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Gender is one of the strongest predictors of osteoporotic
fracture risk, second only to ageing. A recent systematic
review of worldwide epidemiology revealed that hip fracture
incidence is about twofold lower in men compared to women,
despite greater than tenfold variation between geographic
regions [1]. This lower fracture incidence occurs despite
persisting underdiagnosis and undertreatment of osteoporosis
in men, which probably explains why hip fracture incidence
may be decreasing in women but not men [2–5]. It is well
known that men generally have a more robust body composi-
tion; even after correction for an average 10 % greater height
and bone length, men at the age of peak bone mass have 25 %
greater bone mineral content [6], almost 50 % greater muscle
mass and power and half the fat mass of women [7]. Con-
versely, late-onset male hypogonadism increases the risk of
bone loss, muscle atrophy and fat accumulation [3, 8]. Under-
standing the underlying mechanisms involved in this gender
dimorphism in body composition may thus identify additional

therapeutic targets not only for osteoporosis, but also for
sarcopenia and obesity.

Female sex steroids on a male genetic background

Embryonically, we are all destined for female development,
unless SRY (sex-determining region on the Y chromosome)
and other transcription factors turn the bipotential gonads into
testes capable of testosterone (T) production. Studies on bone
health in sexual medicine provide unique opportunities to
examine whether sexual dimorphism is ultimately determined
by sex chromosomes (genetic determinism) or sex steroids
(endocrine regulation).

Van Caenegem et al. [9] are the first to study changes in
areal and volumetric bone mineral density (aBMD, vBMD)
and bone geometry in a representative, sizeable cohort (com-
pared to the small number of subjects treated for gender
dysphoria) of 49 male-to-female transsexual persons. The
strength of this research paradigm is evident to anyone closely
familiar with the spectacular bodily transformations experi-
enced by subjects under cross-gender hormonal therapy. In a
previous cross-sectional study by Van Caenegem et al.,
female-to-male transsexual persons had normal female body
composition at baseline, but those on long-term T therapy
exhibited increased lean body mass and grip strength, de-
creased fat mass with android distribution and increased radial
cortical bone size with lower cortical vBMD [10]. The pro-
spective design of their current study is however important
because, compared to male controls, these male-to-female
transsexual persons had baseline low aBMD due to somewhat
lower periosteal circumference and lower trabecular vBMD,
lower lean body mass, lower grip strength and muscle cross-
sectional area. This was probably related to lifestyle differ-
ences, as evidenced by less sports activities and lower serum
25-OH-vitamine D levels.
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The main finding of this study was that vBMD and cortical
bone size remained stable (although trabecular vBMD slightly
decreased) after 1 to 2 years of estrogen therapy with or
without the anti-androgen cyproterone acetate (which brought
T and estradiol (E2) levels within the normal female range).
Bone turnover markers decreased, muscle mass and strength
further decreased and fat mass increased. Another strength of
this study is the use of peripheral quantitative computed
tomography (pQCT) to avoid the limitations due to the pro-
jectional nature of conventional dual energy X-ray absorpti-
ometry; aBMD apparently increased, but the pQCT data and
lack of a prospective control group cast doubt on whether this
is a true finding. Although this study has some additional
limitations including short follow-up and use of lenient statis-
tics, it offers reassurance about bone loss during cross-sex
hormonal therapy in transgender subjects. But what are the
broader implications of these results, if we look at the state of
the science on how sex steroids regulate musculoskeletal
maintenance?

Van Caenegem et al. rightly conclude that despite substan-
tial muscle loss with androgen suppression, the prevention of
bone loss in these male-to-female transsexual person is yet
another attestation to the major role for estrogens in the male
skeleton. Indeed, older men have higher E2 levels than post-
menopausal women [6] because T levels (the substrate for E2
via aromatization) are well maintained in most elderly men. In
our opinion however, two important questions remain: Is there
an independent role for androgens in bone loss in older men?
And secondly, are there other factors beyond androgens and
estrogens responsible for skeletal sexual dimorphism and
hypogonadal bone loss?

Male bone maintenance: is there an independent role
for androgens?

Preclinical studies

Critics about direct androgen actions in bone could say that
their effects may rely entirely on their myotrophic actions.
Because it is quite difficult to study effects of androgens on
bone independent of muscle-bone interactions in humans [10],
preclinical models provide useful mechanistic insights. Earlier
studies in androgen-resistant, AR/ERα knockout and overex-
pressing rodent models and in vitro studies suggest a dual
mode of action by which both AR and ERα play a direct role
in restraining male bone turnover and stimulating periosteal
bone formation; there is even some animal evidence for a
similar effect of both AR and ERα in muscle and fat [3, 11,
12]. However, these conclusions were reached in ubiquitous
AR/ERα knockout models. In more recent conditional, cell-
specific knockdown mouse models, male cortical and trabec-
ular bone is directly regulated by ERα in osteoprogenitor

cells, osteoblasts and osteocytes [11], while AR in these bone
cells has only a mild effect which is limited to trabecular bone.
Nevertheless, AR overexpression in osteoblasts stimulates
periosteal bone in the calvaria [13], which is unlikely to be
explained by bone-muscle interactions. Conditional AR abla-
tion in muscle [14, 15] and adipose tissue [16] also confirms a
direct but humble role for androgens in these tissues. Thus,
these conditional knockdown models do not fully reproduce
the cortical bone deficits, sarcopenia and metabolic adversities
observed in hypogonadal men or global ARKO male mice
(both of which may have not only low T but also E2 levels)
[11]. Non-aromatizable androgens clearly stimulate periosteal
bone formation via AR in preclinical studies [17]; conditional
genetic knockdown models may have been unable to confirm
this role for AR in cortical bone because of the limitations of
Cre-LoxP technology, or because the right target cells remain
to be identified.

Epidemiological studies

Regarding the first question of independent effects of andro-
gens and estrogens on ageing men’s bone loss, we already
have multiple lines of evidence already supporting the role of
estrogens in male skeletal conservation. Firstly, dozens of
observational and genetic studies in ageing men show an
independent association between male bone mass,
microarchitecture or fracture risk and circulating E2 levels or
polymorphisms in the estrogen receptor alpha (ERα) or aro-
matase gene. The same associations with T levels or AR
polymorphisms were however weak or disappeared after cor-
rection for estrogen effects in most studies [3, 11]. Nonethe-
less, some studies have shown an independent association of
T with BMD at cortical sites or bone area [18, 19], muscle
mass and strength, reduced fat mass [20, 21] and even de-
creased fracture risk, albeit mostly independent of aBMD [22,
23]. In twoMrOS studies, low Twas independently associated
with bone loss and fractures but only in men with low E2
levels [24, 25]. Based on these results, Khosla proposed a
model in which estrogens hold the dominant effect on male
bone loss and fracture risk, whereas androgens further modu-
late this riskmainly via extraskeletal fracture determinants like
muscle mass (which also determines cortical bone develop-
ment) and risk of falls [26]. However, nearly all of these
observational studies are limited by the small numbers of
endpoints, variation of T and E2 levels within the normal
range instead of more narrowly defined male hypogonadism
[8], as well as inherent covariation between androgens, estro-
gens and sex hormone-binding globulin. Furthermore, there is
growing evidence that calculated free or bioavailable serum
sex steroid concentrations have serious limitations [27]. Stud-
ies with high-resolution pQCT have emerged, but we still
need more prospective instead of cross-sectional studies. But
in the end, observational studies cannot prove causality; both
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sex steroid concentrations and bone loss could be determined
by other reproductive or hypothalamic signals (see next sec-
tion on reproductive signals).

Interventional studies

A higher level of evidence is offered by placebo-controlled,
randomized trials. In men with prostate cancer treated with
androgen deprivation therapy (which is also brings estrogens
in the postmenopausal range), selective estrogen receptor
modulators (SERMs) have been shown to maintain aBMD
and prevent vertebral fractures [28, 29]. In healthy adult male
volunteers, aromatase inhibition [30] or treatment with non-
aromatizable dihydrotestosterone [31], both of which increase
androgen bioactivity but suppress estrogens, invoke bone loss.
Although studies with gonadotropin-release hormone agonists
and Tor E2 replacement suggested that androgens maintained
bone formation markers and estrogens suppressed bone re-
sorption markers in men [32, 33], another study contradicted
this [34]. Recently, Finkelstein et al. conducted a similar,
larger study with chemical castration and graded T replace-
ment with or without aromatase inhibition [35]. They con-
cluded that loss of androgens causes muscle loss whereas loss
of estrogens increases adiposity in men with low T. Bone
microarchitectural outcomes have been published in abstract
[36], showing again a dominant role for estrogens and not
androgens. Yet, we should not ignore the fact that most of
these interventions were acute and short-term, whereas trans-
gender studies allow characterization of long-term effects.
Importantly, the effect of physiological (or anabolic) T re-
placement doses in the context of normal E2 levels remains
unclear (Table 1). Although it is important to realize that
androgens cannot prevent bone loss due to near-total E2
deficiency, it may be more important to resolve the controver-
sy surrounding the skeletal efficacy [37] as well as the cardio-
vascular safety of T replacement in frail older men at risk of

osteoporosis [38]. The Testosterone Trials (NCT00799617)
and especially the bone substudy will hopefully shed light on
this matter. Hopefully thereafter, we can start thinking about
studies to examine whether androgens offer selective benefits
beyond their role in maintaining estrogen levels.

In summary, we believe the pendulum shouldn’t swing too
far. Even in the face of an overwhelming amount of data
pointing towards the importance of aromatization and estro-
gens in the male skeleton, we need to distinguish between
what we know, what we think we know, and what we still
don’t know. Although the obligation lies with andrology
researchers to provide much needed evidence in humans, we
would like to remind readers that lack of evidence for an
effect—as for bone preservation despite loss of androgens in
the controlled study by Van Caenegem et al.—should not be
taken as evidence for a lack of effect.

Beyond sex steroids: bone’s ties with reproduction

A growing body of evidence supports an intimate relation
between bone and gonadal factors beyond sex steroids. We
refer the reader to a recent review for a more comprehensive
discussion on this topic [39], and limit ourselves to a few
examples. Direct bone cell regulation by gonadotropins has
attracted considerable attention, but the presence of follicle-
stimulating hormone receptors in bone cells or a direct role
independent of sex steroids remains controversial in both
rodent and human studies [11, 40, 41]. Inhibin A however is
a credible positive regulator of bone mass and turnover [40,
42, 43]. In the testis, Leydig cells have been suggested to
express CYP2R1 which has been implicated in vitamin D 25-
hydroxylation [44], although definitive support for this mech-
anism remains lacking [39]. The increase in vitamin D despite
gonadotropin suppression in the study by Van Caenegem et al.

Table 1 Evidence synopsis regarding the influence of androgens and estrogens on bone health in adult and elderly men

aBMD vBMD and structure Bone turnover Fractures Muscle mass

Effect of deficiency (population setting) Low E2, normal or high T ↓ [A,B] ↓ [A,B] ↑ [A,B] ↑ [B] = [A,B]

Low T, low E2 ↓ [A,B] ↓ [A,B] ↑ [A,B] ↑↑ [B] ↓ [A,B]
(↓ formation [A])

Low T, normal E2 = [B] ? (↓ formation [A]) ↑ [B] ↓ [A,B]

Effect of replacement (clinical setting) SERMs (ADT) ↑ [A,B] ? ↓ [A] ↓ [A] =

E2 (trans women) ↑ [B] = [B] ↓ [B] ? ↓ [B]

T (trans men) ↑ [B] ↑ [B] ↑ [B] ? ↑ [B]

T (and E2) (elderly men) (↑) [A,B] ? ↓ [A,B] ? ↑ [A,B]

SARMs/DHTwith normal E2 ? ? ? ? ?

↓ decrease; ↑ increase; = no change; () equivocal evidence; ? no conclusive evidence available; [A] evidence from randomized controlled trials; [B]
evidence from controlled intervention studies or large, population-based epidemiological studies in older men

SERMs selective estrogen receptor modulators, ADT androgen deprivation therapy for prostate cancer
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[9] apparently contradicts a major role for gonadal vitamin D
25-hydroxylation, although this finding is probably confound-
ed by vitamin D supplement prescription and lifestyle changes
during clinical follow-up in these transgenders. Leydig cells
also produce insulin-like peptide 3 which modulates osteo-
blast activity [39]. Critical transcription factors acting down-
stream of SRY to induce male sexual differentiation like SRY-
box 9 (SOX-9) and the desert hedgehog gene have been
associated with BMD in genome-wide meta-analysis [45].
SOX-9 in turn is essential for COL2A1 expression and
chrondrogenesis. Finally, gonadal factors may not only im-
prove bone health, but the causality may also lie in the
opposite direction. The group of Karsenty recently showed
that osteocalcin promotes testosterone biosynthesis in Leydig
cells, and that heterozygous missense mutations in the
osteocalcin receptor GPRC6A are a cause of primary testicu-
lar failure [46]. However, these findings remain to be viewed
cautiously because of difficulties in translating these findings
in other mouse models or in humans [47, 48].

We can conclude that bone has intricate and complex ties
with gonadal and reproductive functions which include an-
drogens, estrogens, transcription factors involved in sexual
differentiation and possibly other gonadal endocrine factors,
which however require further confirmation in further studies
on male osteoporosis. Sexual and reproductive medicine may
offer fertile grounds for further translational bone research.
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