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Abstract
The paper shows how the standard two-period CAPM with exogenous wealth and 
exogenous returns can be extended inter-temporally by including the evolution of 
wealth from the Evolutionary Finance model of Evstigneev et al., J Math Finance 
12:329–339, (2011). The missing link between the two models is the CAPM with 
heterogeneous behavior derived by Hens and Naebi, J Appl Econ Lett 28:501–507, 
(2020). The paper delivers theoretical and empirical results for behavioral hetero-
geneity in the CAPM with evolutionary dynamics. The market selection process 
results in a beta based on fundamentals to which the standard beta tends to converge 
asymptotically. The results of our model are confirmed by data from the DJIA.

Keywords CAPM · Heterogeneous Behavior · Evolutionary Dynamics · 
Fundamental Beta

JEL Classification D53 · G1 · G4

1 Introduction

The capital asset pricing model (CAPM) is one of the cornerstones of finance 
because it is ‘... a rich source of intuition and also the basis for many practical 
financial decisions’ (cf. Duffie (1988, p.93)). It is built on the earlier work of Harry 
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Markowitz (1952) who developed the mean–variance model for portfolio selection. 
Sharpe (1964), Mossin (1966) and Lintner (1965) derived the equilibrium conse-
quences of Markowitz` (1952) model under the assumptions: 1) Unlimited borrow-
ing and lending at a risk free rate, 2) Absence of background risk and 3) All inves-
tors have homogenous expectations.

Since the introduction of the CAPM many studies attempted to test it empirically 
and because of its poor evidence, they criticized the assumptions of the theory. As 
a result, many other versions of the CAPM have been developed to overcome those 
problems. For instance, Lintner (1969) extended the CAPM to heterogeneous expec-
tations and Mayers (1972) to background risk. Black (1972) relaxed the assumptions 
that investors can do unlimited borrowing at the risk free rate. And further empiri-
cal evidence has led to the incorporation of both heterogeneity in expectations and 
bounded rationality into asset pricing.1 For example, in a dynamic setting, Chiarella 
et  al. (2013) demonstrate the stochastic behavior of time-varying betas and show 
that there can be inconsistency between ex-ante and ex-post estimates of asset betas 
when agents are heterogeneous and boundedly rational.

All these extensions maintained the central assumption that all investors choose 
their portfolios based on mean–variance analysis (cf. Markowitz (1952)). However, 
DeMiguel et al. (2009) showed that the mean–variance analysis may not be a clever 
way of forming portfolios and a new literature called behavioral finance has amassed 
evidence that many investors indeed deviate from this assumption (cf. Barberis and 
Thaler (2003)).

Inspired by these contributions, the general idea of our paper is to extend the sin-
gle-period static model of CAPM to a dynamic equilibrium asset pricing model with 
more realistic assumptions, in which a subset of investors is allowed to grow their 
portfolio over time in a different way from the mean–variance analysis.

The single-period model of the CAPM, allowing for non-mean–variance behav-
ior, has already been developed by Hens and Naebi (2020). Motivated by Evstigneev 
et al. (2011), for short EHSH (2011), the principal objective of this paper is to apply 
evolutionary dynamics—mutation and selection— to a new modeling of the CAPM 
with heterogeneous behavior.

In the evolutionary finance framework, the market is understood as a heteroge-
neous population of frequently interacting investment strategies in competition for 
market capital. The main point considered here is to check the asymptotic market 
wealth of those who behave as described by the CAPM. Namely, the paper aims 
at detecting the asymptotic wealth share of mean–variance and non-mean–variance 
strategies to see which group survives in the market, i.e. which groups wealth share 
is asymptotically bounded away from zero, and therefore, affects the market identity. 
In a much simpler setting with short-lived Arrow-securities, Sciubba (2006) figured 
out that neither the mean–variance nor the CAPM investment rule can survive in 
competition with an investor who maximizes a logarithmic expected utility function. 
Our results apply for long-lived assets and for a much richer ecology of investment 
strategies.

1 See the survey papers in the handbook of Hens and Schenk-Hoppe (2009) for developments in this 
literature.
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1.1  Relationship to CAPM‑models with intertemporal dynamics

Merton (1973) developed the Intertemporal Capital Asset Pricing Model 
(ICAPM) that uses utility maximization to get exact multifactor predictions of 
expected security returns. The CAPM assumes that investors choose portfolios 
that produce returns in the future while in the ICAPM investors are concerned 
not only with their end-of-period payoff, but also with the opportunities they 
will have to consume or invest the payoff. Thus, when choosing a portfolio at 
time t-1, the ICAPM investors consider how their wealth at time t might vary 
with future variables including labor income, the prices of consumption goods 
and the nature of portfolio opportunities at t. Breeden (1979) and Lucas (1978) 
developed the Consumption Capital Asset Pricing Model (CCAPM) which 
links between consumption and stock returns, thus, it relies on the aggregate 
consumption in order to understand and predict future asset prices instead of 
the market portfolio’s return in the CAPM. Breeden et al. (1989) examined the 
empirical implications of the consumption-based capital asset pricing model 
(CCAPM), and compared its performance with a model based on the mar-
ket portfolio. Moreover, many theoretical models on conditional CAPM were 
developed that like Lucas (1978) are based on the representative agent econ-
omy by assuming perfect rationality and homogeneous expectations.

The approach taken in this paper eliminates the shortcomings of the dynamic 
CAPMs (ICAMP and CCAPM) which rely on agents’ perfect foresight to estab-
lish equilibrium. In particular, in our model the investors do not have to agree 
on the future prices for each of the possible future realizations of the states of 
the world without knowing which particular state will be realized. The CCAPM 
differs radically from our model that is based on the evolutionary model of 
EHSH (2011). In this paper, only historical observations and the current state 
of the world influence current behavior; neither agreement on the future mar-
ket structure is required, nor are coordinated actions of the agents assumed. 
Another important distinction between the current approach and the conven-
tional dynamic CAPM lies in the primitives of the model. We avoid using 
unobservable agents’ characteristics such as individual utilities or subjective 
expectations. This makes the theory closer to reality, where typically quanti-
tative information about individuals’ utilities is lacking. Moreover, investors’ 
strategic behavior often is not fully expressible in terms of the maximization of 
one quantitative criterion or another. Rather, it may involve satisfying simple 
rules of thumb based on experience and other behavioral notions (e.g., winning 
in competition, dominating a market segment, etc.).

1.2  Relationship to fundamental beta literature

In the CAPM, the beta coefficient is used as a measure of the systematic risk associ-
ated with financial assets. The basic measure of beta is the covariance of an asset 
return with the market return divided by the variance of the market return.

1501Behavioral heterogeneity in the CAPM with evolutionary…
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In contrast, a fundamental beta is based not only on price data but also on 
other market-related and financial data. Betas derived this way reveal that 
although all companies experience systematic risk, they differ in their sensitivity 
to macroeconomic conditions due to their underlying accounting characteristics. 
As a result, fundamental betas suggest that systematic risk is a function of vari-
ous accounting variables such as liquidity, leverage, and the dividend payout ratio 
(cf. Dyl and Hoffmeister (1986)). Since the fundamental beta needs accounting 
data, it is usually recalculated monthly, quarterly and yearly. Thereby, taking into 
account any changes in the company’s underlying risk structure during that time.

In this regard, many studies have demonstrated that fundamental betas 
have important advantages and significantly outperform return-based betas as 
predictors of asset’s behavior, such as the work of Rosenberg and McKibben 
(1973), Fama and MacBeth (1973); Fama and French (2004), Chance (1982), 
Dyl and Hoffmeister (1986), and Gahlon and Gentry (1982). They argue that 
this is because fundamental betas provide better indications of the sources of 
systematic risk experienced by firms.

However, fundamental beta prediction models developed by previous 
research are a product of statistical models and do not provide a clear theory. 
Here, by employing the evolutionary finance model of Evstigneev, Hens and 
Schenk-Hoppe, EHSH, (2011), we come up with a formula for fundamental 
beta based on dividend yields.

The paper is structured as follows: Section 2 presents the evolutionary cap-
ital asset pricing model. This section briefly reviews the evolutionary finance 
model of EHSH (2011) with a risk-free asset and it endogenizes the wealth dis-
tribution and the returns in the CAPM with heterogeneous strategies. In Sec-
tion 3, which is the theoretical part of the article, the evolutionary fundamental 
beta is introduced and derived. Section 4 deals with the empirical work and the 
numerical simulation of the evolutionary finance model with a risk free asset 
of EHSH (2011) using nine strategies, including the equally weighted strategy, 
the expected relative dividend strategy, the adaptive historical relative dividend 
strategy, the relative dividend yield strategy, the momentum strategy, noise 
traders, the buy and hold strategy, the maximum Sharpe ratio strategy and the 
mean–variance strategy. The result shows that starting from any initial distribu-
tion of wealth, the market selection process converges to the situation in which 
the most market wealth concentrates on the expected relative dividend strategy. 
Then the empirical result on the convergence of the standard beta to the evolu-
tionary fundamental beta is presented. Section 5 concludes.

2  Evolutionary capital asset pricing model

The general idea of the Evolutionary CAPM is to extend the single-period static 
model of CAPM to a dynamic equilibrium asset pricing model with more realistic 
assumptions, in which a subset of investors is allowed to grow their portfolio over 
time in a different way from the mean–variance analysis.
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In a first step, the single-period model of CAPM allowing for non-
mean–variance behavior has already been developed by Hens and Naebi (2020). 
In this model there are i = 1, …, I-1 investors doing mean–variance analysis 
while investor I might not be a mean–variance optimizer. Allowing for non-
mean–variance behavior the market identity2 

∑I

i=1
�i
k
ri = �M

k
 can be re-written 

so that 
∑I−1

i=1
�i
k
ri = �M

k
− �I

k
rI . Here ri is the relative wealth of investor i and �i

k
 

is the fraction of wealth invested in asset k by investor i and �M
k

 is the relative 
market capitalization of asset k. As Hens and Naebi (2020) have shown, in this 
setting the Security Market Line (SML) is given by:

μk is asset k’s expected return, i.e. the expected value of Rk . RM =
∑

kRk�
M
k

 is the 
return of the market portfolio and RI =

∑
kRk�

I
k
 is the return of the portfolio held by 

the non-mean–variance investors I. Thus, the SML accounts for the presence of non-
mean–variance behavior in the market by adjusting assets’ betas.

Here, we do the next and much bigger step: endogeneizing the wealth distri-
bution and the returns in the CAPM with heterogeneous behavior which we will 
discuss in the following sections. The CAPM of Sharpe, Mossin and Lintner is 
static in this respect but in real financial markets, the buying and selling behav-
ior of heterogeneous strategies determines both the asset returns and the wealth 
of the strategies. Hence, to understand the dynamics of the CAPM, one needs to 
study models in which a heterogeneous set of strategies compete over time. The 
evolutionary finance model of EHSH (2011) does exactly this. The second step 
is thus to employ the EHSH-model to endogenize the wealth distribution and 
the returns and model a really dynamic CAPM with heterogeneous behavior.

2.1  Dynamics of relative wealth in the EHSH‑model with a risk‑free asset

Consider a financial market operating over discrete points in time t = 0, 1, …. 
In this market, there are K + 1 assets, k = 0, 1,..., K where k = 0 denotes the risk-
free asset and its holdings is referred as balances in a bank account with the 
interest rate of Rf  . Other assets, k = 1,..., K are risky and pay a dividend Dk

t+1
 . 

For simplicity, it is assumed that risky assets are in a unit supply and the risk-
free asset is in unlimited supply. The market is influenced by random factors 
modeled in terms of an exogenous stochastic process z1,… , zt where zt is a ran-
dom element of some measurable space. We use the notation zt = (z0,… , zt) 
to denote the path of states up to period t. Let T denote the last time period 
considered, i.e. time runs from  t = 0  to t =T. There are finitely many invest-
ment strategies indexed by i = 1, …, I with I ≥ 2, each is pursued by an inves-
tor. The investment strategy of investor i at date t is characterized by a vector 

(1)μk = Rf + �̂k
(
�M − Rf

)
,where, �̂k =

cov[Rk,
(
RM − RIrI

)
]

cov[RM ,
(
RM − RIrI

)
]

2 For each asset, the market identity is the equality of demand and supply written in terms of asset allo-
cations and relative wealth.
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of investment proportions �i
t
= (�i,ot , �i,1t ,… , �i,Kt )

�

 with 
∑K

k=0
�i,kt = 1 . In the com-

parison of the strategies, it is assumed that all investors have the same alloca-
tion to the risk-free asset for all periods �i,0t = �0 . The wealth of each investor is 
denoted as wi

t
 and �i

t
wi
t
 is the wealth reinvested for the next period. Here �i

t
 is the 

reinvestment rate and 0 < 𝛼i
t
< 1 . Since we seek for the best long-term trading 

strategy, regardless of the amount they withdraw from their portfolio, it is also 
assumed that all investors have the same reinvestment rate over time �i

t
=�.

A portfolio of investor i at date t = 0, 1, … is specified by a vector 
xi
t
= (x

i,0
t , x

i,1
t ,… , x

i,K
t )

�

 where xi,0t  is the amount in the investor’s bank account and 
x
i,k
t  (k = 1,…, K) is the number of units of asset k held by the investor i at time t. To 

express the units of each asset held by investor i one computes:

where pk
t
 is the price of asset k at time t. It is assumed that the market is always 

in equilibrium and the equality of asset demand and asset supply makes it possible 
to determine the equilibrium prices pk

t
 of each asset k = 1, …, K. As we assumed 

the total supply of each risky asset is normalized to 1, in equilibrium we have ∑I

i=1
x
i,k
t = 1 , k = 1, 2, …, K. Therefore, equilibrium prices are given by:

In other words, the price of asset k is the wealth average of the strategies’ portfo-
lio share for asset k. The price of the risk-free asset is exogenous and set to p0

t
= 1 . 

There is no market clearing condition for this asset.
Note that wealth, dividends and prices may all be subject to some growth rate. 

To analyze them one can restrict attention to relative wealth, relative dividends and 
relative prices getting rid of the absolute growth rates.

To derive the dynamics of investors’ relative wealth, as in the traditional model, 
we start from the fundamental equation of wealth dynamics:

where Rk
t+1

 is the return on asset k = 0, 1, …, K at time t + 1. In the evolutionary 
setting, the return is exogenous for the risk-free asset, k = 0, which is denoted here by 
Rf  and endogenous for the risky assets, k = 1, 2, …, K, the fundamental equation of 
which is as follows:

By expanding the expression (4) using Eq. (5) and Rf  , we get:

(2)xi,k
t

=
��i,k

t
wi
t

pkt

(3)pk
t
= �

∑I

i=1
�i,kt wi

t
, k = 1, 2,… ,K

(4)wi
t+1

= �
∑K

k=0
Rk
t+1

�i,k
t
wi
t

(5)Rk
t
=

Dk
t
+ pk

t

pk
t−1
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We model dividends as Dk
t+1

= dk
t+1

Wt where Wt =
∑I

i=1
wi
t
 is the aggregate 

wealth of all investors and dk
t+1

 is exogenously determined by a stochastic process 
dk
t+1

= dk
t+1

(zt+1) . Consequently, all endogenous variables are stochastic.
By inserting pk and Dk into Eq. (6) and dividing both sides by aggregate wealth at 

t+1, Wt+1 , one can find a system of equations determining the relative wealth of 
investor i denoted by ri

t+1
 as below:

As shown in Appendix 2, the growth rate of aggregated wealth of all investors 
can be obtained as follows:

Finally, the resulting system of equations can be written in more compact vector 
notation as:

where Id is a K*K identity matrix, Λt+1 is a K*I matrix of the period t + 1 invest-
ment strategies and Xt is an I*K matrix of all investors period-t portfolio holdings of 
all risky assets.

Equation (9) governs the evolution of wealth shares for given investment strate-
gies. The first term captures the capital gains while the second term describes the 
change in relative wealth as resulting from the exogenous dividends and the return 
on the risk-free asset. Our interpretation of the dynamics (Eq. (9)) is that of a market 
selection process on a set of investment strategies. The underlying stochastic pro-
cess and the equations above result in a random dynamical system on the simplex 
Δ = {r ∈ ℝ

I , ri ≥ 0,
∑I

i=1
ri = 1} as in EHSH (2011).

2.2  The structure of asset returns under the evolutionary finance model of EHSH 
(2011)

The standard formulation of the CAPM is only based on asset returns, and asset 
prices are not mentioned explicitly. Therefore, before introducing the evolutionary 
fundamental beta, we express the return of any risky asset k in our framework.

As shown in Eq. (5), the return of any risky asset k at time t is given by Rk
t
=

Dk
t
+pk

t

pk
t−1

By substituting the equations of Dk
t
 and pk

t
 , we get:

(6)wi
t+1

= �
∑K

k=1

(
pk
t+1

+ Dk
t+1

pkt

)
�i,k
t
wi
t
+ �Rf�

0wi
t

(7)

ri
t+1

=
Wt

Wt+1

�
1 − �

�K

k=1

�I

i=1
�i,k
t+1

�
�i,kt ri

t
∑I

i=1
�i,kt rit

��−1��K

k=1
dk
t+1

�
�i,kt ri

t
∑I

i=1
�i,kt rit

�
+ �Rf�

0ri
t
)

�

(8)�t =
Wt

Wt−1

=
dt+�Rf �

0

1−�(1−�0)
where dt =

∑K

k=1
dk
t

(9)rt+1 =
1

�t+1

(
Id − �XtΛt+1

)−1
[Xtdt+1 + �Rf�

0rt]
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To get rid of the absolute growth rate of wealth, one can find the following equa-
tion for the evolutionary return on risky assets in terms of relative dividends and of 
market prices relative to aggregate wealth:

where, as mentioned before, �t =
dt+�Rf �

0

1−�(1−�0)
 is the growth rate of the aggregate 

wealth of all investors, dk
t
 is the factor in Dk

t
= dk

t
Wt−1 and qk

t
 is the relative price of 

asset k and is given by qk
t
=

pk
t∑I

i=1
wi
t

= �
∑I

i=1
�i,kt ri

t
 . Written in relative terms, the price 

equation keeps its form and simply is the convex combination of the strategies in the 
market.

3  Evolutionary fundamental beta

So far, we have depicted a market in which there is a heterogeneous set of invest-
ment strategies competing for the market capital over time, and their frequent inter-
actions determine the equilibrium prices and subsequently the return on risky assets 
and relative wealth of the strategies. Now, using Hens and Naebi (2020), we embed 
this ecology of investment strategies into the CAPM.

Based on the evolutionary concepts mutation and selection, all other strategies in 
the market are asymptotically driven to extinction by the survival strategies. Suppos-
ing there is only a single survival strategy �I,kt  in the market, this strategy determines 
the equilibrium market prices and the market identity. To account for the possibility, 
we introduce the evolutionary fundamental beta as below3:

3.1  Theorem 1‑ Evolutionary fundamental beta

Suppose the evolution of wealth converges to a single strategy �I,kt  , k = 1, …, K, then 
in the limit �M,k

t =�
I,k

t
 and the beta of asset k is:

and �M,k
t  denotes the relative market capitalization of the asset k.

(10)Rk
t
=

dk
t
Wt−1 + �

∑I

i=1
�i,kt wi

t

�
∑I

i=1
�i,k
t−1

wi
t−1

(11)Rk
t
=

dk
t

qk
t−1

+ �t
qk
t

qk
t−1

�I,kt = � + (1−�)

�M,k
t

.
Cov(dk

t
,dt)

Var(dt)
where � = �

(
1 − �0

)

3 This assumption is well justified according to the Evolutionary Finance models of EHSH in which for 
many settings investing proportional to expected relative dividends dominates all other strategies in the 
market and asymptotically gains all the market wealth (cf. Evstigneev et al. (2016)).

1506 T. Hens, F. Naebi



1 3

3.2  Proof

Suppose that the evolution of wealth converges to a single strategy �I,kt  , which domi-
nates all other strategies. Hence, in the limit rI

t
= 1 . On the other hand, the relative 

price of asset k is given by qk
t
= �

∑I

i=1
�i,kt ri

t
 . Since in the limit rI

t
= 1 , the relative 

price of asset k, qk
t
 , is asymptotically determined by the strategy �I,kt  and is constant 

qk
t
= qk.
Recalling the formula for returns on risky assets from Eq. (11) and given that as a 

result of our assumption the relative asset price k in the limit is constant, we obtain:

Moreover, recall the definition of the market return RM
t

:

By entering the formula obtained for Rk
t
 (Eq. (12)) in RM

t
 , we get the following for-

mula for the market return:

Hens and Naebi (2020) have already shown that the beta in the CAPM, which allows 
for non-mean–variance strategies, is given by �̂k =

cov[Rk ,(RM−RIrI)]
cov[RM ,(RM−RIrI)]

 where i = 1, …, I-1 
investors use mean–variance analysis while investor I might not be a mean–variance 
optimizer. However, to get the beta in the CAPM with heterogeneous strategies, we 
need to assume that a subset of these heterogeneous investors definitely follow the 
mean–variance strategy. Now to get the beta in the CAPM given by�k

t
=

Cov(Rk
t
,RM

t
)

Var(RM
t )

 , the 
covariance of Rk

t
 and RM

t
 as well as the variance of RM

t
 are required, which are obtained 

as follows:

Finally, we get the following formula for the beta:

Note that Var
(
dt

)
> 0 in any data set, which completes the proof.

Hence, we have derived a beta in terms of fundamentals by considering the exist-
ence of heterogeneous strategies interacting in an evolutionary setting. As we show in 

(12)Rk
t
=

dk
t

qk
+ 𝛾t where 𝛾𝑡=

𝑑𝑡 +𝛼𝑅𝑓𝜆
0

1−𝜃
and 𝜃=𝛼(1 − 𝜆0)

(13)RM
t
=
∑K

k=1
�M,k
t

Rk
t
.

(14)RM
t
=

dt

�(1 − �)
+

�Rf�
0

1 − �

(15)Cov
(
Rk
t
,RM

t

)
=

1

�(1 − �)

[
1

qk
Cov

(
dk
t
, dt

)
+

1

1 − �
Var

(
dt

)]

(16)Var
(
RM
t

)
= [

1

�(1 − �)
]
2

Var(dt)

(17)�∗,kt = � +
(1−�)

�M,k
t

.
Cov(dk

t
,dt)

Var(dt)
where � = �

(
1 − �0

)
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the next section, simulations yield that indeed the dynamical system converges to the 
strategy �∗,k =

(
1 − �0

)
E
(
dk
)
 , a strategy well-known from the EHSH (2011) model.

4  Simulation analysis and empirical results

In this section we first simulate the financial market with the presence of heteroge-
neous strategies in the evolutionary finance model of EHSH (2011). This helps us 
to understand the concept of market selection process by recognizing the winning 
strategies that capture the wealth of the market. Using this property, we then propose 
Hypothesis 1, which states that the deviation of the standard beta from the evolu-
tionary fundamental beta must be systematically reduced over time; even when, in 
contrast to the two-fund separation theorem, investors not  all invest in the market 
portfolio. Finally, we test the hypothesis of convergence towards the evolutionary 
fundamental beta by the Wald coefficient test.

For the purpose of simulation and empirical analysis, we used annual Dow Jones 
Industrial Average (DJIA) data from 1981 to 2019. The data used consists of the 
dividends and the market capitalization of 40 companies that are currently in the 
DJIA index or that have been in it for at least two subsequent years.

4.1  Simulation analysis

In the simulation program4, written by (Fischer, Julian 2021. Evolutionary Finance 
Model in Python. Bachelor Thesis at the Department of Physics, University of 
Zurich), several investment strategies are implemented. In this paper we com-
pare the evolution of wealth of the following strategies: A strategy generated from 
mean–variance analysis, the naive diversification rule fixing equal weights in the 
portfolio, the max Sharpe ratio strategy, the buy and hold strategy, the momentum 
strategy, noise traders, the expected relative dividend strategy λ∗ , the adaptive rel-
ative dividend strategy and the relative dividend yield strategy, each of which are 
describe below. In order to initialize the program, the equally weighted strategy was 
chosen. It serves as a base, whereas all the others can be enabled separately.

The financial market considered originates from the evolutionary finance model 
of EHSH (2011). In the simulation there is no transaction cost imposed and provided 
that short selling is enabled, a short position of up to 10% in each asset is allowed. 
There are two stochastic processes considered for dividends: ’Historical DJIA data’ 
dividend process and ’i.i.d.5 DJIA data’ dividend process.

In the first stochastic process, the historical dividend payouts in DJIA were 
re-scaled and used as payouts for the assets. This gives 40 assets followed over 
39 years. A second approach to model dividend payouts was realized as follows and 
denoted as ’i.i.d. DJIA data’ dividend process. The state of the world zt determines 
which of the 39 years is selected randomly with equal probability. Note that in the 

4 The simulation is available online on http:// anywh ere3. pytho nanyw here. com/ login_ ba, Pwd: 
FinEco21. The description of the strategies is taken from the Bachelor thesis of Julian Fischer.
5 Independent and identically distributed.
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i.i.d. process, the payouts were not chosen in historical order but randomly by a uni-
formly distributed random variable. Moreover, the i.i.d. process allows to generate 
more than 39 time periods and in our i.i.d. simulations we have chosen T = 200. 
Finally, note that this latter approach adds more randomness to the system since 
even after rescaling two consecutive historical dividends are more similar to each 
other than rescaled dividends from two randomly selected years.

4.2  The equally weighted strategy

This is also known as naive diversification or the 1
N

 strategy. As the name suggests, 
the same fraction of wealth is invested into each asset k. The weight of each asset is 
given by the following expression:

As before �0 is the part allocated to the risk-free asset. As DeMiguel et al. (2009) 
have shown, on many data sets this strategy achieves out-of-sample Sharpe-ratios 
that cannot be beaten by mean–variance optimization.

4.3  Expected relative dividend strategy �∗

The next strategy used in the simulation is the expected relative dividend strategy. It 
is locally stable (also globally stable in many settings) against any other investment 
strategy, as shown in Theorem 1 in EHSH (2011). The result suggests that it should 
be the most successful one also in our setting. This investment strategy allocates 
wealth across all of the available assets in proportions corresponding to the expected 
(relative) dividend payouts. Therefore, the higher the expected (relative) dividend 
payouts of a certain asset, the higher the weight �∗ allocates to this asset.

where, as before, dk
t
 is the relative dividend of the asset k. Note that in the simula-

tions including �∗ this strategy is allowed to know the expected relative dividends. 
This is of course not realistic in practice. Therefore, we replace it by an adaptive 
version based on the previous averages of relative dividends. Nevertheless, to link 
our simulations to the theoretical results of EHSH (2011) we found it worthwhile to 
include this rational benchmark.

4.4  Adaptive historical relative dividend strategy �∗ad

The adaptive historical relative dividend strategy λ∗ad adapts the weights according 
to past relative dividends of asset k, as the name suggests. Technically, it is very 
similar to the λ∗ strategy; however it does not rely on the expectation and this makes 
it easier to implement in reality. The weight that the �∗ad assigns to each asset is 
given by:

(18)�
1

N
,k

t =
(
1 − �0

)
.
1

K
, k = 1, 2,… ,K

(19)�∗,kt =
(
1 − �0

)
E(dk

t
), k = 1,… ,K
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Here d
k
 is the mean of historical relative dividends and lr denotes the look-back 

period which is the period where �∗ad does not yet fully rely on past dividends.
In the initializing phase where t is less than lr, (t < lr), the adaptive historical rela-

tive dividend strategy weights are chosen as a weighted average between the 1
N

 and 
�∗ad strategies.6

4.5  Relative dividend yield strategy (RDY)

The relative dividend yield strategy compares a certain asset’s dividend yield to the 
dividend yield of the broader market. In this strategy, wealth is allocated between 
assets in terms of their relative dividend yields; therefore, the higher the relative 
dividend yield of a certain asset, the higher the weight this strategy allocates to the 
asset.

Given that the dividend yield of asset k based on the definition is DYk
t−1

=
Dk

t−1

Pk
t−1

 , 
the relative dividend yield of this asset is calculated by:

Accordingly, Eq.  (22) defines the proportions allocated to asset k based on the 
relative dividend yield strategy:

4.6  Buy & hold strategy

In the equilibrium where no companies are introduced nor removed, the “Buy & 
Hold” strategy plays a passive role and its relative wealth remains constant. It ini-
tially buys a share of the market portfolio and keeps its relative wealth over all 
periods.

(20)�∗ad,kt =
(
1 − �0

)
d
k

t−lr
, k = 1,… ,K

(21)RDYk
t−1

=
DYk

t−1
∑K

k=1
DYk

t−1

(22)�RDY ,kt =
(
1 − �0

)
RDYk

t−1
, k = 1,… ,K

6 In the initializing phase,�∗ad,k
t

=
(
1 − �0

)
.
(n 1

N

.λ
1
N

K
+n�tm .d̂ad )

n 1
N

+n�tm
, k = 1,… ,K . Where n 1

N

= max(lr − t, 0) and 

n�tm = lr − n 1

N

 are weights for the weighted average during the defined look-back period. The variable d̂ad 
is the mean of the previous relative dividend payouts, within the look-back period lr.
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4.7  Noise traders

The strategy “Noise Traders” aims to replicate an investor who trades assets ran-
domly. The allocation of wealth across the assets is conducted by using i.i.d. random 
variables. The proportion of wealth invested in asset k is given by:

where �k
t
 denotes the realization of the underlying random variable and 

� t =
∑K

k=1
�k
t
 denotes the sum of all realizations. The underlying random variables 

can technically follow any distribution. Unjustifiably, the distribution was chosen to 
be uniform.

4.8  Momentum strategy

Strategies based on momentum root in the belief that ’past winners stay winners 
and will outperform past losers’. The assets which performed well over a certain 
period will be chosen over the ones which performed poorly. The momentum 
strategy is widely applied and supported by empirical evidence. Jegadeesh and 
Titman (2011) and Chan et al. (1996) find empirical evidence for the existence 
of momentum in stocks, however it can be found across various asset classes, as 
Asness et al. (2017) show.

In order to identify these winners, a look-back period mr for the momentum strat-
egy was defined and the change of prices was translated into an input signal 
sk
t
=

pk
t

pkt−mr
− 1 . The weights of the momentum strategy for each asset were then com-

puted as given below:

where st =
∑K

k=1
sk
t
 is the sum of all input signals. As the method above does not 

allow any short-selling, all signals were bounded from below by 0. However, if one 
enables short selling, then the signal can result in extreme portfolio weights, since 
the only further restriction on the weights is 

∑K

k=1
�k
t
= 1 − �0.

In order to tame any extreme positions, the input signal sk
t
 was smoothed with a 

sigmoid function,7 similarly as in Hens et al. (2020). Equation (25) gives the weights 
for the momentum strategy with enabled short selling:

where ŝt =
1

K

∑K

k=1
sk
t
 is the mean of all input signals and � ∈ R is a constant.

(23)�Noise,k
t

=
(
1 − �0

)
.
�k
t

� t

, k = 1,… ,K

(24)�Mom,k
t =

(
1 − �0

)
.
sk
t−1

st−1
, k = 1,… ,K

(25)�Momss,k
t = sig(�.

(
sk
t−1

− ŝt−1
)
) − 0.5 +

1−�0

K
, k = 1,… ,K

7 sig(x) = 1

1−e−x
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4.9  Maximum sharpe ratio strategy

Maximizing the Sharpe ratio results in the steepest Capital Allocation Line (CAL), 
on which the Market Portfolio can be found. To find this portfolio, one faces the fol-
lowing maximizing problem:

This maximizing problem can be solved and consequently, the proportions of 
�MaxS
t

 can be determined. In the expression above, Covt−1 denotes the covariance 
matrix of returns and �t−1 the expected return based on the previous periods. rf  is 
the risk-free rate. The steepest CAL is obtained by maximizing the Sharpe ratio and 
is called the Capital Market Line (CML), which is tangential to the efficient frontier. 
The slope depends on the risk-free rate.

4.10  Mean–variance strategy

Mean–variance analysis is the process of weighing risk, expressed as vari-
ance, against expected return and focuses on creating a portfolio that optimizes the 
expected return according to a specific level of risk or vice versa. In the simulation, 
the Minimum Volatility Strategy is implemented. This strategy finds the portfolio 
which minimizes the variance of returns (as a measure of risk). Here, the weights 
attributed to asset k are determined by minimizing the variance of the portfolio, as 
in Eq. (27):

where again Covt−1 denotes the covariance matrix of returns. In the setting of 
portfolio theory, the Min Volatility’ strategy would be the chosen one, as long as 
one cannot estimate any expected returns, but only estimates the covariances.

We numerically investigate by simulation the evolution of wealth in each of the 
strategies presented above with two dividend processes, the i.i.d. dividend process 
and historical DJIA data. In the simulation reported below, we first endowed each 
strategy with the same initial wealth of 1,000. Then, in the second run without 
changing the other parameters, we simply changed the initial wealth for the winning 
strategy in the first simulation to see if the market selection process still remains the 
same as before.

A typical run of a simulation with the 7 strategies with the given parameters is 
shown in Fig.  (1). It depicts the wealth shares of the investment strategies during 
39 years simulated with historical DJIA data and 200 years simulated with i.i.d. div-
idend process.

(26)�MaxS
t

=
max

�t

�T
t−1

.�t−rf

�Tt .Covt−1.�t
s.t.

K∑

k=1

�MaxS,k
t

= 1 − �0

(27)�MinV
t

=
min

�t

K∑

i=1

K∑

j=1

�i
t
�
j

ts
i,j =

min

�t
�T
t
Covt−1�ts.t.

K∑

k=1

�MinV ,k
t

= 1 − �0
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In Fig. (1), all strategies are endowed with the same initial wealth. However, after 
a few periods the expected relative dividend strategy �∗ dominates other strategies 
and gains approximately 80% of the market wealth with both relative dividend pro-
cesses. Note that the remaining market wealth is hold by the Buy&Hold strategy. 
Since this strategy follows the market, ultimately its investment proportions are 
equal to the winning strategy.8 Thus, effectively 100% of the wealth is eventually 
governed by the strategy �∗.

Dividend Process = i.i.d. DJIA data Dividend Process = historical DJIA data

The parameters of the model are chosen as follows:
Time steps = 39 for historical DJIA data

200 for i.i.d. DJIA data dividend process
The number of risky assets = 6
Risk-free Rate = 0.05

Reinvestment Rate = 0.8
Part of wealth in the risk-free asset = 0.2
Look-back period = 10
Ini�al wealth of all strategies= 1,000
Short-Selling = None

Fig. 1  The evolution of relative wealth of each strategy endowed with the same initial wealth

Dividend Process = i.i.d. DJIA data Dividend Process = historical DJIA data

Fig. 2  The evolution of relative wealth of strategies including �∗,ad strategy, endowed with the same ini-
tial wealth

8 For a formal argument see footnote 12 below.
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Similar results are obtained when in the Relative Dividend Strategy, the expec-
tation is formed by taking averages of realized relative dividends, which in the 
simulation program is denoted by �∗,ad . The results of using the �∗,ad strategy 
instead of the �∗ strategy in the simulation (with the same values given to the 
parameters as before) are shown in Fig. (2).

Moreover, one can also replace the �∗ strategy by a Relative Dividend Yield 
(RDY) Strategy which would then gain all market wealth in the simulations as 
shown in Fig. (3).

Since, so far there are no theoretical results why the Adaptive Historical Rela-
tive Dividend Strategy and Relative Dividend Yield Strategy work equally well, 
we base our arguments in this paper on the expected relative dividends strategy λ∗ 
found to perform best in the models of EHSH.

Dividend Process = i.i.d. DJIA data Dividend Process = historical DJIA data

Fig. 3  The evolution of relative wealth of strategies including RDY strategy, endowed with the same ini-
tial wealth

Dividend Process = i.i.d. DJIA data Dividend Process = historical DJIA data

Ini�al Wealth of λ* = 500
Ini�al Wealth of all other strategies = 1,000

Other parameters are as before

Fig. 4  The evolution of relative wealth of each strategy endowed with different initial wealth for �∗
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Figure (4) shows the wealth shares of the strategies used in Fig. (1), in which 
the initial wealth of the expected relative dividend strategy �∗ is decreased from 
1,000 to 500, and the other parameters of the model remain the same as before. 
As can be seen, despite the decline in initial wealth, this strategy again dominates 
other strategies in the market, gaining more than half of the market wealth.

The fact that we observe, starting from any initial distribution of wealth in this 
setting, the market selection process converges to the situation in which the most 
market wealth concentrates at the expected relative dividend strategy �∗ . Moreo-
ver, since the relative price of asset k is the relative wealth average of the strate-
gies’ portfolio share for asset k, qk

t
= �

∑I

i=1
�i,kt ri

t
 , these relative wealth dynamics are 

reflected in the asset prices, that is, the price of asset k initially reflects all the invest-
ment strategies, but converges to the �∗ strategy. In other words, the mean–variance 
strategy is asymptotically defeated by the �∗ and asset prices are determined by the 
expected relative dividend strategy �∗.

Therefore, we adjust the CAPM which assumes that all market investors follow 
the mean–variance strategy, by considering different investment strategies in the 
market in which the beta is obtained as a result of price convergence to the winning 
strategy.

4.11  Empirical results

In the empirical work, aiming to prevent a survival bias in calculating the evolution-
ary fundamental beta, we directly used the dividends and the market capitalization 
from the Dow Jones Industrial Average (DJIA) data in the following formula9:

where MCk
t−1

 denotes the market capitalization of the asset k at time t-1, TMCt−1 
is the total market capitalization at time t-1 and Dt denotes the total dividends paid 
at time t.

Given that the definition of dividend yield of asset k is DYk
t
=

Dk
t

Pk
t−1

 and in the equi-
librium in our setting MCk

t−1
= pk

t−1
,10 we can also rewrite the above formula for beta 

as follows:

(28)�∗,k
t

= � + (1 − �)

Cov(
Dk

t

MCk
t−1

,
D

t

TMCt−1

)

Var(
D

t

TMCt−1

)

(29)�∗,k
t

= � + (1 − �).
Cov(DYk

t
,DY

t
)

Var(DY
t
)

, where � = �
(
1 − �0

)

9 Proven in Appendix 3.
10 By the definition, market capitalization of asset k is MCk

t
=
∑I

i=1
pk
t
x
i,k
t  which can be rearranged 

as MCk
t
= p

k

t

∑I

i=1
x
i,k
t  . Since it is assumed that risky assets are in a unit supply, in the equilibrium ∑I

i=1
x
i,k
t = 1 . Therefore, MCk

t
= pk

t
.
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It is therefore clear that the evolutionary fundamental beta derived is actually in 
terms of dividend yields.

In this setting, the deviation of the standard beta from the evolutionary funda-
mental beta must be systematically reduced over time; even when, in contrast to the 
two-fund separation theorem, not all investors do invest in the market portfolio. This 
is because market wealth converges towards the winning strategy(s). Thus, we pre-
sent our Hypothesis 1 as follows:

Hypothesis 1- There is a tendency for the standard beta to converge to the evolu-
tionary fundamental beta.

In order to test Hypothesis 1 on the convergence of the standard beta towards the 
evolutionary fundamental beta, we estimate the following regression equation using 
annual Dow Jones Industrial Average (DJIA) data from 1981 to 2019.

where bt and at denote the estimated values and �t is the error term. The coef-
ficient bt < 1 implies the convergence of two betas. The null hypothesis for testing 
with the Wald test of coefficient restriction is H0 ∶ bt ≥ 1 for t = 1981, …, 2019.

We estimated the regression using the OLS method with White-corrected covari-
ance matrix to adjust for heteroscedastic errors and used the Wald test to test the 
coefficient restrictions. The results are presented in Table1.

Based on the estimation output in Table (1), the coefficient at in the regression is 
not significantly different from zero ( |t|< 2) and the coefficient bt in the regression 
is significantly different from zero ( |t|> 2), and is less than 1 which is in line with 
our hypothesis on the tendency of � to converge to �∗ . Moreover, the null hypoth-
esis that bt ≥ 1 is rejected with the Wald F-statistic at any level of significance 
(P-value = 0.000), confirming our hypothesis on the tendency of � to converge to �∗.

5  Conclusion

In this paper, we extended the single-period static model of CAPM to a dynamic 
equilibrium asset pricing model with more realistic assumptions, in which a 
subset of investors is allowed to form their portfolio over time in a different 
way from the mean–variance analysis. Motivated by the EHSH-Model (2011), 

(30)
(
�k
t
− �∗,k

t

)
= at + bt

(
�k
t−1

− �∗,k
t−1

)
+ �t

Table 1  The estimation output of the convergence of standard beta to evolutionary fundamental beta 
using DJIA data

Method of Estimation Coefficient Std. Error t-Statistic p-value of the 
Wald F- Statistic

R-squared

Panel Least Squares a
t

0.0951 0.0560 1.697 0.090 0.4053
b
t

0.6403 0.0389 16.429 0.000
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we applied evolutionary dynamics to a new modeling of CAPM with heteroge-
neous behavior that resulted in endogenous wealth distribution and returns of 
the risky assets in the model.

It is shown by numerical simulations that investors who are endowed with the 
mean–variance strategy as described by the CAPM are asymptotically driven to extinc-
tion when the evolutionary strategy proposed by Evstigneev et  al. (2002) enters the 
market. Indeed, in this setting the evolutionary strategy dominates all other strategies 
and asymptotically determines the market identity as well as relative prices of risky 
assets. Hence, using this property, we derived a beta based on fundamentals to which 
the standard beta tends to converge asymptotically. The convergence is also confirmed 
by data from the DJIA.

Appendix 1 Dynamics of relative wealth

To prove the relation (9) we proceed as follows:
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= �
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Finally, the resulting system of equations can be written in a compact vector notation 
as:

Appendix 2 The growth rate of aggregated wealth (gamma)

To prove growth rate of aggregated wealth, we proceed as follows:

By summing the relation above over i and recalling our assumptions �i,0t =�0 , �i
t

=� , Dk
t+1

= dk
t+1

Wt and dt+1 =
∑K

k=1
dk
t+1

 we have:
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Appendix 3 Evolutionary fundamental beta in practice

To prove Evolutionary Fundamental Beta in practice, we proceed as follows:
The fundamental equation of return on any risky asset k at time t is given by 

Rk
t
=

Dk
t
+MCk

t

MCk
t−1

.
By writing it in relative terms, we have:

Given that as a result of our assumption the relative market capitalization of 
asset k in the limit is a constant, MCk

t−1

TMCt−1

=
MCk

t

TMCt

= RMCk , we obtain:

Recalling the definition of the market return RM
t
=
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t Rk
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formula obtained for Rk
t
 in RM

t
 , we get the following formula for the market return:

Now to get the beta in the CAPM given by�k
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 , the covariance of Rk
t
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 as well as the variance of RM
t

 are required, which are obtained as 
follows:

We get the following formula for the beta:
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