Skip to main content
Log in

Shock waves generated by sudden expansions of a water jet

  • Technical Note
  • Published:
Shock Waves Aims and scope Submit manuscript

Abstract

Direct shadowgraph with parallel light combined with high-speed recording has been used to analyze the water jet of a cutting machine. The use of image processing allowed observing sudden expansions in the jet diameter as well as estimating the jet velocity by means of the Mach angle, obtaining velocities of about \(500\,\hbox {m}\,\hbox {s}^{-1}\). The technique used here revealed the development of hydrodynamic instabilities in the jet. Additionally, this is the first reporting of the onset of shock waves generated by small fluctuations of a continuous flow of water at high velocity surrounded by air, a result confirmed by a transient computational fluid dynamics simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Whiting, C.E., Graham, E.E., Ghorashi, B.: Evaluation of parameters in a fluid cutting equation. ASME J. Eng. Ind. 112(3), 240–244 (1990). https://doi.org/10.1115/1.2899581

    Article  Google Scholar 

  2. Leach, S.J., Walker, G.L., Smith, A.V., Farmer, I.W., Taylor, G.: Some aspects of rock cutting by high speed water jets. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 260(1110), 295–310 (1966). http://www.jstor.org/stable/73558

  3. Abramovich, G.N.: The Theory of Turbulent Jets. MIT Press, Cambridge (1963)

  4. Rajaratnam, N.: Turbulent Jets (Developments in Water Science, Vol. 5). Elsevier, Amsterdam (1976)

    Google Scholar 

  5. Nebeker, E.B., Cramer, J.B.: Visualization of the central core of high-speed water jets—an infrared technique. In: Second US Water Jet Conference, pp. 90–98. Rolla (1983)

  6. Matthujak, A., Kasamnimitporn, C., Sittiwong, W., Pianthong, K.: Effects of different liquid properties on the characteristics of impact-generated high-speed liquid jets. Appl. Mech. Mater. 110–116, 370–376 (2012). https://doi.org/10.4028/www.scientific.net/AMM.110-116.370

  7. Pianthong, K., Zakrzewski, S., Behnia, M., Milton, B.E.: Supersonic liquid jets: Their generation and shock wave characteristics. Shock Waves 11(6), 457–466 (2002). https://doi.org/10.1007/s001930200130

  8. Guha, A., Barron, R.M., Balachandar, R.: Numerical simulation of high-speed turbulent water jets in air. J. Hydraul. Res. 48(1), 124–129 (2010). https://doi.org/10.1080/00221680903568667

    Article  Google Scholar 

  9. Luo, Q., He, K., Mao, H., Li, J., Li, Q., Du, R.: Numerical simulation of high velocity waterjet characteristics and impact pressure. Appl. Mech. Mater. 109, 551–556 (2012). https://doi.org/10.4028/www.scientific.net/AMM.109.551

    Article  Google Scholar 

  10. Huang, W., Liu, W., Li, S., Xia, Z., Liu, J., Wang, Z.: Influences of the turbulence model and the slot width on the transverse slot injection flow field in supersonic flows. Acta Astronaut. 73, 1–9 (2012). https://doi.org/10.1016/j.actaastro.2011.12.003

    Article  Google Scholar 

  11. Huang, W., Li, S., Yan, L., Wang, Z.: Performance evaluation and parametric analysis on cantilevered ramp injector in supersonic flows. Acta Astronaut. 84, 141–152 (2013). https://doi.org/10.1016/j.actaastro.2012.11.011

    Article  Google Scholar 

  12. Salinas-Vázquez, M., Métais, O.: Large-eddy simulation of the turbulent flow through a heated square duct. J. Fluid Mech. 453, 201–238 (2002). https://doi.org/10.1017/S0022112001006887

    MathSciNet  MATH  Google Scholar 

  13. Berry, R.A., Peterson, J.W., Zhang, H., Martineau, R.C., Zhao, H., Zou, L., Anders, D.: Relap-7 Theory Manual. US Department of Energy, Office of Nuclear Energy, USA (2014)

  14. Fedkiw, R.P., Aslam, T., Merriman, B., Osher, S.: A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J. Comput. Phys. 152(2), 457–492 (1999). https://doi.org/10.1006/jcph.1999.6236

  15. Fedkiw, R.P.: Coupling an Eulerian fluid calculation to a Lagrangian solid calculation with the ghost fluid method. J. Comput. Phys. 175(1), 200–224 (2002). https://doi.org/10.1006/jcph.2001.6935

  16. Poinsot, T.J., Lele, S.K.: Boundary conditions for direct simulations of compressible viscous flow. J. Comput. Phys. 101(1), 104–129 (1992). https://doi.org/10.1016/0021-9991(92)90046-2

    Article  MathSciNet  MATH  Google Scholar 

  17. Rajaratnam, N., Albers, C.: Water distribution in very high velocity water jets in air. J. Hydraul. Eng. 124(6), 647–650 (1998). https://doi.org/10.1061/(ASCE)0733-9429(1998)124:6(647)

    Article  Google Scholar 

  18. GNU Image Manipulation Program—Gimp. https://docs.gimp.org/ (2014). Accessed 22 Sept 2016

  19. Matthujak, A., Hosseini, S.H.R., Takayama, K., Sun, M., Voinovich, P.: High speed jet formation by impact acceleration method. Shock Waves 16(6), 405–419 (2007). https://doi.org/10.1007/s00193-007-0079-9

    Article  Google Scholar 

Download references

Acknowledgements

Special thanks to Juan Arenas for his technical support in operating the water jet cutting machine.

Funding

C. Echeverria and D. Porta thank the scholarship provided by the National Council of Sciences and Technology (CONACyT) and UNAM through Project PAPIIT IN117712.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. Aguayo.

Additional information

Communicated by A. Higgins.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 2664 KB)

Supplementary material 2 (mp4 1093 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salinas-Vázquez, M., Echeverría, C., Porta, D. et al. Shock waves generated by sudden expansions of a water jet. Shock Waves 28, 933–937 (2018). https://doi.org/10.1007/s00193-017-0775-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00193-017-0775-z

Keywords

Navigation