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“Nothing in life is to be feared, it is only to be under-
stood. Now is the time to understand more, so that we
may fear less.” (Marie Curie)

Artificial intelligence in medicine comes with enormous
promise but also potential pitfalls. Liu Y et al. [1] highlight
the need for a cautious and critical approach to evaluate ma-
chine learning tools, as with any diagnostic tool, that must be
supported by clinical judgment: “...clinical gestalt plays a
crucial role in evaluating whether the results are believable.
Results that substantially exceed what even such a hypothet-
ical expert is capable of should be scrutinized and validated
carefully.”

The transition from the physician’s handwritten notes to
electronic health records and a plethora of digital data ushered
in the era of Big Data in medicine. Classical hypothesis-driven
research is giving way to data-driven research, with opportu-
nities to pursue novel questions and directions raised from the
data itself. The statistical approaches currently used to explore
this expanding data universe are often drawn from the field of
artificial intelligence. The principle of Al is to mimic the
thinking and decision-making capabilities of humans using a
variety of algorithmic tools.

Clinical decision-making, as much as art as science, is the
final outcome of a complex process that rest on scientific
knowledge and clinical experience gained through years of
training and practice. Evidence-based medicine (EBM) and
clinical trials represent the pinnacle of scientific decision-mak-
ing. The ability to exploit Big Data with Al offers the potential
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to greatly accelerate the experience-based component of the
decision-making process. This interplay of EBM and Al can
ultimately enhance the physician’s performance.

Within the broad discipline of Al, the subfields of machine
learning (ML) and deep learning (DL) are currently of greatest
relevance to medical practice (Fig. 1) [1-4].

The two main approaches to ML are supervised or unsu-
pervised learnings [1, 2]. Supervised learning uses a given set
of input features and one or more outcomes (labels) as the
basis for model training. The model is iteratively trained to
minimize prediction error when comparing samples drawn
from the data with a target reference standard, also called
ground truth. Supervised ML for predicting a known outcome
is the most widely used approach at present. Unsupervised
learning does not use any labeling information and aims to
group data by shared properties. This helps to discover struc-
ture in the data, such as identifying clusters of patients at
similar risk or selecting variables most strongly correlated
with an outcome. DL, a specific group of ML methods, uses
multi-layered arithmetic operations (sometimes hundreds of
layers containing many millions of individual calculations)
in order to model the complex non-linear relationships be-
tween data inputs and outputs.

While AI/ML is designed to output a simple answer, the
underlying process to get there is extremely complex and re-
quires attention to numerous technical details. This is analo-
gous to the diagnostic process in medicine. The final diagnosis
conceals a non-linear reasoning pathway that incorporates
medical knowledge and experience with clinical clues from
the history, physical examination, and investigations. The
classical pipeline for developing and implementing a super-
vised ML model is based on the subsequent steps shown in
Fig. 2.

Although each of these steps is important, data preparation
deserves special attention given the data-driven nature of ML.
Garbage-in-garbage-out (GIGO) describes the importance of
data quality. Access to Big Data is not enough—we must
ensure High Quality Big Data. Failure to adhere to this
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Fig. 1 Hierarchical classification
with examples of artificial
intelligence, machine learning,
and deep learning
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principle can lead to biased or even erroneous results.
Companies are rushing to provide off-the-shelf platforms
using pre-defined algorithms for democratizing Al access. In
theory, one only needs to load of the data and specify a few
parameters, voila—a fully trained convolutional neural net-
work (CNN)! However, caveat emptor. Any biases in the data
collection or labeling (e.g., establishing the ground truth)
would automatically generate systematic errors in the predic-
tions that machines would now perform repeatedly. In contrast
to carefully collected and adjudicated research data, Big Data

Task
definition

ML project starts with a definition of a target outcome and a given
set of inputs as predictors. In bone health, this task may consist of
the identification of a fracture or osteoporosis diagnosis.

Data Collection, formatting, labelling, selection and preparation
. of the data. This is a crucial step to avoid bias in the
'/ prepa ration outcome. It should reflect the target clinical population.

labels (e.g. disease presence).

Fig. 2 Simplified model development flowchart for supervised learning
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comes from “real-world” sources, which are comparatively
“dirty.” Nothing is free, and the cost of data quantity is ques-
tionable quality, which can affect the reliability of the derived
ML products. In summary, any deviation from the eight steps
described previously can lead to overly optimistic (or more
rarely pessimistic) results, thereby threatening clinical reliabil-
ity of the results. Accordingly, it is important not to under-
report model details and clinical information as any lack of
reporting transparency impedes effective comparisons, model
reproducibility, and clinical use [4, 5].

Subset used to develop model by tuning internal
parameters with respect to the ground truth

Subset completely isolated from the training set to validate
model performance and report final results. This sample
must be unseen by the model during training to avoid bias.

Processing and transformation of the training set to facilitate
input to the model (e.g., standardization). The same process
can subsequently be applied to the test set.

Model

Iteratively tune model parameters using examples from the training set. The
p encode the high-di ional relationships b the raw data inputs
and the desired outcome.

training

Assess and report model’s accuracy using the test subset only after
final training of the model using the training set.

Internal

Performance

Crucial step as external testing is performed
within a range of “real world” clinical
settings outside of the original data source
used for the model development/testing

External
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Many of the early successes of Al in medicine have
been in image-intensive specialties, such as radiology, pa-
thology, ophthalmology, and cardiology [6]. Clinical risk
prediction, diagnostics, and therapeutics are more chal-
lenging. Hence, Al is still relatively novel in the osteopo-
rosis field. A query on PubMed indicates an exponential
increase in Al publications since 2010 with more than
38,000 articles, with over 10,000 in the last year alone.
In contrast, fewer than 100 of these were in the field of
osteoporosis, although this is following the same expo-
nential trajectory with the majority of studies published
during the last 2-3 years. Efforts have been made in os-
teoporosis diagnosis and classification, bone mineral den-
sity assessment, fracture detection, fracture risk estima-
tion, and bone image segmentation [7—14]. The majority
of these articles used opportunistic data—particularly in
imaging.

Accurate fracture risk estimation is crucial in osteopo-
rosis management and the first step in bone health clinical
evaluation. Widely used fracture risk assessment tools
(e.g., FRAX®) are based on classical statistical ap-
proaches informed by clinical expertise in osteoporosis
[15]. For instance, FRAX was developed and validated
in various large population-based datasets. Each individ-
ual clinical risk factor (twelve in total) was incorporated
into FRAX based on a solid scientific rationale and a
supporting meta-analysis. Anticipating the rise of Big
Data, FRAX is an example of how evidence-based hy-
potheses drive data analysis and find their way into clin-
ical utility.

In this issue of Osteoporosis International, De Vries et al.
[16] compared fracture risk prediction from classical tech-
niques (Cox regression) with AI-/ML-based survival models
(random survival forests, RSF, and artificial neural network,
ANN-DeepSurv). Their study was conducted in a sample of
7578 post-fracture individuals, relatively large by convention-
al measures though not by current ML standards. Their data-
driven hypothesis-free investigation aimed to compare the
performance of the models and to identify, if possible, novel
risk factors. This study reminds us about the wealth of elec-
tronic data that is increasingly available to researchers from
electronic health record databases. Although FRAX performs
well in clinical practice, it still ignores large amounts of po-
tentially valuable patient information. The use of these addi-
tional data sources, such as in De Vries et al., can suggest
novel hypotheses, risk factors, and disease/health determi-
nants. Despite examining more than 40 clinical and laboratory
variables in their predictive models, and contrary to expecta-
tion, Cox regression outperformed the AI/ML models. In part,
this may reflect the use of more sophisticated approaches with
the Cox regression (LASSO variable selection, non-linear
transforms including restricted cubic splines) and rather sim-
plistic ML architectures (only 2 layers in ANN-DeepSurv).

One would anticipate that ML performance would improve
with more complex architectures and sufficient data to avoid
overfitting. The identification of overlapping predictors (e.g.,
age, hip T-score, time since menopause) provides face validity
that the approaches are responsive to similar signals in the
data. ML was also able to identify plausible risk factors that
were omitted from the Cox model (e.g., vertebral fracture,
lumbar spine T-score) and to propose some novel risk factors
(e.g., plasma albumin, breastfeeding), both worthy of future
study.

We are optimistic regarding in the future of medical Al
and for the osteoporosis field in particular. In 2018, the
Food and Drug Administration (FDA) approved the
OsteoDetect (Imagen), an Al software based upon DL to
identify and highlight distal radius fractures during the
review of posterior-anterior and lateral radiographs of
adult wrists as an adjunct to the clinician’s review and
clinical judgment [17]. Thus, Al has already found its
way to addressing important tasks in the overall osteopo-
rosis clinical management. Nevertheless, healthy skepti-
cism should balance zeal to see this science move forward
and temper our enthusiasm to see Al integrated into clin-
ical applications. A recent systematic review of medical
imaging DL algorithms between 2010 and June 2019
found that almost all were retrospective, non-randomized,
at high risk of bias, and deviated from existing reporting
standards [18]. Moreover, data and code availability were
lacking in most studies, yet only a minority stated that
further prospective studies or trials were required. Aside
from technical issues related to model reliability and
reporting transparency, AI/ML raises prickly new ques-
tions that have yet to be answered: Who owns the data
used to initially train the algorithm and what are the rights
of the patient to control their personal information? How
are individual privacy concerns balanced against making
the dataset (which can be highly detailed in “real-world”
data) available for independent validation? Once ap-
proved, how can one provide “stewardship” over changes
to the AI/ML algorithm (mostly cloud based) without sti-
fling its unique ability to evolve and improve?

To conclude, we believe healthcare will see increasing
synergy between human and artificial intelligences, where
the latter will enhance a physician’s performance and sup-
port well-informed clinical decision-making—namely
augmented intelligence. Al should be seen as yet another
tool for improving the quality of patient care. Not to be
feared but to be understood, as we explore Al’s unique
strengths and limitations.
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