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Abstract
Summary Vertebral fracture (VF) locations are bimodally distributed in the spine. The association between VF and bone
attenuation (BA) measured on chest CT scans varied according to the location of VFs, indicating that other factors than only
BA play a role in the bimodal distribution of VFs.
Introduction Vertebral fractures (VFs) are associated with low bone mineral density but are not equally distributed throughout
the spine and occur most commonly at T7–T8 and T11–T12 (“cVFs”) and less commonly at T4–T6 and T9–T10 (“lcVF”). We
aimed to determine whether associations between bone attenuation (BA) and VFs vary between subjects with cVFs only, with
lcVFs only and with both cVFs and lcVFs.
Methods Chest CT images of T4–T12 in 1237 smokers with and without COPD were analysed for prevalent VFs according to
the method described by Genant (11,133 vertebrae). BA (expressed in Hounsfield units) was measured in all non-fractured
vertebrae (available for 10,489 vertebrae). Linear regression was used to compare mean BA, and logistic regression was used to
estimate the association of BA with prevalent VFs (adjusted for age and sex).
Results On vertebral level, the proportion of cVFs was significantly higher than of lcVF (5.6% vs 2.0%). Compared to subjects
without VFs, BA was 15% lower in subjects with cVFs (p < 0.0001), 25% lower in subjects with lcVFs (p < 0.0001) and lowest
in subjects with cVFs and lcVFs (− 32%, p < 0.0001). The highest ORs for presence of VFs per − 1SD BA per vertebra were
found in subjects with both cVFs and lcVFs (3.8 to 4.6).
Conclusions The association between VFs and BA differed according to VF location. ORs increased from subjects with cVFs to
subjects with lcVFs and were highest in subjects with cVFs and lcVFs, indicating that other factors than only BA play a role in the
bimodal VF distribution.
Trial registration Clinicaltrials.gov identifier: NCT00292552
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Introduction

Vertebral fractures (VFs) are the most common fractures in the
population older than 50 years [1]. Subjects with prevalent VFs
have lower bone mineral density (BMD) in the lumbar spine and
hip than subjects without VFs [2], and low BMD in the lumbar
spine and femoral neck is a risk factor for incident VFs [3].

However, the prevalence of VFs is not equally distributed
across the spine [4], and in the thoracic spine, it is highest at
T7–T8 and T11–T12 [5–7]. The reasons for this bimodal dis-
tribution of VFs remain unclear. Two hypotheses have been
explored in this context, one exploring the association be-
tween BMD and the location of VFs and one exploring the
association between vertebral loading and the location of VFs.

In several studies the associations between BMD and the
presence or incidence of VFs were evaluated according to
their locations. In a community-based study, prevalent VFs
in the upper spine were more strongly associated with BMD
(measured byQCT in T10 and L3) thanVFs in the lower spine
[8]. In the fracture intervention trial, each SD decrease in the
lumbar spine was associated with 2.1 times greater odds of
new VFs in the upper spine (T4–T10) compared with 1.5
times for lower spine VFs (T11–L4) with a statistical differ-
ence between the two ratios [7]. In the VERO trial, patients
with only prevalent VFs in other spine regions than T12 and
L1 had significantly lower BMD (measured by DXA in the
spine, the femoral neck and total hip) than patients with
only T12 and/or L1 VFs [9]. The authors of these stud-
ies concluded that VFs in the upper spine are more
related to bone fragility than VFs in the lower spine
and that other factors than BMD play a role in the
unequal distribution of VFs in the spine [7–9].

A study on the biomechanical loading of vertebrae showed
that the thoracic regions with the highest prevalence of VFs
(T7–T8 and T11–T12) are also the thoracic regions that are at
highest compression load during daily activities such as bend-
ing and lifting objects [10–13]. A study on the epidemiology
of traumatic vertebral fractures indicated that the vertebrae
T11–T12 are at highest risk for fracture when falling [14].
These findings provided a biomechanical mechanism for the
higher incidence of fractures in these regions compared to
other spinal regions [10, 13].

None of the above-mentioned studies evaluated the associ-
ation between BMD and VF location separately in subjects
with VFs at the most common levels and subjects with VFs at
the less common vertebral levels.

Previously taken clinical computed tomography (CT) scans
of the chest performed in the context of lung diseases can be
used for opportunistic screening for the presence of VFs and
to measure BMD in the vertebrae by bone attenuation
[15–18]. For this study, we used the chest CT scans of the
ECLIPSE study, a large cohort of current and former smokers
with and without COPD [19].

Aims

The purpose of this study was to determine whether associa-
tions between bone attenuation (BA) and prevalent VFs vary
between subjects with VFs at more common locations T7–T8
and T11–T12 (cVFs) versus less common locations (lcVFs).

We hypothesized that BA is higher in subjects with cVFs
than in subjects with lcVFs, because other factors such
as a sudden load during a fall or more strenuous daily
activities might contribute to a higher extent in VFs at
common locations.

Methods

Subjects

We included subjects from the ECLIPSE study (Evaluation of
COPD Longitudinally to Identify Predictive Surrogate
Endpoints; Clinicaltrials.gov identifier NCT00292552;
GlaxoSmithKline study SCO104960). Detailed inclusion
and exclusion criteria were described elsewhere [19–21].
Current or former smokers (40–75 years old) with moderate
to very severe COPD (stage II–IV according to the Global
Initiative for Chronic Obstructive Lung Disease guidelines
[22]), or without COPD, with a smoking history of at least
10 pack years were included.

Measurements

Chest CT scans

CT scans of the chest were performed at full inspiration
(120 kV peak, 40 mAs, 1.00 or 1.25-mm volumetric acquisi-
tion, General Electric [GE] or Siemens), as described earlier
[17]. CT scanners were calibrated regularly using industry and
institutional standards.

Of all sagittal reformats containing the spine, the contrast
was adjusted to (partly) eliminate soft tissue. Subsequently, all
sagittal reformats containing the spine were superposed to
create simulated lateral X-ray 2D images using MATLAB
(version R2013a, MathWorks, Natick, MA, USA). Images
were exported in DICOM-format.

Vertebral fracture assessment

Detailed information has been reported elsewhere [17].
Briefly, VFs in vertebrae T4–T12 were first semi-
quantitatively assessed, where vertebrae were graded as de-
formed or not deformed. Vertebrae with deformations due to
qualitative features of morphology such as Schmorl’s nodes,
Scheuermann’s disease, platyspondyly or fusion of vertebrae
were excluded. In case of height loss in the vertebral body at
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the anterior side, in the middle or in the total vertebral body
without other deformities, vertebrae were subsequently mor-
phometrically assessed using the SpineAnalyzer software
(Optasia Medical, Cheadle, UK [18, 23, 24]). VF severity
was classified according to the method described by Genant
et al. (grade 1, 20–25% height reduction; grade 2, 25–40%;
grade 3, > 40%) [25].

Subjects were classified according to the presence and loca-
tion of their VFs. Four subgroups were created: subjects with no
prevalent VFs, subjects with VFs only at common locations
(cVFs: T7–T8, T11–T12), subjects with VFs only at less com-
mon locations (lcVFs: T4–T6, T9–T10) and subjects with VFs at
both common and less common locations combined.

Bone attenuation

In a previous study, Romme et al. showed that BA measure-
ments on CT correlated well with BMD measurements on
DXA in a COPD population (r = 0.827, p < 0.001) [16]. BA
was measured on CT in vertebrae T4 to T12, using a self-
written algorithm in MATLAB (R2013a, MathWorks,
Natick, MA, USA). In a substudy of 25 subjects, ICC’s of
triple measurements of the same image acquisition showed
excellent agreement (ICC = 0.998 [0.996–0.999]; single mea-
sures, two-way random, absolute agreement, data not pub-
lished). Fractured vertebrae were excluded from BAmeasure-
ments, because their BMD is increased following fracture
healing due to callus formation. BA was measured as the
mean of T4 to T12 and expressed in Hounsfield units (HU).
Analyses were performed using the mean BA of all non-
fractured vertebrae (“total BA”). Because there is a gradual
decreases in BMD from T4 to L3, with Pearson’s correlations
of > 0.90 between thoracic and lumbar vertebrae [26], we also
used the mean BA per vertebra (“local BA”).

More details about subjects, image processing, VF assessment
and BA measurement have been published elsewhere [27].

Statistics

Baseline characteristics were compared between the different
fracture groups using ANOVA for continuous variables and
chi-square test for categorical data. The proportion of VFs at
common locations versus less common locations was com-
pared with a McNemar’s test for dependent proportions.

Linear regression (proc reg) was used to compare total
spine BA and BA per vertebra between the different groups
(no VF, only cVF, only lcVF and both cVF and lcVF). The
measured BA was the dependent variable, and the different
fracture groups were used as independent variables as well as
age and sex. Logistic regression (proc logistic) was used to
estimate the OR per 50 HU (approximately 1 SD) lower BA
and the risk of any VF, a cVF, a lcVF and both cVFs and
lcVFs. For this analysis, the event of interest (any VF, a

cVF, a lcVF or both cVFs and lcVFs) was the dependent
variable and BA/50 was the independent variable. Age and
sex were also added as independent variables.

Based on loads on the vertebrae from the manuscript by
Bruno et al. [10], the load/BA ratio (also referred as “phi”; the
ratio of the applied impact force to the bone strength [28]) was
indirectly calculated.

Analyses were performed using SAS 9.4 (SAS Institute,
Cary, NC, USA). Figures were created using Microsoft
Excel 2010.

Results

Baseline characteristics of the 1237 subjects are given in
Table 1. Mean age of subjects was 61 years, 61% were men,
81% had COPD, 42% were current smokers and 58% were
former smokers. Presence of VFs could be measured in
11,055 vertebrae, and BA was available for 10,489 non-
fractured vertebrae.

Prevalent VFs were most frequent in T7–T8 (> 6% of ver-
tebrae) and T11–T12 (> 4% of vertebrae) (Fig. 1a). Similar
bimodal patterns were found for prevalent grades 1, 2 and 3
VFs separately (Fig. 1b). The proportion of VFs at common
locations was 5.6% compared to 2.0% at the less common
locations (p < 0.0001).

Of the 1237 subjects, 239 (19%) had at least one VF,
197 (16%) had at least one cVF, 100 (8%) at least one
lcVFs, 139 (11%) had only cVFs, 42 (3%) had only
lcVFs and 58 (5%) had both.

Total BA in subjects according to VF locations

Compared to subjects without a VF and adjusted for age and sex,
total BA was 21% lower in subjects with a prevalent VF (128 ±
43 versus 162 ± 46 HU, mean difference 34HU, p < 0.0001).

Total BAwas 138 ± 44HU in subjects with only cVFs (mean
difference without VFs: 23 HU), 122 ± 35 HU in subjects with
only lcVFS (p < 0.0001 versus cVFs, mean difference without
VFs: 40HU) and 110 ± 36HU in subjects with a combination of
cVFs and lcVFs (p < 0.0001 vs cVFs, mean difference without
VFs: 52 HU) (Fig. 2). After adjustment for age and sex, all these
total BA values were significantly (p < 0.0001) lower compared
to subjects without a VF. The gradual trend in decrease in total
BA between no VFs, only cVFs, only lcVFs and cVFs and
lcVFs combined was significant (p < 0.0001).

Local BA per vertebra according to VFs locations

BA gradually decreased from T4 to T12, for both subjects
without as well as subjects with at least one VF (Fig. 3a).
Therefore, we additionally analysed local BA in each individ-
ual non-fractured vertebra. Local BA was at any level
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significantly lower in the group of subjects with at least one
prevalent VF compared to subjects without prevalent VFs,
after adjustment for age and sex (Fig. 3a).

In Fig. 3b, local BA is shown at each vertebral level for
subjects without prevalent VFs, with only cVFs, only lcVFs or
both cVFs and lcVF.

Linear regression analysis showed that, after adjust-
ment for age and sex, at each vertebral level, local BA
was significantly lower comparing cVFs, lcVFs and both
cVFs and lcVFs to the no VF group. At T4, T5 and T6,
there was a significant difference in BA between the only
lcVF group and the only cVF group. The local BA of the
cVF and lcVF combined group was significantly lower at
each location, except T8, as compared to the local BA of
the only cVF group.

In Table 2, the ORs (adjusted for age and sex) for having
any prevalent VF, only cVFs, only lcVFs or combined per −
50 HUBA (approximately one standard deviation) are shown.

Each 50 HU decrease of BA was associated with a 2.2–3.4
times greater odds of having a lcVFs. These ORs were higher
than the odds of a cVFs (OR: 1.5–1.9) and were the highest for
combined lcVFs and cVFs.

Load/BA ratio

In subjects with VFs, the calculated load/BA ratio was
higher 34% than in subjects without VFs (p < 0.0001). In

Table 1 Baseline characteristics

All patients No VF Only common
location

Only less
common location

Both locations p valuea

N = 1237 N = 998 N = 139 N = 42 N = 58

Age (mean, SD) 61.3 8.0 60.7 8.0 63.6 7.3 63.8 7.0 64.9 7.1 < 0.0001

Men (N, %) 756 61.1 582 58.3 97 69.8 34 81.0 43 74.1 0.0003

BMI (mean, SD) 25.8 4.5 25.8 4.5 26.2 4.7 25.6 4.8 24.2 4.0 0.04

Height (mean, SD) 170.1 9.1 169.8 9.1 171.4 8.9 171.4 7.5 171.0 8.7 0.12

Weight (mean, SD) 74.8 15.8 74.6 15.6 77.5 17.1 75.4 15.1 71.3 14.7 0.07

COPD (N, %) 997 80.6 795 79.7 118 84.9 32 76.2 52 89.7 0.12

Former smoker (N, %) 713 57.6 560 56.1 90 64.7 30 71.4 33 56.9 0.07

Current smoker (N, %) 524 42.4 438 43.9 49 35.3 12 28.6 25 43.1

Pack years (mean, SD) 43.3 24.8 42.3 23.6 46.2 29.1 50.8 30.6 47.5 27.6 0.03

Sum vertebral fractures (T4–T12: N, %) < 0.0001

0 998 80.7 998 100.0

1 139 11.2 104 74.8 35 83.3

2 63 5.1 32 23.0 7 16.7 24 41.4

> 2 37 3.0 3 2.2 34 58.6

BA (mean, SD) 155.6 47.5 162 46.3 138 44.3 122 35.1 110 36.1 < 0.0001

Common locations, T7, T8, T11, T12; less common locations, T4-T7, T9, T10

Abbreviations: VF vertebral fracture, SD standard deviation, BMI body mass index, COPD chronic obstructive pulmonary disease, BA bone attenuation

a) Differences between groups were assessed using ANOVA for continuous variables and chi-square test for categorical data
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subjects with only cVFs (the most frequent and most loaded
regions with a decreased BA of 15%), the load/BA ratio was
significantly higher (+ 25%, p < 0.0001) than in subjects
without VFs. In subjects with both cVFs and lcVFs (having

a 32% lower BA), the load/BA ratio was significantly higher
(+ 63%, p < 0.001) than in subjects without VFs. Thus, cVFs
occurred in subjects with a higher BA and a lower load/BA
ratio than in subjects with both cVFs and lcVFs.
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Discussion

Our data showed that total BA in the thoracic spine was sig-
nificantly lower in subjects with at least one VF. In addition,
total BA was significantly lower in subjects with only lcVFs
compared to subjects with only cVFs. The odds for a prevalent
VF per decrease of 50 HU in BA varied according to VF
location with the lowest OR for cVFs, higher ORs for lcVFs
and highest ORs for cVFs and lcVFs combined.

The bimodal distribution of prevalent VFs with clustering
in two peaks (T7–T8 and T11–T12) was similar as in a Dutch
population-based cohort study based on a random sample and
the Fracture Intervention Trial in the USA [7, 29].

Subjects with VFs had lower total and local BA than sub-
jects without a VF. This is in line with the finding that subjects
with VFs have lower BMD in the lumbar spine or hip [2, 30]
and that prevalent VFs are associated with micro-architectural
deterioration in the distal radius and tibia measured by HR-
pQCT [31]. This indicates that prevalent VFs are associated
with generalized bone fragility throughout the axial and pe-
ripheral skeleton.

Our main finding was that the associations between BA
and VFs differed according to the location of VFs. Previous
studies have shown that associations between BMD and VFs
differ according to VF locations. Two studies reported a stron-
ger association between BMD and upper spine VFS than with
lower spine VFs [7, 8]. One study reported a lower BMD in
subjects with only VFs outside T12–L1 compared to subjects
with only VFs in T12–L1 [9]. However, these studies did not
report the associations between BMD and VFs according to
both locations with the highest prevalence of VFs. Our results
indicate that lcVFs occur in subjects with a more fragile tho-
racic spine than subjects with the most prevalent cVFs. This is

further supported by the higher ORs for the presence of VFs
per one SD lower BA per vertebra in subjects with only lcVF
than in subjects with only cVFs.

Thus, the degree of vertebral bone fragility varies between
subjects according to the thoracic spine locations of VFs. The
heterogenous structural failure throughout the thoracic spine
can thus not be explained by BA. The most frequent VFs are
found in subjects with a higher BA than in subjects with
lcVFs. As with any bone that fractures, vertebrae are likely
to fracture when the load imposed on the bone exceeds the
bone strength [32]. However, the load on vertebrae differs
according to their location.

In a retrospective study of 562 patients with a traumatic
fracture of the spine, 219 (39%) had occurred after a fall,
predominantly at T11 (4%), T12 (14%) and L1 (29%) [14].
Thus, in the presence of a clear acute trauma such as a fall,
VFs occur by preference at the thoracolumbar junction and
less in other spine regions. This cannot be explained by bone
fragility, as subjects with only T11–T12 VFs in the VERO
trial had higher BMD (in spine and hip) than patients with VFs
at other locations, and subjects with these VFs in our study
had higher BA than subjects with lcVFs [9].

Remarkably, however, and in contrast to non-vertebral
fractures, most VFs do not occur after a fall or overt trauma
and do not present with the acute clinical signs and symptoms
of a fracture. Such VFs are reported as subclinical [33], spon-
taneous [13], a traumatic or non-traumatic [34] or are detected
incidentally in population surveys [29].

The question then arises which other factors than a fall or a
severe trauma could explain the presence of subclinical VFs
and its bimodal distribution over the spine. An interesting
observation is that the load distribution throughout the spine
is unequal during activities that increase the load on the

Table 2 Odds ratios for the presence of a VF per − 50 HU in bone attenuation, stratified for VF locations

Outcome

At least one VF at any location At least one cVF At least one lcVF At least one cVF and one lcVF
BA measured at location OR (95% CI)a OR (95% CI)a OR (95% CI)a OR (95% CI)a

T4 2.13 (1.77–2.55) 1.59 (1.27–1.99) 2.87 (1.94–4.24) 3.84 (2.65–5.56)

T5 2.08 (1.71–2.51) 1.51 (1.20–1.90) 2.79 (1.85–4.20) 4.30 (2.84–6.52)

T6 2.02 (1.65–2.46) 1.43 (1.14–1.80) 3.35 (2.03–5.54) 4.20 (2.76–6.41)

T7 2.19 (1.76–2.72) 1.62 (1.23–2.13) 2.74 (1.87–4.02) 4.03 (2.45–6.62)

T8 2.49 (1.97–3.14) 1.93 (1.41–2.63) 2.84 (1.93–4.18) 3.94 (2.40–6.49)

T9 2.21 (1.81–2.70) 1.78 (1.40–2.26) 2.38 (1.56–3.61) 4.57 (2.91–7.19)

T10 2.12 (1.77–2.56) 1.63 (1.30–2.04) 2.21 (1.53–3.20) 4.43 (3.00–6.57)

T11 2.42 (1.94–3.02) 1.79 (1.35–2.37) 2.86 (1.90–4.30) 4.40 (2.81–6.87)

T12 2.24 (1.74–2.87) 1.49 (1.09–2.06) 3.20 (1.98–5.17) 3.86 (2.36–6.32)

a Adjusted for age and sex

Abbreviations: VF vertebral fracture, HU Hounsfield units, OR odds ratio, CI confidence interval, cVF prevalent vertebral fracture at common location
(T7–T8, T11–T12), lcVF prevalent vertebral fracture at less common location (T4–T6, T9–T10)
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vertebrae.[10] During more strenuous daily activities (bend-
ing, twisting with weight in hands, lifting weights, pushing),
compression loads are highest in common VF locations [10].
Interestingly, in subjects with only cVFs, we found that BA
was only slightly decreased (− 15%) compared to sub-
jects without a VF. This suggests that these VFs are
mainly associated with high compression loads related
to such more strenuous activities that then exceeds the
slightly decreased bone strength.

In contrast, in subjects with the combination of cVFs and
lcVFs, BA was much lower (− 32%). In such cases, the load/
strength ratio of vertebrae is exceeded mainly in association
with a lower BA. Even with daily activities of minor compres-
sion loads are than associated with VFs, at common and less
common levels.

Interestingly, we also identified a group of subjects with
only lcVFs. As less strenuous loads that occur in the less
common fracture levels (due to, e.g. walking, getting up from
a chair, tying shoes when sitting) still occur at normal magni-
tudes, these subjects could be more susceptible to VF only in
these less common regions. One example is that shear load on
vertebrae is higher in T6–T10 than in T11–T12 [27].

Thus, cVFs occurred in subjects with a higher BA and a
lower load/BA ratio than in subjects with both cVFs and
lcVFs, suggesting a combined role of BA and load in the
location of VFs. However, the interpretation of these
indirect calculations needs to be interpreted with caution
and will need studies that combine the measurement of
load and BA in the same subjects.

Briggs et al. [35] found that subjects with a VF had signif-
icantly greater normalised compression (p = 0.0008) and shear
force (p < 0.0001) profiles and hypothesised that greater seg-
mental flexion moments, compression forces and shear forces
would exist in individuals with an osteoporotic vertebral frac-
ture compared to those with osteoporosis and no history of
vertebral fracture.

It is well known that assessment of VF status in addition to
BMDprovides relevant clinical information in predicting frac-
ture risk [36]. The clinical implication of our finding is that
subjects with lcVF have lower BA and may be at even higher
fracture risk than subjects with only cVFs. The further useful
clinical information is that BA alone cannot explain the loca-
tions of VFs, and those differences in load/BA ratio need
further study to understand the heterogeneous locations of
VFs. Our findings also contribute to further studies that inves-
tigate why most VFs are not accompanied by the acute signs
and symptoms of an acute fracture and why most of the VFs
occur subclinical, without overt acute trauma.

This study has several limitations.
First, this study was performed in smokers with and with-

out COPD. Therefore, the results cannot be generalized to
other populations, as smoking and COPD are independent risk
factors for VFs and have different pathophysiology as

compared to postmenopausal women and elderly [37, 38].
However, the peaks of prevalent VFs were similar as found
in population studies in postmenopausal women and in men.

Second, we only evaluated BA non-fractured VFs, as BA
can be increased following fracture healing with callus forma-
tion and thus not reflect its pre-fracture BA.

Third, we evaluated BA within the central region of
the vertebrae. Intravertebral BA measured by QCT is
significantly correlated with in vitro compressive
strength of the vertebrae [39–41].

Fourth, we had no data on fall or trauma history, so we
could not evaluate whether a VF was the result of a fall or
other trauma or whether they occurred subclinical [42]. We
neither have data on the level of physical activity.

Fifth, we did not evaluate adjacent intervertebral disc
height and kyphosis angles that also influence how compres-
sive forces are distributed over the vertebral body [15].

Sixth, the different CT scanners were not cross-calibrated,
which may have influenced our results. Also differences be-
tween scanner manufacturers were not investigated for this
study. However, scanners were regularly calibrated using in-
dustry and institutional standards. Although asynchronous
calibration using a phantom or internal phantomless calibra-
tion is advocated when using different CT scans, in a review, it
was cited that some have suggested using the CT values di-
rectly without any calibration to BMD [43].

Seventh, we did not measure lumbar spine vertebrae, as
they are not included on chest CT scans.

Due to these limitations, further studies will be needed that
integrate load and BA to explore the reasons of unequal dis-
tribution of VF in the spine.

In conclusion, the association between VFs and BA differs
according to the location of VFs and ORs increases from
subjects with cVFs only, to subjects with lcVFs and were
the highest in subjects with cVFs and lcVFs combined, indi-
cating that other factors than only BA play a role in the bi-
modal distribution of VFs. Prospective studies will be needed
that examine the association between BA in non-fractured
vertebrae at baseline and the incidence of new VFs according
to their location.
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