone, cartilage, and reticular stromal potential. Cell 160(1–2):269–284. https://doi.org/10.1016/j.cell.2014.11.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ambrosi TH, Scialdone A, Graja A, Gohlke S, Jank A-M, Bocian C, Woelk L, Fan H, Logan DW, Schürmann A, Saraiva LR, Schulz TJ (2017) Adipocyte accumulation in the bone marrow during obesity and aging impairs stem cell-based hematopoietic and bone regeneration. Cell Stem Cell 20(6). https://doi.org/10.1016/j.stem.2017.02.009

  15. Chan CKF, Lindau P, Jiang W, Chen JY, Zhang LF, Chen C-C, Seita J, Sahoo D, Kim J-B, Lee A, Park S, Nag D, Gong Y, Kulkarni S, Luppen CA, Theologis AA, Wan DC, DeBoer A, Seo EY, Vincent-Tompkins JD, Loh K, Walmsley GG, Kraft DL, Wu JC, Longaker MT, Weissman IL (2013) Clonal precursor of bone, cartilage, and hematopoietic niche stromal cells. Proc Natl Acad Sci USA 110(31):12643–12648. https://doi.org/10.1073/pnas.1310212110

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chan CKF, Gulati GS, Sinha R, Tompkins JV, Lopez M, Carter AC, Ransom RC, Reinisch A, Wearda T, Murphy M, Brewer RE, Koepke LS, Marecic O, Manjunath A, Seo EY, Leavitt T, Lu W-J, Nguyen A, Conley SD, Salhotra A, Ambrosi TH, Borrelli MR, Siebel T, Chan K, Schallmoser K, Seita J, Sahoo D, Goodnough H, Bishop J, Gardner M, Majeti R, Wan DC, Goodman S, Weissman IL, Chang HY, Longaker MT (2018) Identification of the human skeletal stem cell. Cell 175(1). https://doi.org/10.1016/j.cell.2018.07.029

  17. St-Jacques B, Hammerschmidt M, McMahon AP (1999) Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes Dev 13(16):2072–2086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kobayashi T, Soegiarto DW, Yang Y, Lanske B, Schipani E, McMahon AP, Kronenberg HM (2005) Indian hedgehog stimulates periarticular chondrocyte differentiation to regulate growth plate length independently of PTHrP. J Clin Invest 115(7):1734–1742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mak KK, Kronenberg HM, Chuang P-T, Mackem S, Yang Y (2008) Indian hedgehog signals independently of PTHrP to promote chondrocyte hypertrophy. Development 135(11):1947–1956. https://doi.org/10.1242/dev.018044

    Article  CAS  PubMed  Google Scholar 

  20. Abad V, Meyers JL, Weise M, Gafni RI, Barnes KM, Nilsson O, Bacher JD, Baron J (2002) The role of the resting zone in growth plate chondrogenesis. Endocrinology 143(5):1851–1857

    Article  CAS  PubMed  Google Scholar 

  21. Mizuhashi K, Ono W, Matsushita Y, Sakagami N, Takahashi A, Saunders TL, Nagasawa T, Kronenberg HM, Ono N (2018) Resting zone of the growth plate houses a unique class of skeletal stem cells. Nature 563(7730):254–258. https://doi.org/10.1038/s41586-018-0662-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Newton PT, Li L, Zhou B, Schweingruber C, Hovorakova M, Xie M, Sun X, Sandhow L, Artemov AV, Ivashkin E, Suter S, Dyachuk V, El Shahawy M, Gritli-Linde A, Bouderlique T, Petersen J, Mollbrink A, Lundeberg J, Enikolopov G, Qian H, Fried K, Kasper M, Hedlund E, Adameyko I, Sävendahl L, Chagin AS (2019) A radical switch in clonality reveals a stem cell niche in the epiphyseal growth plate. Nature 567(7747):234–238. https://doi.org/10.1038/s41586-019-0989-6

    Article  CAS  PubMed  Google Scholar 

  23. Olsen BR, Reginato AM, Wang W (2000) Bone development. Annu Rev Cell Dev Biol 16:191–220

    Article  CAS  PubMed  Google Scholar 

  24. Debnath S, Yallowitz AR, McCormick J, Lalani S, Zhang T, Xu R, Li N, Liu Y, Yang YS, Eiseman M, Shim J-H, Hameed M, Healey JH, Bostrom MP, Landau DA, Greenblatt MB (2018) Discovery of a periosteal stem cell mediating intramembranous bone formation. Nature 562(7725):133–139. https://doi.org/10.1038/s41586-018-0554-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Park D, Spencer JA, Koh BI, Kobayashi T, Fujisaki J, Clemens TL, Lin CP, Kronenberg HM, Scadden DT (2012) Endogenous bone marrow MSCs are dynamic, fate-restricted participants in bone maintenance and regeneration. Cell Stem Cell 10(3):259–272. https://doi.org/10.1016/j.stem.2012.02.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Grcevic D, Pejda S, Matthews BG, Repic D, Wang L, Li H, Kronenberg MS, Jiang X, Maye P, Adams DJ, Rowe DW, Aguila HL, Kalajzic I (2012) In vivo fate mapping identifies mesenchymal progenitor cells. Stem Cells 30(2):187–196. https://doi.org/10.1002/stem.780

    Article  CAS  PubMed  Google Scholar 

  27. Ortinau LC, Wang H, Lei K, Deveza L, Jeong Y, Hara Y, Grafe I, Rosenfeld SB, Lee D, Lee B, Scadden DT, Park D (2019) Identification of functionally distinct Mx1+αSMA+ periosteal skeletal stem cells. Cell Stem Cell 25(6). https://doi.org/10.1016/j.stem.2019.11.003

  28. Shi Y, He G, Lee W-C, McKenzie JA, Silva MJ, Long F (2017) Gli1 identifies osteogenic progenitors for bone formation and fracture repair. Nat Commun 8(1):2043. https://doi.org/10.1038/s41467-017-02171-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jeffery EC, Mann TLA, Pool JA, Zhao Z, Morrison SJ (2022) Bone marrow and periosteal skeletal stem/progenitor cells make distinct contributions to bone maintenance and repair. Cell Stem Cell 29(11). https://doi.org/10.1016/j.stem.2022.10.002

  30. Zhao H, Feng J, Ho T-V, Grimes W, Urata M, Chai Y (2015) The suture provides a niche for mesenchymal stem cells of craniofacial bones. Nat Cell Biol 17(4):386–396. https://doi.org/10.1038/ncb3139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xu Y, Malladi P, Chiou M, Longaker MT (2007) Isolation and characterization of posterofrontal/sagittal suture mesenchymal cells in vitro. Plast Reconstr Surg 119(3):819–829

    Article  CAS  PubMed  Google Scholar 

  32. Maruyama T (2019) Stem cells of the suture mesenchyme in craniofacial bone development, repair and regeneration. Keio J Med 68(2):42. https://doi.org/10.2302/kjm.68-003-ABST

    Article  PubMed  Google Scholar 

  33. Maruyama T, Jeong J, Sheu T-J, Hsu W (2016) Stem cells of the suture mesenchyme in craniofacial bone development, repair and regeneration. Nat Commun 7:10526. https://doi.org/10.1038/ncomms10526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ransom RC, Hunter DJ, Hyman S, Singh G, Ransom SC, Shen EZ, Perez KC, Gillette M, Li J, Liu B, Brunski JB, Helms JA (2016) Axin2-expressing cells execute regeneration after skeletal injury. Sci Rep 6:36524. https://doi.org/10.1038/srep36524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Martin JF, Olson EN (2000) Identification of a prx1 limb enhancer. Genesis 26(4):225–229

    Article  CAS  PubMed  Google Scholar 

  36. Kawanami A, Matsushita T, Chan YY, Murakami S (2009) Mice expressing GFP and CreER in osteochondro progenitor cells in the periosteum. Biochem Biophys Res Commun 386(3):477–482. https://doi.org/10.1016/j.bbrc.2009.06.059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ouyang Z, Chen Z, Ishikawa M, Yue X, Kawanami A, Leahy P, Greenfield EM, Murakami S (2014) Prx1 and 3.2kb Col1a1 promoters target distinct bone cell populations in transgenic mice. Bone 58:136–145. https://doi.org/10.1016/j.bone.2013.10.016

    Article  CAS  PubMed  Google Scholar 

  38. Wilk K, Yeh S-CA, Mortensen LJ, Ghaffarigarakani S, Lombardo CM, Bassir SH, Aldawood ZA, Lin CP, Intini G (2017) Postnatal Calvarial skeletal stem cells expressing PRX1 reside exclusively in the calvarial sutures and are required for bone regeneration. Stem Cell Reports 8(4):933–946. https://doi.org/10.1016/j.stemcr.2017.03.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. He J, Yan J, Wang J, Zhao L, Xin Q, Zeng Y, Sun Y, Zhang H, Bai Z, Li Z, Ni Y, Gong Y, Li Y, He H, Bian Z, Lan Y, Ma C, Bian L, Zhu H, Liu B, Yue R (2021) Dissecting human embryonic skeletal stem cell ontogeny by single-cell transcriptomic and functional analyses. Cell Res 31(7):742–757. https://doi.org/10.1038/s41422-021-00467-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kronenberg HM (2007) The role of the perichondrium in fetal bone development. Ann N Y Acad Sci 1116:59–64

    Article  CAS  PubMed  Google Scholar 

  41. Carlevaro MF, Cermelli S, Cancedda R, Descalzi Cancedda F (2000) Vascular endothelial growth factor (VEGF) in cartilage neovascularization and chondrocyte differentiation: auto-paracrine role during endochondral bone formation. J Cell Sci 113(Pt 1):59–69

    Article  CAS  PubMed  Google Scholar 

  42. Gerber HP, Vu TH, Ryan AM, Kowalski J, Werb Z, Ferrara N (1999) VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat Med 5(6):623–628

    Article  CAS  PubMed  Google Scholar 

  43. Murphy MP, Koepke LS, Lopez MT, Tong X, Ambrosi TH, Gulati GS, Marecic O, Wang Y, Ransom RC, Hoover MY, Steininger H, Zhao L, Walkiewicz MP, Quarto N, Levi B, Wan DC, Weissman IL, Goodman SB, Yang F, Longaker MT, Chan CKF (2020) Articular cartilage regeneration by activated skeletal stem cells. Nat Med 26(10):1583–1592. https://doi.org/10.1038/s41591-020-1013-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Krishnakumar GS, Roffi A, Reale D, Kon E, Filardo G (2017) Clinical application of bone morphogenetic proteins for bone healing: a systematic review. Int Orthop 41(6):1073–1083. https://doi.org/10.1007/s00264-017-3471-9

    Article  PubMed  Google Scholar 

  45. Ding L, Saunders TL, Enikolopov G, Morrison SJ (2012) Endothelial and perivascular cells maintain haematopoietic stem cells. Nature 481(7382):457–462. https://doi.org/10.1038/nature10783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ding L, Morrison SJ (2013) Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature 495(7440):231–235. https://doi.org/10.1038/nature11885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ambrosi TH, Sinha R, Steininger HM, Hoover MY, Murphy MP, Koepke LS, Wang Y, Lu W-J, Morri M, Neff NF, Weissman IL, Longaker MT, Chan CK (2021) Distinct skeletal stem cell types orchestrate long bone skeletogenesis. Elife 10. https://doi.org/10.7554/eLife.66063

  48. Rowe RG, Mandelbaum J, Zon LI, Daley GQ (2016) Engineering hematopoietic stem cells: lessons from development. Cell Stem Cell 18(6):707–720. https://doi.org/10.1016/j.stem.2016.05.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sivaraj KK, Adams RH (2016) Blood vessel formation and function in bone. Development 143(15):2706–2715. https://doi.org/10.1242/dev.136861

    Article  CAS  PubMed  Google Scholar 

  50. Zhang X, Xie C, Lin ASP, Ito H, Awad H, Lieberman JR, Rubery PT, Schwarz EM, O’Keefe RJ, Guldberg RE (2005) Periosteal progenitor cell fate in segmental cortical bone graft transplantations: implications for functional tissue engineering. J Bone Miner Res 20(12):2124–2137

    Article  CAS  PubMed  Google Scholar 

  51. van Gastel N, Torrekens S, Roberts SJ, Moermans K, Schrooten J, Carmeliet P, Luttun A, Luyten FP, Carmeliet G (2012) Engineering vascularized bone: osteogenic and proangiogenic potential of murine periosteal cells. Stem Cells 30(11):2460–2471. https://doi.org/10.1002/stem.1210

    Article  CAS  PubMed  Google Scholar 

  52. Duchamp de Lageneste O, Julien A, Abou-Khalil R, Frangi G, Carvalho C, Cagnard N, Cordier C, Conway SJ, Colnot C (2018) Periosteum contains skeletal stem cells with high bone regenerative potential controlled by Periostin. Nat Commun 9(1):773. https://doi.org/10.1038/s41467-018-03124-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tsuji K, Bandyopadhyay A, Harfe BD, Cox K, Kakar S, Gerstenfeld L, Einhorn T, Tabin CJ, Rosen V (2006) BMP2 activity, although dispensable for bone formation, is required for the initiation of fracture healing. Nat Genet 38(12):1424–1429

    Article  CAS  PubMed  Google Scholar 

  54. Salazar VS, Capelo LP, Cantù C, Zimmerli D, Gosalia N, Pregizer S, Cox K, Ohte S, Feigenson M, Gamer L, Nyman JS, Carey DJ, Economides A, Basler K, Rosen V (2019) Reactivation of a developmental Bmp2 signaling center is required for therapeutic control of the murine periosteal niche. Elife 8. https://doi.org/10.7554/eLife.42386

  55. Conway SJ, Izuhara K, Kudo Y, Litvin J, Markwald R, Ouyang G, Arron JR, Holweg CTJ, Kudo A (2014) The role of periostin in tissue remodeling across health and disease. Cell Mol Life Sci 71(7):1279–1288. https://doi.org/10.1007/s00018-013-1494-y

    Article  CAS  PubMed  Google Scholar 

  56. Maruyama T, Mirando AJ, Deng C-X, Hsu W (2010) The balance of WNT and FGF signaling influences mesenchymal stem cell fate during skeletal development. Sci Signal 3(123):ra40. https://doi.org/10.1126/scisignal.2000727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Li X, Cao X (2006) BMP signaling and skeletogenesis. Ann N Y Acad Sci 1068:26–40

    Article  CAS  PubMed  Google Scholar 

  58. Massagué J (1998) TGF-beta signal transduction. Annu Rev Biochem 67:753–791

    Article  PubMed  Google Scholar 

  59. Maruyama T, Stevens R, Boka A, DiRienzo L, Chang C, Yu H-MI, Nishimori K, Morrison C, Hsu W (2021) BMPR1A maintains skeletal stem cell properties in craniofacial development and craniosynostosis. Sci Transl Med 13(583). https://doi.org/10.1126/scitranslmed.abb4416

  60. Ferguson VL, Ayers RA, Bateman TA, Simske SJ (2003) Bone development and age-related bone loss in male C57BL/6J mice. Bone 33(3):387–398

    Article  PubMed  Google Scholar 

  61. Josephson AM, Bradaschia-Correa V, Lee S, Leclerc K, Patel KS, Muinos Lopez E, Litwa HP, Neibart SS, Kadiyala M, Wong MZ, Mizrahi MM, Yim NL, Ramme AJ, Egol KA, Leucht P (2019) Age-related inflammation triggers skeletal stem/progenitor cell dysfunction. Proc Natl Acad Sci USA 116(14):6995–7004. https://doi.org/10.1073/pnas.1810692116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gregory CA, Prockop DJ, Spees JL (2005) Non-hematopoietic bone marrow stem cells: molecular control of expansion and differentiation. Exp Cell Res 306(2):330–335

    Article  CAS  PubMed  Google Scholar 

  63. Beerman I, Rossi DJ (2015) Epigenetic control of stem cell potential during homeostasis, aging, and disease. Cell Stem Cell 16(6):613–625. https://doi.org/10.1016/j.stem.2015.05.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ambrosi TH, Goodnough LH, Steininger HM, Hoover MY, Kim E, Koepke LS, Marecic O, Zhao L, Seita J, Bishop JA, Gardner MJ, Chan CKF (2020) Geriatric fragility fractures are associated with a human skeletal stem cell defect. Aging Cell 19(7):e13164. https://doi.org/10.1111/acel.13164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ambrosi TH, Marecic O, McArdle A, Sinha R, Gulati GS, Tong X, Wang Y, Steininger HM, Hoover MY, Koepke LS, Murphy MP, Sokol J, Seo EY, Tevlin R, Lopez M, Brewer RE, Mascharak S, Lu L, Ajanaku O, Conley SD, Seita J, Morri M, Neff NF, Sahoo D, Yang F, Weissman IL, Longaker MT, Chan CKF (2021) Aged skeletal stem cells generate an inflammatory degenerative niche. Nature 597(7875):256–262. https://doi.org/10.1038/s41586-021-03795-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Li C-J, Xiao Y, Sun Y-C, He W-Z, Liu L, Huang M, He C, Huang M, Chen K-X, Hou J, Feng X, Su T, Guo Q, Huang Y, Peng H, Yang M, Liu G-H, Luo X-H (2022) Senescent immune cells release grancalcin to promote skeletal aging. Cell Metab 34(1):184–185. https://doi.org/10.1016/j.cmet.2021.12.003

    Article  CAS  PubMed  Google Scholar 

  67. Josephson AM, Leclerc K, Remark LH, Lopeź EM, Leucht P (2021) Systemic NF-κB-mediated inflammation promotes an aging phenotype in skeletal stem/progenitor cells. Aging (Albany NY) 13(10):13421–13429. https://doi.org/10.18632/aging.203083

    Article  CAS  PubMed  Google Scholar 

  68. Salminen A, Huuskonen J, Ojala J, Kauppinen A, Kaarniranta K, Suuronen T (2008) Activation of innate immunity system during aging: NF-kB signaling is the molecular culprit of inflamm-aging. Ageing Res Rev 7(2)

  69. Yin MJ, Yamamoto Y, Gaynor RB (1998) The anti-inflammatory agents aspirin and salicylate inhibit the activity of I(kappa)B kinase-beta. Nature 396(6706):77–80

    Article  CAS  PubMed  Google Scholar 

  70. Campisi J (2013) Aging, cellular senescence, and cancer. Annu Rev Physiol 75:685–705. https://doi.org/10.1146/annurev-physiol-030212-183653

    Article  CAS  PubMed  Google Scholar 

  71. Abdallah BM, Kassem M (2012) New factors controlling the balance between osteoblastogenesis and adipogenesis. Bone 50(2):540–545. https://doi.org/10.1016/j.bone.2011.06.030

    Article  CAS  PubMed  Google Scholar 

  72. Barinda AJ, Ikeda K, Nugroho DB, Wardhana DA, Sasaki N, Honda S, Urata R, Matoba S, Hirata K-I, Emoto N (2020) Endothelial progeria induces adipose tissue senescence and impairs insulin sensitivity through senescence associated secretory phenotype. Nat Commun 11(1):481. https://doi.org/10.1038/s41467-020-14387-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. De Cecco M, Ito T, Petrashen AP, Elias AE, Skvir NJ, Criscione SW, Caligiana A, Brocculi G, Adney EM, Boeke JD, Le O, Beauséjour C, Ambati J, Ambati K, Simon M, Seluanov A, Gorbunova V, Slagboom PE, Helfand SL, Neretti N, Sedivy JM (2019) L1 drives IFN in senescent cells and promotes age-associated inflammation. Nature 566(7742):73–78. https://doi.org/10.1038/s41586-018-0784-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zaigang Yang or Lijun Xu.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rong, L., Zhang, L., Yang, Z. et al. New insights into the properties, functions, and aging of skeletal stem cells. Osteoporos Int 34, 1311–1321 (2023). https://doi.org/10.1007/s00198-023-06736-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-023-06736-4

Keywords

Navigation