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Abstract
This paper investigates the key driving features of the evolving long-term division of
innovative labor in biotechnology and pharmaceuticals from 1981 to 2012. Our main
goal is to find if technological trajectories and mechanisms discovered by Orsenigo
et al. (Res Policy 30(3): 485–508, 2001) as the main drivers of the structural config-
uration of the network of collaborative alliances have been at work in the long-term
evolution of the industry. We extensively analyze the evolving dynamics of the degree
distribution and the higher order properties of the R&D network. As in Orsenigo
et al. (Res Policy 30(3): 485–508, 2001), we find that polarization through prefer-
ential attachment driven by large pharmaceutical companies as Developers and by
the entry of new specialized biotechnology companies acting as Originators of new
R&D opportunities dominated the early stages of the biotechnology revolution. Later
on the evolution of the collaborative network has been shaped by roles’ transitions
between Originators and Developers of innovative ideas. Against this background,
we introduce parsimonious model of network formation and evolution is introduced,
to account for some essential features of the data generating processes underlying the
evolution of the network.
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1 Introduction

Technological change is an evolutionary process coupled to patterns of industrial
dynamics and organizational transformation. Industry structure and evolution are
shaped by firms persistently searching for, and adopting, new ideas and new organi-
zational forms in their struggle for survival and for industrial leadership (Dosi and
Nelson 2010). Few seminal contributions have emphasized the key role of scien-
tific and technological paradigms in shaping the evolution of industries (see Nelson
and Winter 1982; Dosi 1982; Dosi 1988). Along this tradition, since the Eight-
ies networks of innovators have been studied in the literature as a key feature of
industry structure and evolution (see Pisano 1991; Galambos and Sturchio 1998;
Arora and Gambardella 1994; Powell et al. 1996; Orsenigo et al. 1997; Henderson
et al. 1999). In fact, a division of innovative labour through collaborative agree-
ments between small firms generating new ideas and large companies specialized
in development and commercialization had diffused across different technologi-
cal fields and industries (see Grayson 1960; Arora and Gambardella 1990; Arrow
1993; Arora et al. 2009), sustaining a collective distributed effort to reach a balance
between exploration of multiple research trajectories and their exploitation (March
1991). In particular, the seminal contribution of Orsenigo et al. (1997, 2001) estab-
lished a direct connection between the structure and evolution of knowledge bases
and the structure and evolution of collaborative R&D in pharmaceutical innovation,
studied as a science-intensive industry (see Gambardella et al., 1995). Patterns of
scientific and technological change concurred to transform some of the fundamen-
tal sources of competitive advantage of pharmaceutical firms. Over time, companies
progressively redesigned their competencies and roles in drug discovery and devel-
opment, within a dense network of contractual relations. Orsenigo et al. (2001) and
Riccaboni and Pammolli (2002) showed how technological trajectories within the
industry shaped the emergence and structural evolution of an extensive network of
R&D contractual agreements between firms. Starting from the mid Seventies, the
biotechnology revolution (Orsenigo 1989; Galambos and Sturchio 1996; Nightingale
and Martin 2004; McKelvey et al. 2004) and the molecularization of physiology,
pathology and pharmacology sustained a transition from an industry dominated by
a stable core of large firms founded in the XIX Century to a novel division of labor
between large firms and a new generation of innovative start up companies, vulner-
able since they lacked the financial resources that would have necessary to play as
integrated pharmaceutical companies (Arrow 1993; Pammolli 1996; Galambos and
Sewell 1997). Orsenigo et al. (2001) found that, being grounded in novel scien-
tific and technological knowledge bases, new research hypotheses and opportunities
tended to be originated, under conditions of uncertainty, by cohorts of new special-
ized small firms active in specific domains. Over time, new originators entered the
industry to exploit new research hypotheses, and a complex collaborative network
raised, to match exploration of new research hypotheses with development capabili-
ties. In the early stages of network evolution, established pharmaceutical companies
were able to exploit their absorptive capacity (Cohen and Levinthal 1990) and their
first mover advantage in clinical development and commercialization. Essentially,
they succeeded in integrating most of the research hypotheses generated by the new
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entrants, who lacked financial resources to develop in-house promising new research
opportunities they are able to generate (see Arrow 1993; Grayson 1960; Cohen and
Levinthal 1990; Arora et al. 2009; Pammolli 1996). In this phase, innovative activ-
ities continued to be dominated by a “quasi-random” search process (Malerba et al.
2016) and the entry of new companies did not imply a significant alteration of mar-
ket structure as measured by market shares and firm turnover (see McKelvey et al.,
2004 ). Both the final market and the R&D network continued to be dominated by a
relatively small group of incumbent companies, which succeeded as “serial innova-
tors” (Schumpeter 1934; Dosi et al. 1995; Malerba and Orsenigo 1996; 1997) with a
corresponding remarkable stability of structure industry (Sutton 2001; Bottazzi et al.
2001; Pammolli and Riccaboni 2004; Buldyrev et al. 2020). However, over time the
R&D network experienced radical changes in the roles of different actors. First, new
general purpose research technologies in combinatorial chemistry and hightroughput
screening enabled the emergence of a new generation of start up companies, which
were able to sell their services and platforms to both large established big pharmaceu-
tical companies and new biotech firms. Second, some of the new entrants succeeded
in combining research collaborations with large companies and the development
of their own successful projects and products. Those companies, which succeeded,
finally started to become integrated pharmaceutical companies thanks to the high
specificity of their research hypothesis and to the reduction of the cost of testing them
(see Pammolli 1996; Riccaboni and Moliterni 2009; Pammolli et al. 2020). Third,
some of the large established companies succeeded in developing, also through col-
laborations and acquisitions, their own capabilities in the new fields opened by the
molecular and genomic revolution, while the rate of entry of new specialized Orig-
inators has started to decreased. In this paper, we investigate how the evolution of
the R&D collaboration network in pharmaceuticals has been shaped by a variety
of underlying technological and relational regimes, which have co-evolved, comple-
menting each other. In particular we investigate whether the relational mechanisms
described by Orsenigo et al. (2001) are still in place in the pharmaceutical sector at
the present days or whether new technological regimes have shaped the structure of
the collaborative network. We document a promiscuity of roles between firms act-
ing as Originators and as Developers after 2000: Originators have begun to act also
as Developers, while some of the established Developers have incorporated the new
research technologies and have started to act also as Originators of new projects and
collaborative alliances and analogously, biotech firms have started to play also as
Developers of R&D projects originated by both large and small firms. In our analy-
sis, we combine an explorative topological inspections of the graph representing the
contractual relations between firms at different points in time and a parsimonious
stochastic representation of network formation (see Buldyrev et al., 2020 ). First,
we have been inspired by Simon (1962) to analyze the transition between relational
regimes, without introducing any assumption on the underlying dynamical laws rul-
ing the evolution of the network (Riccaboni 2000; Pammolli and Riccaboni 2003)
and, instead, relying on topological inspection of the network to infer some of their
key features. Second, we complement our explorative topological analysis of the net-
work with a parsimonious stochastic framework of network formation, which, once
again, builds upon the seminal contribution of Herbert A. Simon (Simon 1955; Ijiri
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and Simon 1977; Barabási and Albert 1999; Buldyrev et al. 2020). We show that
in the early stages of the evolution of the network of collaborative alliances, older
established companies acting as Developers were able to capture new opportunities
to collaborate proportionally to the number of their collaborations they had already in
place (this is the so-called preferential attachment or rich get richer phenomenon). In
a second stage of network evolution, the emergence of Originators which sold their
technologies and services to both large and small firms produced those departures
from the previous configuration, which were first documented by Orsenigo et al.
(2001), with a dramatic change in the underlying relational regimes. Accordingly, the
formerly dominant preferential attachment formation mechanism started to coexist
with a second regime, were new links were established irrespectively of Developers’
connectivity. Finally, we document how the subsequent evolution of the network con-
tinued to be shaped by the co-existence of those basic relational regimes and, more
and more, by changes in the roles of Originators and Developers.

The paper is organized as follows. First, we expand the analysis of Orsenigo et al.
(2001) to study the growth of the network over time. We extract relevant information
on the evolution of the network, which allow us to characterize the roles of differ-
ent types of actors in terms of their structural positions in the network (see Simon,
1962). Second, based on the results of our topological investigation, a simple network
formation model is introduced, to account for the empirically observed patterns. In
Section 2, we describe the dataset used for the analysis and the methods employed
to describe the topological evolution of the collaboration network. In Section 3, we
discuss our empirical results, while Section 4 introduces a network formation frame-
work that we propose to reproduce the key results observed in Section 3. Section 5
concludes.

2 Data andMethodology

The source of data we use is Recap, as in Orsenigo et al. (2001) and Pammolli and
Riccaboni (2002), with a significant extensions of the time frame, providing here the
final long-term reconstruction of the industry alliances, covering more than thirty
years. Recap collects data on biotechnology agreements from three primary sources:
companies press releases, SEC filings and company presentations made at investment
conferences and other public meetings. Alliances are made by multiple institutional
actors, including firms, universities and government laboratories. Recap allows us
to distinguish different agreements, including acquisitions, joint ventures, licens-
ing deals, co-development agreements, manufacturing and marketing agreements.
Our focus here is on interfirm R&D agreements, including co-development, R&D
collaboration, development, technological licensing, and other unspecified research
contracts. Our dataset encompasses 4,153 alliances involving 2,811 firms, from 1981
to 2012.

As in Orsenigo et al. (2001), we represent the network as a graph G(V, E), where
vertices V are the organizations, while edges E are the R&D collaborations between
them. The resulting network is a directed graph, where a link e is oriented and con-
nects an Originator (o) with a Developer (d). The graph G is then represented by its
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adjacency matrix G ⇔ A(G) = [aod ], in which the entry aod is equal to 1 if there is
a collaborative agreement linking the Originator o with the Developer d , and 0 other-
wise. To analyze the evolution of the overall network, we decompose it into temporal
sub-graphs and inspect the connections that are in place at different points t in time.
Each sub-graph is indicated by Gt(V, E). We aggregate contractual agreements on a
yearly basis, getting 31 sub-networks, which represent the R&D agreements signed
from year by year from 1981 to 2012.

We first compute some preliminary statistics such as the number of nodes (i.e. the
number of firms present on the network) and the number of links (i.e. the number
of collaborations). Subsequently, we investigate how relational roles have shaped the
growth and the structure of the network.

Discontinuities in relational ordering criteria within the network are studied mea-
suring variations in the degree of decomposability of the system (see Simon, 1962 )
through a simple graph-theoretical indicator derived from the Dulmage-Mendelsohn
(DM) decomposition (Harary 1967; Dulmage and Mendelsohn 1958). This means to
rearrange rows and columns of the adjacency matrix to generate a set of blocks or
submatrices, which under stable relational rules (stability of the ordering criterion)
see a populated principal diagonal and off-diagonal zeros. Suppose that the adjacency
matrix has a maximal transversal of length l. This corresponds to a one-one matching
in the network between l Originators and l Developers. This can be used to construct
what Pothen and Fan (1990) call the coarse decomposition of the adjacency matrix.
To get to this form, we start by placing any unmatched rows as leading. Next we
look for the columns that can be reached from any of these rows via an alternating
path. These n1 columns are placed as leading. The first block of the block triangular
form contains these columns and the rows that are unmatched or have a transversal
entry in one of these columns. The rows of the block can have no entry in a column
outside the block because such an entry would have led to an alternating path from
an unmatched row and so the column would by definition be in the first block. Sim-
ilarly, any unmatched columns are placed as trailing and the m1 rows that can be
reached from any of these columns via an alternating path are placed as trailing. The
final block of the block triangular form contains the rows and the columns that are
unmatched or have a transversal entry in one of these rows.

The size and number of these blocks conveys information on the decomposability
of the system. For this purpose, following Orsenigo et al. (2001), the Dulmage-
Mendelsohn (DM) decomposition (Harary 1967; Dulmage and Mendelsohn 1958) to
the adjacency matrix thus produces the following: i) o1 ≡ oM(dU ) ii) o2 ≡ oMM

iii) o3 ≡ oU ∪ oM(oU ) iv) d1 ≡ dU ∪ dM(dU) v) d2 ≡ dMM vi) d3 ≡ dM(oU).
Variables M and U denote matched and unmached nodes, respectively. Originators
classified in o1 (i) or Developers in d3 (vi) cannot be assigned an unambiguous
relational role within the network, i.e. they play a transversal role and prevent the
adjacency matrix to be nearly decomposable, reflecting the transition from a given
configuration to a new one, were multiple ordering principles of nodes and relations
coexist.

To get a deeper insight on how relational roles played by different actors shaped
the structure of the collaboration network we measure the relative importance, or
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centrality, of each node, counting the number of connected nodes. The in-degree ki
in

of a vertex i is the number of links from other vertices to i, while the out-degree ki
out

of a vertex i is the number of links directed from i to other vertices. In our network,
the out-degree ki

out can be considered as the number of ideas/projects licensed out by
the corresponding institution, whereas the in-degree ki

in shows the number of projects
that company i gets access to. As a first benchmark, we test whether empirical distri-
butions kin,out are consistent with an underlying process of preferential attachment,
so that they generate a power law distribution.

We therefore estimate the cumulative probability distributions P>(kin) and
P>(kout ) of the number of nodes with in-degree and out-degree greater than or equal
to kin and kout , respectively. In particular, we test the hypothesis that the distribution
of the number of collaborations is a power law

P>(kin) ∝ (kin)
1−γin

P>(kOut ) ∝ (kOut )
1−γout

This corresponds, for large values of kin and kout to probability densities P(kin) ∝
(kin)

γin and P(kin) ∝ (kout )
γout of finding a firms that has access exactly to kin

projects or licensed out exactly kout projects. Since the detection and characteriza-
tion of power laws is complicated by the large fluctuations that occur in the tail of
the distribution, i.e. the part of the distribution representing large but rare events, and
by the difficulty of identifying the range over which power-law behavior holds, our
estimation strategy follows (Clauset et al. 2009). Moreover, we also adopt the like-
lihood ratio test of Virkar et al. (2014) comparing the power law hypothesis against
four alternative distributions, the exponential, the log-normal and the stretched expo-
nential (Weibull) distribution, plus a power-law distribution with exponential cutoff.
Generally speaking, given a pair of parametric models A and B for which we may
compute the likelihood of the data, the model with the larger likelihood is a better
fit. Using the ratio of the two likelihoods we are thus able to discriminate between
alternative distributions.

Finally, we study the homophily of the network. In a nutshell, homophily identi-
fies the tendency of nodes to connect to similar nodes. In network theory this concept
is traditionally measured by means of the assortativity index. A network in which
hubs (nodes with many connections) tend to link to each other, repelling small-degree
nodes and, at the same time, small-degree nodes tend to connect to other small-degree
nodes, is said to be assortative. Conversely, a network in which hubs repel each other,
linking instead to small-degree nodes is called disassortative. Assortative/dissortative
mixing can be computed for the overall network by looking at the correlation between
nodes (in-out) degree and the average nearest neighbours (in-out) degree. This mea-
sure sheds lights on the way Originators and Developer connect to each other over
time: if the measure is negative, this means that Originators (Developers) tend to con-
nect with Developers (Originators), thus avoiding connections with firms that have
similar roles. When the assortativity measure tends to zero, the connectivity of nodes
has no influence on the likelihood that two parties will enter into a new collaborative
agreement.
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3 Empirical results

3.1 The growth of the network

From the beginning of the Eighties to the first decade of the new millennium, the
size of the R&D network increased significantly, although in a non-monotonic way,
as reported in Fig. 1. In particular, starting approximately from 2006 we do observe
a decreasing trend. By classifying each institution into one of the following cate-
gories: biotech company, pharmaceutical firms, university, research hospital, Fig. 1
(lower panel) shows the dominant role of biotech and pharmaceutical companies in
the network.

Fig. 1 Number of nodes and their roles in time. The upper panels report the number of Developers (left)
and the number of Originators (right). Both the quantities display an increasing trend, reflecting the role of
new entrants in the expansion of the network. From 2006 to 2009 the number of newcomers decreased in
correspondence with the global financial crisis, then reversing the trend in the last few years. In the lower
panel, we show that even though the number of biotech and pharma companies have grown from 1990 to
2000, after the beginning of the new millennium, the growth of the network has been driven mostly by
biotech companies
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The growth of the number of nodes (institutions) in the network has sustained
an increase in the number of links (see Fig. 2). Two paths emerge. Up to the mid
Nineties, the number of links increased with a peak between 1995 to 1997. After-
wards, the growth of the number of links displays an exponential trend, with a
contraction during the 2007-2009 global financial crisis.

These descriptive results are in accordance with the stylized facts discovered by
Orsenigo et al. (2001). The growth of the network was shaped by the arrival of new
technological opportunities, while the non-monotonic increase of both the number
of nodes and the number of links reflected the influence of multiple waves of tech-
nological opportunities, in fields such as recombinant DNA, monoclonal antibodies,
genomics, screening devices and combinatorial chemistry.

To investigate the evolving patterns of cumulative advantages in the network, we
produce a graphical representation of the aggregated adjacency matrix and plot the
corresponding level curves. First we create an empty adjacency matrix whose size
is given by the number of firms in the dataset, with no repetitions. Second we sort
firms (both Originators and Developed) according to the first time they are recorded
in the dataset, such that the upper left corner of the newly created adjacency matrix
represents the oldest firms. Rows represent Developers, while columns are associated
with Originators. Third at each time stamp t , the links present in the dataset are added
to the adjacency matrix such that if the same link, from the x-th Originator to the
y-th Developer, for instance, is recorded multiple times in the dataset then, in the
adjacency matrix, the position (x-y) contains the number of time firm x and firm y are
connected in the dataset. Colors thus represent the cumulative number of agreements
between pairs of nodes. Darker colors are associated with a higher number of deals
with respect to lighter ones. Figure 3 shows the presence of a hierarchical structure
in the network, resulting from the emergence of a core of firms (the earlier entrants)
connected to an expanding turbulent fringe of specialized entrants, which entered the

Fig. 2 Temporal evolution of the number of agreements. The figure shows the number of links represent-
ing R&D agreements in the network. The number of contractual agreements substantially increased in
time, with a steeper slope during the Nineties, reflecting the emergence of new research trajectories and
technologies in the industry, in terms of both new research hypotheses and new research technologies. In
particular, after 1998, the number of links has started to grow exponentially
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Fig. 3 Cumulative number of collaborative agreements classified according to node’s year of entry. The
figure shows the evolution of the network formation process by a graphical representation of the adjacency
matrix by means of level curves. Nodes are classified according to the year of entry into the network and
colors represent the number of deals between pairs of nodes; darker colors correspond to higher numbers
of deals with respect to lighter ones. The black rectangle in the up-left corner captures the existence of a
first mover advantage for early entrants, while dark points outside the rectangle detect the perturbation of
this regime induced by the development of general purpose research technologies

industry with specific research hypotheses on mechanisms and targets for therapeutic
intervention. Indeed, Fig. 3 shows the existence of a first mover advantage for the
early entrants acting as Developers, especially up to 1998 (black rectangle). Since the
Nineties, the network becomes sparser, and the number of agreements per node has
decreased. The emergence of general purpose technologies has changed the structure
of the network, introducing a competing relational regime with respect to the original
preferential attachment scheme. New entrants, working now on new technological
platforms and acting as Originators, signed agreements with a variety of other firms,
irrespectively of age and size within the sector (dark points outside the rectangle).

3.2 Network perturbation and roles’ transitions

To inspect the relational roles in the network, in Fig. 4 we show the results of the
Dulmage-Mendelsohn decomposition of the network in three distinct periods: 1981-
1990, 1991-2000 and 2001-2012. The upper-right rectangle of each sub-plot (red
dot lines) of Fig. 4, encompasses the links between Originators and Developers that
cannot be assigned an unambiguous relational role within the network.

As shown in Fig. 4, this portion of the network became progressively more popu-
lated in time, meaning that the number of firms present in all the intersections among
minimum coverage vertex sets, and thus attracting most of the agreements, increases
in time. The dramatic growth of the overall degree of interdependence within the
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Fig. 4 Dulmage-Mendelsohn decomposition of the R&D network. The figure shows the result of the
Dulmage-Mendelsohn decomposition performed on the collaboration agreement network for three distinct
periods: 1981-1990, 1991-2000 and 2001-2012. The upper right rectangle (red dot lines), encompasses the
links between Originators and Developers that have a transversal relational role within the network, i.e.
they do not play an unambiguous role. We report in the title of each panel the percentage of links over the
total number of links (i.e. the density D)

pharmaceutical network suggests that the leading Developers have established multi-
ple collaborations with a wide variety of Originators. Indeed, up to the early Nineties,
the transversal component of the network was almost absent, since Originators and
Developers played unambiguous role in a network, which was growing through pref-
erential attachment. In other words, large Developers attracted new Originators in
proportion to their connectivity. In the Nineties, new firms bringing about what Ors-
enigo et al. (2001) defined as transversal research platforms and technologies, entered
the industry thus generating entirely different relational patterns. In particular, we
show that transversal technologies have led Originators to connect with Developers
independently of their size and age. That was a radical change, since the new screen-
ing, bioinformatics and genomic platforms contributed to promote the emergence of a
new division of labor, in which small specialized research firms had a chance to act as
Developers and as potentially integrated players, by combining the discovery of new
research opportunities with faster trials, allowed by the emergence of new biomark-
ers. Since the early 2000s, more and more nodes started to populate the transversal
component of the sub-graph, thus indicating an increased promiscuity of roles and a
much less defined distinction between Originators and Developers. As a result, the
industry has become less polarized, and small firms have started to catch up and to
grow as integrated companies, while larger firms seemed not to be able to develop
internally all the projects they originate and started to act also as Originators.

From data inspection, we notice that the firms that play a transversal role as
Developers are mainly large, R&D intensive pharmaceutical companies such as
MSD, AstraZeneca, Novartis and Novo Nordisk. This group of firms entered the
network early on accessing to recombinant DNA technologies and monoclonal anti-
bodies during the Eighties and moving,in more recent years, to bio-informatics and
gene expression technologies. The same companies that, from the Nineties onwards,
behave as transversal Developers were already part of the core of the network since
the early years. Moreover, within this group, large pharma companies and uni-
versities, acted also as Originators, with an increasing role of universities in the
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development of biomarkers technologies for cancer identification. Transversal Orig-
inators are mainly smaller companies involved in platform technologies, such as new
drug delivery systems, combinatorial chemistry, genomics and bio-informatics. Inter-
esting, the projects were originated both by companies like MSD and Pfizer, and at
the same time, by smaller younger firms. The corresponding research projects were
mainly in cancer and central nervous system, while the contracts were signed in the
discovery and pre-clinical phases of development.

Figure 5 shows the temporal evolution of different types of organizations inside the
transversal component of the collaborative network for 1981-1990, 1991-2000 and
2001-2012. Biotech firms acted as the major Originators during the Nineties, thanks
to the arrival of new general purpose technologies (GPTs). Over time, some pharma-
ceutical companies have played as transversal Developers, thanks to their ability to
incorporate GPTs. Indeed, after having incorporated GPRTs, Developers of different
size have started to generate projects that are then developed by other firms, some-
how irrespectively of their initial roles as Originators or Developers. Interestingly,
universities have played a prominent role as transversal Originators in the last period.

Figure 6 presents the cumulative distribution functions and the best fit for the
in-degree (top left panel) and for the out-degree (top right panel) computed on the
aggregate network. The plot shows that the values of the exponents slightly differ
across the type of centrality measures. Indeed we find γin = 2.7 and γout = 2.5. It
also need mentioning that few empirical phenomena obey power laws for all values
of a generic variable x. More often the power law applies only for values greater than
a minimum xmin. In this case the tail of the distribution follows a power law (see

Fig. 5 Transversal organizations by type. The figure shows the organization type inside the transversal
network component along three sub-samples, from 1981 to 1990, from 1991 to 2000 and from 2001 to
2012
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Fig. 6 In- and Out-degree cumulative distributions with power law fit and PDF exponent dynamics. The
figure shows in the upper panels the in-degree (left) and out-degree (right) CDF computed on the aggregate
network together with the power law fitting line. The insets provide the slope of the fitting line together
with confidence bound and the minimum value after which the in- and out-degree follow a power law
distribution. The lower panel report the power law exponent of the in- and out-degree PDF along time with
the dashed lines representing the three sub-periods 1981-1990, 1991-2000 and 2001-2012. The value of the
exponent is stable, showing also the highest values in the first part of the sample, while it decreases during
the Nineties. After that phase, it settles down approximately to 1.3 for both Originators and Developers.
This reflects changes in the network configuration in which the presence of hubs tends to decrease along
time

Clauset et al. 2009; Pecora and Spelta 2015). We find that this value is 9 for kin and 5
for kout . This means that, companies that develop more than 9 projects or originates
more than 5 projects follow a power law distribution.

The lower panel of Fig. 6 shows that the power law exponent of both the in-degree
and the out-degree distributions is stable. The highest values of the exponent are
in the first part period thus reflecting a first mover advantage for the established
companies. During the Nineties the value of the exponent decreased, thus suggesting
a more balanced structure. Afterwards, the power law moved down approximately



The network origins of Schumpeterian innovation

to 1.3 for both Originators and Developers thus reflecting a third regime has started
to the network in which promiscuity of roles between Originators and Developers
dominates.

The increasing promiscuity of roles between Originators and Developers is also
visible from Fig. 7 that reports, on the left y-axis, the average absolute difference
between nodes’ in- and out-degree and, on the right y-axis, the number of recip-
rocated links. These two quantities depict opposite dynamics: the average absolute
difference between nodes’ in- and out-degree decreases whereas the number of recip-
rocated links increases. These results suggest that, initially, companies specialized
either in the early phases of the R&D process or downstream in the development
of new analyses of the candidate drugs (and vice-versa). On the other hand, from
2000 onwards, a clear distinction between Originators and Developers does not hold
anymore, since many players perform both roles.

The assortativity coefficient can provide some further insights into the main
drivers of the evolution of the network. In directed networks the assortativity
coefficient is a correlation coefficient between the degrees of all nodes on two
opposite ends of a link in four possible ways: out-degree/in-degree correlation, in-
degree/out-degree correlation, out-degree/out-degree correlation, in-degree/in-degree
correlation. These combinations are used to investigate whether Originators tend to
connect to Developers (and vice-versa) and when different types of collaboration
take place in time. As Fig. 8 shows, there is no correlation between Originators and
Developers meaning that a firm of the first type connects to a partner of the second
type, irrespectively of its size. More interesting, the negative correlation (dissortativ-
ity mixing) between firms of the same types in the decade 1981-1991 suggests that

Fig. 7 Degree difference and reciprocated links. The figure shows the average absolute difference between
nodes’ in- and out-degree (left y-axis) and the number of reciprocated links (right y-axis) over time. The
average absolute difference between nodes’ in- and out-degree decreases whereas the number of recipro-
cated links increases. These results emphasize how, during the first part of the evolution of the network,
companies played unambiguous roles being either Originators or Developers, while in more recent years
a clear distinction does not hold anymore and firms can perform the two roles at the same time
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Fig. 8 Assortativity coefficient. The figure shows the value of the assortativity coefficient for the four
possible combinations the (in-)out-degree and average nearest neighbour (in-)out-degree distributions.
Dashed lines represent the three sub-periods in which we split the sample (1981-1990, 1991-2000 and
2001-2012). The assortativity values of the Developers-Originators combination shows an uncorrelated
pattern of collaboration, the same measure for Originators-Originators and Developers-Developers show
a dissortative behavior that tends to reduce along time, stabilizing around -0.2 from 2001 onwards

Originators link only with Developers but not with other Originators (and viceversa)
in that period. This pattern holds until end of the Nineties, when the anticorrelation
starts to decreases, because of the introduction of transversal technologies and sta-
bilized around -0.2, meaning that firms in the most recent years play both the roles
of Originators of the research ideas and Developers of new technological opportu-
nities. All in all, the negative value of the assortativity measure means that, up to
the Nineties, important Originators (Developers) connect with companies active as
Developers (Originators) thus avoiding connections with firms that play the same role
in the industry. Conversely, in the Nineties, this measure approached zero, reflect-
ing the fact that connections have started to be established irrespectively of the roles
firms previously played within the network.

4 Technological patterns and network formation

In this Section, based on our investigation of the main relational drivers of net-
work formation and evolution, we introduce a simple stochastic model of network
formation and we test its predictions against the topological properties that we
have outlined above. Our network formation model takes into account the relational
regimes observed in the data by reproducing polarization through preferential attach-
ment and describing the role transitions in the collaborative network trough a fitness
function.

In the model, the growth of the network is fuelled by the arrival of new firms
with new research ideas/projects. New companies establish agreements with existing
firms according to two distinct rules. First, firms can be attracted by established nodes
with many connections/projects and they sign contracts based on specific research
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hypotheses. Alternatively, the selection of partners may be shaped by the general
purposiveness of technologies, allowing the new entrants to connect with developing
companies, irrespectively of their previous connectivity (see Bianconi and Barabási
(2001)).

In a nutshell, we introduce a simple framework based on the following two steps:

i) We start at t0 with a fully connected network composed of three nodes,
ii) At each time-step a new node i with m = 1 link and fitness ηi is added to the

network,
iii) The probability that a link from a new node connects it to node j (already in the

network) is proportional to the product of node j ’s degree kj and its fitness. In

formulas: �j = ηj kj∑
z ηzkz

.

The dependence of �j on kj captures the fact that higher-degree nodes, i.e. firms
with a high number of links, have stronger attractive power/visibility, hence new
entrants are more likely to connect to them. The dependence of �j on ηj captures
the fact that, between two nodes with the same degree, the one with higher fitness
is selected with a higher probability. This means that, even a relatively young firm,
with initially only a few links, can acquire links rapidly thanks to its higher fitness.

These two features map on the observed technological and relational regimes. Dur-
ing the first part of the evolution of the network, its growth seems to have been driven
mostly by a principle of first mover advantage and preferential attachment, which
can be modeled by referring to the Simon-Barabasi-Albert framework (see Barabási
and Albert, 1999 ), where a node’s growth rate is determined mostly by its degree.
In the second regime, general purpose research tools and techniques have induced
the emergence of collaborations established irrespectively of Developers’ previous
connectivity, while a few nodes were able to establish links at relatively high rates.

We split the data sample in two sub-samples: the first ranging from 1981 to 1998
and the second from 1998 to 2012. For both time periods, we have retained only
the nodes that, at the end of each period, have at least three connections (collabora-
tions) and we have calculated the Pearson Correlation coefficient between the degree
and the cumulated growth of their degrees in the two periods. Results suggest that,
during the preferential attachment relational regime, the fitness of each node, mea-
sured as the growth rate of its collaboration is virtually independent (-0.003) from
its initial size, with a process of pure proportional growth and preferential attach-
ment (Kong et al. 2008). On the other hand, during the second relational regime, the
correlation between the growth rate of firms’ collaborations and the initial degree is
negative (-0.04), one order of magnitude larger than in the cumulative/preferential
attachment regime. In other words, small firms tend to attract collaborations more
rapidly and frequently than firms with higher degrees. In this regime, the fitness
measure is inversely related to the degree of each node, highlighting a technological
discontinuity.

To take into account the changing relationships between the growth rate of each
node and its degree during the two regimes, we propose a fitness measure:

ηj = (1 − α)
max(k)

kj

+ αkj (1)
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Indeed, when the parameter α is equal to 0.5, the fitness becomes equal for all the
nodes, leading the Bianconi and Barabási (2001) model to converge to the Barabási
and Albert (1999) model, where only the degree dynamics matters for the attachment.
When α < .5, the fitness of the nodes with low degree becomes higher then the
fitness of the high degree nodes, leading smaller nodes to establish a relatively higher
number of connections.

Results are shown in Figs. 9 and 10. Figure 9 shows the circular networks and
the Dulmage-Mendelshon decomposition of the adjacency matrices produced by the
model in the two regimes. Figure 10 reports the degree distribution and the power
law fit in the two cases.

The left panels refer to the first regime, in which preferential attachment prevails,
while the right panels are associated with the second regime. In the first case, when
α = 0.5 a hub-like structure emerges with a power law degree distribution with a

Fig. 9 Circular network topology and DM decomposition for the two relational regimes. The figure shows
the circular network produced by the model (upper panels) together with the DM decomposition of its
adjacency matrix (lower panels). The left panels refer to the first regime, in which preferential attachment
prevails. The model produces a hub-like networks with a transversal component populated by few links.
The right panels reproduce the main feature of the second regime where hubs tends to decrease and the
transversal component becomes more populated (see black squares)
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Fig. 10 Power law fit for the two relational regimes. The left panel shows the degree distribution and
the corresponding power law fit in the periods 1982-1998 along with the assortativity value. The right
panel shows the degree distribution and the corresponding power law fit in the periods 1998-2012 and the
assortativity value

coefficient similar to the one observed in the data (γ = −1.854, see Fig. 6). More-
over, as empirically observed, the DM decomposition of the adjacency matrix reveals
the presence of few transversal links (see Fig. 9). On the other hand, when α = 0.1
the statistical features of the second regime are reproduced, as the network becomes
less polarized, and more and more nodes populate the transversal sub-graph. Also in
this case, the power law coefficient of γ = −1.457 is similar to the one observed in
the period 1998-2011. Finally, the assortativity coefficient reproduced by the model
is, at least qualitatively, similar to the one of the real world network: it is negative
and lower in the cumulative regime with respect to the mixed regime started in the
Nineties when the growth rate of the low degree nodes is higher than the one of the
high degree nodes.

This simple model, which controls only for the intrinsic heterogeneity of nodes
connections and thus for first order properties of the network is able to generate
higher order topological features that are observable in the empirical data, such as
the increasing size of the transversal block of the adjacency matrix or the increasing
assortativity. In other words, the observed topological complexity of the evolv-
ing R&D network can be explained relatively simply in terms of the observed
heterogeneity of its nodes.

5 Concluding discussion

In this paper, we have outlined some key features of the long-term evolution of the
network of collaborative agreements in pharmaceutical R&D during the last thirty
years. Our main goal was to show how explorative topological inspections can be
used to detect the emergence of technological and relational discontinuities in R&D
networks, driven by the underlying dynamics of scientific and technological regimes.
In particular, we have built on the seminal contribution of Orsenigo et al. (1997,
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2001) to unravel how scientific and technological evolution has influenced the rela-
tionships between large and small firms, re-shaping the influence of patterns of local
interaction and the overall structure of the network. While the network has grown
in time in terms of number of nodes and links, connectivity patterns have evolved
from a regime in which Originators connected to Developers according to a prefer-
ential attachment scheme, which reflects the presence of first mover advantages in a
hub-like network, to a configuration in which there is no more a clear cut between
companies acting as Originators and companies acting as Developers. The introduc-
tion of General Purpose Research Technologies in molecular biology, combinatorial
chemistry and genomics has increased the speed and the efficacy of drug discovery
processes, contributed to the prolification of specific research ideas. In recent years, a
well defined specialization of firm as Originators or Developers of new technological
opportunities has vanished. Biotech firms have shifted from being mostly Originators
to play a leading role also as Developers, while the number and specificity of novel
plausible targets and indications generated by new research trajectories have induced
large pharmaceutical companies to act as Originators of new projects that are then
developed by other companies.

The contribution of our work in this paper is twofold. First we contribute to the
literature which shows how network analysis can sustain the identification of major
discontinuities in the evolution of the division of innovative labor. In particular, we
document the importance of role transitions in shaping the evolution of the underlying
relational regimes originally detected by Orsenigo et al. (1997, 2001). Second, we
have show how explorative topological analysis can be complemented by a simple
and general stochastic approach, which can be applied to investigate and to compare
the evolution of innovation networks across multiple industries and technological
regimes, in the spirit of Malerba (2004) and Buldyrev et al. (2020).

Appendix: The DulmageMendelson decomposition

The DulmageMendelson Decomposition (DM) procedure decomposes the adjacency
matrix of a network into blocks of specific sub-graphs such that two adjacent nodes
belong to the same subset if and only if they are paired with each other in a perfect
matching of the graph. In other words, the DM creates a partition of the vertices of
a graph into subsets such that each edge belongs to a perfect matching if and only
if its endpoints belong to the same subset. In our specific case, thus, if a specific
Originator is coupled to a specific Developer we would obtain a perfect matching .

The DM decomposition isolates a set of vertex covering separators of minimum
size, that is the smallest set of graph vertices that includes at least one endpoint of
every edge of the graph. This is the smallest set of nodes able to reach out to every
network components which, if removed, would dissect the overall graph into the
highest number of isolated sub-graphs.

In the case of the network under investigation, the two vertex sets correspond to
Originators (o) and Developers (d), respectively. A matching of G is defined as a set
of edges (and hence a subset of E), no two of which are incident on a common vertex
(see Lovász and Plummer, 1986). A vertex covering of a graph G is defined as the
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subset of vertices V1 ⊆ V , such that each edge e is incident to some vertex in V1.
The application of a DM decomposition algorithm (Dulmage and Mendelsohn 1958)
to the bipartite graph produces the following results:

• o1 ≡ oM(dU )
• o2 ≡ oMM

• o3 ≡ oU ∪ oM(oU )
• d1 ≡ dU ∪ dM(dU )
• d2 ≡ dMM

• d3 ≡ dM(oU ).

Variables M and U represent matched and unmached nodes respectively. Originators
classified in o1 or Developers in d3 cannot be assigned an unambiguous relational role
within the network, i.e. they play a transversal role. These two sets can be thought of
as the structural attractors of the network being present in all the intersections among
minimum coverage vertex sets.
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