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Abstract

Introduction We investigated the relationship between gut microbiota composition and osteoporosis/fracture risk in Japanese
postmenopausal women using 16S rRNA gene sequencing, FRAX, bone mineral density, biochemical bone parameters, and a
self-administered questionnaire. Variation in abundance of specific microbiota was found to be significantly associated with
fracture risk and vitamin K levels.

Gut microbiota data with respect to bone metabolism and fracture risk is limited. Vitamin K is produced by certain intestinal
bacteria and has been reported to play a role in maintaining bone quality.

Purpose We investigated relationships among gut microbiota composition, bone metabolism, and fracture risk in postmeno-
pausal Japanese women.

Methods Bone mineral density (BMD) was evaluated in 38 postmenopausal women (mean age 62.9 years) using forearm dual-
energy X-ray absorptiometry. We collected and analyzed serum bone turnover markers (vitamin K fraction and tartrate-resistant
acid phosphatase 5b; TRACP-5b), gut microbiota profiling (16S rRNA gene sequencing), and self-administered questionnaire
data, including fracture history and vitamin K intake. Vitamin K2, BMD, and TRACP-5b data were divided into high- and low-
level groups using cutoff values of 0.06 ng/mL, 87.05%, and 420 mU/dL, respectively; the proportions of bacteria were analyzed.
Fracture incidence and relative risk were investigated for each bacterium.

Results The genus Bacteroides was predominant in the high vitamin K2 group (29.73% vs 21.58%, P =0.022). Fracture
incidence was significantly higher in the low Bacteroides group, with a 5.6-times higher risk ratio of fracture history.

The family Rikenellaceae was more abundant in the low BMD group and more abundant in the high TRACP-5b group (2.15% vs
0.82%, P=10.004; 2.38% vs 1.12%, P =0.013, respectively).

Conclusion Bacteroides and Rikenellaceae may be involved in bone metabolism and fracture risk. Further investigations of the
underlying microbiota-related pathways in bone metabolism may reveal treatment strategies, and facilitate the prevention of
osteoporosis.

Keywords Bone metabolism - Fracture - Gut microbiota - Osteoporosis - Vitamin K

Introduction

In recent years, the Japanese population has been rapidly ag-
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increased bone resorption due to estrogen deficiency and de-
creased bone density. Osteoporosis is widely considered a
major risk factor for fractures. Osteoporosis-related fractures,
such as fractures of the vertebral body, forearm, and proximal
femur, are thus more likely to occur [2]. The Fracture Risk
Assessment Tool (FRAX®) has been developed by the World
Health Organization to assess the 10-year probability of major
osteoporotic fracture in patients at risk of hip fractures and
major osteoporotic fractures by evaluating bone mineral den-
sity (BMD) and other risk factors relating to BMD and life-
style [3]. The Japanese practice guidelines on osteoporosis
consider fracture risk > 15% as the criterion for initiating phar-
maceutical treatment. Hip fracture increases mortality risk by
10 to 20% within 1 year after the fracture. Functional status of
patients with hip fracture progressively worsens in 60% of
these patients compared with functional status before the frac-
ture. In addition, vertebral fractures contribute to increased
risk of mortality even among those detected using radiogra-
phy. Among the Japanese osteoporotic population, hip frac-
ture occurs in 130,000 of these patients annually; of these,
20,000 patients die and 60,000 experience functional decline
[4]; thus, prevention has become an important issue not only
in terms of medical treatment but also for society at large.

The human microbiome consists of an estimated 100 tril-
lion microbes, and the intestines are host to approximately
1000 different bacterial species [5, 6]. This intestinal bacterial
population is collectively referred to as the gut microbiota.

The human gut microbiota comprises 4 major co-existing
phyla, including Firmicutes, Bacteroidetes, Actinobacteria,
and Proteobacteria. These phyla represent over 90% of the
gut microbiota [7].

The gut microbiota maintains intestinal homeostasis via a
complex mechanism. Even if this homeostasis is somewhat
disturbed by various stimuli, such as stress, aging, or other
external factors, it has a strong tendency to return to the orig-
inal condition. Moreover, oral ingestion of live beneficial bac-
teria (probiotics) has the potential to alter the gut microbiota.
However, disruption of intestinal homeostasis (referred to as
microbial dysbiosis), due to either host genetic predisposition
or excessive influence of external environmental factors, can
lead to loss of innate intestinal tract defense against infection.
This can ultimately result in gastrointestinal disorders, such as
inflammatory bowel disease (IBD) [8] and colorectal cancer
[9], metabolic diseases, such as obesity [10] and diabetes
mellitus [11], and various other disorders, such as depression
[12], Parkinson’s disease [13], and allergies [14]. This associ-
ation between microbial dysbiosis and the above-mentioned
diseases has been widely reported.

However, the effect of gut microbiota alteration in patients
with osteoporosis remains unknown. Wang et al. analyzed the
diversity of gut microbiota in patients with primary osteopo-
rosis, osteopenia, and in normal controls. They found that in
patients with osteoporosis, the proportion of Firmicutes was
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increased compared with that of the normal control group, and
the proportion of Bacteroidetes was reported to be significant-
ly decreased in patients with osteoporosis [15].

In terms of classification, intestinal bacteria are subdivided
into class, order, family, and genus from phyla represented by
Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria
(Fig. 1).

Even in the same phylum, each group such as family or
genus has various functions.

For example, the Firmicutes family Ruminococcaceae con-
sists of some butyric acid—producing bacteria such as
Faecalibacterium and Butyricicoccus. Butyrate-producing
bacteria are promising probiotic candidates targeting microbi-
ota modulation in gastrointestinal disorders such as IBD [16].
Similarly, Ruminococcus gnavus, a member of the
Ruminococcaceae family, has been reported to be implicated
in infection following artificial hip joint replacement [17],
liver abscess due to Ruminococcus gnavus, and infective en-
docarditis. In addition, reports have shown that Ruminococcus
is involved in the development of cerebral and myocardial
infarction [18]. Thus, bacteria with different functions consti-
tute the same population in terms of classification.

This study was conducted to clarify the effects of changes
in the gut microbiota, especially at the family and genus
levels, in patients with osteoporosis. A better understanding
of the roles of gut microbiota may lead to the development of
new therapies for osteoporosis. Thus, we aimed to determine
whether particular gut microbes are associated with osteopo-
rosis by investigating and analyzing gut microbiota and bone
metabolism in postmenopausal Japanese women.

Methods
Subjects

In this study, data were collected from 38 postmenopausal
women (mean age 62.9 (range, 50-82) years) who visited
the Musashiurawa Orthopedic and Internal Medicine Clinic
for outpatient treatment from January 2017 to April 2017.
All subjects provided informed consent to participate, and
sufficient ethical consideration was given to avoid personal
identification of each participant’s data. Those with diabetes,
malignant tumors, fracture in the acute phase (within
2 months), and IBD, or those who had undergone dialysis or
had taken medication for osteoporosis, as well as warfarin,
steroids, and antibiotics within 3 months before sample col-
lection, were excluded. This was because these conditions and
drugs could possibly affect bone metabolism and gut
microbiota.

BMD was measured on the proximal 1/3 of the forearm
using dual-energy X-ray absorptiometry (DCS 600EXV;
Hitachi Aloka Medical, Tokyo, Japan). Bone density was
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Phylum Class

Bacteroidetes (32.83) — Bacteroidia (32.78)

Order

Bacteroidales (32.78) T Bacteroidaceae (23.73)

Family Genus

Bacteroides (23.73)
— Pomhyromonadaceae (2.36)— Parabacteroides (2.36)
— Prevotellaceae (3.93) Prevotella (3.93)

'~ Rikenellaceae (1.48)

Firmicutes (52.58) —— Bacilli (3.86) Lactobacillales (3.58) — Streptococcaceae (2.60) —— Streptococcus (2.58)
— Clostridia (45.91) Clostridiales (45.91) —— Clostridiaceae (1.60)
— Lachnospiraceae (23.06) —1— Blautia (7.66)
— Coprococcus (3.69)
— Dorea (2.39)

L— Erysipelotrichi (2.73)

— Lachnospira (1.39)

\— Roseburia (1.31)

\— | Ruminococcaceae (13.47) —— Faecalibacterium (6.49)
+— Oscillospira (1.09)

“— Ruminococcus (3.16)

L Veillonellaceae (2.96)

Erysipelotrichales (2.73) — Erysipelotrichaceae (2.73)

Actinobacteria (5.66) Actinobacteria (4.33) Bifidobacteriales (4.30) — Bifidobacteriaceae (4.30) —— Bifidobacterium (4.30)
Coriobacteriia (1.31) Coriobacteriales (1.31) — Coriobacteriaceae (1.31)

Proteobacteria (7.71) —[ Betaproteobacteria (1.08) —— Burkholderiales (1.08) — Alcaligenaceae (1.08) Sutterella (1.08)
Gammaproteobacteria (6.00) — Enterobacteriales (5.77)— Enterobacteriaceae (5.717) —— Trabulsiella (2.78)

Fig. 1 Bacterial species targeted for statistical analysis. List of bacteria
with their taxonomical classification (phylum-class-order-family-genus)
with a mean value of > 1% (n =38). Numbers are presented as averages

determined based on the Young Adult Mean (YAM: 100% of
mean value bone density at age 2044 years) value.

Biochemical parameters

Due to the setup of the clinic, it was difficult to unify the
timing of blood sampling, and so we opted to use tartrate-
resistant acid phosphatase 5b (TRACP-5b) as the bone resorp-
tion marker, because it has less diurnal variation than the con-
ventional carboxy-terminal collagen crosslinks [19]. Also, we
used undercarboxylated osteocalcin (ucOC) as a measure of
vitamin K deficiency; serum levels of vitamins K1, K2, 1«,
25- (OH)2 vitamin D, alkaline phosphatase (ALP), calcium
(Ca), and phosphorous (P) were measured as biochemical in-
dices of bone metabolism.

Questionnaire survey

Menopausal age, fracture history, and FRAX score were re-
corded. To clarify the relationships with bacterial composi-
tion, we conducted a randomized questionnaire survey on ex-
ercise frequency, defecation frequency, frequency of alcohol
intake, and dietary intake of grains, vegetables, yogurt, lactic
acid bacteria beverages, and a fermented soybean product
(natto), a rich source of vitamin K2 that is common in
Japan. No dietary restrictions or lifestyle control measures
were applied to the subjects during the study. Two groups
were defined: a high intake group and a low intake group.
Each group was surveyed about the number of meals per week
(0, 1-3, 4-6, daily) and the frequency of natto intake.

(%). Bacterial species highlighted in gray indicate bacterial species with
mean value of > 10%

Regarding fracture history, high-energy injuries such as those
resulting from traffic accidents and falls from a height were
excluded. Relationships between the questionnaire informa-
tion and gut microbiota were analyzed statistically (Table 1).

Analysis of the gut microbiota: fecal sampling, DNA
extraction, and sequencing

Fecal samples were collected using a brush-type collection kit
containing guanidine thiocyanate solution (Feces Collection
kit®; Techno Suruga Laboratory, Shizuoka, Japan) and stored
at 4 °C until analysis. DNA was extracted from fecal samples
using an automated DNA extraction machine (GENE PREP
STAR PI-480; Kurabo Industries Ltd., Osaka, Japan) accord-
ing to the manufacturer’s instructions. The 16S ribosomal
RNA (rRNA) regions (V1-V2) were amplified using a for-
ward primer (16S 27Fmod: TCG TCG GCA GCG TCA
GAT GTG TAT AAG AGA CAG AGR GTT TGA TYM
TGG CTC AG) and reverse primer (16S_338R: GTC TCG
TGG GCT CGG AGA TGT GTA TAA GAG ACA GTG
CTG CCT CCC GTA GGA GT) with KAPA HiFi HotStart
ReadyMix PCR kit (Roche, Basel, Switzerland). To sequence
16S amplicons using the Illumina MiSeq platform (Illumina,
San Diego, CA), dual index adapters were attached using the
Nextera XT Index kit (Illumina). Each library was diluted to
5 ng/uL, and equal volume aliquots were mixed to generate a
library pool of 4 nM each. The DNA concentration of the
mixed libraries was quantified using qPCR with the KAPA
SYBR FAST qPCR Master mix (KK4601, KAPA
Biosystems, Wilmington, MA) using primer 1 (AAT GAT

@ Springer
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Table 1 (continued)

Oscillospira Ruminococcus Veillonellaceae Erysipelotrichaceae Bifidobacterium Sutterella

Bacteroides Rikenellaceae Lachnospiraceae Blautia

n

Less than

once/2-
days
P value

0.571
0.50

0.925
3.14

0.615
3.62

0.722
2.88

0.672
4.05

0.362
1.05

0.802

7.04

0.753
26.41

0.717
1.27

0.753
11 1697

More than

Natto

once/2-

days
Less than

1.32

4.77

2.99 3.75

2.79

1.57 25.32 7.92 1.11

27 26.48

once/2-
days
P value

0.090

0.509

0.949 0.809

0.500

0.898

0.664 0.782

0.923

0.0079%*

*P<0.05

*##P<0.01

%P <0.001

ACG GCG ACC ACC) and primer 2 (CAA GCA GAA GAC
GGC ATA CGA). Library preparation was performed accord-
ing to the 168 library preparation [llumina protocol (Illumina).
Libraries were sequenced using the MiSeq Reagent Kit v2
(500 Cycles) for 250-bp paired-ends (Fig. 2).

Analysis of gut microbiota: taxonomy assignment
based on the 16S rRNA gene sequence

The paired-end reads of partial 16S rRNA gene sequences
were clustered by 97% nucleotide identity, and then assigned
taxonomic information using the Greengenes database (v13.8)
(Second Genome, South San Francisco, CA) [20] through the
Quantitative Insights into Microbial Ecology (QIIME) pipe-
line (v1.8.0) (Knight Lab, University of Colorado, Boulder,
CO) [21]. The steps for data processing and assignment based
on the QIIME pipeline were as follows: (i) joining paired-end
reads, (ii) quality filtering with an accuracy of Q30 (>99.9%)
and a read length of >300 bp, (iii) random extraction of
10,000 reads per sample for subsequent analysis, (iv) cluster-
ing of operational taxonomic units (OTUs) with 97% identity
by UCLUST (v1.2.22q) [22], and (V) assignment of taxonom-
ic information to each OTU using RDP classifier [23] with the
full-length 16S gene Greengenes data (v13.8) to determine the
identity and composition of the bacterial genera. The analysis
of the gut microbiota was contracted to Cykinso Inc., Tokyo,
Japan.

From the results, the average of the 38 postmenopausal
women was calculated at the phylum, class, order, family,
and genus levels. Due to the exploratory nature of this study,
only bacteria with an average proportion of 1% or more were
subjected to statistical analysis, and bacteria with an average
proportion of less than 1% were excluded (Fig. 1).

Grouping by measurements of clinical parameters

We divided age, menopausal age, BMD, fracture history,
FRAX score, ucOC, TRACP-5b, vitamin K1, and vitamin
K2 levels, into two groups as follows.

Age and BMD were divided based on the average values.
This is because it was difficult to dividle BMD based on the
standard value for osteoporosis; only a few patients met the
diagnostic criteria for osteoporosis after excluding those treat-
ed for osteoporosis during data collection. For menopausal
age, the average value [24] for Japanese women (50.2 years)
was used as the cutoff. Fracture history data was divided into
groups with or without fracture history. For ucOC and
TRACP-5b, the cutoffs of normal values in Japan were used.
For vitamin K2, we used the lower limit of 0.06 ng/mL be-
cause the majority exceeded this value. In Japan, the recom-
mended cutoff value of FRAX score is 15%, but this study had
only 3 out of 38 patients, and so it was difficult to divide them
into 2 groups. The cutoff value was then taken as the average

@ Springer
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Fig. 2 Overview of fecal sample genetic profiling using the 16S rRNA gene to obtain a representation of gut microbiota composition

value. For natto, one intake was calculated as 40 g (vitamin K
intake: 375.6 pg [25]), and the average intake of the subjects,
150 ng, was used as the cutoff value. From the results of the
questionnaire, those who ate 40 g or more of natto 4 to 6 times
a week were classified as the group with high frequency of
natto intake, and those who ate natto 1 to 3 times a week were
classified as the low frequency of natto intake group.

Statistical analysis

Comparisons were made to assess for significant differ-
ences in gut bacteria between groups. Statistical analysis
was carried out using the Mann-Whitney U test and
P <0.05 was considered significant because more than
half of the gut microbiota did not show a normal distri-
bution. Fracture risk for each genus was determined from
the two groups of gut microbiota and the fracture history,
and odds ratios and relative risks were calculated. No
correction for multiple testing was performed due to the
exploratory nature of our study.

Results

The mean BMD was 87.05% + 11.78% for the YAM val-
ue and that for menopausal age was 51.79 £4.65 years.
Bone metabolism markers (ucOC, TRACP-5b) and all
assessed bone nutrients (vitamins D, K1, K2, Ca, and P)
were within normal levels except for active vitamin D,
which was slightly lower at 12.59 +4.59 pg/mL. FRAX
score was 8.37% +3.95% (Table 2). Among the 11 pa-
tients with a fracture history, 2 patients had fragility frac-
ture (Fig. 3a). The questionnaire data showed that 17 of
the 38 patients exercised at least once a week, 16 con-
sumed alcohol more frequently, and 11 of them ate natto
frequently (Table 1).

@ Springer

Composition of gut microbial community

The mean value for gut microbiota composition at the phylum
level was 52.58% £+ 9.87% for Firmicutes, 32.83% +11.64%
for Bacteroidetes, 7.71% +9.16% for Proteobacteria, and
5.66% +4.51% for Actinobacteria (Fig. 3b).

Age

The patients were divided into groups aged >62.9 and <
62.9 years, (n =20 and n = 18, respectively). The older group
had significantly lower proportions of Lachnospiraceae and
Blautia (P =0.047, 0.002, respectively) (Table 3).

Menopausal age

Age at menopause for Japanese women is 50.2 years, and so
patients were divided into a high menopausal age (n =22) and
a low menopausal age group (n=16). Oscillospira and
Ruminococcus were significantly more abundant in the high

Table 2 Characteristics

of the participants Average value

Age 62.87+6.22
Menopausal age 51.79 £ 4.65
BMD (YAM: %) 87.05 + 11.78
ucOC (ng/ml) 438 £2.16
TRACP (mU/dL) 371.45 + 126.77
Vitamin D (pg/mL) 12.59 +4.59
Vitamin K1 (ng/mL) 1.08 +£0.75
VitaminK2 (ng/mL) 0.08 +0.08
FRAX (%) 8.38 £3.94

BMD, bone mineral density; ucOC,
uncarboxylated osteocalcin; TRACP-5b,
tartrate-resistant acid phosphatase 5b;
ALP, alkaline phosphatase; FRAX,
Fracture Risk Assessment
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Fig. 3 (a) Fracture history of the a

38 patients in this study. b Mean " Fragility Proteobdcteria 1

values of gut microbiota fracture 7.7%

composition at the phylum level / 5% /N ?l\ctinob teria
/ Other / 5.70
|/ fractures / T B
| 0 [
| 24% | Firmicutes
\ | Bacteroidetes 52.6%
\ . \ . 0
\ No history of . 32.8%

menopausal age group (P=0.018, 0.014, respectively). In
contrast, Erysipelotrichaceae and Bifidobacterium were sig-
nificantly abundant in the low menopausal age group (P =
0.011, 0.014, respectively) (Table 3).

BMD

BMD was compared between the group with higher than the
average BMD (high BMD group) and the group with lower
than the average BMD (low BMD group; n=19 each).
Rikenellaceae was significantly abundant in the low BMD
group (P =0.004) (Table 3).

Fracture history

Fracture history was observed in 11 of the 38 patients; 2 of
these had fragility fractures. Lachnospiraceae was less abun-
dant in the group with fracture history (P =0.02). Fracture
history was not significantly affected by age (Table 3).

ucOC

The normal value for ucOC was set at < 4.5 ng/mL, and thus
>4.5 ng/mL was designated the high ucOC group and <
4.5 ng/mL was the low ucOC group (n=17 and n=11, re-
spectively). Sutterella was predominant in the high ucOC
group (P =0.044) (Table 3).

TRACP-5b

Regarding TRACP-5b (normal value <420 mU/dL), patients
were divided into a high TRACP-5b group and low TRACP-
5b group with a cutoff value of 420 mU/dL (n =11 and n =27,
respectively). Rikenellaceae and Bifidobacterium were pre-
dominant in the high TRACP-5b group (P=0.013, 0.016,
respectively) (Table 3).

fracture

1%

Vitamin K2

The lower limit of blood vitamin K2 measurement was
0.06 ng/mL, and so this was used as the cutoff value
based on which patients were divided into high vitamin
K2 groups (n=10) and low vitamin K2 groups (n =28).
Bacteroides and Sutterella were predominant in the high
vitamin K2 group (P=0.022, 0.026, respectively)
(Table 3). In addition, there was no correlation between
vitamin K2 and natto intake.

FRAX

The cutoff value for FRAX scores is 8.37%; thus, patients
were divided into a high and a low FRAX score groups
(n=9 and n =29, respectively). Veillonellaceae was pre-
dominant in the low FRAX score group (P =0.044)
(Table 3).

There was no significant difference between groups in age
except for FRAX score. The high FRAX score group was
predominantly older, because the FRAX tool also includes
age as an item.

No significant difference was found in vitamin D, vitamin
K1, ALP, Ca, and P.

Fracture risk

The incidence of fracture in the high fracture risk and low
fracture risk groups was compared among the above bac-
teria. In the genus Bacteroides, the low-fracture risk
group had a fracture incidence of 52.9%, while the high-
fracture risk group had a fracture incidence of 9.5% (odds
ratio 10.7, 95% confidence interval: 1.88, 60.9, P=
0.0049, relative risk 5.57. But the other bacteria showed
no significant difference. Lachnospiraceae tended to
show a lower risk of fracture, similar to the FRAX results
above, and Rikenellaceae and Erysipelotrichaceae tended
to show a slightly higher risk of fracture (Fig. 4).
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Table. 3 (continued)

(ng/mL)
TRACP

0.044*
1.73
0.82

0.860
5.98
3.61

0.895
3.65
3.73

0.286
2.58
3.30

0.692
3.81
2.89

0.528
0.87
1.19

0.849
5.88
8.39

0.103
1.88
0.80

0.016%*
5.63
3.82

0.664
4.69
3.36

0.373
3.48
2.82

0.215
3.18
3.15

0.573
1.10
1.09

0.209
7.07
7.88

(mU/dL)

Vitamin K2

0.026*
1.05

1.11

0.312
2.99
5.36

0.336
3.71
3.71

0.816
2.12
3.64

1.000
3.20
3.12

0.740
1.02

1.15

0.921
5.97
9.04

(ng/mL)

FRAX

0.606

0.277

0.587

0.044%*

0.547

0.419

0.081

(%)

*P<0.05

*#P <0.005

BMD, bone mineral density; ucOC, uncarboxylated osteocalcin; TRACP-5b, tartrate-resistant acid phosphatase 5b; ALP, alkaline phosphatase; FRAX, Fracture Risk Assessment

Discussion

In this study, the results of the statistical analysis suggest that
gut bacteria affect bone mineral density and risk of fracture.
Bacteroides showed a significant difference in vitamin K2
levels and fracture risk, and Rikenellaceae showed a signif-
icant difference in BMD and TRACP-5b levels. In addition,
we would like to consider Lachnospiraceae, which is of
importance in terms of both age and fracture history.

Bacteroides

Bacteroides synthesize vitamin K. Essentially, vitamin K is a
group of several structurally similar, fat-soluble compounds
required by humans for complete synthesis of certain pro-
teins including phylloquinone (vitamin K1) and
menaquinone (MKn; vitamin K2). Vitamin K is a cofactor
in the production of blood coagulation factors in the liver,
osteocalcin in bone, and matrix Gla protein in cartilage and
the vascular wall [26]. Furthermore, certain proteins in bone
are vitamin K—dependent, such as osteocalcin and matrix
Gla protein, and thus vitamin K also plays an important role
in regulating bone matrix quality [27].

Menaquinone-4 (MK-4, menatetrenone), a vitamin K2
homolog, is used in the treatment of osteoporosis in Japan.
It is known to have well-recognized preventive effects in
terms of bone resorption and fracture. In addition, the inci-
dence of femoral, cervical, and vertebral compression frac-
ture is higher among elderly women with low blood vitamin
K concentrations and in those with high serum ucOC levels
[28].

MKn contains a large amount of MK-7 found in Japanese
natto, the well-known fermented soybean product containing
Bacillus subtilis. MK-7 is also found in other fermented
foods. MKn is also produced by the gut microbiota, while
MK-10 and MK-11 are synthesized by Bacteroides [29].

In our study, Bacteroides was significantly more abun-
dant in the high-level vitamin K2 group than in the low-level
vitamin K2 group (P=0.022) (Table 3), but there was no
significant difference in terms of natto intake between these
two groups. Therefore, we surmised that dietary intake did
not affect vitamin K2 level and that vitamin K2—producing
Bacteroides exerted some influence.

Given that there was no significant difference in BMD,
we postulated that Bacteroides does not affect bone strength.
In addition, Bacteroides is believed to have some effect on
bone quality and is associated with fracture unrelated to os-
teoporosis, rather than fragility fracture.

In our study, the fracture risk was 5.6 times higher in the
low-level Bacteroides group (Fig. 4b), suggesting a role for
Bacteroides in bone metabolism and fracture risk. It has also
been reported that intake of meals that contain resistant
starch, high levels of soluble fiber, and red meat can increase
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Fig. 4 Comparison of fracture incidence between the high- and low-isolation rate groups of gut microbiota. a Odds ratio (b) Relative risk: indicating
fracture risk when these bacteria isolation rates are low. The higher the number [[isolation rate?]], the higher the fracture risk in the low-level group

the abundance of Bacteroides [7]. Therefore, ingestion of the
above diets may reduce fracture risk.

Rikenellaceae

The functions of Rikenellaceae are not yet well understood.
However, this family has been reported to be abundant in
many diabetic patients [30]. Also, PD-1—/— mice, which are
less likely to develop ulcerative colitis, showed changes in the
composition of the intestinal microbiota and significantly re-
duced proportions of Rikenellaceae [31]. In our study,
Rikenellaceae was more abundant in the low BMD group
and in the high TRACP-5b group, suggesting that this family
may have a negative effect on bone resorption and bone den-
sity. Furthermore, mice fed a high-fat diet were reported to
show increased proportion of Rikenellaceae [32], so refraining
from a high-fat diet may have a positive effect on bone
strength even though this is an animal study.

Lachnospiraceae

Lachnospiraceae is among the most abundant bacteria [33] in
the human gut. Lachnospiraceae breaks down complex poly-
saccharides into short-chain fatty acids. The abundance of
these bacteria boosts host immunity and is a strong indicator
of gut health. They are considered to be among the useful
bacteria, because they are decreased in the intestine of the
elderly [34] and in individuals with various diseases, such as
diabetes mellitus [35], liver cirrhosis [36], and colon cancer
[37].

It has also been reported that Lachnospiraceae was less
abundant in individuals with low BMD and was positively
correlated with BMD and T-score [38]. In this study, there
was no significant difference in BMD, but the fracture inci-
dence was significantly higher while the relative risk was three
times higher, in the low Lachnospiraceae group than in the
high Lachnospiraceae group (Fig. 4b). This suggested that

@ Springer

Lachnospiraceae may act as useful bacteria for predicting
fracture risk.

Conclusion

Our data suggested that the abundance of Bacteroides and
Lachnospiraceae may play a positive role in bone metabolism
and fracture risk. Moreover, Rikenellaceae may have a nega-
tive effect on bone metabolism and fracture risk.

Attention to new treatments targeting particular species in
gut microbiota is warranted for osteoporosis and fracture pre-
vention. Further research should focus on analyzing specific
species and their potential roles in increasing bone strength or
preventing fractures.

Limitations

This study has some limitations that must be acknowledged.
First, the study was conducted at a single-center in Japan, and
so the subjects were Japanese nationals only. Thus, our find-
ings may not be generalizable to other nationalities. Second,
no dietary restrictions or lifestyle control measures were ap-
plied, which might have introduced some level of bias and
affected our results. Third, the sample size was small, and so
our study may not have sufficient statistical power for a def-
inite conclusion. Fourth, the microbial taxa data in this study
had a high variance, and thus our methods for statistical anal-
ysis may not have been ideal. Therefore, further multi-center
studies with a larger sample size, and taking into account these
and other limitations are warranted.
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