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Abstract
Summary  We developed and compared deep learning models to detect hip osteoarthritis on clinical CT. The CT-based 
summation images, CT-AP, that resemble X-ray radiographs can detect radiographic hip osteoarthritis and in the absence of 
large training data, a reliable deep learning model can be optimized by combining CT-AP and X-ray images.
Introduction  In this study, we aimed to investigate the applicability of deep learning (DL) to assess radiographic hip osteo-
arthritis (rHOA) on computed tomography (CT).
Methods  The study data consisted of 94 abdominopelvic clinical CTs and 5659 hip X-ray images collected from Cohort Hip 
and Cohort Knee (CHECK). The CT slices were sequentially summed to create radiograph-like 2-D images named CT-AP. 
X-ray and CT-AP images were classified as rHOA if they had osteoarthritic changes corresponding to Kellgren-Lawrence 
grade 2 or higher. The study data was split into 55% training, 30% validation, and 15% test sets. A pretrained ResNet18 
was optimized for a classification task of rHOA vs. no-rHOA. Five models were trained using (1) X-rays, (2) downsampled 
X-rays, (3) combination of CT-AP and X-ray images, (4) combination of CT-AP and downsampled X-ray images, and (5) 
CT-AP images.
Results  Amongst the five models, Model-3 and Model-5 performed best in detecting rHOA from the CT-AP images. Model-3 
detected rHOA on the test set of CT-AP images with a balanced accuracy of 82.2% and was able to discriminate rHOA 
from no-rHOA with an area under the receiver operating characteristic curve (ROC AUC) of 0.93 [0.75–0.99]. Model-5 
detected rHOA on the test set at a balanced accuracy of 82.2% and classified rHOA from no-rHOA with an ROC AUC of 
0.89 [0.67–0.97].
Conclusion  CT-based summation images that resemble radiographs can be used to detect rHOA. In addition, in the absence 
of large training data, a reliable DL model can be optimized by combining CT-AP and X-ray images.
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Introduction

Hip osteoarthritis (OA) is a degenerative disorder character-
ized by the progressive loss of articular cartilage, subchon-
dral sclerosis, subchondral cysts, osteophytosis, and altered 
shape of the hip joint bones [1–3]. Some of the risk factors of 
hip OA include age, gender, developmental disorders, hered-
ity, bone mineral density (BMD), body mass index (BMI), 
smoking, and heavy physical activity [1, 4–8]. Assessment 
of hip OA involves radiographic investigation and clinical 
diagnosis of the joint [1–3, 9]. The most common assess-
ment method of radiographic hip OA (rHOA) is the Kell-
gren and Lawrence (KL) severity grading [1, 2]. Clinical 
computed tomography (CT) has lower resolution than plain 
radiographs but provides detailed three-dimensional (3-D) 
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information on the joint bones [10, 11]. Consequently, due 
to the differences between the 3-D CT and two-dimensional 
(2-D) X-ray images, the KL grading is not directly applica-
ble to CT. Although there have been some previous attempts 
to introduce CT-based hip OA severity grading [10, 11], 
there is still no widely accepted gold standard. Furthermore, 
grading hip OA severity on CTs can prove to be difficult 
and time consuming [11] especially for pelvic and hip stud-
ies that use clinical CTs, e.g., to investigate the relationship 
between proximal femur or acetabular fractures and hip OA. 
Hence, developing an automatic method of detecting the 
presence or absence of rHOA on CTs could be useful for 
such studies and enable efficient analysis of large datasets.

In the recent years, deep learning (DL) convolutional 
neural networks (CNNs) have been applied to automati-
cally detect OA from plain radiographs of the hip [12–14]. 
The hip OA DL studies either adapted a rHOA classifica-
tion based on the KL grades as training classes [12] or used 
binary classification to train their models [13, 14]. In addi-
tion, these studies collect large quantities of X-ray images 
to train, validate, and test their CNNs either from OA-based 
cohorts [12] or from hospitals [13, 14]. On the other hand, 
unlike the X-ray-based OA DL studies with access to OA 
cohort data, there are no large and freely available CT-based 
OA cohorts that can be used as sources of training data for 
DL OA studies. Therefore, the aim of this study was to 
develop and validate DL models using X-ray images and 
CT 2-D summation images, both separately and combined 
as training data, to assess rHOA on CT.

Materials and methods

Training data

Computed tomography images

The CT data consisted of abdominopelvic clinical images 
(n = 94, age range 50–95 years) that were scanned using 
standard protocols and obtained from the picture archiving 
and communication system of Oulu University Hospital, 
Oulu, Finland [15, 16]. The dataset consisted of 26 females 
(mean age ± standard deviation (SD): 69 years ± 14 years) 
and 68 males (67  years ± 9  years). A research permit 
(220/2017) was obtained from the Northern Ostrobothnia 
Hospital District, and written informed consent was not 
required due to the register-based study design. The pixel 
sizes and slice thicknesses of the CTs used in this study were 
0.74 mm ± 0.09 mm and 0.80 mm ± 0.32 mm, respectively.

Anteroposterior (AP) radiograph-like 2-D images, 
referred to as CT-AP, were created from the CT slices (see 
“Creating AP radiograph-like images from CT data” sec-
tion). These images were manually graded (RvdH, a senior 

resident in Radiology with musculoskeletal sub-specializa-
tion) into two classes, i.e., rHOA vs no-rHOA, based on the 
Kellgren and Lawrence (KL) grading of the radiographic 
OA features present in the image. The CT-AP images were 
classified into two classes based on the rHOA features that 
corresponded to those found in KL2 or higher (Fig. 1). A 
binary classification was chosen so that a clear delineation 
between the radiographic features could be learned by the 
DL model.

X‑ray images

We used X-ray images collected from the Cohort Hip Cohort 
Hip (CHECK) database as part of the training set to develop 
the DL model. CHECK is a multicenter prospective cohort 
study formed by the Dutch Arthritis Foundation, to inves-
tigate the clinical, biochemical, and radiographical signs 
and symptoms of hip and knee OA [17]. A total of 1002 
subjects (age range 45–65 years) participated for a 10-year 
follow-up from October 2002 to September 2005. Some of 
the inclusion criteria for the hip OA were pain, morning 
stiffness lasting less than 60 min, and a first consult with a 
general practitioner at or within 6 months from the onset of 
the symptoms. Some of the exclusion criteria were previ-
ous malignancies, pathologies, and comorbidities prevent-
ing follow-up [17]. Medical ethics guidelines were followed 
where all participants provided written informed consent 
[17]. The spatial resolution of the X-ray images was of pixel 
size 0.16 mm ± 0.02 mm.

The hip OA classification in the CHECK study was 
based on KL severity grading [2]. The KL grading scheme 
categorized radiographic OA features are as KL0 (none), 
KL1 (doubtful), KL2 (minimal), KL3 (moderate), and KL4 
(severe). In this study, we used a binary classification system 
where KL0s were classified in the no-rHOA class, while 
KL2 and KL3 were categorized into one class of rHOA 
(Fig. 1).

A total of 10,020 hip joints from five patient visit time 
points (baseline, year 2, year 5, year 8, and year 10) were 
collected. Subsequently, 4360 joints were excluded due to 
unavailable KL grading, hip replacement, and insufficient 
image quality (artifacts or underexposed). In addition, KL1s 
were excluded because of the doubtful and ambiguous radio-
graphic OA features. Lastly, the final dataset of X-ray images 
separated into two classes consisted of 3671 hip joints in the 
no-rHOA class and 1988 hip joints in the rHOA class.

Creating AP radiograph‑like images from CT data

To detect rHOA features on CT data, we used a method for 
summing the slices to form an AP-style image, which we 
referred to as CT-AP. First, the CT slices were thresholded 
between − 150 Hounsfield units (HU) and + 600 HU. This 
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custom HU threshold was chosen instead of the full HU 
range (− 1024 HU to + 1650 HU) because of the better qual-
ity of the resulting CT-AP images. In addition, with the full 
HU range, the CT-AP images showed a single narrow peak 
histogram, while a clear contrast of peaks and valleys could 
be seen in the histogram of the images created using the 
custom HU range (Supplementary Fig. 1).

Patient positioning at the time of scanning was not 
standardized since the scans were taken in clinical settings. 
Hence, before creating the CT-AP images, the slices were 
realigned to an AP (coronal) plane [15, 16]. Throughout 
this text “slices” refer to the coronal images reconstructed 
from the raw axial slices that were initially generated by 
the CT scanner. The realignment operation was conducted 
using a reference Cartesian coordinate system in Mimics and 
3-Matic (Materialise, Leuven BE, Belgium) [15, 16]. Rea-
lignment was accomplished by first creating the AP plane on 
the surface of the 3-D pelvic models using the anatomical 
landmarks, Anterior Superior Iliac Spine (ASIS), and Pubic 
Tubercles (PT) and then parallelly reorienting this AP plane 
to the reference XY plane [15, 16]. Then, the reconstructed 
slices were re-sliced to be aligned to the AP plane [16]. The 
complete procedure for realigning the slices can be found 
here [16].

After the thresholding and realignment operations, the 
coronal slices were summed to form the final CT-AP image. 
These slices used for summation were selected manually 
where blank slices found at the top and bottom of the CT 

stack, slices containing partially scanned anatomy, and bad 
quality slices affected by motion artifacts were excluded. 
Summation was done sequentially, i.e., the next slice was 
added to the sum of slices before it and so forth (Fig. 2). 
This technique is similar to the sliding thin-slab maximum 
intensity projection technique originally introduced by Napel 
et al. for visualizing blood vessels and airways [18]. Other 
studies have also adapted this technique for reducing infor-
mation overload in thin-section scans [19, 20].

Cropping and contrast adjustment of hip joints

Hip joints of the CHECK and CT-AP images were local-
ized using a semi-automatic method involving faster-RCNN 
object detector and AlexNet network architecture. The faster 
RCNN object detector is a variant of the RCNN object detec-
tor with a network architecture especially suited for object 
detection purposes [21]. Briefly, the main faster-RCNN 
network region proposal network (RPN) gathers infor-
mation present in the ground truth training images, such 
as the size and aspect ratio, in order to predict bounding 
boxes around the object [21]. Here, the RPN was created 
in MATLAB using the functions regionProposalLayer, rpn-
ClsLayers, and rpnRegLayers and then finally trained using 
trainFasterRCNNObjectDetector.

In our study, the ground truth used to train the detector 
was created by manually drawing a rectangular region of 
interest (ROI) around the hip joints (n = 3000) of randomly 

Fig. 1   Examples of the images used in the two classes for training 
the deep learning models: class 1 = no-rHOA and class 2 = rHOA. A 
The CHECK dataset X-ray images that were KL graded as part of the 

cohort study. B The CT-AP images that were manually OA graded in 
a binary classification as part of this study
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selected CHECK and CT-AP images. The imageLabeler 
function in MATLAB was used for this purpose. To stand-
ardize and simplify the labeling process, only the left sides 
were labeled where the AP images were cut at the vertical 
midline and the right sides reflected to left. In order to anno-
tate the hip joint, a rectangular ROI was drawn to include 
the femoral head in the center of the ROI. The left border 
of the ROI was drawn to include the femoral neck up to but 
not reaching the greater trochanter, while the top and bot-
tom borders were drawn to include the superolateral and 
inferolateral joint spaces of the acetabulum, respectively. 
The right border of the ROI was drawn to include the ili-
opectineal line. These annotations were performed by RKG 
(supervised by JH), who has 4 years of experience working 
on radiographic images of the hip and pelvis.

The labeled images in the ground truth were split into 90% 
(n = 2700) and 10% (n = 300) to be used for training and test-
ing the detector, respectively. The object detector performed 
on the test set at an average precision of 0.99, F1-score of 
0.67, and intersection of union (IoU) of 0.85 ± 0.07. It should 
be noted that the goal of using this detector was not to pro-
duce ROIs that were identical to one another, but rather to 
simplify the joint localization process and produce images 
with some differences so that the main DL models can learn 
more features as a result of this variability. In addition, due 
to processing capacity limitations, complex network archi-
tectures other than AlexNet or the inclusion of more train-
ing images were not possible. In practice, the ROI that was 
automatically detected by the network was visually inspected 
to ensure only the hip joint was localized before cropping.

Fig. 2   Summation of CT slices 
to form the 2-D image referred 
to as CT-AP. The process of 
cropping the hip joints by local-
izing the region of interest using 
faster RCNN object detector is 
also shown
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To standardize the size of the ROIs, after cropping, the 
rectangular ROIs were made into squares by clipping the dif-
ference between their height and width. This operation did 
not result in loss of information. The resulting ROIs of the 
CHECK X-ray images were of size 603 pixels ± 194 pixels. 
Likewise, the ROIs of the CT-AP images resulted in sizes 
of 95 pixels ± 14 pixels which were then resized to 100 pix-
els × 100 pixels. Lastly, contrast adjustment was done on the 
CHECK X-rays by saturating the bottom and the top 1% of the 
pixel values. However, due to the HU thresholding conducted 
before slice summation, and to avoid saturating the images, 
contrast adjustment was not done on the CT-AP images.

Training the deep learning model

The DL model, ResNet18, was trained for assessing the pres-
ence or absence of rHOA. Different types of CNNs such as 
VGG [13], ResNet [22], and DenseNet [12] have previously 
been used in OA-related studies. In this study, ResNet18 
was chosen after considering the graphics processing unit 
(GPU) capacity and time vs predictive accuracy when com-
pared to other models. ResNet18 has a network architec-
ture based on the ResNet CNNs and takes input data of size 
( 224 × 224 × 3 ); details on the network architecture can be 
found in the original publication by He K et al. [23].

Five models (Model-1 to Model-5) were trained to 
investigate the performance of the different training data 
to detect rHOA. Model-1 was trained on the X-ray images 
from the CHECK cohort while Model-2 was trained on the 
same X-ray images that were downsampled to sizes of 100 
pixels × 100 pixels to match the ROI sizes of the CT-AP 
images. Model-3 was trained with a combination of the 
CT-AP images and the X-ray images used in Model-1, while 
Model-4 was trained using the CT-AP images and the down-
sampled X-ray images from Model-2. Model-5 was trained 
using the CT-AP images only.

Network training was done on a 64-bit Windows 10 
Enterprise (Microsoft Corporation) 32  GB RAM CPU 

(AMD-Ryzen 12-Core) computer with a 16 GB integrated 
single GPU (NVIDIA GeForce GTX 1070 Ti, NVIDIA).

Data partitioning

To train the networks, depending on the model, an input 
dataset of the cropped hip joints from the CHECK X-rays 
(n = 5659) and from the CT-AP images (n = 94) were used 
in combination or separately. This overall dataset contain-
ing both the CHECK and CT-AP images was split into 55% 
training (n = 3158), 30% validation (n = 1722), and 15% test 
(n = 873) (Table 1). Furthermore, the CT-AP images within 
the overall dataset were split into partitions of 50% training 
(n = 46), 25% validation (n = 24), and 25% test (n = 24) sets 
(Table 1). The validation sets were not used for training the 
models, and their purpose was to evaluate models’ perfor-
mances during the training process. In addition, the test sets 
were used to evaluate the performance of the models on 
unseen data.

Data augmentation

Data augmentation is a method of transforming training data 
so that a CNN can learn newer features without the need to 
collect more images [24, 25]. It has been shown to increase 
performance and predictive accuracy of task [24, 25]. Here, 
minimal data augmentation was performed on the training 
and validation partitions. These augmentations included 
rotation by randomly chosen angles between − 5 and + 5°, 
random horizontal and vertical translations by a distance 
between − 5 and + 5 pixels, and uniform isotropic scaling by 
a randomly chosen factor between 0.75 and 1.2. For the test 
set, augmentation was not done.

Transfer learning and training options

Transfer learning (TL) training technique was employed for 
training the DL model, ResNet18. TL is the technique where 

Table 1   Data partitions used to train, validate, and test ResNet18 to 
predict radiographic hip osteoarthritis (rHOA). Model-1 and Model-2 
were trained with unprocessed and downsampled CHECK X-ray 
images, respectively. Model-3 and Model-4 were trained on a com-
bination of the CT-AP and X-ray images where the X-ray images 

were similar to the ones used in Model-1 and Model-2, respectively. 
Model-5 was trained solely on the CT-AP images. The overall images 
are the total of Cohort Hip and Cohort Knee (CHECK) X-ray and 
CT-AP images

Data partitions CHECK CT-AP Combined Overall (%)

Model-1 and Model-2 Model-5 Model-3 and Model-4

rHOA no-rHOA rHOA no-rHOA rHOA no-rHOA

Training 1093 2019 29 17 1122 2036 3158 (55%)
Validation 597 1101 15 9 612 1110 1722 (30%)
Test 298 551 15 9 313 560 873 (15%)
Total 1988 3671 59 35 2047 3706 5753 (100%)
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CNNs pre-trained on natural images such as ImageNet are 
fine-tuned to fit a new task such as OA classification [12, 13, 
22, 26–28]. In this study, the ResNet18 was pretrained on Ima-
geNet. In practice, TL involves replacing the final three layers, 
i.e., the fully connected, soft max, and classification layers to 
fit the new task which in our case is a binary class classifi-
cation of the presence or absence of rHOA. After end-layer 
replacement and adjusting for number of classes, the network 
was fine-tuned by varying the training options. Here, we used 
the adaptive moment (ADAM) gradient-based optimizer [29], 
a mini-batch size of 32 for Model-1 to Model-5. An initial 
learning rate of 10−4 was used for all models. The maximum 
epochs were 40 for Model-3 and Model-4, 85 for Model-1 
and Model-2, and 100 for Model-5. The learning drop factor 
was 0.1 for Model-5 and 0.05 for Model-1 to Model-4. The 
learning drop period was 10 epochs for all models. Hence, 
given these training options, the networks were trained for a 
maximum of 8245 iterations for Model-1 and Model-2, 4040 
iterations for Model-3 and Model-4, and 1000 iterations for 
Model-5. The validation accuracy was taken was at every 
53rd iteration for Model-1 to Model-4 and the 8th iteration 
for Model-5. Every epoch was shuffled during each iteration 
to increase the randomness in the data while the same seed 
number was used for all models for repeatability. Lastly, visu-
alizations of the features with a positive contribution for the 
predicted class were shown using occlusion sensitivity [30].

A custom MATLAB (version R2019b, The MathWorks, 
Inc., Natick, MA, USA) script was written to perform the 
operations. The codes written for training the deep learning 
models can be found in our publicly available GitHub reposi-
tory (https://​github.​com/​MIPT-​Oulu/​Radio​graph​ic-​Hip-​OA-​
DL-​Train​er).

Statistical analyses

To evaluate the models’ classification performance, the accu-
racy, precision, recall, and F1-scores were determined from the 
predicted and true classes. Furthermore, a receiver operator 
characteristic curve (ROC) was created to determine the area 
under the curve (AUC). In addition, due to the unbalanced 
classes in the dataset, balanced accuracy and precision-recall 
curves AUC were also determined. These statistical analyses 
were done in MATLAB.

Results

Performance of the deep learning models to detect 
radiographic hip OA on X‑ray images

When analyzing the classification performances of Model-1 
to Model-4 to discriminate rHOA from no-rHOA on the 
test sets, they performed at ROC AUC values of 0.98 [95% 

confidence interval [CI]: 0.97–0.98], 0.97 [0.96–0.98], 0.98 
[0.97–0.99] and 0.94 [0.97–0.98], respectively (Table 2). 
For Model-5 that was trained on only the CT-AP images, 
the classification performance to discriminate rHOA on 
the X-ray test sets was at a ROC AUC of 0.69 [0.66–0.72] 
for the unprocessed images and 0.58 [0.54–0.61] for the 
downsampled images (Table 2). In addition, to detect the 
presence or absence of rHOA on the test sets, Model-1 to 
Model-4 performed at accuracies of 92.3%, 90.2%, 91.9%, 
and 91.3%, respectively (Table 2). Similarly, Model-1 to 
Model-4 performed at precisions and F1-scores of 0.91 
and 0.92, 0.88 and 0.89, 0.91 and 0.91, and 0.91 and 0.91, 
respectively (Table 2). Furthermore, Model-5 was able to 
detect the presence or absence of rHOA on the test sets 
of the unprocessed and the downsampled X-ray images at 
accuracies, precisions, and F1-scores of 49.1%, 0.59 and 
0.61, and 60.5%, 0.55, and 0.55, respectively (Table 3).

Performances of the deep learning models to detect 
radiographic hip OA on the CT‑AP images

Model-1 and Model-2 that were trained on only X-ray 
images detected rHOA on the test sets of the manually 
graded CT-AP images at accuracies of 50.0%, F1-scores 
of 0.65, and precisions of 0.60, respectively (Table 3 and 
Fig. 3). In addition, Model-1 and Model-2 classified rHOA 
from no-rHOA at ROC AUCs of 0.73 [0.49–0.89] and 0.63 
[0.37–0.84], respectively (Table 3 and Fig. 3B).

Model-3 and Model-4 which were trained on the combi-
nation of CT-AP and X-ray images detected rHOA on the 
CT-AP test sets at accuracies of 83.3% and 75.0%, preci-
sions of 0.82 and 0.80, and F1-scores of 0.82 and 0.80, 
respectively (Table 3 and Fig. 3). In addition, Model-3 
and Model-4 were able to classify rHOA from no-rHOA 
at ROC AUCs of 0.93 [0.72–0.99] and 0.87 [0.64–0.97], 
respectively (Table 3 and Fig. 3B).

When assessing the performance of Model-5 that was 
trained on only the CT-AP images to detect rHOA on its 
test set, the accuracy was 83.3% and the precision and 
F1-score were 0.82 and 0.82 (Table 3 and Fig. 3). In addi-
tion, Model-5 was able to classify rHOA from no-rHOA 
at ROC AUC of 0.89 [0.67–0.97] (Table 3 and Fig. 3B).

Visualization of the learned features for Model 3 is shown 
in Fig. 4. Outputs for the training process for the five models 
are shown in Supplementary Figs. 2–6.

Discussion

In the present study, we optimized DL models for assess-
ing radiographic hip osteoarthritis (rHOA) from computed 
tomography images. A two-step method was developed in 
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which we first created an AP-style image from the CT study 
data, by sequentially summing the slices and constituting 
them into the training data. Hence, five different models 
were developed by varying the training data used. Their 
performances were evaluated on a separate CT-AP test set. 
The DL model trained solely on the CT-AP images (Model-
5) was able to detect and classify rHOA on the CT-AP 
images with a balanced accuracy of 82.2% and ROC AUC 
of 0.89. In addition, the model trained on a combination of 

the CT-AP and unprocessed X-ray images (Model-3) had a 
balanced accuracy of 82.2% and ROC AUC of 0.93.

There is limited literature on the application of 2-D sum-
mation images to grade hip OA, either manually or automati-
cally. The one prominent example is the study by Turmezei 
et al. that introduced a CT-based hip OA scoring system by 
making use of multiplanar reconstruction [11]. The CT-AP 
image used in our study is similar to the digitally recon-
structed radiograph (DRR) since both rely on the sliding 

Table 2   Performances of the five models optimized for detecting 
radiographic hip osteoarthritis on the X-ray images within the vali-
dation and test datasets. The CT-AP images were created by sequen-
tially summing the CT slices. Model-1 was trained with unprocessed 
X-ray images. Model-2 was trained similarly with downsampled 

X-rays to resemble CT-AP images. Model-3 and Model-4 were 
trained on a combination of the CT-AP and X-ray images where the 
X-ray images were similar to the ones used in Model-1 and Model-2, 
respectively. Model-5 was trained solely on the CT-AP images

† Performance of Model-5 on the X-ray images used in Model-1
‡ Performance of Model-5 on the downsampled X-ray images used in Model-2
PR AUC​, area under the precision recall curve; ROC AUC​, area under the receiver operating characteristics curve; CI, confidence interval

Trained models Accuracy Balanced 
accuracy

Precision Recall F1-score PR AUC [95% CI] ROC AUC [95% CI]

X-ray images of the validation dataset
  Model-1 93.3 92.1 0.92 0.93 0.93 0.96 [0.95–0.97] 0.98 [0.98–0.99]
  Model-2 90.6 89.2 0.89 0.89 0.89 0.94 [0.92–0.95] 0.97 [0.96–0.97]
  Model-3 92.7 92.3 0.92 0.92 0.92 0.95 [0.93–0.95] 0.98 [0.97–0.98]
  Model-4 90.4 89.2 0.89 0.89 0.89 0.94 [0.93–0.95] 0.94 [0.97–0.98]

X-ray images of the test dataset
  Model-1 92.3 88.5 0.91 0.92 0.92 0.96 [0.95–0.98] 0.98 [0.97–0.98]
  Model-2 90.2 88.1 0.88 0.90 0.89 0.95 [0.93–0.96] 0.97 [0.96–0.98]
  Model-3 91.9 91.1 0.91 0.91 0.91 0.95 [0.93–0.96] 0.98 [0.97–0.98]
  Model-4 91.3 90.8 0.91 0.90 0.91 0.93 [0.91–0.95] 0.97 [0.96–0.98]
  Model-5† 49.1 58.9 0.59 0.64 0.61 0.53 [0.50–0.56] 0.69 [0.66–0.72]
  Model-5‡ 60.5 55.2 0.55 0.56 0.55 0.57 [0.52–0.62] 0.58 [0.54–0.61]

Table 3   Performances of the five models optimized for detect-
ing of radiographic hip osteoarthritis on the CT-AP images within 
the validation and test datasets. The CT-AP images were created by 
sequentially summing the CT slices. Model-1 was trained with unpro-
cessed X-ray images. Model-2 was trained similarly with downsam-

pled X-rays to resemble CT-AP images. Model-3 and Model-4 were 
trained on a combination of the CT-AP and X-ray images where the 
X-ray images were similar to the ones used in Model-1 and Model-2, 
respectively. Model-5 was trained solely on the CT-AP images

PR AUC​, area under the precision recall curve; ROC AUC​, area under the receiver operating characteristics curve; CI, confidence interval

Trained models Accuracy Balanced 
accuracy

Precision Recall F1-score PR AUC [95% CI] ROC AUC [95% CI]

CT-AP images of the validation dataset
  Model-3 79.2 79.0 0.79 0.78 0.78 0.90 [0.79–0.94] 0.93 [0.73–0.98]
  Model-4 87.5 83.3 0.83 0.92 0.87 0.88 [0.76–0.94] 0.91 [0.69–0.99]
  Model-5 83.3 83.3 0.83 0.82 0.83 0.76 [0.52–0.91] 0.93 [0.71–0.99]

CT-AP images of the test dataset
  Model-1 50.0 60.0 0.60 0.71 0.65 0.79 [0.63–0.93] 0.73 [0.49–0.89]
  Model-2 50.0 60.0 0.60 0.71 0.65 0.72 [0.55–0.89] 0.63 [0.37–0.84]
  Model-3 83.3 82.2 0.82 0.82 0.82 0.89 [0.79–0.94] 0.93 [0.72–0.99]
  Model-4 75.0 80.0 0.80 0.80 0.80 0.87 [0.77–0.94] 0.87 [0.64–0.97]
  Model-5 83.3 82.2 0.82 0.82 0.82 0.80 [0.57–0.92] 0.89 [0.67–0.97]
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thin-slab maximum intensity projection technique [18]. Tur-
mezei et al. based their hip OA grading on three separate 
assessments of joint space narrowing, osteophytes, and sub-
chondral cysts [10, 11]. Their scoring system was diverse, 
and they reported high reliability, especially for their com-
posite three-class scoring system [11]. Another more recent 
example is the OsteoArthritis Computed Tomography 
(OACT) score that was developed by Gielis et al. for assess-
ing structural OA in large joints and the spine [10]. They 
modified the scoring system that was developed by Turmezei 
et al. to a simplified four-grade system in order to conserve 
time and increase reliability [10].

In our study, Model-1, Model-2, and Model-5 were 
developed to investigate the effectiveness of the pretrained 
ResNet18 CNN architecture to learn and to detect rHOA 
features on the CT-AP images, and vice versa. From the 
results of Model-1 and Model-2, it is possible that the mod-
els trained with only X-ray images were able to detect some 
rHOA features similarly found in the CT-AP images and that 
there could be some similarities between the CT-AP and 
the X-ray images. In addition, whether the X-ray images in 
the training set were unprocessed or downsampled did not 
have a noticeable effect on the two models’ performances, 
which was also the case for Model-3 and Model-4. This was 
primarily due to the necessary resizing operation, which 

was performed prior to training, to meet the network input 
size requirement (224 pixels × 224 pixels), i.e., images 
were downsampled for Model-1 and Model-3, and upsam-
pled for Model-2 and Model-4, resulting in similar perfor-
mances for the models. In addition, even though there were 
fewer CT-AP images in Model-3 and Model-4 compared 
to the large number of X-ray images, the models’ perfor-
mance to detect rHOA on CT-APs improved noticeably. 
The increased performance of the combined image models 
could be explained by the specific network training options 
applied, data variability, and data quality of the CHECK 
KL-grading and CT-APs’ KL-based classifications. Further-
more, Model-5 was able to detect some rHOA features on 
the unprocessed and downsampled X-ray images with simi-
lar performance. Unlike Model-1 and Model-2, Model-5’s 
performances on the X-ray images were low, possibly due 
to the small number of training data used.

The performances of all the models developed in this 
study are well comparable to prior X-ray-based hip OA DL 
studies [12–14]. For instance, Xue et al. investigated the 
diagnostic value of DL in hip OA by training a VGG-16 
CNN on 420 hip X-ray images categorized into a binary 
class (normal vs abnormal) [14]. They reported a high accu-
racy of 92.8% and ROC AUC of 0.94 and reported the clas-
sification performance of their model as being comparable 

Fig. 3   Classification performances of the models on the CT-AP 
images shown as area under the curve (AUC) values of the receiver 
operator characteristic (ROC) curves. A ROC AUCs of Model-3, 
Model-4, and Model-5 for the validation dataset. B ROC AUCs for all 
the five models of the test dataset. Model-1 was trained with unpre-

processed X-ray images and Model-2 with only the downsampled 
X-rays images. Model-3 and Model-4 were trained on a combination 
of the CT-AP and X-ray images where the X-ray images were similar 
to the ones used in Model-1 and Model-2, respectively. Model-5 was 
trained solely on the CT-AP images
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to that of an experienced attending physician [14]. Recently, 
von Schacky et al. using the Osteoarthritis initiative (OAI) 
data (n = 15,364 hip joints) developed a DenseNet model to 
evaluate different OA features and reported an F1-score of 
63% for predicting KL grades [12]. Another recent study 
by Üreten K. et al. using 868 hips collected from hospital 
developed a VGG model for a binary OA classification and 
reported a 90% accuracy [13].

In our study, the visualizations of the contributing image 
features suggest that joint space narrowing, changes in 
the shape of the joints, and osteophytes were learned by 
Model-3 as different rHOA features. Accurate detection and 
misclassification of these features were also indicated at the 
correct anatomical locations on the CT-AP images (Fig. 4). 
Further studies to understand the different criteria that were 
learned and used by the models in comparison to the known 
OA scoring systems could be beneficial.

Fig. 4   Examples of radiographic hip osteoarthritis (rHOA) and no-
rHOA features learned by ResNet18 that was trained using a com-
bination of CT-AP and X-ray images. The images shown are CT-AP 
images. The prediction probabilities (PP) are on the top right, and the 
ground truth (GT) from the manual grading is on the top left sides of 

the images. The red bright areas indicate learned features contribut-
ing more to the highest predicted probability class. A Misclassifica-
tion of no-rHOA as rHOA. B Misclassification of rHOA as no-rHOA. 
C The different learned features which were accurately classified into 
the rHOA class
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Our study has some limitations. First, a small number of 
CT-AP images were used to train Model-5. Although the 
high-performance results were found for Model-5, further 
studies with more data are needed to confirm the findings. 
Second, we used a binary classification for OA. Since the 
objective of this study was to show the applicability of DL 
to detect hip OA on CT and since there was a small number 
of CT-AP data, further division other than the current binary 
class would have affected the data points in the individual 
classes as well as the models’ performances. DL models for 
multiclass OA classification could be developed in the future 
with more training data. Third, other known risk factors of 
hip OA were not considered. Fourth, since the objective 
of our study was to develop and validate a methodological 
pipeline for future CT-based DL OA studies and consider-
ing that we are using a binary classification, the OA grading 
was done by one rater which could have biased the CT-AP 
grading. Lastly, some of the CT-AP images were blurrier 
than typical plain radiographs due to the summation opera-
tion and pixel size of CT. However, the performance and 
visualization of the contributing image features indicate the 
impact of the blurring on the results was low.

In conclusion, we were able to develop DL models to 
assess rHOA on CT data by creating a 2-D summation image 
of the slices. The motivation of this study was the gap in 
the availability of a large volume of CT data for DL-based 
hip OA studies. In our study, we showed a network such as 
ResNet18 which had been pretrained on a different set of 
images such as ImageNet can be optimized for detection of 
rHOA using transfer learning. Future hip or pelvic CT-based 
studies that aim to investigate hip OA can further adapt the 
method presented in this study. For instance, by first training 
a network on X-ray images to adjust the pretrained weights 
and then retraining this network on CT data, it is possible 
to achieve higher performance and reliability. Furthermore, 
such automatic DL models can be advantageous in saving 
time and resources. Although the initial training can be time 
consuming, once a reliable model is validated, the detection 
of rHOA features is extremely fast and can be streamlined 
to analyze entire datasets in a very short time.
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