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Effects of virtual tube current reduction and sparse sampling
on MDCT-based femoral BMD measurements
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Abstract
Summary This study investigates the impact of tube current reduction and sparse sampling on femoral bone mineral density
(BMD) measurements derived from multi-detector computed tomography (MDCT). The application of sparse sampling led to
robust and clinically acceptable BMD measurements. In contrast, BMD measurements derived from MDCT with virtually
reduced tube currents showed a considerable increase when compared to original data.
Introduction The study aims to evaluate the effects of radiation dose reduction by using virtual reduction of tube current or sparse
sampling combined with standard filtered back projection (FBP) and statistical iterative reconstruction (SIR) on femoral bone
mineral density (BMD) measurements derived from multi-detector computed tomography (MDCT).
Methods In routine MDCT scans of 41 subjects (65.9% men; age 69.3 ± 10.1 years), reduced radiation doses were simulated by
lowering tube currents and applying sparse sampling (50, 25, and 10% of the original tube current and projections, respectively).
Images were reconstructed using FBP and SIR. BMD values were assessed in the femoral neck and compared between the
different dose levels, numbers of projections, and image reconstruction approaches.
Results Compared to full-dose MDCT, virtual lowering of the tube current by applying our simulation algorithm resulted in
increases in BMD values for both FBP (up to a relative change of 32.5%) and SIR (up to a relative change of 32.3%). In contrast,
the application of sparse sampling with a reduction down to 10% of projections showed robust BMD values, with clinically
acceptable relative changes of up to 0.5% (FBP) and 0.7% (SIR).
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Conclusions Our simulations, which still require clinical validation, indicate that reductions down to ultra-low tube currents have
a significant impact onMDCT-based femoral BMDmeasurements. In contrast, the application of sparse-sampledMDCTseems a
promising future clinical option that may enable a significant reduction of the radiation dose without considerable changes of
BMD values.

Keywords Bonemineraldensity .Computed tomography .Femur .Filteredbackprojection .Sparsesampling .Statistical iterative
reconstruction

Introduction

Osteoporosis is characterized by low bone mass in combina-
tion with a micro-architectural deterioration of bone tissue [1].
Since the late 1980s, dual-energy X-ray absorptiometry
(DXA) represents the clinical standardmethod for quantitative
imaging in osteoporosis, which enables measurements of bone
mineral density (BMD), most commonly applied at the lum-
bar spine and/or proximal femur [2–5]. The diagnosis of os-
teoporosis is then based on DXA-derived T-scores [4, 5].
However, despite its high clinical relevance, DXA also has
its shortcomings because it has demonstrated to be partly in-
sufficient in identifying subjects at high risk for fractures,
which represents a major complication of osteoporosis. In this
context, previous studies have shown that over 50% of non-
vertebral fractures occurred in patients who showed non-
pathological BMD values according to DXA [6, 7].

Recently, volumetric BMD measurements, assessed using
multi-detector computed tomography (MDCT), have shown
to be feasible particularly at the spine, but also at the femur
[8–11]. However, broad clinical use of MDCT-based BMD
measurements is currently restricted due to the fairly high
radiation doses, which are especially relevant if multiple mea-
surements are required due to reevaluation purposes or thera-
py monitoring [12]. Consequently, a reduction of the radiation
dose for MDCT-based BMD measurements seems necessary.

Amongst various options, a reduction of the radiation dose
can be achieved by lowering the tube current or by acquiring
fewer projections during scanning, commonly referred to as
sparse sampling [13–15]. However, decreased tube current
and sparse sampling usually come at the cost of a decrease
in image quality, which may limit the validity and clinical
usefulness of the examination [13–15]. Constrained image
quality, however, can be partially compensated for by applying
advanced reconstruction algorithms, such as statistical itera-
tive reconstruction (SIR). In contrast to standard reconstruc-
tion methods, like the widely used filtered back projection
(FBP), SIR is capable of integrating a physics model, thus
having the potential to provide increased image quality when
compared to FBP in terms of missing data or lowered tube
current during the scan [16–18]. Iterative-based reconstruction
approaches use regularization terms to resolve image noise
and streaking artifacts, consequently resulting in smoother im-
ages [16–18]. Furthermore, such approaches have already

been successfully applied in studies using reduced tube current
or fewer projections during a scan [19–22].

The purpose of this study was to systematically evaluate
the effects of virtual tube current reduction and sparse sam-
pling on MDCT-based BMD measurements at the femoral
neck. In this context, we applied both FBP and SIR for image
reconstructions and compared BMD values derived from vir-
tual low-dose and sparse-sampledMDCT to original full-dose
imaging data.

Methods

Subjects

This study was approved by the local institutional review
board (registration number 5022/11-A1). Subjects older than
50 years of age who had undergone a routine thoracic and
abdominal MDCT in the clinical setting were retrospectively
identified in our institutional digital Picture Archiving and
Communication System (PACS). All MDCT scans were per-
formed for clinical purposes. Exclusion criteria were any his-
tory of malignant bone lesions (e.g., bone metastases), hema-
tological disorders, any history of a proximal femur fracture,
implantation of hip endoprotheses, and metabolic bone disor-
ders aside from osteoporosis. Overall, 41 subjects (14 women
and 27men; age 69.3 ± 10.1 years) were included. The field of
view of the scans covered the proximal femur of both sides
down to the minor trochanter in all subjects.

Multi-detector computed tomography

The scans were acquired using a 256-row MDCT scanner
(iCT; Philips Healthcare, Best, The Netherlands). A standard
reference phantom (Mindways Osteoporosis Phantom;
Austin, TX, USA) was placed in the scanner beneath the sub-
jects for calibration purposes. Tube voltage and rotation time
were 120 kVp and 0.4 s in all cases. The pitch ranged from
0.59 to 0.91, and the maximum tube current ranged from 200
to 400 mA, with the exact tube current being implicitly mod-
ulated by the scanner. As a result, for the femoral neck, the
tube current was approximately 100 to 200 mA. Examinations
were performed after the administration of intravenous con-
trast agent (Imeron 400; Bracco, Konstanz, Germany) using a
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high-pressure injector (Fresenius Pilot C; Fresenius Kabi, Bad
Homburg, Germany). Intravenous contrast agent injection
was performed with a delay of 70 s, a flow rate of 3 mL/s,
and a body weight-dependent dose (80 mL for patients with a
body weight under 80 kg, 90 mL for patients with a body
weight ranging from 80 to 100 kg, 100 mL for patients with
a body weight over 100 kg). Additionally, all subjects were
given 1000 mL of oral contrast agent over a period of 1 h
(Barilux Scan; Sanochemia Diagnostics, Neuss, Germany).

Tube current simulation and sparse sampling

The simulation algorithm to generate lower tube currents for
MDCT scans was based on raw projection data, as described
previously [13, 23, 24]. System parameters of the MDCT
scanner were known to take the electronic noise into account.
Low-dose simulations at 50% (D50 P100), 25% (D25 P100),
and 10% (D10 P100) of the original tube current were gener-
ated. Sparse sampling was applied at levels of 50% (D100
P50), 25% (D100 P25), and 10% (D100 P10) of the original
projection data by reading every second, fourth, and tenth
projection angle and deleting the remaining projections in
the sinogram. Thus, the number of projections per full rotation
was reduced, while other parameters, including projection ge-
ometry and subject location, were kept the same [13].

Filtered back projection and statistical iterative
reconstruction

Images were reconstructed with FBP and SIR [25, 26]. FBP
consisted of one step of high-pass filtering (Ram-Lak) in the
sinogram domain and another step of normalized three-
dimensional cone-beam back-projection [27]. SIR was per-
formed with ordered-subset separable paraboloidal
surrogation and a momentum-based accelerating approach
[28]. To optimize the image quality for scans with
simulated ultra-low doses, a proper regularization was used
in SIR [25, 29, 30]. All reconstructions had a voxel spacing of
0.39, 0.39, and 0.30mm in three dimensions. The actual voxel
resolution was limited to the fixed collimator width of the
detector. To reduce noise, adjacent axial slices were merged
to a slice thickness of 5 mm. Voxel intensities (mass attenua-
tion coefficients, m2/kg) were calibrated to Hounsfield units
(HU) using the mass attenuation coefficient of water.

Measurements of bone mineral density

To derive BMDmeasurements from original as well as virtual
low-dose and sparse-sampled MDCT scans with FBP or SIR,
regions of interest (ROIs) were placed in the femoral neck of
the left and right sides of each subject. First, axial images of
the dataset with 100% of the tube current and 100% of the
projections (D100 P100), using FBP as the clinical standard of

reference, were opened using ImageJ (https://imagej.nih.gov/
ij/) [31, 32]. Then, we identified the axial slice in which the
neck was visualized best and drew a quadrangular ROI in this
section, including the cortical and trabecular bone
compartments (Fig. 1). The same placement strategy and
shape of the ROI have been used in a previous study of our
group [9]. The two ROIs (femoral neck of both sides) were
saved for each subject, and the individual ROIs in the used
image stack (D100 P100 with FBP) were then transferred (as
intrinsically co-registered) to the other datasets containing the
virtual low-dose (D50 P100, D25 P100, and D10 P100) and
sparse-sampled imaging data (D100 P50, D100 P25, and
D100 P10) of the respective subject, considering both FBP
and SIR. We then extracted mean HU from these ROIs, which
were subsequently converted into volumetric BMD values (in
g/cm3) using the information of the reference phantom [9, 13].
The BMD values of the left and right sides were averaged in
each subject.

Statistical analyses

Statistical data analyses were performed using GraphPad
Prism (version 6.04; GraphPad Software, La Jolla, CA,
USA). For all statistical tests applied, a p value < 0.05 was
considered statistically significant.

Descriptive statistics for BMD values were calculated, in-
cluding mean, standard deviation, median, minimum, and
maximum values. This was done separately for the original
imaging data, virtual low-dose, and sparse-sampled MDCT
scans in combination with the two different reconstruction

Fig. 1 Placement of regions of interest (ROIs). This figure illustrates the
placement of a ROI in the femoral neck in a representative case using
axial slices derived from full-dose multi-detector computed tomography
(MDCT) using filtered back projection (FBP). The ROI was quadrangular
and included the cortex. ROIs were not placed in areas with
circumscribed lucencies (e.g., cystic lesions) or sclerosis (e.g., bone
islands). The placement of the ROI at the other side’s femoral neck was
conducted in an analogous way
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algorithms. Shapiro-Wilk tests indicated a normal distribution
of the obtained BMD values.

In order to evaluate the differences in BMD values derived
from MDCT with virtually lowered tube currents and sparse
sampling between FBP and SIR, we used paired t tests.
Furthermore, to assess the change inmeasurements depending
on the tube current and sparse sampling, we compared the
BMD values between full-dose MDCTwith 100% of the pro-
jections (D100 P100) and each value of virtual low-dose (D50
P100, D25 P100, and D10 P100) and sparse-sampled MDCT
(D100 P50, D100 P25, and D100 P10) to be able to provide
numbers on relative changes. This was performed separately
for both reconstructions, FBP and SIR. The BMD measure-
ments were illustrated using box plots.

Results

Virtual lowering of tube currents and sparse sampling using
FBP (Fig. 2a) and SIR (Fig. 2b) were successfully achieved in
all enrolled subjects. The effective dose of the original scans
was estimated to range between 3.6 and 9.1 mSv with a scan-
ning length of 30 cm. BMD measurements for full-dose data
using FBP, considered as the current clinical standard, were
0.849 ± 0.106 g/cm3 (range 0.640–1.060 g/cm3) in the femoral
neck (Table 1).

FBP- and SIR-based BMD values showed an increase with
a virtual lowering of the tube current up to 1.125 ± 0.175 g/
cm3 for FBP (D10 P100) and 1.130 ± 0.175 g/cm3 for SIR
(D10 P100), respectively (Table 1 and Fig. 3a, b). Thus, the
values for virtual lowering of tube currents showed relative
changes up to 32.5% (FBP) and 32.3% (SIR).

Regarding sparse-sampled data, BMD measurements
remained comparatively stable in the course of reductions in
the number of projections, which was true for both MDCT
with FBP and SIR (Table 1 and Fig. 3a, b). Hence, the changes
of BMD values regarding sparse-sampled data were clinically
acceptable, with small relative changes of up to 0.5% (FBP)
and 0.7% (SIR), respectively.

Discussion

This in-vivo study systematically compared the effects of vir-
tual tube current reductions and sparse sampling on MDCT-
based femoral BMD measurements using both FBP and SIR.
We observed an increase in BMD values with a simulated
lowering of the tube current. In contrast, changes in FBP-
based and SIR-based BMD values for sparse-sampled data
with projections down to 10% of the original data were con-
siderably small.

Due to the small changes of BMD values in the course of
reducing the number of projections, BMD measurements

Fig. 2 Low-dose and sparse-
sampled multi-detector computed
tomography (MDCT). This figure
shows axial slices of the femoral
neck derived from full-dose
MDCT (D100 P100) as well as
MDCT at 50% (D50), 25%
(D25), and 10% (D10) of the
original tube current applied
(100% tube current = D100).
Furthermore, sparse sampling
was performed to achieve 50%
(P50), 25% (P25), and 10% (P10)
of the original projection data
(100% projections = P100). For
all settings presented in this fig-
ure, filtered back projection (FBP;
a) and statistical iterative recon-
struction (SIR; b) were used for
image reconstructions
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could be assessed with lower radiation exposure in the future
for the femoral neck, an option that has recently been sug-
gested for BMD assessments at the spine [13]. This is a rele-
vant finding for clinical scans since sparse sampling may al-
low the usage of MDCT for longitudinal risk evaluation and
therapy monitoring in subjects with osteoporosis in the future,
which is currently restricted due to the high radiation doses of
conventional full-dose MDCT without sparse sampling.
Because DXA-based BMD measurements are increasingly
considered to be non-optimal regarding the reliable identifica-
tion of subjects at high risk for osteoporotic fractures, broader
use of MDCT combined with approaches to reduce radiation
exposure seems highly desirable [6, 7]. However, commer-
cially available MDCT scanners are not yet capable of apply-
ing sparse sampling to lower radiation exposure since current
systems still broadly use X-ray sources that continuously de-
liver X-rays during the scan. Future systems may implement
precise units to individually adjust the number of projections
[33].

In contrast, reductions of tube current can easily be
achieved nowadays with conventional MDCT scanners.
However, BMD measurements clearly increased with
virtually decreasing tube currents as compared to original
full-dose MDCT data in this study. Current MDCT detectors,
such as integrated detectors, have shown that noise will in-
crease when there are not statistically enough X-ray photons
reaching the detector [34]. This leads to signal impairment,
thus influencing the extraction of BMD values negatively.
Therefore, considerable changes in BMD measurements with
simulated tube current reductions have occurred according to
our analyses. In this context, the noise-related BMD increase
observed in our investigations can be difficult to understand.
According to theory, the mean value of a given ROI does not
depend on noise. A change of values may be related to a
change of the energy spectrum reaching the detector or per-
haps to non-linearity of the detector. Thus, the results of the
simulations may not be observed in clinical practice or to a
lower degree. A validation experiment with actual MDCT
scans using cadaveric femurs, for example, must be performed
before the results can be generalized.

Furthermore, we applied SIR in this study, which is in-
creasingly regarded superior to traditional reconstruction al-
gorithms such as FBP [16–18]. In general, SIR is considered
to be more suitable in handling streaking artifacts and noise
due to an integration of physics modeling that enables better
compensation for missing data, among others [16–18].
Despite the finding that SIR did not yield more robust mea-
surements of BMD values, it is suggested that it can provide
enhanced image quality when compared to FBP. However, in
this study, we observed that SIR alone is not enough to miti-
gate the effects of electronic noise caused by ultra-low tube
currents at the detector concerning BMD measurements.
Future studies will have to further explore settings in whichTa
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investigators can take the most advantage of SIR that also
justifies the related higher computational complexity and
power needed.

With regard to the clinical setting, DXA and not MDCT
reflects the current standard for quantitative imaging in oste-
oporosis [2–5]. However, due to shortcomings of DXA,
MDCT and other methods are increasingly investigated for
BMD measurements [8–11]. Mainly thoracic and abdominal
MDCT scans are among the most frequently performed clin-
ical investigations, and applications of such clinical scans for
valid BMD measurements, in addition to the primary clinical
indication, may reduce the need for DXA, which is often
additively performed only for the purpose of BMD measure-
ments. Especially patients who have cancer commonly need
assessments of BMD in the course of their disease and treat-
ment because of an increased risk of osteoporosis due to hor-
mone therapy or chemotherapy [35–38]. Thus, this patient
cohort could particularly profit from BMD measurements de-
rived from routine MDCT. However, MDCTcurrently cannot
replace DXA when it comes to the diagnosis of osteoporosis
since this is still based on DXA-derived T-scores [4, 5].

There are limitations to this study that need to be taken into
account. First, this study was designed to be retrospective;
thus, our results should be confirmed by future prospective
trials. Second, we used routine low-dose MDCT scans and
no dedicated quantitative exams. Third, this study only pro-
vides BMD values derived from measurements in the femoral
neck, thus not representing information about the complete
proximal femur. Lastly, MDCT scans were performed with
the application of intravenous contrast agent. This effect has
to be accounted for to be able to derive valid BMD measure-
ments. However, routine thoracic and abdominal MDCT

scans, as used in the present study, are frequently performed
after administration of contrast agents, which is especially true
in terms of cancer patients who may particularly profit from
additional usage of MDCT for BMD assessments as outlined
above.

Conclusions

In contrast to virtual tube current reduction, sparse sampling
allows for a robust assessment of femoral BMD, even when
projection numbers are reduced by 90% of the original data.
Thus, the application of sparse-sampled MDCT seems a
promising future clinical option that may enable considerable
reductions of radiation doses without suffering from clinically
relevant changes of BMD values when compared to full-dose
MDCTwith 100% projections.
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