Skip to main content

Advertisement

Log in

Longitudinal change in bone mineral density among Chinese individuals with HIV after initiation of antiretroviral therapy

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

This is the first study to report changes in BMD and related risk factors among Chinese patients with HIV after initiation of tenofovir disoproxil fumarate (TDF)-containing antiretroviral therapy. Greater bone mineral density (BMD) loss was observed in patients treated with TDF, compared to those on non-TDF-containing regimens. Our findings provide important knowledge regarding the risk factors in the long-term clinical management of patients with HIV in China.

Introduction

Persons living with HIV (PLWH) are at increased risk for osteoporosis and fracture. Tenofovir disoproxil fumarate (TDF) has been associated with higher rates of bone mineral density (BMD) loss, osteoporosis, and fracture. Few studies have studied the impact among PLWH in Asia.

Methods

We analyzed retrospectively patients from the outpatient HIV clinic of a large tertiary hospital in Beijing, China, from March 2007 to May 2016. Patients who had dual-energy X-ray absorptiometry testing prior to antiretroviral initiation and at 48 and/or 96 weeks after initiation were included in this analysis.

Results

A total of 136 patients were included (mean age 36.0 ± 10.6 years) and over 90% participants were male and Han Chinese ethnicity. We observed greater declines in BMD at the spine from baseline to week 48 (−2.94% vs. −0.74%) and at the hip from baseline to week 96 (−4.37% vs. −2.34%) in the TDF group compared with the non-TDF group. With regard to HIV-specific parameters, longer duration since HIV diagnosis and undetectable viral load over time were associated with lower BMD at the hip [relative risk (RR) 0.97, 95% confidence index (CI) (0.95, 0.99) per 1 year increase and RR 0.96, 95%CI (0.94, 0.99), respectively] and femoral neck [RR 0.97, 95%CI (0.95, 0.99) per 1 year increase and RR 0.97, 95%CI (0.95, 0.998), respectively] over 96 weeks.

Conclusions

This is the first study to report changes in BMD among PLWH after initiation of TDF-based antiretroviral therapy in China. Our findings provide important knowledge for the long-term clinical management of PLWH from this region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Smit M, Brinkman K, Geerlings S, Smit C, Thyagarajan K, Sighem A, de Wolf F, Hallett TB, cohort Ao (2015) Future challenges for clinical care of an ageing population infected with HIV: a modelling study. Lancet Infect Dis 15(7):810–818. https://doi.org/10.1016/S1473-3099(15)00056-0

    Article  PubMed  PubMed Central  Google Scholar 

  2. Moran CA, Weitzmann MN, Ofotokun I (2017) Bone loss in HIV infection. Curr Treat Options Infect Dis 9(1):52–67. https://doi.org/10.1007/s40506-017-0109-9

    Article  PubMed  PubMed Central  Google Scholar 

  3. Cervero M, Torres R, Agud JL, Alcazar V, Jusdado JJ, Garcia-Lacalle C, Moreno S (2018) Prevalence of and risk factors for low bone mineral density in Spanish treated HIV-infected patients. PLoS One 13(4):e0196201. https://doi.org/10.1371/journal.pone.0196201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Guerri-Fernandez R, Molina-Morant D, Villar-Garcia J, Herrera S, Gonzalez-Mena A, Guelar A, Trenchs-Rodriguez M, Diez-Perez A, Knobel H (2017) Bone density, microarchitecture, and tissue quality after long-term treatment with tenofovir/emtricitabine or abacavir/lamivudine. J Acquir Immune Defic Syndr 75(3):322–327. https://doi.org/10.1097/QAI.0000000000001396

    Article  PubMed  Google Scholar 

  5. Bedimo R, Maalouf NM, Zhang S, Drechsler H, Tebas P (2012) Osteoporotic fracture risk associated with cumulative exposure to tenofovir and other antiretroviral agents. AIDS 26(7):825–831. https://doi.org/10.1097/QAD.0b013e32835192ae

    Article  CAS  PubMed  Google Scholar 

  6. Casado JL, Santiuste C, Vazquez M, Banon S, Rosillo M, Gomez A, Perez-Elias MJ, Caballero C, Rey JM, Moreno S (2016) Bone mineral density decline according to renal tubular dysfunction and phosphaturia in tenofovir-exposed HIV-infected patients. AIDS 30(9):1423–1431. https://doi.org/10.1097/QAD.0000000000001067

    Article  CAS  PubMed  Google Scholar 

  7. Hsieh E, Fraenkel L, Xia W, Hu YY, Han Y, Insogna K, Yin MT, Xie J, Zhu T, Li T (2015) Increased bone resorption during tenofovir plus lopinavir/ritonavir therapy in Chinese individuals with HIV. Osteoporos Int 26(3):1035–1044. https://doi.org/10.1007/s00198-014-2874-3

    Article  CAS  PubMed  Google Scholar 

  8. Hsieh E, Fraenkel L, Han Y, Xia W, Insogna KL, Yin MT, Zhu T, Cheng X, Li T (2016) Longitudinal increase in vitamin D binding protein levels after initiation of tenofovir/lamivudine/efavirenz among individuals with HIV. AIDS 30(12):1935–1942. https://doi.org/10.1097/QAD.0000000000001131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Barbieri AM, Chiodini I, Ragni E, Colaianni G, Gadda F, Locatelli M, Lampertico P, Spada A, Eller-Vainicher C (2018) Suppressive effects of tenofovir disoproxil fumarate, an antiretroviral prodrug, on mineralization and type II and type III sodium-dependent phosphate transporters expression in primary human osteoblasts. J Cell Biochem 119(6):4855–4866. https://doi.org/10.1002/jcb.26696

    Article  CAS  PubMed  Google Scholar 

  10. Deeks SG (2009) Immune dysfunction, inflammation, and accelerated aging in patients on antiretroviral therapy. Top HIV Med 17(4):118–123

    PubMed  Google Scholar 

  11. Ofotokun I, Titanji K, Vunnava A, Roser-Page S, Vikulina T, Villinger F, Rogers K, Sheth AN, Lahiri CD, Lennox JL, Weitzmann MN (2016) Antiretroviral therapy induces a rapid increase in bone resorption that is positively associated with the magnitude of immune reconstitution in HIV infection. AIDS 30(3):405–414. https://doi.org/10.1097/QAD.0000000000000918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ofotokun I, Titanji K, Vikulina T, Roser-Page S, Yamaguchi M, Zayzafoon M, Williams IR, Weitzmann MN (2015) Role of T-cell reconstitution in HIV-1 antiretroviral therapy-induced bone loss. Nat Commun 6:8282. https://doi.org/10.1038/ncomms9282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Grant PM, Kitch D, McComsey GA, Dube MP, Haubrich R, Huang J, Riddler S, Tebas P, Zolopa AR, Collier AC, Brown TT (2013) Low baseline CD4+ count is associated with greater bone mineral density loss after antiretroviral therapy initiation. Clin Infect Dis 57(10):1483–1488. https://doi.org/10.1093/cid/cit538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. McComsey GA, Kitch D, Daar ES, Tierney C, Jahed NC, Tebas P, Myers L, Melbourne K, Ha B, Sax PE (2011) Bone mineral density and fractures in antiretroviral-naive persons randomized to receive abacavir-lamivudine or tenofovir disoproxil fumarate-emtricitabine along with efavirenz or atazanavir-ritonavir: Aids Clinical Trials Group A5224s, a substudy of ACTG A5202. J Infect Dis 203(12):1791–1801. https://doi.org/10.1093/infdis/jir188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mills A, Crofoot G Jr, McDonald C, Shalit P, Flamm JA, Gathe J Jr, Scribner A, Shamblaw D, Saag M, Cao H, Martin H, Das M, Thomas A, Liu HC, Yan M, Callebaut C, Custodio J, Cheng A, McCallister S (2015) Tenofovir alafenamide versus tenofovir disoproxil fumarate in the first protease inhibitor-based single-tablet regimen for initial HIV-1 therapy: a randomized phase 2 study. J Acquir Immune Defic Syndr 69(4):439–445. https://doi.org/10.1097/QAI.0000000000000618

    Article  CAS  PubMed  Google Scholar 

  16. Sax PE, Zolopa A, Brar I, Elion R, Ortiz R, Post F, Wang H, Callebaut C, Martin H, Fordyce MW, McCallister S (2014) Tenofovir alafenamide vs. tenofovir disoproxil fumarate in single tablet regimens for initial HIV-1 therapy: a randomized phase 2 study. J Acquir Immune Defic Syndr 67(1):52–58. https://doi.org/10.1097/QAI.0000000000000225

    Article  CAS  PubMed  Google Scholar 

  17. DeJesus E, Haas B, Segal-Maurer S, Ramgopal MN, Mills A, Margot N, Liu YP, Makadzange T, McCallister S (2018) Superior efficacy and improved renal and bone safety after switching from a tenofovir disoproxil fumarate- to a tenofovir alafenamide-based regimen through 96 weeks of treatment. AIDS Res Hum Retrovir 34(4):337–342. https://doi.org/10.1089/AID.2017.0203

    Article  CAS  PubMed  Google Scholar 

  18. Taiwo BO, Chan ES, Fichtenbaum CJ, Ribaudo H, Tsibris A, Klingman KL, Eron JJ, Berzins B, Robertson K, Landay A, Ofotokun I, Brown T, Team ACTGAS (2015) Less bone loss with maraviroc- versus tenofovir-containing antiretroviral therapy in the AIDS Clinical Trials Group A5303 study. Clin Infect Dis 61(7):1179–1188. https://doi.org/10.1093/cid/civ455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. National Health Commission of the People's Republic of China: Regular press conference: Progress in the prevention and treatment of AIDS in China. http://ncaids.chinacdc.cn/zxzx/zxzx/201811/t20181123_197487.htm

  20. Zhao DC, Wen Y, Ma Y, Zhao Y, Zhang Y, Wu YS, Liu X, Au E, Liu ZF, Zhang FJ (2012) Expansion of China's free antiretroviral treatment program. Chin Med J 125(19):3514–3521

    CAS  PubMed  Google Scholar 

  21. Zhang L, Su Y, Hsieh E, Xia W, Xie J, Han Y, Cao Y, Li Y, Song X, Zhu T, Li T, Yu W (2013) Bone turnover and bone mineral density in HIV-1 infected Chinese taking highly active antiretroviral therapy -a prospective observational study. BMC Musculoskelet Disord 14:224. https://doi.org/10.1186/1471-2474-14-224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kiser JJ, Fletcher CV, Flynn PM, Cunningham CK, Wilson CM, Kapogiannis BG, Major-Wilson H, Viani RM, Liu NX, Muenz LR, Harris DR, Havens PL, Adolescent Trials Network for HIVAI (2008) Pharmacokinetics of antiretroviral regimens containing tenofovir disoproxil fumarate and atazanavir-ritonavir in adolescents and young adults with human immunodeficiency virus infection. Antimicrob Agents Chemother 52(2):631–637. https://doi.org/10.1128/AAC.00761-07

    Article  CAS  PubMed  Google Scholar 

  23. Lamorde M, Byakika-Kibwika P, Tamale WS, Kiweewa F, Ryan M, Amara A, Tjia J, Back D, Khoo S, Boffito M, Kityo C, Merry C (2012) Effect of food on the steady-state pharmacokinetics of tenofovir and emtricitabine plus efavirenz in Ugandan adults. AIDS Res Treat 2012:105980–105986. https://doi.org/10.1155/2012/105980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Du X, Kou H, Fu Q, Li Y, Zhu Z, Li T (2017) Steady-state pharmacokinetics of tenofovir disoproxil fumarate in human immunodeficiency virus-infected Chinese patients. Expert Rev Clin Pharmacol 10(7):783–788. https://doi.org/10.1080/17512433.2017.1321480

    Article  CAS  PubMed  Google Scholar 

  25. Cao W, Hsieh E, Li T (2020) Optimizing treatment for adults with HIV/AIDS in China: successes over two decades and remaining challenges. Curr HIV/AIDS Rep 17(1):26–34. https://doi.org/10.1007/s11904-019-00478-x

    Article  PubMed  PubMed Central  Google Scholar 

  26. Cosman F, de Beur SJ, LeBoff MS, Lewiecki EM, Tanner B, Randall S, Lindsay R, National Osteoporosis F (2014) Clinician’s guide to prevention and treatment of osteoporosis. Osteoporos Int 25(10):2359–2381. https://doi.org/10.1007/s00198-014-2794-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Brown TT, Moser C, Currier JS, Ribaudo HJ, Rothenberg J, Kelesidis T, Yang O, Dube MP, Murphy RL, Stein JH, McComsey GA (2015) Changes in bone mineral density after initiation of antiretroviral treatment with tenofovir disoproxil fumarate/emtricitabine plus atazanavir/ritonavir, darunavir/ritonavir, or raltegravir. J Infect Dis 212(8):1241–1249. https://doi.org/10.1093/infdis/jiv194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hoy JF, Grund B, Roediger M, Schwartz AV, Shepherd J, Avihingsanon A, Badal-Faesen S, de Wit S, Jacoby S, La Rosa A, Pujari S, Schechter M, White D, Engen NW, Ensrud K, Aagaard PD, Carr A, Group ISBMDS (2017) Immediate initiation of antiretroviral therapy for HIV infection accelerates bone loss relative to deferring therapy: findings from the START bone mineral density substudy, a randomized trial. J Bone Miner Res 32:1945–1955. https://doi.org/10.1002/jbmr.3183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tinago W, Cotter AG, Sabin CA, Macken A, Kavanagh E, Brady JJ, McCarthy G, Compston J, Mallon PW, Group HUS (2017) Predictors of longitudinal change in bone mineral density in a cohort of HIV-positive and negative patients. AIDS 31(5):643–652. https://doi.org/10.1097/QAD.0000000000001372

    Article  PubMed  Google Scholar 

  30. Gonciulea A, Wang R, Althoff KN, Palella FJ, Lake J, Kingsley LA, Brown TT (2017) An increased rate of fracture occurs a decade earlier in HIV+ compared with HIV- men. AIDS 31(10):1435–1443. https://doi.org/10.1097/QAD.0000000000001493

    Article  PubMed  PubMed Central  Google Scholar 

  31. Carr A, Grund B, Neuhaus J, Schwartz A, Bernardino JI, White D, Badel-Faesen S, Avihingsanon A, Ensrud K, Hoy J, International Network for Strategic Initiatives in Global HIVTSSG (2015) Prevalence of and risk factors for low bone mineral density in untreated HIV infection: a substudy of the INSIGHT Strategic Timing of AntiRetroviral Treatment (START) trial. HIV Med 16(Suppl 1):137–146. https://doi.org/10.1111/hiv.12242

    Article  PubMed  PubMed Central  Google Scholar 

  32. Llop M, Sifuentes WA, Banon S, Macia-Villa C, Perez-Elias MJ, Rosillo M, Moreno S, Vazquez M, Casado JL (2018) Increased prevalence of asymptomatic vertebral fractures in HIV-infected patients over 50 years of age. Arch Osteoporos 13(1):56. https://doi.org/10.1007/s11657-018-0464-2

    Article  PubMed  Google Scholar 

  33. Cotter AG, Sabin CA, Simelane S, Macken A, Kavanagh E, Brady JJ, McCarthy G, Compston J, Mallon PW, Group HUS (2014) Relative contribution of HIV infection, demographics and body mass index to bone mineral density. AIDS 28(14):2051–2060. https://doi.org/10.1097/QAD.0000000000000353

    Article  PubMed  Google Scholar 

  34. Brown TT, Hoy J, Borderi M, Guaraldi G, Renjifo B, Vescini F, Yin MT, Powderly WG (2015) Recommendations for evaluation and management of bone disease in HIV. Clin Infect Dis 60(8):1242–1251. https://doi.org/10.1093/cid/civ010

    Article  PubMed  PubMed Central  Google Scholar 

  35. Biver E, Calmy A, Aubry-Rozier B, Birkhauser M, Bischoff-Ferrari HA, Ferrari S, Frey D, Kressig RW, Lamy O, Lippuner K, Suhm N, Meier C (2019) Diagnosis, prevention, and treatment of bone fragility in people living with HIV: a position statement from the Swiss association against Osteoporosis. Osteoporos Int 30(5):1125–1135. https://doi.org/10.1007/s00198-018-4794-0

    Article  CAS  PubMed  Google Scholar 

  36. Hill A, Hughes SL, Gotham D, Pozniak AL (2018) Tenofovir alafenamide versus tenofovir disoproxil fumarate: is there a true difference in efficacy and safety? J Virus Erad 4(2):72–79

    Article  Google Scholar 

  37. Vitoria M, Hill AM, Ford NP, Doherty M, Khoo SH, Pozniak AL (2016) Choice of antiretroviral drugs for continued treatment scale-up in a public health approach: what more do we need to know? J Int AIDS Soc 19(1):20504. https://doi.org/10.7448/IAS.19.1.20504

    Article  PubMed  PubMed Central  Google Scholar 

  38. Unsal AB, Mattingly AS, Jones SE, Purdy JB, Reynolds JC, Kopp JB, Hazra R, Hadigan CM (2017) Effect of antiretroviral therapy on bone and renal health in young adults infected with HIV in early life. J Clin Endocrinol Metab 102(8):2896–2904. https://doi.org/10.1210/jc.2017-00197

    Article  PubMed  PubMed Central  Google Scholar 

  39. Giacomet V, Maruca K, Ambrosi A, Zuccotti GV, Mora S (2017) A 10-year follow-up of bone mineral density in HIV-infected youths receiving tenofovir disoproxil fumarate. Int J Antimicrob Agents 50(3):365–370. https://doi.org/10.1016/j.ijantimicag.2017.03.026

    Article  CAS  PubMed  Google Scholar 

  40. Komatsu A, Ikeda A, Kikuchi A, Minami C, Tan M, Matsushita S (2018) Osteoporosis-related fractures in HIV-infected patients receiving long-term tenofovir disoproxil fumarate: an observational cohort study. Drug Saf 41:843–848. https://doi.org/10.1007/s40264-018-0665-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yang J, Sharma A, Shi Q, Anastos K, Cohen MH, Golub ET, Gustafson D, Merenstein D, Mack WJ, Tien PC, Nieves JW, Yin MT (2018) Improved fracture prediction using different fracture risk assessment tool adjustments in HIV-infected women. AIDS 32(12):1699–1706. https://doi.org/10.1097/QAD.0000000000001864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hoy JF, Richardson R, Ebeling PR, Rojas J, Pocock N, Kerr SJ, Martinez E, Carr A, Investigators ZS (2018) Zoledronic acid is superior to tenofovir disoproxil fumarate-switching for low bone mineral density in adults with HIV. AIDS 32(14):1967–1975. https://doi.org/10.1097/QAD.0000000000001911

    Article  CAS  PubMed  Google Scholar 

  43. Ofotokun I, Titanji K, Lahiri CD, Vunnava A, Foster A, Sanford SE, Sheth AN, Lennox JL, Knezevic A, Ward L, Easley KA, Powers P, Weitzmann MN (2016) A single-dose zoledronic acid infusion prevents antiretroviral therapy-induced bone loss in treatment-naive HIV-infected patients: a phase IIb trial. Clin Infect Dis 63(5):663–671. https://doi.org/10.1093/cid/ciw331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ofotokun I, Collins LF, Titanji K, Foster A, Moran CA, Sheth AN, Lahiri CD, Lennox JL, Ward L, Easley KA, Weitzmann MN (2019) Antiretroviral therapy-induced bone loss is durably suppressed by a single dose of zoledronic acid in treatment-naive persons with HIV infection: a phase IIB trial. Clin Infect Dis. https://doi.org/10.1093/cid/ciz1027

  45. Hsieh E, Fraenkel L, Bradley EH, Xia W, Insogna KL, Cui Q, Li K, Li T (2014) Osteoporosis knowledge, self-efficacy, and health beliefs among Chinese individuals with HIV. Arch Osteoporos 9:201. https://doi.org/10.1007/s11657-014-0201-4

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the patients and their families for their participation and support during this study. This study was funded by the National Key Technologies Research & Development Program for the 13th Five-year Plan (2017ZX10202101) and Chinese Academy of Medical Sciences (CAMS) Innovation Fund for Medical Sciences (CAMS-12M) (2017-12M-1-014). Dr. Hsieh is supported by NIH/Fogarty International Center K01TW009995 and the Rheumatology Research Foundation.

Funding

This study was funded by the National Key Technologies Research & Development Program for the 13th Five-year Plan (2017ZX10202101) and Chinese Academy of Medical Sciences (CAMS) Innovation Fund for Medical Sciences (CAMS-12M) (2017-12M-1-014). Dr. Hsieh is supported by NIH/Fogarty International Center K01TW009995.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. Li or E. Hsieh.

Ethics declarations

Conflicts of interest

None.

Ethics approval

This study was reviewed and exempt by the institutional review board of the Peking Union Medical College Hospital, Beijing, China.

Consent to participate

All study participants provided written informed consent at the time of enrollment, and all procedures were performed in compliance with the ethical standards of The Declaration of Helsinki.

Consent to publication

Not applicable.

Availability of data and material

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, F., Song, X., Li, Y. et al. Longitudinal change in bone mineral density among Chinese individuals with HIV after initiation of antiretroviral therapy. Osteoporos Int 32, 321–332 (2021). https://doi.org/10.1007/s00198-020-05584-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-020-05584-w

Keywords

Navigation